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Item-based collaborative filter algorithms play an important role in modern commercial recommendation systems (RSs). To
improve the recommendation performance, normalization is always used as a basic component for the predictor models. Among
a lot of normalizing methods, subtracting the baseline predictor (BLP) is the most popular one. However, the BLP uses a statistical
constant without considering the context. We found that slightly scaling the different components of the BLP separately could
dramatically improve the performance. This paper proposed some normalization methods based on the scaled baseline predictors
according to different context information. The experimental results show that using context-aware scaled baseline predictor for
normalization indeed gets better recommendation performance, including RMSE, MAE, precision, recall, and nDCG.

1. Introduction

The abundance of information available on the Internet
makes the increasing difficulty in finding what the people
want, especially for the Electronic Commerce domain. As
a consequence, building personalized information selection
models is becoming crucial. Among many different infor-
mation selection technologies, the recommendation systems
are greatly developed due to their application on most of the
famous online shopping companies [1, 2].

The algorithms of recommending items have been stud-
ied extensively, most of which belong to two main categories.
Content-based recommendation systems try to recommend
items according to the users’ past preference [3–5], whereas
the collaborative recommendation systems make the recom-
mendation in terms of the similar neighborhood preference
[6–9]. Recommendation systems based purely on content
generally easily suffer from the problems of limited content
analysis and overspecialization. Defining the appropriate
items’ features is very difficult for many situations, and these
features depend heavily on the users’ history, which cannot
find the latent profiles for recommendation.

Collaborative filter (CF) approaches overcome some of
the limitations of content-based ones. Items for which the

content is not available or difficult to obtain can still be
recommended to users through the feedback of other users.
CF ones can also recommend items with very different
content, as long as other users have already shown interest for
these different items. Among collaborative recommendation
approaches, methods based on nearest neighbors still enjoy
a huge amount of popularity, due to their simplicity, their
efficiency, and their ability to produce accurate and person-
alized recommendations [10–12]. CF models try to capture
the interactions between users and items that produce the
different rating values. However, many of the observed rating
values are due to effects associated with either users or items,
independently of their interaction.Aprincipal example is that
typical CF data exhibit large user and item biases, that is,
systematic tendencies for some users to give higher ratings
than others and for some items to receive higher ratings than
others.

Item-based collaborative filter [13, 14] has much more
accuracy than user-based one [15, 16], when the number
of items is larger than the number of users. The electronic
commercial business always has huge productions. The
number of productions far exceeds the number of users.
However, the average number of common ratings is very
small, because most of the users only have interest in very
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few items. User-based collaborative filter systems easily suffer
from overfitting problems in this situation. So the item-
based collaborative filter algorithms play an important role
in modern commercial recommendation systems (RSs). This
paper intends to improve the recommendation performance
using a novel rating normalization strategy.

When it comes to assigning a rating to an item, each user
has its own personal scale. Even if an explicit definition of
each of the possible rating is supplied, some users might be
reluctant to give high/low scores to items they liked/disliked.
There are some different rating normalization schemes which
are designed for different reasons [17–19]. Also, many of the
observed rating values are due to effects associatedwith either
users or items, independently of their interaction. We do not
only convert individual ratings to a more universal scale but
also consider the user and item biases.

The baseline predictor (BLP), which combines the overall
averaging rating anduser or itembiases, involves these factors
for normalization. But, for the item-based collaborative filter
systems, the BLP is always a statistical constant which cannot
be adaptively changed according to the context [20–23].
We found that the recommendation performance can be
improved if we slightly scale the different parts of the BLP
in a limited range. In this paper, we provided some novel
context-aware scaled baseline predictors (CASBLP) for item-
based collaborative filter normalization, considering different
context information. The experimental results show that
CASBLP can significantly improve the prediction perfor-
mance, such as Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), precision, recall, and Normalized
Cumulative Discounted Gain (nDCG).

The rest of this paper is organized as follows. We present
the details of CASBLP in Section 2 and show experimental
results in Section 3. Finally, we conclude the paper in
Section 4.

2. Description of Models

2.1. Baseline Predictor for Item-Based CF Normalization. A
general neighborhood-based collaborative filter recommen-
dation using BLP normalization is defined as follows:𝑟𝑢𝑖 = 𝑏𝑢𝑖 + Υ𝑘 (𝑢, 𝑖) . (1)Υ𝑘(𝑢, 𝑖) is rating predictor based on the 𝑘 nearest neigh-
bors. 𝑏𝑢𝑖 is the baseline predictor, which is always defined as𝑏𝑢𝑖 = 𝜇 + 𝑏𝑖 + 𝑏𝑢. (2)

Denote by 𝜇 the average ratings. The parameters 𝑏𝑖 and𝑏𝑢 indicate the observed deviations of item 𝑖 and user 𝑢,
respectively, from the average.

For item-based CF, we do not use the user biases due to
using the similar items as neighbors. So the BLP in item-
based CFS is 𝑏𝑢𝑖 = 𝜇 + 𝑏𝑖. (3)
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Figure 1: Impact of unified scaling factor on RMSE.

Υ𝑘(𝑢, 𝑖) is replaced by the following formula:

Υ𝑘 (𝑢, 𝑖)𝑖𝑏 = ∑𝑗∈𝑆(𝑖,𝑘)∩𝑁(𝑢) 𝑤𝑖𝑗 (𝑟𝑢𝑗 − 𝑏𝑢𝑗)∑𝑗∈𝑆(𝑖,𝑘)∩𝑁(𝑢) 󵄨󵄨󵄨󵄨󵄨𝑤𝑖𝑗󵄨󵄨󵄨󵄨󵄨 . (4)

𝑆(𝑖, 𝑘) is the set of the most similar 𝑘 items to the item 𝑢,
and𝑁(𝑢) is the set of items the user 𝑢 has rated.

There are many different similar weight functions. In
this paper, we use two popular ones, Cosine and Pearson’s
Correlation, the details of which are defined, respectively, as

Cos (𝑤𝑖,𝑗) = ∑𝑢∈𝑈 𝑟𝑢𝑖 ⋅ 𝑟𝑢𝑗√∑𝑢∈𝑈 𝑟2𝑢𝑖 ⋅ ∑𝑢∈𝑈 𝑟2𝑢𝑗 ,
PC (𝑤𝑖,𝑗) = ∑𝑢∈𝑈 (𝑟𝑢𝑖 − 𝑏𝑢𝑖) ⋅ (𝑟𝑢𝑗 − 𝑏𝑢𝑗)√∑𝑢∈𝑈 (𝑟𝑢𝑖 − 𝑏𝑢𝑖)2 ⋅ ∑𝑢∈𝑈 (𝑟𝑢𝑗 − 𝑏𝑢𝑗)2 .

(5)

2.2. Motivation of Scaling Baseline Predictor. The baseline
predictor can introduce some information which is inde-
pendent of neighborhood influence, but it is always set as a
constant. However, we found that slightly scaling the baseline
predictor could get a better predicting accuracy. But using a
single scaling factor for𝜇, 𝑏𝑖, and 𝑏𝑢 is not a good idea. Figure 1
shows an example where we can decrease the RMSE when
scaling 𝑏𝑢𝑖 (e.g., 𝛼𝑏𝑢𝑖) on a small MovieLens dataset.

From Figure 1, the best scaling factor is 0.6, at which we
can get the lowest RMSE.However, from another perspective,
such as Top𝑁 measure, using the same scaling factor 0.6 is
not a good choice. Figure 2 shows that scaling BP could not
improve the precision and recall.

For the recommendation systems, Top𝑁measure is more
important than RMSE. To improve both RMSE and Top𝑁
measure, we should not use the same scaling factor for the
parameters in 𝑏𝑢𝑖: 𝑏̂𝑢𝑖 = 𝛼𝜇 + 𝛾𝑏𝑖. (6)
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Figure 2: Impact of unified scaling factor on precision and recall.

Determining these three parameters is very difficult, but,
unlike matrix factorizationmodels, NBCFs can also not train
the unknown parameters. In this paper, we provide several
context-aware scaling factors. Before describing the details,
we first change (6) to another representation. Actually, the
baseline predictor can be also described as

𝑏𝑢𝑖 = 𝜇 + ∑𝑢 (𝑟𝑢𝑖 − 𝜇)󵄨󵄨󵄨󵄨𝑈𝑖󵄨󵄨󵄨󵄨 . (7)

𝑈𝑖 is the set of users rating item 𝑖. The scaling version of
baseline predictor can be considered as

𝑏̂𝑢𝑖 = 𝛼𝜇 + ∑𝑢 (𝑟𝑢𝑖 − 𝜇)(󵄨󵄨󵄨󵄨𝑈𝑖󵄨󵄨󵄨󵄨 + 𝛽) + ∑𝑖 (𝑟𝑢𝑖 − 𝜇)(󵄨󵄨󵄨󵄨𝐼𝑢󵄨󵄨󵄨󵄨 + 𝛽) . (8)

Here, we use the denominator 𝛽 to control the scaling
factors, and hence 𝛾 = |𝑈𝑖|/(|𝑈𝑖|+𝛽). In fact, 𝛽 is the Bayesian
mean damping term [24]. It biases means toward the global
mean 𝛼𝜇. Our task is to determine 𝛼 and 𝛽 according to the
context information.

The recommendation system is a very special machine
learning research. The user-item matrix is always too sparse.
When data is sparse, we need other sources of knowledge
to help the machine learning algorithm. Mining the context
information is a way of adding knowledge to the recommen-
dation system algorithms.

2.3. Context-Aware Scaled Baseline Predictors. We consider
several context situations to determine the scaling base-
line predictors: ratings distribution, categories distribution,
timestamp distribution, and links distribution. At first, we
denote by 𝐼 the set of all the items and by 𝑈 the set of all the
users.

The rating distribution aware (RDA) method scales the
baseline predictors in terms of ratings distribution.The values

of ratings are usually discrete. Denote by 𝑉 = {V1, V2, . . . , V𝑚}
the set of possible rating values, where V1 < V2 < ⋅ ⋅ ⋅ < V𝑚.

Denote by 𝑁(V𝑖) the set of rating records of which the
value is V𝑖: 𝑁(V𝑖) = {⟨𝑢, 𝑖, 𝑟⟩} ,𝑁 (V𝑖) ⋅ 𝑟 = V𝑖. (9)

𝑢 is the user, 𝑖 represents the item, and 𝑟 means the rating
of 𝑖 rated by 𝑢. Also, 𝑈(V𝑖) denotes the set of users whose
ratings contain V𝑖, and 𝐼(V𝑖) denotes the set of items which
are rated using the value V𝑖. Now we sort all 𝑁(V𝑖)𝑠, and
let 𝑉dsc be the set of 𝑁(V𝑖)𝑠 order by descent according to
the size of sets: 𝑉dsc = {𝑁(V𝑗)1, 𝑁(Vℎ)2, . . . , 𝑁(V𝑞)𝑚}, where|𝑁(V𝑗)1| ≥ |𝑁(Vℎ)2| ≥ ⋅ ⋅ ⋅ ≥ |𝑁(V𝑞)𝑚|, V(𝑖) ∈ 𝑉. Denote by 𝐸
all the rating records.The scaling factors of RDAare evaluated
as 𝛼 = ∑ 󵄨󵄨󵄨󵄨𝑁 (V𝑖)𝑑󵄨󵄨󵄨󵄨|𝐸| , 𝑑 ≤ 𝑘,

𝛽 = ∑ 󵄨󵄨󵄨󵄨𝑁 (V𝑖)𝑑󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨⋃𝑈 (𝑁 (V𝑖)𝑑 ⋅ 𝑟)󵄨󵄨󵄨󵄨 , 𝑑 ≤ 𝑘. (10)

Here, we use the 𝑘 largest 𝑁(V𝑖)𝑠. If the sizes of some sets
are equal and the number of candidates is larger than 𝑘, we
randomly select the sets of the same size.

Like RDA, the category distribution aware (CDA)
method scales the baseline predictors in terms of category
distribution. The items in recommendation system always
have some labels, indicating some special attributes. In the
MovieLens, the movies have some labels of genres. Each label
corresponds to a category, and each item may belong to at
least one category.

Suppose we have 𝑠 categories, and denote by 𝐶 the set
of these 𝑠 different categories, where 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑠}.
Denote by 𝐼(𝑐𝑖) the set of items belonging to 𝑐𝑖. 𝐼dsc is a
descent ordered set according to the size of set: 𝐼dsc ={𝐼(𝑐𝑗)1, 𝐼(𝑐ℎ)2, . . . , 𝐼(𝑐𝑞)𝑠}, where |𝐼(𝑐𝑗)1| ≥ |𝐼(𝑐ℎ)2| ≥ ⋅ ⋅ ⋅ ≥|𝐼(𝑐𝑞)𝑠|, 𝑐𝑖 ∈ 𝐶. For CDA, the scaling factors are expressed
as 𝛼 = 󵄨󵄨󵄨󵄨⋃ 𝐼 (𝑐𝑖)𝑑󵄨󵄨󵄨󵄨|𝐼| , 𝑑 ≤ 𝑘,

𝛽 = ∑ 󵄨󵄨󵄨󵄨𝐼 (𝑐𝑖)𝑑󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨⋃ 𝐼 (𝑐𝑖)𝑑󵄨󵄨󵄨󵄨 ⋅ |𝐶| , 𝑑 ≤ 𝑘. (11)

Note that to determine 𝛽 we use ∑ |𝐼(𝑐𝑖)𝑑| as the numerator
and | ⋃ 𝐼(𝑐𝑖)𝑑| as the denominator. The difference is that the
items always belong to multiple categories.

There is always a timestamp record for each rating. The
timestamp distribution aware (TDA) method scales baseline
predictor in terms of timestamp distribution. Suppose that
the element of 𝐸 is a 4-tuple, where 𝑒𝑙 = ⟨𝑢, 𝑖, 𝑟, 𝑡⟩ ∈ 𝐸.
The meanings of 𝑢, 𝑖, and 𝑟 are the same as in𝑁(V𝑖). 𝑡 is just
the timestamp when 𝑢 rated 𝑖 by the score 𝑟. The format of𝑡 is usually a Unix timestamp. We change 𝑡 to “yy-mm-dd”
format 𝑡̂.That means the base unit of time is the day, and now𝑒𝑙 = ⟨𝑢, 𝑖, 𝑟, 𝑡̂⟩.
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Figure 3: Example of rating network.

Let𝑇(𝑡̂𝑖) be the set of rating records, of which the reduced
timestamp is 𝑡̂. Like the previous two methods, we create
a descent ordered set 𝑇dsc = {𝑇(𝑡̂𝑗)1, 𝑇(𝑡̂ℎ)2, . . . , 𝑇(𝑡̂𝑞)𝑧}
according to the size of𝑇(𝑡̂𝑖), where |𝑇(𝑡̂𝑗)1| ≥ |𝑇(𝑡̂ℎ)2| ≥ ⋅ ⋅ ⋅ ≥𝑇(𝑡̂𝑞)𝑧.

We select the first 𝑔 elements of 𝑇dsc to compose another
truncated set 𝑇𝑔dsc = {𝑇(𝑡̂𝑗)1, 𝑇(𝑡̂ℎ)2, . . . , 𝑇(𝑡̂𝑦)𝑔}, 𝑔 ≤ 𝑧, 𝑇𝑔dsc⊆ 𝑇dsc. Denote by𝑈((𝑡̂𝑖)𝑑) the set of distinct users of the rating
records belonging to 𝑇((𝑡̂𝑖)𝑑). The scaling factors of TDA are
expressed as

𝛼 = (1/𝑔)∑𝑑≤𝑔 󵄨󵄨󵄨󵄨𝑇 (𝑡̂𝑖)𝑑󵄨󵄨󵄨󵄨(1/𝑘)∑𝑑≤𝑘 󵄨󵄨󵄨󵄨𝑇 (𝑡̂𝑖)𝑑󵄨󵄨󵄨󵄨 , 𝑘 ≤ 𝑔,
𝛽 = ∑
𝑑≤𝑘

󵄨󵄨󵄨󵄨𝑈 ((𝑡̂𝑖)𝑑)󵄨󵄨󵄨󵄨 , 𝑘 ≤ 𝑔. (12)

The links distribution aware (LDA) method scales base-
line predictor in terms of links distribution. The links mean
the relationship between users and items, which make up a
rating network. Any pairs of users have no link, and any pairs
of items also have no link. Equation (13) and Figure 3 show
an example of rating network:𝑖1 𝑖2 𝑖3 𝑖4𝑢1𝑢2𝑢3𝑢4 (0 0 1 11 0 1 01 0 0 00 1 0 1)

. (13)

Only when the rating between 𝑢 and 𝑖 is larger than or
equal to 𝑟𝑇 can we connect 𝑢 and 𝑖. The degree of the user 𝑢
is expressed as 𝜙𝑈(𝑢) and 𝜙𝐼(𝑖) for the item 𝑖. We create two
descent ordered sets𝑈dsc and 𝐼dsc according to the degrees. It
is obvious that 𝑈dsc = 𝑈 and 𝐼dsc = 𝐼. But, for convenience,
we use different symbols. That is, 𝑈dsc = {𝑢̂1, 𝑢̂2, . . . , 𝑢̂𝑚} and𝐼dsc = {𝑖̂1, 𝑖̂2, . . . , 𝑖̂𝑛}. There is a unique mapping from 𝑢𝑖 ∈ 𝑈
to 𝑢̂𝑖 ∈ 𝑈dsc and from 𝑖𝑖 ∈ 𝐼 to 𝑖̂𝑗 ∈ 𝐼dsc. For 𝑈dsc and 𝐼dsc, we
have 𝜙𝑈(𝑢̂1) ≥ 𝜙𝑈(𝑢̂2) ≥ ⋅ ⋅ ⋅ ≥ 𝜙𝑈(𝑢̂𝑚) and 𝜙𝐼(𝑖̂1) ≥ 𝜙𝐼(𝑢̂𝑖) ≥⋅ ⋅ ⋅ ≥ 𝜙𝐼(𝑖̂𝑛). We put the ordered degrees of users and items
into two sets, respectively: 𝐷𝑈 = {𝐷𝑢(1), 𝐷𝑢(2), . . . , 𝐷𝑢(𝑚)}
and 𝐷𝐼 = {𝐷𝑖(1), 𝐷𝑖(2), . . . , 𝐷𝑖(𝑛)}, where 𝐷𝑢(1) ≥ 𝐷𝑢(2) ≥⋅ ⋅ ⋅ ≥ 𝐷𝑢(𝑚) and𝐷𝑖(1) ≥ 𝐷𝑖(2) ≥ ⋅ ⋅ ⋅ ≥ 𝐷𝑖(𝑛).

Table 1: The meanings of different methods’ names.

Name Baseline predictor Similarity
NoBP-Cos/PC No Cosine/Pearson’s Correlation
USBP-Cos/PC Unscaled BP Cosine/Pearson’s Correlation
RDA-Cos/PC RDA Cosine/Pearson’s Correlation
CDA-Cos/PC CDA Cosine/Pearson’s Correlation
TDA-Cos/PC TDA Cosine/Pearson’s Correlation
LDAU-Cos/PC LDAU Cosine/Pearson’s Correlation
LDAI-Cos/PC LDAI Cosine/Pearson’s Correlation

For LDA, we have two ways of evaluating the scaling fac-
tors. When considering the degrees of the users, the method
is called LDAU, which is expressed as

𝛼 = (1/𝑔)∑𝑑≤𝑔 󵄨󵄨󵄨󵄨𝐷𝑢 (𝑑)󵄨󵄨󵄨󵄨(1/𝑘)∑𝑑≤𝑘 󵄨󵄨󵄨󵄨𝐷𝑢 (𝑑)󵄨󵄨󵄨󵄨 , 𝑘 ≤ 𝑔 ≤ 𝑚,
𝛽 = (1/𝑔)∑𝑑≤𝑔 󵄨󵄨󵄨󵄨𝐷𝑢 (𝑑)󵄨󵄨󵄨󵄨(1/𝑚)∑𝑑≤𝑚 󵄨󵄨󵄨󵄨𝐷𝑢 (𝑑)󵄨󵄨󵄨󵄨 , 𝑔 ≤ 𝑚. (14)

Also, when considering the degrees of the items, the
method is called LDAI, and the scaling factors are expressed
as 𝛼 = (1/𝑔)∑𝑑≤𝑔 󵄨󵄨󵄨󵄨𝐷𝐼 (𝑑)󵄨󵄨󵄨󵄨(1/𝑘)∑𝑑≤𝑘 󵄨󵄨󵄨󵄨𝐷𝐼 (𝑑)󵄨󵄨󵄨󵄨 , 𝑘 ≤ 𝑔 ≤ 𝑛,

𝛽 = (1/𝑔)∑𝑑≤𝑔 󵄨󵄨󵄨󵄨𝐷𝐼 (𝑑)󵄨󵄨󵄨󵄨(1/𝑛)∑𝑑≤𝑛 󵄨󵄨󵄨󵄨𝐷𝐼 (𝑑)󵄨󵄨󵄨󵄨 , 𝑔 ≤ 𝑛. (15)

Unlike the other methods, LDA controls 𝛼 and 𝛽 using
different distributions. For 𝛼, we use the top 𝑘 and top 𝑔
degrees, but for 𝛽, we use the top 𝑔 degrees and the average
degree.

3. Experiments

3.1. Experimental Settings. We use a MovieLens latest dataset
in our experiments, including 100,000 ratings and 6,100 tag
applications applied to 10,000movies by 700 users [25].There
are four files for each dataset: links, movies, ratings, and tags.
We use these files to get different context information. We
compare several different methods in our experiments, the
names and meanings of which are shown in Table 1.

The total methods compared are defined in Table 1.
There are two similarity weight functions in our experiments:
Cosine and Pearson’s Correlation.The neighborhood sizes of
item-based models are all set to 20, while they are 100 for
user-based models. Values of 𝑘 in (11)∼(15) are the same, 6 in
default. The values of 𝑔 are also the same for these different
methods, 20 in default. We randomly split the dataset into 5
parts and use cross-validation to train and test the models.

For top𝑁metric (e.g., precision and recall), we randomly
select 100 items on the testing as the candidates, excluding the
ones appearing in the training. Only the items rated above 3.5
(including 3.5) are recommended.
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Table 2: Values of scaling factors.

Method 𝛼 𝛽
RDA 0.8125 32.3833
CDA 0.8964 29.6461
TDA 0.7598 37
LDAU 0.6544 12.5643
LDAI 0.8083 29.8041

Table 3: Experimental results using Cosine.

Method Precision Recall RMSE MAE nDCG
NoBP-Cos 12.99% 20.62% 0.9465 0.9410 0.7237
USBP-Cos 19.82% 30.78% 0.9085 0.6939 0.9389
RDA-Cos 25.34% 39.01% 0.8984 0.6889 0.9485
CDA-Cos 25.05% 39.57% 0.8973 0.6869 0.9490
TDA-Cos 25.60% 40.03% 0.8999 0.6901 0.9488
LDAU-Cos 26.15% 40.80% 0.9003 0.6904 0.9495
LDAI-Cos 25.30% 39.45% 0.8979 0.6886 0.9485

The neighborhood collaborative filter models always
incur a high memory cost. So we use a 16GB RAM to run
different NHCF algorithms.

3.2. Experimental Metrics. Five metrics are used in our
experiments: precision, recall, RMSE (Root Mean Squared
Error), MAE (Mean Absolute Error), and nDCG (Normal-
ized Cumulative Discounted Gain).

For a test dataset 𝜏, denote by TP the set of recommend
itemswhich the users are really interested in, denote by FP the
set of recommend items which the users are not interested in,
denote by FN the set of not recommend itemswhich the users
are interested in, and denote by TN the set of not recommend
items which the users are not interested in. The metrics of
precision and recall are defined, respectively, as follows:

precision = |TP||TP| + |FP| ,
recall = |TP||TP| + |FN| . (16)

The recommendation system generates predicted ratings𝑟𝑢𝑖 for a test set 𝜏 of user-item pairs (𝑢, 𝑖) for which the true
ratings 𝑟𝑢𝑖 are known. The RMSE and MAE between the
actual ratings are given by

RMSE = √1𝜏 ∑
(𝑢,𝑖)∈𝜏

(𝑟𝑢𝑖 − 𝑟𝑢𝑖)2,
MAE = √1𝜏 ∑

(𝑢,𝑖)∈𝜏

(𝑟𝑢𝑖 − 𝑟𝑢𝑖). (17)

The recommendation systems always present to the user a
list of recommendations, imposing a certain natural browsing

order. In many cases, we are not interested in predicting an
explicit rating or selecting a set of recommended items, as
in the previous sections; rather we are interested in ordering
items according to the user’s preferences. nDCG is a measure
from information retrieval, where positrons are discounted
algorithmically. Assuming that each user 𝑢 has a “gain” 𝑔𝑢𝑖
from being recommended an item 𝑖, the average Discounted
Cumulative Gain (DCG) for a list of 𝐽 items is defined as

DCG = 1𝑁 𝑁∑𝑢=1 𝐽∑𝑗=1 𝑔𝑢𝑖𝑗
max (1, log𝑏𝑗) , (18)

where the logarithm base is a free parameter, typically
between 2 and 10. A logarithm with base 2 is commonly used
to ensure that all positions are discounted. nDCG is just the
normalized version of DCG:

nDCG = DCG
DCG∗

, (19)

whereDCG∗ is the idealDCG, the value ofwhich ranges from
0 to 1. The larger the value is, the better the performance is.

3.3. Experimental Results. We change a little the format
of the MovieLens dataset and import this dataset to a
MySQL database.The coefficients of BLP can be conveniently
calculated using some advanced SQL sentences. All of the
coefficients of CASBLP methods are shown in Table 2.

The experimental comparison results are shown inTable 3
(using Cosine similarity) and Table 4 (using Pearson’s Corre-
lation). It seems that using Cosine is better than using Pear-
son’s Correlation in our experiments. Maybe this is because
even if each user has different personal rating scale, the
rating matrix is too sparse to become the major issue. When
data is sparse, Cosine is always a good choice.

From Table 3, we can see that when not using normal-
ization scheme (NoBP) all of the metrics are much worse
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Table 4: Experimental results using Pearson’s Correlation.

Method Precision Recall RMSE MAE nDCG
NoBP-PC 12.93% 20.34% 1.2229 0.9271 0.9109
USBP-PC 20.01% 30.35% 0.9355 0.7169 0.9348
RDA-PC 25.24% 38.38% 0.9603 0.7440 0.9306
CDA-PC 24.65% 36.90% 0.9483 0.7340 0.9311
TDA-PC 25.19% 38.40% 0.9709 0.7522 0.9300
LDAU-PC 26.65% 40.93% 0.9856 0.7590 0.9327
LDAI-PC 25.19% 38.34% 0.9596 0.7434 0.9307
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Figure 4: Impact of scaled factors on RMSE.

than the others. The unscaled BLP is even better than
NoBP, in which the precision increases by about 7%, recall
increases by more than 10%, and RMSE decreases by 4%. It
is surprising that only using the simple unscaled BLP the
MAE increases by 15% and the nDCG increases bymore than
20%. Because recommendation order has a great commercial
significance, the normalization is an important improvement
in recommendation system. Our context-aware scaled BLP
normalization schemes make further improvement, mainly
on the precision and recall metrics. From both Tables 3 and
4, CASBLP normalization has almost the same RMSE, MAE,
and nDCG as the USBP, sometimes even little worse than
USBP. But, for a commercial recommendation system, what
the users care about is whether the RSs recommendwhat they
really need. The production selling would benefit from even
a 1% improvement on precision or recall. The precision of
our CASBLP schemes increases by about 5%, and the recall
increases by about 8%, which is a great improvement from
the commercial perspective.

An important problem is that the coefficients we used
have optimal values. So we change 𝛼 from 0 to 1 and 𝛽 from
0 to 200 to see the changes of the performance. Figures 4–6
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show the impact of scaled factors on RMSE, precision, and
recall, respectively.

For all these threemetrics, the optimum of 𝛽 is near 20, at
which the RMSE is the lowest and the precision and recall are
the highest. What is interesting is that any shrinking of 𝛼 can
improve precision and recall, even if we set 𝛼 to zero. How-
ever, shrinking 𝛼 would cause a slightly higher RMSE except
at the value near 0.8.

This means that 𝛼 can control the accuracy of the rating
prediction, but when 𝛼 has shrunk, 𝛽 plays a crucial role
in items recommendation. What causes this phenomenon is
that maybe the mean rating is computed in terms of all the
users, which involves the global information, while the biases
are computed in terms of only very few similar neighbors,
which involves the local information. For the personalized
recommendation systems, the local information is much
more important, and an ordinary average prediction has little
meaning. That is why even if we set 𝛼 to 0 and only using the
itembiaseswe can also get a passable prediction performance.

The neighbor size is an important factor in the
neighborhood-based recommendation systems, for item-
based or user-based ones. We increase the neighbor size
geometrically from 5 to 320. Figures 7, 8, and 9 show the
change of recommendation performance including precision,
recall, and RMSE, respectively.

What we can see from Figure 9 is consistent with what we
have concluded from Tables 3 and 4. Whether using scaled
BLP or unscaled BLP, we can get similar RMSE, which are all
much lower than the NoBP scheme. With the growth of the
neighbor size, all the RMSE are trending toward stability.

What surprised us is the results of precision and recall.
Both metrics are increasing until reaching the stable values
with the growth of neighbor size except the NoBP scheme,
the precision and recall of which decrease to the stable values.
This is due to the fact that, maybe without normalization, the
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prediction lacks personalization and causes too many more
decoys to choose from.

Figures 7 and 8 also show the results which are consistent
with Tables 3 and 4. Just slightly changing the coefficients of
BLP, we can get higher precision and recall than unscaled BLP
scheme andNoBP especially when using larger neighbor size.

4. Conclusions

Rating normalization is an important step when designing
collaborative filter recommendation systems, especially for
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the item-based ones which play a key role in the domain
of online commercial business. Using the baseline predictor
for normalization considers both the global information and
local information. Although we found that balancing them
can improve the recommendation performance, there is no
clear way of determining the weight of these two sources of
information. In this paper, we proposed some context-aware
scaled BLP schemes, which compute the weights of mean
ratings and biases, respectively, in terms of different context
information. What we concluded from the experiments not
only verified the advantage of scaled BLP but also pointed
out the different roles of each part of BLP. This paper only
studied the BLP normalization of item-based collaborative
filter system on a soleMovieLens dataset.The user-based and
matrix factorization models actually are much different from
item-based ones, the details of which we will explore in the
future work using some different and larger recommendation
dataset.
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