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Closed-form solution of a special higher-order shear and normal deformable plate theory is presented for the static situations,
natural frequencies, and buckling responses of simple supported functionally graded materials plates (FGMs). Distinguished from
the usual theories, the uniqueness is the differentia of the new plate theory. Each individual FGM plate has special characteristics,
such as material properties and length-thickness ratio. These distinctive attributes determine a set of orthogonal polynomials, and
then the polynomials can form an exclusive plate theory.Thus, the novel plate theory has twomerits: one is the orthogonality, where
themajority of the coefficients of the equations derived fromHamilton’s principle are zero; the other is the flexibility, where the order
of the plate theory can be arbitrarily set. Numerical examples with different shapes of plates are presented and the achieved results
are compared with the reference solutions available in the literature. Several aspects of the model involving relevant parameters,
length-to-thickness, stiffness ratios, and so forth affected by static and dynamic situations are elaborate analyzed in detail. As a
consequence, the applicability and the effectiveness of the present method for accurately computing deflection, stresses, natural
frequencies, and buckling response of various FGM plates are demonstrated.

1. Introduction

Functionally gradedmaterials (FGMs) have continuous tran-
sition of material properties as a function of position along
certain directions and thus are regarded as most promising
applications of advanced composite materials as opposed
to traditional isotropic and homogeneous materials. The
gradual variation ofmaterial properties can be tailored to suit
specific purposes in engineering design. Design of aircraft
and space vehicles structures, electronic, and biomedical
installations are some examples where FGM can be fruitfully
exploited. So analyzing the static, vibration, and buckling
problems of this structure is particularly important [1–4].

The common analysis theory is classical Kirchhoff thin
plate theory (CLT) [5–7], which ignores transverse shear
effects and provides reasonable results for thin plates. How-
ever, it may not obtain accurate results for moderately thick

plates. A development on the CLT is the first-order shear
deformation theory (FSDT) [8–11] such as the Reissner–
Mindlin moderately thick plate theory which gives reasons
for transverse shear effects but needs a shear correction
factor. Second- and higher-order shear deformation plate
theories [12–24] use higher-order polynomials to express
displacement components through the plate thickness and do
not require shear correction factors.

And meanwhile, some novel approaches have been per-
formed to analyze the static, dynamic, and stability behavior
of functionally graded plates. Carrera unified formulation
(CUF) was exploited to obtain exact Navier solutions [25]
and to develop advanced finite elements [26] and hierarchical
Ritz-based models [27]. Shimpi [28, 29] has developed a
two variable refined plate theory, which is based on the
assumption that the in-plane and transverse displacements
consist of bending and shear components in which the
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bending components do not contribute toward shear forces
and, likewise, the shear components do not contribute toward
bending moments. Recently, this theory was successfully
extended to FGM plate [30]. Zenkour [31] used sinusoidal
shear deformation plate theory to develop a general for-
mulation for FGM sandwich plates made of three layers
with isotropic ceramic/metal FGM facings and homogeneous
ceramic as core.

In past two decades, more than 30 kinds of plate theories
have been developed and are detailed in [32, 33]. However,
choosing the suitable plate theory is still a controversial issue
and themain difficulty is the diversity of the FGMplate/shell.
The vast majority of researchers tend to transplant some
plate theory to the FGM plates, and the gradient variety is
simply treated with the integral calculation. Corresponding
numerical examples verify that these kinds of approaches
are feasible, but there are some matters to be resolved. First,
more situations need to be considered, especially volume
fraction model. That is, power model, exponential model,
reciprocal mode, and so on. Second, the governing equation
becomes much more complicated to cause inaccurate results.
Solve these aggravating issues actually simple, only need
to detail with one thing: how to transform the FGM plate
into orthotropic plates or laminated plates. In fact, Batra et
al. offered a hint. They used a higher-order shear and nor-
mal deformable plate theory (HOSNDPT) to analyze static
deformations and free and forced vibrations of moderately
thick plates [34–36]. In the HOSNDPT, three-dimensional
Hooke’s law is used to derive constitutive relations for various
kinetic variables in terms of the kinematic variables and
the governing equation become very concise by introducing
orthonormalized Legendre polynomials. For the functionally
graded plates, Young’s moduli and the density distribution
vary with 𝑧. Like HOSNDPT, Young’s moduli are considered
as the function on 𝑧 (in HOSNDPT, the function is a con-
stant). A special set of orthogonal polynomials is determined
by Young’smoduli function (also calledweight function), and
then these polynomials bases constitute a new higher-order
shear and normal deformable plate theory. Thus, we name
this type of plate theory as orthogonal higher-order shear
and normal deformable plate theory (OHOSNDPT). It is
obvious that the HOSNDPT with orthonormalized Legendre
polynomials is a special case of OHOSNDPT.

The purpose of this study is to derive the analytical
solutions of orthogonal higher-order shear and normal
deformable plate theory (OHOSNDPT) for bending, free
vibration and buckling analysis of rectangular plates. The
closed-form solutions of deflection and stress are obtained for
rectangular plates with various modules by Naiver approach.
The obtained results are compared with those reported in the
literature. The effects of thickness ratio, modulus ratio, and
load situation on deflection and stress, nature frequency, and
buckling loads of FGM plates are studied.

2. Problem Models

Consider a rectangular plate of plan-formdimensions 𝑎 and 𝑏
and uniform thickness ℎ.The coordinate system is taken such
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Figure 1: A sketch of the FGM plates.

that the 𝑥 − 𝑦 plane (𝑧 = 0) coincides with the mid-plane
of the plate (𝑧 ∈ [−ℎ/2, ℎ/2]) (see Figure 1). Three different
types of functionally graded plates are studied: (A) isotropic
FGM plates; (B) laminated FGM plates; (C) sandwich plates
with FGM skins; (D) FGM plates with arbitrary variation of
stiffness; (E) laminated FGM plates.

2.1. Tape A: Isotropic FGM Plate. The plate of type A is
graded from metal (bottom) to ceramic (top) (see Figure 1).
The volume fraction of the ceramic phase is defined as in
[19]

𝑉𝑐 = (12 + 𝑧ℎ)
𝑝 , (1)

where 𝑧 ∈ [−ℎ/2, ℎ/2], ℎ is the thickness of the plate, and 𝑝
is a scalar parameter that allows the user to define gradation
of material properties across the thickness direction; some
references also consider this type in [25, 37–43].

2.2. Tape B: Sandwich Plate with FGM Core. In this type of
sandwich plates, the bottom skin is isotropic (fully metal)
and the top skin is isotropic (fully ceramic). The core layer is
graded from metal to ceramic so that there are no interfaces
between core and skins, as illustrated in Figure 1.The volume
fraction of the ceramic phase in the core is obtained by
adapting the polynomial material law in [19]

𝑉𝑐 = (𝑧𝑐 − ℎ1ℎc )𝑝 , (2)

where 𝑧 ∈ [ℎ1, ℎ2], ℎ𝑐 = ℎ2 − ℎ1 is the thickness of the core,
and 𝑝 is the power-law exponent that defines the gradation
of material properties across the thickness direction; many
results could be referred in [37, 39, 41, 44].

2.3. Tape C: Sandwich Plate with FGM Skins. In C-type
plates, the sandwich core is isotropic (fully ceramic) and skins
are composed of a functionally graded material across the
thickness direction. The bottom skin varies from a metal-
rich surface (𝑧 = ℎ/2) to a ceramic-rich surface while the
top skin face varies from a ceramic-rich surface to a metal-
rich surface (𝑧 = ℎ/2), as illustrated in Figure 1. In [37, 45,
46], no interfaces need to be considered between core and
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skins. The volume fraction of the ceramic phase is obtained
as

𝑉𝑐 = ( 𝑧 − ℎ0ℎ1 − ℎ0)
𝑝 𝑧 ∈ [−ℎ2 , ℎ1] bottom skin,

𝑉𝑐 = 1 𝑧 ∈ [ℎ1, ℎ2] core,
𝑉𝑐 = ( 𝑧 − ℎ3ℎ2 − ℎ3)

𝑝 𝑧 ∈ [ℎ2, ℎ2] top skin,
(3)

where 𝑧 ∈ [−ℎ/2, ℎ/2] and 𝑝 is a scalar parameter that allows
the user to define gradation of material properties across the
thickness direction of the skins.

The sandwich plate C-typemay be symmetric or nonsym-
metric about the mid-plane as we may vary the thickness of
each face. A nonsymmetric sandwich with volume fraction
defined by the power-law for various exponents 𝑝, in which
top skin thickness is the same as the core thickness and
the bottom skin thickness is twice the core thickness. Such
thickness relation is denoted as 2-1-1. A bottom-core-top
notation is being used. 1-1-1 means that skins and core have
the same thickness.

2.4. Tape D: FGM Plates with Arbitrary Variation of Stiffness.
Type-D plates is also graded frommetal (bottom) to ceramic
(top). But unlike Tape A (defined as power model), the
volume fraction of the ceramic phase can be defined as
arbitrary functions form [47]. We have the following:

Power model

𝑉𝑐 = (𝑧𝑐 − ℎ1ℎ𝑐 )𝑝 , (4)

Exponential model

𝑉𝑐 = 𝑒𝑝 − 𝑒𝑝(𝑧/ℎ+1/2)𝑒𝑝 − 1 , (5)

Reciprocal model

𝑉𝑐 = 2𝑝 + 12𝑝 (1 + 2𝑝 (𝑧/ℎ + 1/2)) − 12𝑝 , (6)

and so on.

2.5. Tape E: Laminated FGMPlates. The last tape of the plates
both is considered laminated plate structure and taken the
FGM of each layer into account. Then, the type-E is called
laminated FGM plate. From Figure 1, the volume fraction of
the ceramic phase is considered as a piecewise functions and
represented as

𝑉𝑐 = 𝑉𝑘𝑐 (𝑧, 𝑝) , 𝑧 ∈ (𝑧𝑘, 𝑧𝑘+1) (7)

in the 𝑘th layer, where 𝑉𝑘𝑐 (𝑧, 𝑝) represents the 𝑘th volume
fraction and 𝑉𝑘𝑐 (𝑧, 𝑝) can be considered as any situation of
Type D.

For the five types of plates, A–E, the volume fraction for
the metal phase is given as 𝑉𝑚 = 1 − 𝑉𝑐. The isotropic fully
ceramic plate can be seen as a particular case of plates A–E,
by setting the fixed values to the parameter 𝑝 in Tape A–Tape
E.

3. Orthogonal Higher-Order Shear and
Normal Deformable Plate Theory

3.1. Orthogonal Polynomials

Definition 1. 𝑓(𝑧) is said to be orthogonal to 𝑔(𝑧) for the
interval [𝑎, 𝑏] with respect to the weight function 𝜓(𝑧) if

∫𝑏
𝑎
𝜓 (𝑧) 𝑓 (𝑧) 𝑔 (𝑧) 𝑑𝑧 = 0, (8)

and �̃�0(𝑧), �̃�1(𝑧), . . . , �̃�𝑛(𝑧), . . . is said to be an orthogonal set
of functions for the interval [𝑎, 𝑏] with respect to the weight
function 𝜓(𝑧) if

∫𝑏
𝑎
𝜓 (𝑧) �̃�𝑗 (𝑧) �̃�𝑘 (𝑧) 𝑑𝑧 = {{{

0, 𝑗 ̸= 𝑘;
𝐴𝑘 > 0, 𝑗 = 𝑘. (9)

In addition, if 𝐴𝑘 = 1 for each 𝑘 = 0, 1, . . . , 𝑛, . . ., the set is
said to be orthonormal.

Theorem2. The set of polynomial functions {�̃�𝑖(𝑧)}∞0 obtained
in the following way is orthogonal on [𝑎, 𝑏] with respect to the
weight function 𝜓(𝑧):

�̃�0 (𝑧) = 1,
�̃�1 (𝑧) = 𝑧 − 𝐵1,

for each 𝑧 in [𝑎, 𝑏] ,
(10)

where

𝐵1 = ∫
𝑏

𝑎
𝑧𝜓 (𝑧) [�̃�0 (𝑧)]2 𝑑𝑧

∫𝑏
𝑎
𝜓 (𝑧) [�̃�0 (𝑧)]2 𝑑𝑧 , (11)

and when 𝑘 > 1,
�̃�𝑘 (𝑧) = (𝑥 − 𝐵𝑘) �̃�𝑘−1 (𝑧) − 𝐶𝑘�̃�𝑘−2 (𝑧) ,

for each 𝑧 in [𝑎, 𝑏] , (12)

where

𝐵𝑘 = ∫
𝑏

𝑎
𝑧𝜓 (𝑧) [�̃�𝑘−1 (𝑧)]2 𝑑𝑧

∫𝑏
𝑎
𝜓 (𝑧) [�̃�𝑘−1 (𝑧)]2 𝑑𝑧 ,

𝐶𝑘 = ∫
𝑏

𝑎
𝑧𝜓 (𝑧) �̃�𝑘−1 (𝑧) �̃�𝑘−2 (𝑧) 𝑑𝑥
∫𝑏
𝑎
𝜓 (𝑧) [�̃�𝑘−2 (𝑧)]2 𝑑𝑧 .

(13)

For arbitrarily integrable weight function 𝜓(𝑧), the theo-
rem provides a recursive procedure for constructing a set of
orthogonal polynomials.
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Remark 3. (i) If 𝜓(𝑧) is a piecewise function, the integration
of 𝜓(𝑧) in Definition 1 and Theorem 2 can be represented
as the sum of the integrations in subinterval. (ii) It is simple
to show that there is a one-for-one map between the weight
function 𝜓(𝑧) and the orthogonal polynomials {�̃�𝑖(𝑧)}∞0 .
(iii) The normalized orthogonal polynomial functions set{𝐿 𝑖(𝑧)}∞0 are obtained by {�̃�𝑖(𝑧)}∞0 divided by {𝐴 𝑖1/2}∞0 . That
is, 𝐿 𝑖(𝑧) = �̃�𝑖(𝑧)/(𝐴 𝑖1/2).
3.2. Orthogonal Higher-Order Shear and Normal Deformable
PlateTheory. A 3D displacement function on the surface and
thickness direction can be separated, and the thickness direc-
tion can be expanded by orthogonal polynomial {𝐿 𝑖(𝑧)}∞0
(Remark 3). The displacement field is assumed to be of the
form

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = {{{{{{{
𝑢 (𝑥, 𝑦, 𝑧, 𝑡)
V (𝑥, 𝑦, 𝑧, 𝑡)
𝑤 (𝑥, 𝑦, 𝑧, 𝑡)

}}}}}}}
= 𝐾∑
𝑖=0

{{{{{{{
𝑢𝑖 (𝑥, 𝑦, 𝑡)
V𝑖 (𝑥, 𝑦, 𝑡)𝑤𝑖 (𝑥, 𝑦, 𝑡)

}}}}}}}
𝐿 𝑖 (𝑧) .

(14)

When 𝐾 > 1, the plate theory is called higher-order theory.
The strain-displacement relationships are given as

𝜀 =
{{{{{{{{{{{{{{{{{{{{{{{

𝜀𝑥𝜀𝑦𝜀𝑧𝛾𝑦𝑧𝛾𝑧𝑥𝛾𝑥𝑦

}}}}}}}}}}}}}}}}}}}}}}}

= 𝐾∑
𝑖=0

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝜕𝑢𝑖 (𝑥, 𝑦)𝜕𝑥𝜕V𝑖 (𝑥, 𝑦)𝜕𝑦
𝐾∑
𝑗=0

𝑤𝑗 (𝑥, 𝑦) 𝑑𝑗𝑖
𝜕𝑤𝑖 (𝑥, 𝑦)𝜕𝑦 + 𝐾∑

𝑗=0

V𝑗 (𝑥, 𝑦) 𝑑𝑗𝑖
𝜕𝑤𝑖 (𝑥, 𝑦)𝜕𝑥 + 𝐾∑

𝑗=0

𝑢𝑗 (𝑥, 𝑦) 𝑑𝑗𝑖
𝜕V𝑖 (𝑥, 𝑦)𝜕𝑥 + 𝜕𝑢𝑖 (𝑥, 𝑦)𝜕𝑦

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

𝐿 𝑖 (𝑧) .

(15)

The derivative of the 𝑖th orthogonal polynomial is a
polynomial of degree 𝑖 − 1, which can be linearly represented

by the first 𝑖 − 1 order orthogonal polynomials. Then, it can
be represented as

𝐿 𝑖 (𝑧) = 𝐾∑
𝑗=0

𝑑𝑖𝑗𝐿𝑗 (𝑧) , (16)

where 𝑑𝑖𝑗 is constant.
3.3. Constitutive Relations for a Laminates. For the function-
ally graded material detailed in Section 2, the constitutive
relations C is

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜏𝑦𝑧
𝜏𝑧𝑥
𝜏𝑥𝑦

}}}}}}}}}}}}}}}}}}}}}}}}}}}

=

[[[[[[[[[[[[[[
[

�̃�11 �̃�12 �̃�12 0 0 0
�̃�12 �̃�11 �̃�12 0 0 0
�̃�12 �̃�12 �̃�11 0 0 0
0 0 0 �̃�44 0 0
0 0 0 0 �̃�44 0
0 0 0 0 0 �̃�44

]]]]]]]]]]]]]]
]

{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
𝛾𝑦𝑧
𝛾𝑧𝑥
𝛾𝑥𝑦

}}}}}}}}}}}}}}}}}}}}}}}}}}}

, (17)

where

�̃�11 = 𝐸 (1 − ]2)
1 − 3]2 − 2]3 ,

�̃�12 = 𝐸 (] + ]2)
1 − 3]2 − 2]3 ,

�̃�44 = 𝐺,
(18)

where 𝐸 is the modulus of elasticity, ] is Poisson’s ratio, and𝐺
is the shear modulus 𝐺 = 𝐸/2(1 − ]).

Based on the volume fraction of the constituent material
for Mori–Tanaka scheme, the Young modulus and density of
some of FG plates can be written as a functions of thickness
coordinate, 𝑧, as follows:

Power model

𝑉𝑐 = (𝑧𝑐 − ℎ1ℎ𝑐 )𝑝 ,
𝐸 (𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) (𝑧𝑐 − ℎ1ℎ𝑐 )𝑝 = 𝐸0𝜓 (𝑧) ,
𝜌 (𝑧) = 𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚) (𝑧𝑐 − ℎ1ℎ𝑐 )𝑝 ,

(19)

Exponential model

𝑉𝑐 = 𝑒𝑝 − 𝑒𝑝(𝑧/ℎ+1/2)𝑒𝑝 − 1 ,
𝐸 (𝑧) = 𝐸𝑚𝑒𝑝(𝑧/ℎ+1/2) = 𝐸0𝜓 (𝑧) ,
𝜌 (𝑧) = 𝜌𝑚𝑒𝑝(𝑧/ℎ+1/2),

(20)
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Reciprocal model

𝑉𝑐 = 2𝑝 + 12𝑝 (1 + 2𝑝 (𝑧/ℎ + 1/2)) − 12𝑝 ,
𝐸 (𝑧) = 𝐸𝑚(𝑝 ∗ (𝑧/ℎ + 3/2)) = 𝐸0𝜓 (𝑧) ,
𝜌 (𝑧) = 𝜌𝑚(𝑝 ∗ (𝑧/ℎ + 3/2)) ,

(21)

where 𝜓(𝑧) is called stiffness function.

Remark 4. (i)Themodulus 𝐸 and the Poisson’s ratio ] are the
functions of the 𝑧 in the FGM plates, then the �̃� is related to𝑧. If Poisson’s ratios of two different materials are the same,�̃� can be represented as 𝐶 ∗ 𝜓(𝑧) with 𝐸 = 𝐸0 ∗ 𝜓(𝑧);
that is, the element of the matrix �̃�, �̃�𝑖𝑗, can be represented
as 𝐶𝑖𝑗 ∗ 𝜓(𝑧). (ii) 𝜓(𝑧) can be determined by the volume
fraction of the ceramic phase in Tape A–E, and 𝜓(𝑧) is able
to find the corresponding orthonormal polynomial functions
set {𝐿 𝑖(𝑧)}∞0 byTheorem 2.

3.4. Equations of Motion. For deriving the equilibrium equa-
tions for buckling analysis using the defined displacement
model, the principle of minimum potential energy (PMPE)
is opted due to its simplicity and also because its application
gives simultaneously the natural boundary conditions that
are to be usedwith theory. In analytical form, it can bewritten
in [50]

0 = 𝛿 (𝑈 + 𝐾) + ∫
Ω0

∫ℎ/2
−ℎ/2

(�̂�𝑥𝑥𝛿�̂�𝑥𝑥 + �̂�𝑦𝑦𝛿�̂�𝑦𝑦
+ �̂�𝑥𝑦𝛿�̂�𝑥𝑦) 𝑑𝑧 𝑑𝑥 𝑑𝑦,

(22)

where 𝑈 is the total strain energy due to deformation, the
integral part in (22) is the potential of the external loads, the
second term in the above equation is the potential energy due
to the in-plane stresses �̂�𝑥𝑥, �̂�𝑦𝑦, and �̂�𝑥𝑦 produced due to
applied middle plane loads and �̂�𝑥𝑥, �̂�𝑦𝑦, and �̂�𝑥𝑦 are in-plane
strains produced by transverse deflection 𝑤 and 𝛿 denotes
the variational symbol. Substituting the appropriate energy
expression in the above equation, the final expression can
thus be written as

0 = ∫
Ω0

∫ℎ/2
−ℎ/2

{𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑦y𝛿𝜀𝑦𝑦 + 𝜎𝑧𝑧𝛿𝜀𝑧𝑧 + 𝜎𝑦𝑧𝛿𝜀𝑦𝑧
+ 𝜎𝑧𝑥𝛿𝜀𝑧𝑥 + 𝜎𝑥𝑦𝛿𝜀𝑥𝑦 + �̂�𝑥𝑥𝛿�̂�𝑥𝑥 + �̂�𝑦𝑦𝛿�̂�𝑦𝑦
+ �̂�𝑥𝑦𝛿�̂�𝑥𝑦
+ 𝜌 (�̇�𝛿�̇� + V̇𝛿V̇ + �̇�𝛿�̇�)} 𝑑𝑧 𝑑𝑥 𝑑𝑦
+ ∫
Ω0

[𝑞𝑏 (𝑥, 𝑦) 𝛿𝑤(𝑥, 𝑦, ℎ2) + 𝑞𝑡 (𝑥, 𝑦) 𝛿𝑤(𝑥, 𝑦,
− ℎ2)] 𝑑𝑥 𝑑𝑦,

(23)

O

a

b

Z

X

Y q(x,y)

Mid-plane

z = ℎ/2

z = −ℎ/2

Figure 2: Plate and coordinate system.

where 𝑞𝑏 is the distributed force at the bottom (𝑧 = ℎ/2) of
the laminate, 𝑞𝑡 is the distributed force at the top (𝑧 = −ℎ/2)
of the laminate as shown in Figure 2, (�̂�𝑥𝑥, �̂�𝑦𝑦, �̂�𝑥𝑦, �̂�𝑦𝑥) are
the specified stress components on the portion Γ𝜎. Using (15),
(23), and integrating the resulting expression by parts, and
collecting the coefficients 𝛿𝑢0, 𝛿V0, 𝛿𝑤0, . . . , 𝛿𝑢𝑖, 𝛿V𝑖, 𝛿𝑤𝑖, . . . ,𝛿𝑢𝐾, 𝛿V𝐾, 𝛿𝑤𝐾.

For any 𝑖, (𝛿𝑢𝑖, 𝛿V𝑖, 𝛿𝑤𝑖), the following equations of
equilibrium are obtained:

𝛿𝑢𝑖: 𝑁𝑖𝑥𝑥,𝑥 + 𝑁𝑖𝑥𝑦,𝑦 + 𝑄𝑖𝑧𝑥 = 𝐾∑
𝑗=0

𝐼𝑗𝑖 �̈�𝑗,
𝛿V𝑖: 𝑁𝑖𝑥𝑦,𝑥 + 𝑁𝑖𝑦𝑦,𝑦 + 𝑄𝑖𝑦𝑧 = 𝐾∑

𝑗=0

𝐼𝑗𝑖 V̈𝑗,

𝛿𝑤𝑖: 𝑁𝑖𝑧𝑥,𝑥 + 𝑁𝑖𝑦𝑧,𝑦 + 𝑄𝑖𝑧𝑧 + ( 𝐾∑
𝑗=0

�̂�𝑖𝑗𝑥𝑥 𝜕
2𝑤𝑗𝜕𝑥2 )

+ ( 𝐾∑
𝑗=0

�̂�𝑖𝑗𝑦𝑦 𝜕
2𝑤𝑗𝜕𝑦2 ) + (

𝐾∑
𝑗=0

�̂�𝑖𝑗𝑥𝑦 𝜕
2𝑤𝑗𝜕𝑥𝜕𝑦)

+ [𝑞𝑏 (𝑥, 𝑦) 𝐿 𝑖 (ℎ2) + 𝑞𝑡 (𝑥, 𝑦) 𝐿 𝑖 (−ℎ2)]
= 𝐾∑
𝑗=0

𝐼𝑗𝑖 �̈�𝑗,

(24)

where

𝑁𝑖𝑗12 = ∫ℎ/2
−ℎ/2

𝜎12𝐿 𝑖 (𝑧) 𝐿𝑗 (𝑧) 𝑑𝑧,
�̂�𝑖𝑗12 = ∫ℎ/2

−ℎ/2
�̂�12𝐿 𝑖 (𝑧) 𝐿𝑗 (𝑧) 𝑑𝑧,

{1, 2} = {𝑥, 𝑦, 𝑧} ,
𝑄𝑖𝑖𝑗 = ∫ℎ/2

−ℎ/2

𝜕𝐿 𝑖 (𝑧)𝜕𝑧 𝜎𝑖𝑗𝑑𝑧,
𝐼𝑗𝑖 = ∫ℎ/2

−ℎ/2
𝜌𝐿 𝑖 (𝑧) 𝐿𝑗 (𝑧) 𝑑𝑧.

(25)
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Substituting equation (15) into equation (24) with stress-
strain relations equation (17) and equation (18), the governing
equations of motion on (𝛿𝑢𝑖, 𝛿V𝑖, 𝛿𝑤𝑖) are obtained as

𝛿𝑢𝑖: 𝐶11 𝜕2𝑢𝑖 (𝑥, 𝑦)𝜕𝑥2 + 𝐶12 𝜕2V𝑖 (𝑥, 𝑦)𝜕𝑥𝜕𝑦
+ 𝐶13 𝐾∑
𝑗=0

𝑑𝑗𝑖 𝜕𝑤𝑗 (𝑥, 𝑦)𝜕𝑥
+ 𝐶66 𝜕 ((𝜕V𝑖 (𝑥, 𝑦) /𝜕𝑥 + 𝜕𝑢𝑖 (𝑥, 𝑦) /𝜕𝑦))𝜕𝑦
− 𝐶55 𝐾∑
𝑗=0

{𝑑𝑖𝑗 𝜕𝑤𝑗 (𝑥, 𝑦)𝜕𝑥
+ ( 𝐾∑
𝑘=0

𝑑𝑖𝑘𝑑𝑗𝑘)𝑢𝑗 (𝑥, 𝑦)} = 𝐾∑
𝑗=0

𝐼𝑗𝑖 �̈�𝑗,
𝛿V𝑖: 𝐶21 𝜕2𝑢𝑖 (𝑥, 𝑦)𝜕𝑥𝜕𝑦 + 𝐶22 𝜕2V𝑖 (𝑥, 𝑦)𝜕𝑦2
+ 𝐶23 𝐾∑
𝑗=0

𝑑𝑗𝑖 𝜕𝑤𝑗 (𝑥, 𝑦)𝜕𝑦
+ 𝐶66 𝜕 ((𝜕V𝑖 (𝑥, 𝑦) /𝜕𝑥 + 𝜕𝑢𝑖 (𝑥, 𝑦) /𝜕𝑦))𝜕𝑥
− 𝐶44 𝐾∑
𝑗=0

{𝑑𝑖𝑗 𝜕𝑤𝑗 (𝑥, 𝑦)𝜕𝑦 + ( 𝐾∑
𝑘=0

𝑑𝑖𝑘𝑑𝑗𝑘) V𝑗 (𝑥, 𝑦)}

= 𝐾∑
𝑗=0

𝐼𝑗𝑖 V̈𝑗,

𝛿𝑤𝑖: 𝐶55 𝜕2𝑤𝑖 (𝑥, 𝑦)𝜕𝑥2 + 𝐶55 𝐾∑
𝑗=0

𝑑𝑗𝑖 𝜕𝑢𝑖 (𝑥, 𝑦)𝜕𝑥
+ 𝐶44 𝜕2𝑤𝑖 (𝑥, 𝑦)𝜕𝑦2 + 𝐶44 𝐾∑

𝑗=0

𝑑𝑗𝑖 𝜕V𝑖 (𝑥, 𝑦)𝜕𝑦
+ 𝐶31 𝐾∑
𝑗=0

𝑑𝑖𝑗 𝜕𝑢𝑗 (𝑥, 𝑦)𝜕𝑥 + 𝐶32 𝐾∑
𝑗=0

𝑑𝑖𝑗 𝜕V𝑗 (𝑥, 𝑦)𝜕𝑦
+ 𝐶33 𝐾∑
𝑗=0

( 𝐾∑
𝑘=0

𝑑𝑖𝑘𝑑𝑗𝑘)𝑤𝑗 (𝑥, 𝑦) + ( 𝐾∑
𝑗=0

�̂�𝑖𝑗𝑥𝑥 𝜕
2𝑤𝑗𝜕𝑥2 )

+ ( 𝐾∑
𝑗=0

�̂�𝑖𝑗𝑦𝑦 𝜕
2𝑤𝑗𝜕𝑦2 ) + (

𝐾∑
𝑗=0

�̂�𝑖𝑗𝑥𝑦 𝜕
2𝑤𝑗𝜕𝑥𝜕𝑦)

+ [𝑞𝑏 (𝑥, 𝑦) 𝐿 𝑖 (ℎ2) + 𝑞𝑡 (𝑥, 𝑦) 𝐿 𝑖 (−ℎ2)]
= 𝐾∑
𝑗=0

𝐼𝑗𝑖 �̈�𝑗.

(26)

Y

X
O

a

b

At y = b

At y = 0

ui = wi = Ni
xx = 0

ui = wi = Ni
xx = 0

At x = 0 At x = a

�i = 0

wi = 0

Ni
yy = 0

�i = 0

wi = 0

Ni
yy = 0

Figure 3: Simply supported boundary conditions for a rectangular
plate.

4. Analytical Solution

See Figure 3; the rectangular plate with length 𝑎 and width𝑏 under consideration is solved for the following simply
supported boundary conditions prescribed at all four edges:

𝑢𝑖 (𝑥, 0) = 𝑢𝑖 (𝑥, 𝑏) = V𝑖 (0, 𝑦) = V𝑖 (𝑎, 𝑦) = 0,
𝑤𝑖 (𝑥, 0) = 𝑤𝑖 (𝑥, 𝑏) = 𝑤𝑖 (0, 𝑦) = 𝑤𝑖 (𝑎, 𝑦) = 0,
𝑁𝑖𝑦𝑦 (𝑥, 0) = 𝑁𝑖𝑦𝑦 (𝑥, 𝑏) = 𝑁𝑖𝑥𝑥 (0, 𝑦) = 𝑁𝑖𝑥𝑥 (𝑎, 𝑦)

= 0.
(27)

For the analytical solution of the partial differential
equations (26), the Navier method, based on double Fourier
series, is used under the specified boundary conditions (27).
Using Navier’s procedure, the solution of the displacement
variables satisfying the above boundary conditions can be
expressed in the following Fourier series:

𝑢𝑖 (𝑥, 𝑦, 𝑡) = ∞∑
𝑚=1

∞∑
𝑛=1

𝑈𝑖,𝑚𝑛 cos (𝛼𝑥) sin (𝛽𝑦) 𝑒𝑖𝜔𝑡,
0 ≤ 𝑥 ≤ 𝑎; 0 ≤ 𝑦 ≤ 𝑏; 𝑖 = 0, . . . , 𝐾,

V𝑖 (𝑥, 𝑦, 𝑡) = ∞∑
𝑚=1

∞∑
𝑛=1

𝑉𝑖,𝑚𝑛 sin (𝛼𝑥) cos (𝛽𝑦) 𝑒𝑖𝜔𝑡,
0 ≤ 𝑥 ≤ 𝑎; 0 ≤ 𝑦 ≤ 𝑏; 𝑖 = 0, . . . , 𝐾,

𝑤𝑖 (𝑥, 𝑦, 𝑡) = ∞∑
𝑚=1

∞∑
𝑛=1

𝑊𝑖,𝑚𝑛 sin (𝛼𝑥) sin (𝛽𝑦) 𝑒𝑖𝜔𝑡,
0 ≤ 𝑥 ≤ 𝑎; 0 ≤ 𝑦 ≤ 𝑏; 𝑖 = 0, . . . , 𝐾,

(28)
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where

𝛼 = 𝑚𝜋𝑎 ,
𝛽 = 𝑛𝜋𝑏 ,

(29)

and 𝑈𝑖,𝑚𝑛, 𝑉𝑖,𝑚𝑛, and 𝑊𝑖,𝑚𝑛 are arbitrary parameters to be
determined and 𝜔 is the natural frequency.

4.1. Static Problem. Substituting equations (28) into equa-
tions (26), the following equations are obtained for any fixed
value of𝑚 and 𝑛:

([K]) {U𝑚𝑛} = F𝑚𝑛, (30)

where [K] = [K𝑎] + [K𝑏] and [K𝑎] and [K𝑏] consists of 3 × 3
matrices [K𝑎𝑖𝑗] and [K𝑏𝑖𝑗], respectively. Note that thesematrices
are all diagonal blockmatrices. [K𝑎𝑖𝑖] and [K𝑏𝑖𝑗] are represented
as

K𝑎𝑖𝑖 = [[[
[
𝐶11𝛼2 + 𝐶66𝛽2 (𝐶12 + 𝐶66) 𝛼𝛽 0
𝐶21𝛼𝛽 + 𝐶66𝛼𝛽 𝐶22𝛽2 + 𝐶66𝛼2 0

0 0 2𝐶45𝛼𝛽 + 𝐶55𝛼2 + 𝐶44𝛽2
]]]
]
,

K𝑏𝑖𝑗 =
[[[[[[[[[[
[

−𝐶55( 𝐾∑
𝑘=0

𝑑𝑖𝑘𝑑𝑗𝑘) −𝐶45( 𝐾∑
𝑘=0

𝑑𝑖𝑘𝑑𝑗𝑘) 𝐶13𝑑𝑗𝑖𝛼 − 𝐶45𝑑𝑖𝑗𝛽 − 𝐶55𝑑𝑖𝑗𝛼
−𝐶45( 𝐾∑

𝑘=0

𝑑𝑖𝑘𝑑𝑗𝑘) −𝐶44( 𝐾∑
𝑘=0

𝑑𝑖𝑘𝑑𝑗𝑘) 𝐶23𝑑𝑗𝑖𝛽 − 𝐶44𝑑𝑖𝑗𝛽 − 𝐶45𝑑𝑖𝑗𝛼
𝐶55𝑑𝑗𝑖𝛼 + 𝐶45𝑑𝑗𝑖𝛽 + 𝐶31𝑑𝑖𝑗𝛼 𝐶45𝑑𝑗𝑖𝛼 + 𝐶44𝑑𝑗𝑖𝛼 + 𝐶32𝑑𝑖𝑗𝛽 𝐶33( 𝐾∑

𝑘=0

𝑑𝑖𝑘𝑑𝑗𝑘)

]]]]]]]]]]
]

,

U𝑚𝑛 = {𝑈1,𝑚𝑛, 𝑉1,𝑚𝑛,𝑊1,𝑚𝑛, 𝑈𝑖,𝑚𝑛, 𝑉𝑖,𝑚𝑛,𝑊𝑖,𝑚𝑛, 𝑈𝐾,𝑚𝑛, 𝑉𝐾,𝑚𝑛,𝑊𝐾,𝑚𝑛}𝑇 ,
F = {0, 0, 𝐹1,𝑚𝑛, 0, 0, 𝐹𝑖,𝑚𝑛, 0, 0, 𝐹𝐾,𝑚𝑛}𝑇 ,

𝐹𝑖,𝑚𝑛 = 4𝑎𝑏 ∫
𝑎

0
∫𝑏
0
{[𝑞𝑏 (𝑥, 𝑦) 𝐿 𝑖 (ℎ2) + 𝑞𝑡 (𝑥, 𝑦) 𝐿 𝑖 (−ℎ2)] sin (𝛼𝑥) sin (𝛽𝑦)} 𝑑𝑥 𝑑𝑦.

(31)

4.2. Buckling Problem. Substituting equation (28) into equa-
tions of motion equation (26) and only considering𝑁00𝑥𝑥 and𝑁00𝑦𝑦 are nonzero, we get below equation for any fixed value of𝑚 and 𝑛, for buckling vibration problem:

([K̃]) {U𝑚𝑛} = 0, (32)

where [K̃] = [K̃𝑎] + [K𝑏]. The [K̃𝑎𝑖𝑖] is represented as

K𝑎𝑖𝑖 = [[[[
[

𝐶11𝛼2 + 𝐶66𝛽2 (𝐶12 + 𝐶66) 𝛼𝛽 0
𝐶21𝛼𝛽 + 𝐶66𝛼𝛽 𝐶22𝛽2 + 𝐶66𝛼2 0

0 0 𝐶55𝛼2 + 𝐶44𝛽2 + (𝑁00𝑥𝑥𝛼2 + 𝑁00𝑦𝑦𝛽2) 𝛿𝑖0
]]]]
]
. (33)

The solutions of 𝑁00𝑥𝑥 and 𝑁00𝑦𝑦 are obtained by solving the
determinant of K̃ equal to zero.

4.3. Free Vibrations Problems. Substituting equation (28) into
equations of motion equation (26) neglecting𝑁00𝑥𝑥, 𝑁00𝑦𝑦, and
external force F𝑚𝑛, we get below eigenvalue equation for any
fixed value of𝑚 and 𝑛, for free vibration problem:

([K] − 𝜔2 [M]) {U𝑚𝑛} = 0, (34)

where [M] is also a block matrix and the [M] is made up of3×3matrices [M𝑖𝑗], whereM𝑖𝑗 = 𝐼𝑖𝑗E and E is an 3×3 identity
matrix.

5. Numerical Examples

In this section, various numerical examples are presented
and discussed to verify the accuracy of present solutions.
Comparison studies are carried out for a large number of
plates with different values of aspect ratio, thickness ratio, and
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Table 1: 𝑤 convergence study for the bending analysis of A-type plate using higher-order plate theory, 𝑝 = 1, and 𝑎/ℎ = 10.
Scheme 𝐾 = 1 𝐾 = 3 𝐾 = 5 𝐾 = 7 FSDT (𝑘 = 5/6) [37] [39] Meshfree [37]𝑤 0.5846 0.5891 0.5891 0.5891 0.5889 0.5890 0.5868

Table 2: 𝜎𝑥𝑥 convergence study for the bending analysis of A-type plate using higher-order plate theory, 𝑝 = 1, and 𝑎/ℎ = 10.
Scheme 𝐾 = 1 𝐾 = 3 𝐾 = 5 𝐾 = 7 FSDT (𝑘 = 5/6) [37] [39] Meshfree [37]𝜎𝑥𝑥 1.4968 1.4904 1.4908 1.4908 2.0150 1.5064 1.4917

various combinations of boundary conditions. The following
material properties are used.

Poisson’s ratio is considered constant for both materials
]𝑚 = ]𝑐 = ] = 0.3.
5.1. Bending. In the following static examples, we consider
that the plate is subjected to a bisinusoidal transverse
mechanical load of amplitude load 𝑞𝑡(𝑥, 𝑦) = 𝑞𝑡 sin(𝜋𝑥/𝑎) sin(𝜋𝑦/𝑏) applied at the top of the plate with 𝑞𝑡 = 1. It
should be noted that the load is applied at the top surface(𝑧 = ℎ/2) as shown in Figure 2.

Due to the symmetry of the problem, the displacement V,
stresses 𝜎𝑦, and transverse shear stresses 𝜏𝑧𝑦 are not described
since their distributions along the plate thickness direction
are similar to those of 𝑢, 𝜎𝑥 and 𝜏𝑧𝑥, respectively. Considering𝜎𝑥 is the first-order derivative function of the displacement 𝑢,
only the stress 𝜎𝑥 should be discussed in this paper.

5.1.1. Isotropic FGM Square Plate. In this example, an iso-
tropic FGM square plate of type-A is considered. The plate
is graded from aluminum 𝐸𝑚 = 70GPa at the bottom to alu-
mina 𝐸𝑐 = 380GPa at the top. The transverse displacement,
the normal stresses, and the in-plane and transverse shear
stresses are presented in normalized form as

𝑤 = 10ℎ3𝐸𝑐𝑞𝑎4 𝑤,
𝜎𝑥𝑥 = ℎ2𝑞𝑎2 𝜎𝑥𝑥.

(35)

An initial convergence study was performed for 𝜎𝑥𝑥(ℎ/3)
and transverse displacement 𝑤(0) at the center of the plate,
considering 𝑝 = 1, 𝑎/ℎ = 10, and the order 𝐾 of the plate
theory of 1, 3, 5, and 7. Compared with the references [37] and
[39], results are presented in Tables 1 and 2. As seen in these
tables, it is sufficient to use 𝐾 = 5 (we consider that 𝐾 = 5
should be used in the following computation in this section).

In Table 3, we present results for 𝜎𝑥𝑥 and transverse
displacement for various exponents 𝑝 of the power-law
(18) considering the order of the plate theory equal 7. The
considered side-to-thickness ratios (𝑎/ℎ) are 4, 10, and 100,
which means thickness ℎ equals 0.25, 0.1, and 0.01, respec-
tively. Results are compared with the classical plate theory
(CLPT), the first-order shear deformation theory (FSDT)
with a correction factor 𝑘 = 5/6, and those from Zenkour’s
generalized shear deformation theory [38], and those from
Carrera et al. [25, 39], and Neves et al. [40].

Date shown in Table 3 clearly illustrated, a subtle differ-
ence appears in the moderately thick plate between them and
the present higher-order plate theory are in good agreement
with those from the Refs. When the side-to-thickness ratio is
100, the values, whether it is on transverse displacements or
stresses, are almost the same as the values of [50].

In Figure 4, we present the evolution of the displacement
and stresses across the thickness direction according to
present shear deformation theory for various values of the
exponent 𝑝 and side-to-thickness ratio 𝑎/ℎ = 4, using
the 5-order plate theory. Compared with the results of the
meshfree method in [44], it shows that the values of the in-
plane stress 𝜎𝑥𝑥, 𝜎𝑥𝑦 and out-plane stress 𝜎𝑧𝑥 are consistent
with the reference value. Strangeness is the presence of a
significant difference between the present theory (𝐾 = 5)
and the meshless solutions on the longitudinal displacement𝑤 on 𝑝 = 10. From Figure 4, we find out the relative
error of displacement 𝑤 can up to 9% and the maximum
relative error of stresses between them is less than 3%. This
discord phenomenon is due to the computational error and
the instability of the numerical method. On the other hand,
it demonstrates the analytical solution of the orthogonal
higher-order shear deformable plate theory is necessary and
feasible.

In summary, it can be concluded that the present higher-
order theory provides excellent solution for the isotropic
FGM plates.

5.1.2. Sandwich with FGM Core. In this example, we analyze
the bending of a square sandwich B-type plate with thicknessℎ. The bottom skin is aluminum (𝐸𝑚 = 70GPa) with
thickness ℎ𝑏 = 0.1 h and the top skin is alumina (𝐸𝑐 =380GPa) with thickness ℎ𝑡 = 0.1 h. The core is in FGM with
volume fraction of the ceramic according to (2).

The transverse displacement and the normal stresses are
presented in normalized form as

𝜏𝑥𝑦 = − ℎ2𝑞𝑎2 𝜏𝑥𝑦𝑥=𝑎,𝑦=𝑎,𝑧=0,𝑧=ℎ/2 ,
𝜏𝑧𝑥 = ℎ𝑞𝑎 𝜏𝑧𝑥𝑥=𝑎,𝑦=𝑎,𝑧=−ℎ/𝑁𝑒/2 .

(36)

The convergence study was performed for 𝜎𝑥𝑧 and trans-
verse displacement 𝑤(0) considering 𝑝 = 4, 𝑎/ℎ = 100, and
the order 𝐾 of the plate theory of 1, 3, 5, and 7. Results are
presented in Tables 4 and 5.We consider that the 5-order plate
theory should be used in the following computation.
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Table 3: A-type plate in bending. The 𝜎𝑧𝑥 and 𝑤 according to present higher-order plate theory.

𝑝 𝑎/ℎ 𝜎𝑥𝑥(ℎ/3) 𝑤(0)
4 10 100 4 10 100

0 Meshfree [37] ̸=0 0.5278 1.3176 13.161 0.3665 0.2942 0.2803
Present 0.5144 1.3123 13.1713 0.3800 0.2961 0.2804

0.5 Meshfree [37] ̸=0 0.5860 1.4680 14.673 0.5493 0.4548 0.4365
Present ̸=0 0.5724 1.4591 14.6446 0.5678 0.4538 0.4326

1

Ref. [41] ̸=0 0.6221 14.969 14.969 0.7171 0.5875 0.5625
CLPT [37] 0 0.8060 2.0150 20.150 0.5623 0.5623 0.5623

FSDT (𝑘 = 5/6) [37] 0 0.8060 2.0150 20.150 0.7291 0.5889 0.5625
Ref. [39]𝑁 = 4 ̸=0 0.6221 1.5064 14.969 0.7171 0.5875 0.5625

Ref. [40] ̸=0 0.5925 1.4945 14.969 0.6997 0.5845 0.5624
Meshfree [37] ̸=0 0.5911 1.4917 14.945 0.7020 0.5868 0.5647

Present 0.5841 1.4908 14.9677 0.7318 0.5891 0.5625

4

Ref. [41] ̸=0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286
CLPT [37] 0 0.6420 1.6049 16.049 0.8281 0.8281 0.8281

FSDT (𝑘 = 5/6) [37] 0 0.6420 1.6049 16.049 1.1125 0.8736 0.828
Ref. [39]𝑁 = 4 ̸=0 0.4877 1.1971 11.923 1.1585 0.8821 0.8286

Ref. [40] ̸=0 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784
Meshfree [37] ̸=0 0.4330 1.1588 11.737 1.1108 0.8700 0.8240

Present 0.4451 1.1787 11.9209 1.1732 0.8831 0.8287

10

Ref. [41] ̸=0 0.3695 0.8965 8.9077 1.3745 1.0072 0.9361
CLPT [37] 0 0.4796 1.1990 11.990 0.9354 0.9354 0.9354

FSDT (𝑘 = 5/6) [37] 0 0.4796 1.1990 11.990 1.3178 0.9966 0.9360
Ref. [39]𝑁 = 4 ̸=0 0.1478 0.8965 8.9077 1.3745 1.0072 0.9361

Ref. [40] ̸=0 0.3227 1.1783 11.932 1.3490 0.8750 0.8286
Meshfree [37] ̸=0 0.3097 0.8462 8.6010 1.3334 0.9888 0.9227

Present ̸=0 0.3238 0.8766 8.9058 1.4026 1.0094 0.9362

Table 4: 𝑤 convergence study for the bending analysis of B-type plate using higher-order plate theory, 𝑝 = 4, and 𝑎/ℎ = 100.
Scheme 𝐾 = 1 𝐾 = 3 𝐾 = 5 𝐾 = 7 FSDT (𝐾 = 5/6) [37] Ref. [39] Ref. [41]𝑤 0.7796 0.7797 0.7797 0.7797 0.7796 0.7797 0.7797

Table 5: 𝜎𝑥𝑧 convergence study for the bending analysis of B-type plate using higher-order plate theory, 𝑝 = 4, and 𝑎/ℎ = 100.
Scheme 𝐾 = 1 𝐾 = 3 𝐾 = 5 𝐾 = 7 FSDT (𝐾 = 5/6) [37] Ref. [39] Ref. [41]𝜎𝑥𝑧 0.1176 0.1949 0.1862 0.1819 0.1877 0.2398 0.2432

In Table 6 we present the values of 𝜎𝑥𝑧 and out-of-
plane displacement for various values of exponent 𝑝 of
the material power-law (𝑝 = 0, 0.5, 1, 4, 10) and various
thickness to side ratios (𝑎/ℎ = 4, 10, 100) according to the
present higher-order theory using the 5-order plate theory.
Results are tabulated and compared with available references.
It demonstrates the results are in excellent agreement with
the meshfree results [44] and other reference values under
various thickness to span ratio (𝑎/ℎ) and four and five
different kinds of parameters (𝑝).

In Figure 5, we also present the evolution of the displace-
ment and stresses across the thickness direction according to
present shear deformation theory for various values of the
exponent 𝑝 of a plate with side-to-thickness ratio 𝑎/ℎ = 100,
using the 5-order plate theory. Compared with the meshfree

method, all the values are consistedwith each other except the
late one.Themajor difference is located in internal boundary
(ℎ = 2ℎ/5) on out-of-plane stress 𝜎𝑧𝑥. In addition, the present
solution of the stresses 𝜎𝑧𝑥 is very close to zero at upper skin
and bottom skin (𝑝 = 1, 4, 10), and the meshfree solution
is away from the origin of axis. In conclusion, these results
indicate that the OHSNDPT is a good choice to deal with the
FGM plate problem.

5.1.3. Isotropic FGM Plate Compared with Laminated Plate.
To demonstrate the availability of the present orthogonal
higher-order shear and deformation plate theory, more cases
of the modulus form are considered, linear model, exponen-
tial model, and reciprocal model (refer to [47]).
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Figure 4: A-type square plate subjected to sinusoidal load at the top, with 𝑎/ℎ = 4, nondimensional displacement (𝑤) and stresses through
the thickness to present OHOSNDPT for different values of 𝑝.

The attention is focused on the influence of the three
distributions of the elastic modulus on the displacement and
stress fields in the plate. Young’s moduli at the upper and
lower surfaces of the plate are given as 𝐸(0) = 1GPa and𝐸(ℎ) = 10GPa. Accordingly, material parameters for FGM
models used in the present study are determined as follows:

(a) Liner model 𝐸(𝑧) = 𝐸0(𝑝(𝑧/ℎ+1/2)+1), 𝐸0 = 𝐸(0) =1GPa, 𝑝 = 9
(b) Exponential model, 𝐸(𝑧) = 𝐸0𝑒𝑝∗(𝑧/ℎ+1/2), 𝐸0 =𝐸(0) = 1GPa, 𝑝 = ln(𝐸(ℎ)/𝐸(0)) = ln 10
(c) Reciprocal model, 𝐸(𝑧) = 𝐸0/(𝑝 ∗ (𝑧/ℎ + 1/2) + 1),𝐸0 = 𝐸(0) = 1GPa, 𝑝 = 𝐸(0)/𝐸(ℎ) − 1 = −0.9

Based on the above three models of Young’s modulus, the
variation of displacements 𝑢 and 𝑤, stresses 𝜎𝑥, 𝜏𝑥𝑦, 𝜎𝑧, and𝜏𝑧𝑥 at a chosen location (𝑥/𝑎 = 1/4, 𝑦/𝑏 = 1/4), as a

function of the 𝑧-coordinate, are shown in Figure 6 for the
plate (ℎ/𝑎 = 0.1).

From Figure 6, the following observations can be made:

(I) The magnitude of the vertical displacement (deflec-
tion) for the reciprocal model is biggest while that of
the linear model is the least (Figure 6(a)).This reveals
that the bending rigidities of the plate are different for
these three graded models. The linear model is most
rigid and the reciprocal model is softest.

(II) The in-plane stresses, 𝜎𝑥𝑥 (Figure 6(c)) and 𝜏𝑥𝑦 (Fig-
ure 6(d)), are essentially nonlinear over the thickness
of the plate for all these three models of functionally
graded materials. The in-plane stress concentrations
in the plate are quite different for different grademod-
els of Young’s modulus. For example, the maximum
compressive stress for the reciprocal model is about
1.8 times that of the linear model (see Figure 6(c),
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Table 6: Square B-type plate in bending with considering 𝜎𝑧𝑥 and 𝑤 use the present higher-order plate theory.

𝑝 𝑎/ℎ 𝜎𝑧𝑥(ℎ/6) 𝑤(0)
4 10 100 4 10 100

0 Meshfree [37] 0.2208 0.2227 0.2228 0.4447 0.3711 0.3568
Present 0.2392 0.2411 0.2415 0.4655 0.3748 0.3579

0.5 Meshfree [37] 0.2546 0.2581 0.2585 0.6168 0.5238 0.5058
Present 0.2406 0.2417 0.2418 0.6409 0.5240 0.5023

1

Ref. [41] 0.2613 0.2605 0.2603 0.7628 0.6324 0.6072
CLPT [37] 0.0000 0.0000 0.0000 0.6070 0.6070 0.6070

FSDT (𝑘 = 5/6) [37] 0.2458 0.2458 0.2458 0.7738 0.6337 0.6073
Ref. [39]𝑁 = 4 0.2604 0.2594 0.2593 0.7628 0.6324 0.6072

Ref. [40] 0.2742 0.2788 0.2793 0.7416 0.6305 0.6092
Meshfree [37] 0.2745 0.2789 0.2795 0.7417 0.6305 0.6092

Present 0.2287 0.2290 0.2290 0.7766 0.6339 0.6073

4

Ref. [41] 0.2429 0.2431 0.2432 1.0934 0.8321 0.7797
CLPT [37] 0.0000 0.0000 0.0000 0.7792 0.7792 0.7792

FSDT (𝑘 = 5/6) [37] 0.1877 0.1877 0.1877 1.0285 0.8191 0.7796
Ref. [39]𝑁 = 4 0.2400 0.2398 0.2398 1.0930 0.8307 0.7797

Ref. [40] 0.2723 0.2778 0.2785 1.0391 0.8202 0.7784
Meshfree [37] 0.2696 0.2747 0.2753 1.0371 0.8199 0.7784

Present 0.1850 0.1861 0.1862 1.1034 0.8311 0.7797

10

Ref. [41] 0.2150 0.2174 0.2179 1.2232 0.8753 0.8077
CLPT [37] 0.0000 0.0000 0.0000 0.8070 0.8070 0.8070

FSDT (𝑘 = 5/6) [37] 0.1234 0.1234 0.1234 1.1109 0.8556 0.8075
Ref. [39]𝑁 = 4 0.1932 0.1944 0.1946 1.2172 0.8740 0.8077

Ref. [40] 0.2016 0.2059 0.2064 1.1780 0.8650 0.8050
Meshfree [37] 0.1995 0.2034 0.2039 1.1752 0.8645 0.8050

Present 0.1835 0.1862 0.1866 1.2372 0.8755 0.8077

especially 63.0921 and 34.2402 at the center point).
This enables an optimal design of the plate by select-
ing appropriately graded models of materials.

(III) Compared with the 3D closed-form solutions [47],
the present solutions of the OHOSNDPT are well
coincident with the reference data from Figure 6. Not
only the in-plane stresses, but also 𝜎𝑥 and 𝜏𝑥𝑦 reach an
identical with the 3D closed-form solutions, but also
the out-of-plane stress, 𝜏𝑧𝑥, is in very good agreement
with the similar values in the literature.

In short, the present approach can actually reflect the dis-
tribution situation of displacements and stresses. In addition,
it is also in very good agreement with similar theories in
the literature. Thus, the present method is a good idea worth
trying.

5.1.4. Power-Law Fitted with the Straight Line. In this section,
we state another scheme to illustrate the superiority of the
OHOSNDPT.

Because any function can be fitted with straight lines, the
stiffness function 𝜓(𝑧) of the FGM plate with arbitrary form
equivalents to a piecewise function𝜓(𝑧)with the function is a
linear function 𝜓𝑘(𝑧) in each interval. Moreover, the present
orthogonal higher-order shear and nonamial plate theory

also be suitable for the piecewise function 𝜓(𝑧) in laminated
FGM plates.

As shown in Figure 7, the variations of Young’s modulus
are along the thickness of the power-law FGMplates although
their values at the upper and lower surfaces of the plate are
fixed and the corresponding piecewise linear functions 𝜓(𝑧)
are chosen.

Constant coefficients are usually used in the each layer
when the FGM plate can be seen as the laminated plates [47].
This scheme facilitates settling the FGM models, but some
shortcomings are also exposed in Figure 8. Figure 8 shows
the variation of the longitudinal displacements 𝑤, in-plane
stresses 𝜎𝑥𝑥 and 𝜎𝑥𝑦 and out-plane stresses 𝜎𝑦𝑧 of the Tape
A simple supported FGM square plate (𝑘 = 3, 𝑝 = 10 and𝑎/ℎ = 10).

(i) The constant coefficients of the FGM material prop-
erties in each layer are generally taken to be the value
of the midpoint of the layer interval. For the class
of material which the volume fraction varies steeply
(𝑝 = 10), the errors between the laminated plate
models and the FGMproperties obviously exist.Thus,
the errors between the scheme of straight line and
the analytical solution are smaller than the constant
coefficients ones and it is verified from Figure 8(a).
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Figure 5: Square B-type plate subjected to sinusoidal load at the top, with 𝑎/ℎ = 100. Dimensionless displacement (𝑤) through the thickness
direction according to present higher-order theory for different values of 𝑝.

(ii) If the constant coefficients of the laminated plates
model are used, the paramount material properties,
the expression of Young’s modulus, and the density
function are not continuous functions on vertical
direction 𝑧. The displacement model is usually sup-
posed as the continuous function on 𝑧, the discontin-
uous of stresses are obtained according to geometric
equations and physics equations. Obviously, this is
contrary to reality. From Figures 8(b) and 8(c), it can
be observed that the scheme of straight line canmatch
the analytical solution. The curves of the constant
coefficients appear as interrupted phenomena on ℎ/6,
and the error enlarges with the increasing of 𝑧. On
transverse stress 𝜎𝑦𝑧 (Figure 8(d)), the analytical
solution and the schemes of the straight lines and
the constant coefficients all occur the discontinuous
situation on ℎ/6, but the performance of the straight

lines is better than the constant coefficients and close
to the analytical solutions.

From Table 7, some phenomena can be obtained:

(i) When 𝑘 is small (𝑘 = 2, 3, 5), the scheme of the
straight lines is better than the approach of the
constant coefficients.

(ii) When 𝑘 is large (𝑘 = 200, 400), all two schemes
achieve the convergence solutions.

(iii) The two scheme coupled with OHOSNDPT are
superior to the common scheme of the constant
coefficients, while the familiar approach takes 𝑘 =1000 to get the stable values.

We draw a conclusion from the above example, the
OHOSNDPT is a very suitable FGM plate theory.
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Figure 6: D-type square plate for several exponents for the power 𝑝 compared with the type 𝐸 schemes.

5.2. Free Vibrations. In this example, we study the free
vibration of a simply supported isotropic FGM square plate
(𝑎 = 𝑏 = 1) of type A. The plate is graded from aluminum
(bottom) to zirconia/alumina (top). The values for metal and
ceramics in the FGM plate are listed in Table 8.

We consider the Mori–Tanaka homogenization scheme
(36), as in Vel and Batra [51] (here considered to be the exact
solution), and as in Neves et al. [40] and Qian et al. [44].

The frequency𝑤has been nondimensionalized as follows:

𝑤 = 𝑤ℎ√ 𝜌𝑚𝐸𝑚 . (37)

5.2.1. Isotropic FGM Plate. In Table 9 we present the results
obtained with the theories considered and different values of𝑝 for a side-to-thickness ratio 𝑎/ℎ = 5. Results show that the
convergence values are obtained with𝐾 = 3. It is noteworthy
that the present solutions are almost the same as values of [48]
for 𝑝 = 1 regardless of the ratio length-thickness.

To further compare the exact HSDT solution and the
present OHSNDPT, we introduce more reliable data. In
Table 10, based on the present closed-form solutions, exact
HSDT solution with refined plate theory and finite element
method, numerical results have been performed for simple
supported Al/Al2O3 square plates when 𝑝 = 1. A well-known
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Table 7: The convergence study for the laywise number of the B-type plate using higher-order plate theory, 𝑝 = 10, and 𝑎/ℎ = 4.
Number 2 3 5 10 50 100 200 400 Analytical

Laywise (Error) 1.8480 1.6586 1.5094 1.4311 1.4038 1.4029 1.4027 1.4026

1.402631.76% 18.25% 7.61% 2.03% 0.09% 0.02% 0.01% 0.00%

Linear (Error) 1.1328 1.2422 1.3206 1.3770 1.4015 1.4023 1.4025 1.4026
19.24% 11.44% 5.85% 1.83% 0.08% 0.02% 0.01% 0.00%
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Figure 7: D-type square plate for several exponents for the power 𝑝
compared with the type E schemes.

Table 8: Material properties of the used FGM plate.

Material Properties𝐸 (GPa) ] 𝜌 (kg/m3)
Aluminum (Al) 70 0.3 2702
Alumina (Al2O3) 380 0.3 3800
Zirconia (ZrO2) 200 0.3 5700

commercially available FEM package was used to investigate
3D free vibration of FGM square plates in [48].

The length of square plates is 1m. Three different thick-
nesses 0.05m (corresponding to thin plates), 0.1m and 0.2m
(corresponding to moderately thick plates) have been used.
The calculations of the present scheme are obtained for
first ten natural frequencies. “—” values in Table 10 indicate
no calculation in corresponding reference. The percentage
difference given in Table 10 is defined as follows: Error (%) =[FEM − (solution)]/FEM.

An excellent agreement is observed between the present
plate theory, exact HSDT solution and the FEM. It is seen
that the exact results of proposed method are close to
the FEM analysis results at lower and higher frequencies.
Frequencies rise with an increase in the thickness of plate.
This phenomena originates from the increasing the rigidity of
plate. Frequencies decrease when less restraining boundary
is used at the edges of square plates. This is due to the
fact that higher constraints at the edges increase the flexural
rigidity of the plate, leading to a higher frequency response.
Compared with the exact HSDT solution, the present closed-
form solution is closer to the FEM solution.

5.2.2. Isotropic FGM Plate Compared with Laminated Plate.
In this subsection the higher-order plate theories are used for
the free vibration analysis of simply supported functionally of
three models of type D with side-to-thickness ratio 𝑎/ℎ = 10.
All the material properties is the same as that in Section 5.1.3
and the density function is supposed with 𝜌(𝑧) = 𝜌0𝜓(𝑧), that
is, 𝜌(ℎ/2) = 10 ∗ 𝜌(−ℎ/2).

In Table 11, nondimensional first 10 frequencies of plate
are computed for three different parameter 𝑎/ℎ = 20, 10, 5 in
the Tape D. Some views can be noticeable:

(i) The order of the first ten frequency of the three model
all comply with the order of isotropic square plate
(√𝑚2 + 𝑛2). It shows the variety of the properties of
material on 𝑧 has nothing to do with the order of the
frequencies.

(ii) Nondimensional results are hardly affected by 𝑎/ℎ.
(iii) Unlike static problem, the longitudinal displacement𝑤 for the reciprocalmodel is about 1.8 times that of the

linearmodel.The frequencies of them are very similar
to each other for fixed (𝑚, 𝑛). It is because the ratio
of the upper material and the bottom material of the
density function is set as 10, which is consistent with
the ratio of elastic modulus.

5.3. Buckling

5.3.1. Sandwich Plate with FGM Skins. In the next examples
the higher-order plate theories are used for the buckling
analysis of simply supported functionally graded sandwich
square plates (𝑎 = 𝑏 = 1) of type C with side-to-thickness
ratio 𝑎/ℎ = 10. The uni-and biaxial critical buckling loads are
analsed.

The material properties are 𝐸𝑚 = 70𝐸0 (aluminum)
for the metal and 𝐸𝑐 = 380𝐸0 (alumina) for the ceramic
being 𝐸0 = 1GPa. The law-of-mixtures ((19)–(21)) was used
for the computation of Young’s modulus for each layer. The
nondimensional parameter used is

𝑃 = 𝑃𝑎2100ℎ3𝐸0 . (38)

An initial convergence studywith the higher-order theory
was conducted for each buckling load type considering the
order𝐾 of the plate theory is 1, 3, 5, and 7.The uniaxial case is
presented in Table 12 for the 2-2-1 sandwich with 𝑝 = 5 and
the biaxial case is presented in Table 13 for the 1-2-1 sandwich
with 𝑝 = 1. Further results are obtained by considering 𝐾
equal to 5, which seems acceptable by the convergence study.
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Table 9: Fundamental frequency of a square simply supported A-type square plate (Al/ZrO2) using the present higher-order theory.

Mode 𝑝 = 1 𝑎/ℎ = 5𝑎/ℎ = 20 𝑎/ℎ = 10 𝑎/ℎ = 5 𝑝 = 2 𝑝 = 3 𝑝 = 5
Exact 3D [48] 0.0153 0.0596 0.2192 0.2197 0.2211 0.2225
HOSNT-15 [49] 0.0154 0.0596 0.2191 0.2196 0.2211 0.2225
Ref. [37] 0.0153 0.0596 0.2193 0.2200 0.2215 0.2230
Ref. [44] 0.0149 0.0584 0.2152 0.2153 0.2172 0.2194
Ref. [42] 0.0158 0.0619 0.2276 0.2264 0.2276 0.2291
Present (𝐾 = 1) 0.0159 0.0621 0.2307 0.2295 0.2309 0.2326
Present (𝐾 = 3) 0.0158 0.0619 0.2277 0.2256 0.2262 0.2272
Present (𝐾 = 5) 0.0158 0.0619 0.2277 0.2256 0.2262 0.2271
Present (𝐾 = 7) 0.0158 0.0619 0.2277 0.2256 0.2262 0.2271

Table 10: The natural frequency of A-type square simply supported plate (Al/Al2O3) using the higher-order theory.
𝑎/ℎ Model 1(1,1) 2(1,2) 3(2,1) 4(2,2) 5(1,3) 6(3,1) 7(2,3) 8(3,2) 9(1,4) 10(4,1)
20

Present 359.90 889.22 889.22 1406.6 1745.3 1745.3 2244.4 2244.4 2894.3 2894.3
Ref. [43] 359.97 889.39 889.39 1406.9 1745.7 1745.7 2244.9 2244.9 — —
FEM [43] 357.37 883.58 883.58 1398.6 1736.2 1736.2 2234.1 2234.1 — —
Error −0.71% −0.64% −0.64% −0.57% −0.52% −0.52% −0.46% −0.46%

10

Present 703.30 1685.4 1685.4 2596.2 3170.5 3170.5 3990.0 3990.0 5016.1 5016.1
Ref. [43] 703.45 1685.7 1685.7 2596.6 3170.7 3170.7 3989.9 — — —
FEM [43] 699.30 1679.7 1679.7 2592.5 3169.6 3169.6 3994.8 — — —
Error −0.57% −0.34% −0.34% −0.14% −0.03% −0.03% 0.12%

5

Present 1298.1 2871.7 2871.7 4186.8 4969.4 4969.4 6041.0 6041.0 7327.4 7327.4
Ref. [43] 1298.3 2870.5 2870.5 4181.8 4960.5 4960.5 — — — —
FEM [43] 1296.3 2883.0 2883.0 4216.1 5010.6 5010.6 — — — —
Error −0.14% 0.39% 0.39% 0.69% 0.82% 0.82%

Table 11: First ten frequencies of type D square plate with various 𝑎/ℎ using the higher-order theory.
Source 1(1,1) 2(1,2) 3(2,1) 4(2,2) 5(1,3) 6(3,1) 7(2,3) 8(3,2) 9(1,4) 10(4,1)
Linear model𝑎/ℎ = 20 0.8481 2.0986 2.0986 3.3243 4.1284 4.1284 5.3158 5.3158 6.8659 6.8659𝑎/ℎ = 10 0.8311 2.0012 2.0012 3.0947 3.7874 3.7874 4.7796 4.7796 6.0269 6.0269𝑎/ℎ = 5 0.7737 1.7284 1.7284 2.5333 3.0136 3.0136 3.6719 3.6719 4.4619 4.4619
Exponent model𝑎/ℎ = 20 0.8504 2.1025 2.1025 3.3280 4.1310 4.1310 5.3155 5.3155 6.8596 6.8596𝑎/ℎ = 10 0.8320 1.9982 1.9982 3.0833 3.7688 3.7688 4.7485 4.7485 5.9769 5.9769𝑎/ℎ = 5 0.7708 1.7121 1.7121 2.5011 2.9708 2.9708 3.6139 3.6139 4.3853 4.3853
Reciprocal model𝑎/ℎ = 20 0.9214 2.2722 2.2722 3.5877 4.4464 4.4464 5.7559 5.7559 7.3460 7.3460𝑎/ℎ = 10 0.8969 2.1357 2.1357 3.2725 3.9843 3.9843 4.9939 4.9939 6.2496 6.2496𝑎/ℎ = 5 0.8181 1.7836 1.7836 2.5767 3.0444 3.0444 3.6811 3.6811 4.4410 4.4410

Table 12: Convergence study for the uniaxial buckling load of a simply supported 2-2-1 sandwich square plate with FGM skins and 𝑝 = 5
case using the higher-order theory.

Scheme 𝐾 = 1 𝐾 = 3 𝐾 = 5 𝐾 = 7 FSDT [37] TSDPT [45] SSDPT [46]𝑃 4.11230 4.10740 4.10605 4.10449 4.09285 4.11209 4.11280

Table 13: Convergence study for the uniaxial buckling load of a simply supported 1-2-1 sandwich square plate with FGM skins and 𝑝 = 1 case
using the higher-order theory.

Scheme 𝐾 = 1 𝐾 = 3 𝐾 = 5 𝐾 = 7 FSDT [37] TSDPT [45] SSDPT [46]𝑃 3.76605 3.75329 3.75304 3.75290 3.74182 3.75328 3.75314
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Figure 8: D-type square plate for several exponents for the power 𝑝 compared with the type E schemes.

The critical buckling loads obtained from the present
approach are tabulated in Tables 14 and 15 for various power-
law exponents 𝑝 and thickness ratios. Both tables include
results obtained from classical plate theory (CLPT), first-
order shear deformation plate theory (FSDPT, the shear
correction factor is taken as 5/6), Reddy’s higher-order
shear deformation plate theory (TSDPT) [10], and Zenkour’s
sinusoidal shear deformation plate theory (SSDPT) [29].
Table 14 refers to the uniaxial buckling load andTable 15 refers
to the biaxial buckling load.

A good agreement between the present solution and ref-
erences considered; especially [10, 29] is obtained.This allows
us to conclude that the present higher-order plate theory is
good for the modeling of simply supported sandwich FGM
plates with OHOSNDPT as a good formulation. This study
also lead us to conclude that the thickness stretching effect

has a strong influence on the buckling analysis of sandwich
FGM plates as gives higher fundamental buckling loads.

The isotropic fully ceramic plate (first line on Tables
14 and 15) has the higher fundamental buckling loads. As
the core thickness to the total thickness of the plate ratio((ℎ2 − ℎ1)/ℎ) increases, the buckling loads increase as well.
Considering each column of both tables we may conclude
that the critical buckling loads decrease as the power-law
exponent 𝑝 increases. By comparing Tables 14 and 15 we also
conclude that the biaxial buckling load of simply supported
sandwich square plate with FGM skins is half the uniaxial one
for the same plate.

5.3.2. Isotropic FGM Plate Compared with Laminated Plate.
In this subsection, the higher-order plate theories are used for
the buckling analysis of simply supported functionally of two
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Table 14: Uniaxial buckling load of simply supported plate of C-type using the 5-order theory.

𝑝 Theory 𝑃
1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0

CLPT [37] 13.73791 13.73791 13.73791 13.73791 13.73791 13.73791
FSDPT [37] 13.00449 13.00449 13.00449 13.00449 13.00449 13.00449
TSDPT [45] 13.00495 13.00495 13.00495 13.00495 13.00495 13.00495
SSDPT [46] 13.00606 13.00606 13.00606 13.00606 13.00606 13.00606
Meshfree [37] 13.95287 13.95287 13.95287 13.95287 13.95287 13.95287

13.00516 13.00516 13.00516 13.00516 13.00516 13.00516

0.5

CLPT [37] 7.65398 8.25597 8.56223 8.78063 9.18254 9.61525
FSDPT [37] 7.33732 7.91320 8.20015 8.41034 8.78673 9.19517
TSDPT [45] 7.36437 7.94084 8.22470 8.43645 8.80997 9.21681
SSDPT [46] 7.36568 7.94195 8.22538 8.43712 8.81037 9.21670
Meshfree [37] 7.16207 7.71627 7.98956 8.22133 8.55172 8.94190

7.36361 7.94047 8.22048 8.43637 8.80980 9.21651

1

CLPT [37] 5.33248 6.02733 6.40391 6.68150 7.19663 7.78406
FSDPT [37] 5.14236 5.81379 6.17020 6.43892 6.92571 7.48365
TSDPT [45] 5.16713 5.84006 6.19394 6.46474 6.94944 7.50656
SSDPT [46] 5.16846 5.84119 6.19461 6.46539 6.94980 7.50629
Meshfree [37] 5.06137 5.71135 6.05467 6.31500 6.78405 7.31995

5.16489 5.83877 6.19209 6.48150 6.94876 7.50579

5

CLPT [37] 2.73080 3.10704 3.48418 3.65732 4.21238 4.85717
FSDPT [37] 2.63842 3.02252 3.38538 3.55958 4.09285 4.71475
TSDPT [45] 2.65821 3.04257 3.40351 3.57956 4.11209 4.73469
SSDPT [46] 2.66006 3.04406 3.40449 3.58063 4.11288 4.73488
Meshfree [37] 2.63652 3.00791 3.36225 3.53005 4.05070 4.64701

2.64204 3.02902 3.38599 3.57260 4.10499 4.73116

10

CLPT [37] 2.56985 2.80340 3.16427 3.25924 3.79238 4.38221
FSDPT [37] 2.46904 2.72626 3.07428 3.17521 3.68890 4.26040
TSDPT [45] 2.48727 2.74632 3.09190 3.19471 3.70752 4.27991
SSDPT [46] 2.48928 2.74844 3.13443 3.19456 3.14574 4.38175
Meshfree [37] 2.47216 2.72046 3.06067 3.15761 3.66166 4.20550

2.47035 2.72423 3.06339 3.18364 3.09531 4.27493

models of type D and Ewith side-to-thickness ratio 𝑎/ℎ = 10.
All the material properties are taken as in Section 5.1.3.

The convergence study with the higher-order theory was
also conducted for each buckling load type considering the
order 𝐾 of the plate theory from 1 to 7. The uniaxial case
is presented in Table 16 for the Linear model with 𝑎/ℎ =20, 10, 5. Further results are obtained by considering𝐾 equals
3, which seems acceptable by the convergence study.

In Table 17, nondimensional uniaxial buckling load and
biaxial buckling load of plate are computed for various 𝑎/ℎ of
three different models.

It is well known that as the plate thickness increases, the
shear effect which leads to reduction of the critical buckling
stress increases. It can be seen from Tables 16 and 17 that
although increasing the plate thickness decreases 𝑃𝑥 in all
models, it can be concluded that for compressive biaxial and
uniaxial loadings consideration of the prebuckling deforma-
tions in the stability equations increases the shear effect.

Another interesting phenomenon appears between the
static problem and the buckling situation. When 𝑎/ℎ = 10,

that is, the FGM is a thin plate, the rate of the buckling
stresses between the reciprocal model and the linear model
(the value is 1.8425) is almost the same as the proportion of
the displacement at the center point (the more accurate value
1.8426 is than the number in Section 5.1.4) at the same 𝐾.
When 𝑎/ℎ = 5, that is, the FGM is a moderately thick plate,
the former ratio is 1.9181 and the latter one becomes 1.9198
(4.6322/2.4128). In summary, it not only illustrate that the
presentOHOSNDPT is high accuracy both the static problem
and the buckling situation, but also reflect the stability for the
thin plate and moderately thick plate.

6. Conclusions

Thus, in this paper, an attempt is made to study the ana-
lytical solutions of a special higher-order shear and normal
deformable plate theory for static, free vibration and buckling
analyses of thin and thick rectangular plate. Based on the
special higher-order shear and normal deformable plate
theory, the equations of motion are derived from Hamilton’s
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Table 15: Biaxial buckling load of simply supported plate of C-type using the 5-order theory.

𝑝 Theory 𝑃
Source 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

0

CLPT [37] 6.86896 6.86896 6.86896 6.86896 6.86896 6.86896
FSDPT [37] 6.50224 6.50224 6.50224 6.50224 6.50224 6.50224
TSDPT [45] 6.50248 6.50248 6.50248 6.50248 6.50248 6.50248
SSDPT [46] 6.50303 6.50303 6.50303 6.50303 6.50303 6.50303
Meshfree [37] 6.47643 6.47643 6.47643 6.47643 6.47643 6.47643

6.50258 6.50258 6.50258 6.50258 6.50258 6.50258

0.5

CLPT [37] 3.82699 4.12798 4.28112 4.39032 4.59127 4.80762
FSDPT [37] 3.66866 3.95660 4.10007 4.20517 4.39336 4.59758
TSDPT [45] 3.68219 3.97042 4.11235 4.21823 4.40499 4.60841
SSDPT [46] 3.68284 3.97097 4.11269 4.21856 4.40519 4.60835
Meshfree [37] 3.58104 3.85813 3.99478 4.09639 4.27586 4.47095

3.68180 3.97024 4.11204 4.21819 4.40490 4.60826

1

CLPT [37] 2.66624 3.01366 3.20195 3.34075 3.59831 3.89203
FSDPT [37] 2.57118 2.90690 3.08510 3.21946 3.46286 3.74182
TSDPT [45] 2.58357 2.92003 3.09697 3.23237 3.47472 3.75328
SSDPT [46] 2.58423 2.92060 3.09731 3.23270 3.47490 3.75314
Meshfree [37] 2.53069 2.85568 3.02733 3.15750 3.39202 3.65998

2.58245 2.91939 3.09605 3.23212 3.47438 3.75290

5

CLPT [37] 1.36540 1.55352 1.74209 1.82866 2.10619 2.42859
FSDPT [37] 1.31921 1.51126 1.69269 1.77979 2.04642 2.35737
TSDPT [45] 1.32910 1.52129 1.70176 1.78978 2.05605 2.36734
SSDPT [46] 1.32910 1.52203 1.70224 1.79032 2.05644 2.36744
Meshfree [37] 1.31826 1.50395 1.68128 1.76502 2.02535 2.32351

1.32102 1.51451 1.69299 1.78630 2.05225 2.36558

10

CLPT [37] 1.28493 1.40170 1.58214 1.62962 1.89619 2.19111
FSDPT [37] 1.23452 1.36313 1.53714 1.58760 1.84445 2.13020
TSDPT [45] 1.24363 1.37316 1.54595 1.59736 1.85376 2.13995
SSDPT [46] 1.24475 1.37422 1.56721 1.59728 1.57287 2.19087
Meshfree [37] 1.23608 1.36023 1.53034 1.57880 1.83083 2.10275

1.23518 1.36211 1.53170 1.59182 1.84765 2.13746

Table 16: Convergence study for the uniaxial buckling load of a simply supported square plate with linear model using the higher-order
theory.

Scheme 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5 𝐾 = 6 𝐾 = 7𝑎/ℎ = 20 30.6144 30.5958 30.5585 30.5584 30.5584 30.5584 30.5584𝑎/ℎ = 10 14.9028 14.8679 14.7979 14.7978 14.7978 14.7977 14.7977𝑎/ℎ = 5 6.7392 6.6849 6.5739 6.5739 6.5738 6.5738 6.5738

Table 17: Bi and iniaxial buckling load of simply supported plate of type D using the higher-order theory.

Model Reciprocal Exponent Linear𝑎/ℎ = 20 𝑎/ℎ = 10 𝑎/ℎ = 5 𝑎/ℎ = 20 𝑎/ℎ = 10 𝑎/ℎ = 5 𝑎/ℎ = 20 𝑎/ℎ = 10 𝑎/ℎ = 5
Biaxial 15.2792 7.3989 3.2869 10.9162 5.2696 2.3170 8.3944 4.0156 1.7136
Uniaxial 30.5585 14.7979 6.5739 21.8325 10.5393 4.6339 16.7888 8.0313 3.4273
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principle. The closed-form solution method and the algo-
rithm for obtaining the numerical results are developed and
employed. The numerical results on the displacement, stress
distribution, the frequencies, and the critical buckling stress
are presented and discussed. According to this discussion the
following conclusions can be reached:

(i) The special higher-order shear and normal deform-
able plate theory uses various weighted orthogonal
polynomial to solve arbitrary gradient FGM plate
problems. A weighted orthogonal polynomial does
correspond to only one material model. The own
special polynomial has made the special higher-
order shear and normal deformation theory, which
is firstly named as the orthogonal higher-order shear
and normal deformation theory (OHOSNDPT). The
OHOSNDPT

(ii) Hierarchical linear model with coupling OHOS-
NDPT is proposed. Compared with the hierarchi-
cal constant coefficient model coupled with OHOS-
NDPT and the common hierarchical constant coeffi-
cient model, the special hierarchical linear model is
preferred to the two reference schemes. Furthermore,
the two coupled schemes, whether linear model or
constant coefficient model, are better than the com-
mon constant coefficient model.

(iii) Finally, comparison studies are presented out for
a large number of plates with different values of
thickness ratio, multimaterial model, and various
theory order 𝐾. It is found that the distribution of
the displacements and stress along the longitudinal
coordinate-axis, the natural frequencies and buckling
loads obtained by present theory match well with
those obtained by the reference literatures.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research reported in this paper by the first author and
third authors is supported by theGraduate InnovationProject
of Jiangsu Province (KYLX 1214). This work is supported
by the National Natural Science Foundation of China (nos.
11172192 and 11572210) and the research funds of Jiangsu
University of Science and Technology (nos. 1052921511 and
1052931602).

References

[1] S. Suresh and A. Mortensen, Fundamentals of Functionally
Graded Materials, Maney, London, UK, 1998.

[2] Y. Miyamoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R.
G. Ford, Functionally Graded Materials: Design, Processing and
Applications, Kluwer Academic, Boston, Mass, USA, 1999.

[3] A. E. Alshorbagy, S. S. Alieldin, M. Shaat, and F. F. Mahmoud,
“Finite element analysis of the deformation of functionally

graded plates under thermomechanical loads,” Mathematical
Problems in Engineering, vol. 2013, Article ID 569781, 13 pages,
2013.

[4] A. M. Zenkour, D. S. Mashat, and K. A. Elsibai, “Bending
analysis of functionally graded plates in the context of different
theories of thermoelasticity,” Mathematical Problems in Engi-
neering, vol. 2009, Article ID 962351, 15 pages, 2009.

[5] Z.-Q. Cheng and R. C. Batra, “Deflection relationships between
the homogeneousKirchhoffplate theory anddifferent function-
ally graded plate theories,” Archives of Mechanics, vol. 52, no. 1,
pp. 143–158, 2000.

[6] A. M. Zenkour, “Exact relationships between the classical and
sinusoidal plate theories for FGMplates,”Mechanics of Advanced
Materials and Structures, vol. 19, no. 7, pp. 551–567, 2012.

[7] M. Aydogdu, “Conditions for functionally graded plates to
remain flat under in-plane loads by classical plate theory,”
Composite Structures, vol. 82, no. 1, pp. 155–157, 2008.

[8] J. N. Reddy, C. M. Wang, and S. Kitipornchai, “Axisymmetric
bending of functionally graded circular and annular plates,”
European Journal of Mechanics, vol. 18, no. 2, pp. 185–199, 1999.

[9] T.-K. Nguyen, K. Sab, and G. Bonnet, “First-order shear
deformation plate models for functionally graded materials,”
Composite Structures, vol. 83, no. 1, pp. 25–36, 2008.

[10] E. Jomehzadeh, A. R. Saidi, and S. R. Atashipour, “An analytical
approach for stress analysis of functionally graded annular
sector plates,” Materials and Design, vol. 30, no. 9, pp. 3679–
3685, 2009.

[11] H.-T. Thai and D.-H. Choi, “A simple first-order shear defor-
mation theory for the bending and free vibration analysis of
functionally graded plates,” Composite Structures, vol. 101, pp.
332–340, 2013.

[12] J. N. Reddy, “Analysis of functionally graded plates,” Interna-
tional Journal for Numerical Methods in Engineering, vol. 47, no.
1–3, pp. 663–684, 2000.

[13] J. L. Mantari, A. S. Oktem, and C. G. Soares, “A new higher
order shear deformation theory for sandwich and composite
laminated plates,” Composites Part B: Engineering, vol. 43, no.
3, pp. 1489–1499, 2012.

[14] J. L. Mantari, A. S. Oktem, and C. Guedes Soares, “Bending
response of functionally graded plates by using a new higher
order shear deformation theory,” Composite Structures, vol. 94,
no. 2, pp. 714–723, 2012.

[15] T. H. Daouadji, A. Tounsi, L. Hadji, A. H. Henni, and A. B. El
Abbes, “A theoretical analysis for static and dynamic behavior
of functionally graded plates,”Materials Physics and Mechanics,
vol. 14, no. 2, pp. 110–128, 2012.

[16] M. M. Alipour and M. Shariyat, “An elasticity-equilibrium-
based zigzag theory for axisymmetric bending and stress
analysis of the functionally graded circular sandwich plates,
using a Maclaurin-type series solution,” European Journal of
Mechanics, A/Solids, vol. 34, pp. 78–101, 2012.

[17] J. L. Mantari and C. G. Soares, “Bending analysis of thick
exponentially graded plates using a new trigonometric higher
order shear deformation theory,” Composite Structures, vol. 94,
no. 6, pp. 1991–2000, 2012.

[18] A. S. Oktem, J. L. Mantari, and C. G. Soares, “Static response of
functionally graded plates and doubly-curved shells based on
a higher order shear deformation theory,” European Journal of
Mechanics, A/Solids, vol. 36, pp. 163–172, 2012.

[19] R. C. Batra, “Higher-order shear and normal deformable theory
for functionally graded incompressible linear elastic plates,”
Thin-Walled Structures, vol. 45, no. 12, pp. 974–982, 2007.



20 Mathematical Problems in Engineering

[20] H. Matsunaga, “Free vibration and stability of functionally
graded plates according to a 2-D higher-order deformation
theory,” Composite Structures, vol. 82, no. 4, pp. 499–512, 2008.

[21] H. Matsunaga, “Free vibration and stability of functionally
graded shallow shells according to a 2D higher-order deforma-
tion theory,” Composite Structures, vol. 84, no. 2, pp. 132–146,
2008.

[22] B.Uymaz,M.Aydogdu, and S. Filiz, “Vibration analyses of FGM
plates with in-plane material inhomogeneity by Ritz method,”
Composite Structures, vol. 94, no. 4, pp. 1398–1405, 2012.

[23] T. Kant and R. K. Khare, “A higher-order facet quadrilateral
composite shell element,” International Journal for Numerical
Methods in Engineering, vol. 40, no. 24, pp. 4477–4499, 1997.

[24] L. F. Qian, R. C. Batra, and L. M. Chen, “Free and forced vibra-
tions of thick rectangular plates using higher-order shear and
normal deformable plate theory and meshless PetrovõGalerkin
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