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In this paper, we concentrate on the efficient solvers for the time-space fractional advection-diffusion equations. Firstly, the
implicit finite difference schemeswith the shiftedGrünwald-Letnikov approximations for spatial fractional derivative and unshifted
Grünwald-Letnikov approximations for time fractional derivative are employed to discretize time-space fractional advection-
diffusion equations. The discretization results in a series of large dense linear systems. Then, a banded preconditioner is proposed
and some theoretical properties for the preconditioning matrix are studied. Numerical implementations show that the banded
preconditioner may lead to satisfactory experimental results when we choose appropriate bandwidth in the preconditioner.

1. Introduction

Consider the following initial-boundary value problem of
time-space fractional advection-diffusion equations (TS-
FADE):

𝐶
0𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) = 𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡)𝜕−𝑥𝛽+ V

𝜕𝑢 (𝑥, 𝑡)𝜕𝑥 + 𝑓 (𝑥, 𝑡) ,𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑅, 𝑡 ∈ [0, 𝑇𝑓] ,𝑢 (𝑥𝐿, 𝑡) = 𝑢 (𝑥𝑅, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇𝑓,𝑢 (𝑥, 0) = 0, 𝑥 ∈ [𝑥𝐿, 𝑥𝑅] ,
(1)

where 𝑓(𝑥, 𝑡) is the source and sink term, the coefficient of
anomalous diffusion satisfying 𝑑+(𝑥) ≥ 𝑑+min > 0 and 𝑑−(𝑥) ≥𝑑−min > 0, the real constant V denotes the drift of the process,
that is, the mean advection velocity, and 𝛽 ∈ (1, 2) and 𝛼 ∈(0, 1) are the differentiation parameters.

The Caputo time derivative of real order 𝛼 with 𝛼 ∈ (0, 1)
in (1) is defined as [1, 2]

𝐶
0𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) fl 1Γ (1 − 𝛼) ∫𝑡0 (𝜕𝑢 (𝑥, 𝑠) /𝜕𝑠(𝑡 − 𝑠)𝛼 )𝑑𝑠. (2)

The right- and left-hand spatial fractional derivatives are
defined by [3]𝜕𝛽𝑢 (𝑥, 𝑡)𝜕+𝑥𝛽 = 1Γ (2 − 𝛽) 𝜕2𝜕𝑥2 ∫𝑥𝑥𝐿 𝑢 (𝜉, 𝑡) 𝑑𝜉(𝑥 − 𝜉)𝛽−1 ,𝜕𝛽𝑢 (𝑥, 𝑡)𝜕−𝑥𝛽 = 1Γ (2 − 𝛽) 𝜕2𝜕𝑥2 ∫𝑥𝑅𝑥 𝑢 (𝜉, 𝑡) 𝑑𝜉(𝜉 − 𝑥)𝛽−1 , (3)

respectively, where Γ(⋅) is the gamma function.
The TS-FADE of form (1) arises in variety of research

areas such as modeling chaotic dynamics of classical con-
servative systems [4], turbulent flow [5], groundwater con-
taminant transport [6], and applications in finance [7], image
processing [8], physics [9], biological systems [10], and so
on. Though many analytic approaches, such as the Fourier
transform method, the Mellin transform method, and the
Laplace transform methods, have been used to seek the
closed-form solutions [11], there are few available analytical
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closed-form solutions for fractional differential equations
(FDEs). Hence, it is important to find efficient methods to
solve fractional differential equations.

Traditional methods for solving FDEs generate the com-
putational cost of 𝑂(𝑁3) and storage of 𝑂(𝑁2) as a result of
full coefficient matrices, where 𝑁 is the grid point number.
However, when we use the shifted Grünwald-Letnikov dis-
cretization scheme proposed by Meerschaert and Tadjeran
[12] to approximate the FDE,wewill obtain a special Toeplitz-
like discretized coefficient matrix [13, 14]. Therefore, accord-
ing to [13], the storage requirement is𝑂(𝑁) instead of𝑂(𝑁2),
and the complexity of the matrix-vector multiplication only
requires 𝑂(𝑁 log𝑁) operations by fast Fourier transform
(FFT). By making use of this advantage, K. Wang and
H. Wang [14] showed that the conjugate gradient normal
residual (CGNR) method which has computational cost of𝑂(𝑁 log2𝑁) is very efficient when the diffusion coefficients
are very small; that is, the discretized systems are well-
conditioned. However, when the diffusion coefficients are not
small, the discretized diffusion coefficient matrices become
ill-conditioned. Therefore, preconditioning technique must
be used to improve the efficiency of the CGNR method.
Many references proposed efficient methods. For example,
Pang and Sun [15] proposed the multigrid (MG) method
to solve the system. Lei and Sun [16] used the circulant
preconditioned CGNR method, which is proved to be more
efficient than the MG method. After that, Qu et al. [17]
introduced a circulant and skew-circulant splitting method
to solve the fractional diffusion equations. Formore accuracy
analysis of the discretization from the fractional difference
equations, we refer to the documents [18–20]. Some efficient
algorithms for the discretized linear systems from the space

fractional difference equations can be found in [16, 21–24]
and so on.

In this paper, we will first discretize TS-FADE (1) by
using the unshiftedGrünwald-Letnikov approximation to the
Caputo time fractional derivative and the shifted Grünwald-
Letnikov approximation to the spatial fractional derivative.
Then this discretization will lead to a system with Toeplitz-
like coefficient matrix. Following the strategy proposed in
[21], we will propose a banded preconditioning technique for
solving the discretized system. Some theoretical results about
the preconditioning matrix will be presented. Numerical
experiments will also be given to testify the effectiveness of
the new preconditioning technique.

The remainder of this paper is organized as follows. In
Section 2, we give a detailed description for the discretization
of TS-FADE (1). In Section 3, a banded preconditioner is
constructed. Then some properties of the discretized system
(16) are given and some spectral properties for the precondi-
tioning matrix are studied. Numerical experiments are pre-
sented in Section 4 to illustrate the efficiency of the banded
preconditioning technique for solving the TS-FADE. Finally,
in Section 5, we draw some conclusions to end this paper.

2. Discretization of the TS-FADE

Let 𝑁 and 𝑀 be positive integers and ℎ fl (𝑥𝑅 − 𝑥𝐿)/(𝑁 +1) and 𝜏 fl 𝑇𝑓/𝑀 be the sizes of spatial grid and time step,
respectively. We first perform discretization in time using the
unshifted Grünwald-Letnikov approximation to the Caputo
time fractional derivative 𝐶0𝐷𝛼𝑡 𝑢(𝑥, 𝑡). By making use of the
abbreviations 𝑢(𝑚)𝑖 fl 𝑢(𝑥𝑖, 𝑡𝑚) and 𝑓(𝑚)𝑖 fl 𝑓(𝑥𝑖, 𝑡𝑚), where𝑥𝑖 = 𝑥𝐿+𝑖ℎ, 𝑡𝑚 = 𝑚𝜏, 𝑖 = 0, 1, . . . , 𝑁+1, and𝑚 = 0, 1, . . . ,𝑀,
we can obtain the following semidiscretized scheme:

𝑇𝑀+1𝛼 (((
(

𝑢(𝑥, 𝑡0)𝑢 (𝑥, 𝑡1)𝑢 (𝑥, 𝑡2)...𝑢 (𝑥, 𝑡𝑀)
)))
)

= 𝐼𝑀+1(((((((((((
(

𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡0)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡0)𝜕−𝑥𝛽 + V
𝜕𝑢 (𝑥, 𝑡0)𝜕𝑥𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡1)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡1)𝜕−𝑥𝛽 + V
𝜕𝑢 (𝑥, 𝑡1)𝜕𝑥𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡2)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡2)𝜕−𝑥𝛽 + V
𝜕𝑢 (𝑥, 𝑡2)𝜕𝑥...𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡𝑀)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡𝑀)𝜕−𝑥𝛽 + V
𝜕𝑢 (𝑥, 𝑡𝑀)𝜕𝑥

)))))))))))
)

+ 𝐼𝑀+1(((
(

𝑓(𝑥, 𝑡0)𝑓 (𝑥, 𝑡1)𝑓 (𝑥, 𝑡2)...𝑓 (𝑥, 𝑡𝑀)
)))
)

, (4)

where 𝐼𝑀+1 ∈ R(𝑀+1)×(𝑀+1) is identity matrix and

𝑇𝑀+1𝛼 fl 𝜏−𝛼((((((
(

𝑔(𝛼)0𝑔(𝛼)1 𝑔(𝛼)0𝑔(𝛼)2 𝑔(𝛼)1 𝑔(𝛼)0
d d d d

d d d 𝑔(𝛼)1 𝑔(𝛼)0𝑔(𝛼)𝑀 𝑔(𝛼)𝑀−1 d 𝑔(𝛼)2 𝑔(𝛼)1 𝑔(𝛼)0
))))))
)

= [[[[
𝜏−𝛼𝑔(𝛼)0 0... 𝑇𝑀𝛼𝜏−𝛼𝑔(𝛼)𝑀 ]]]]

(5)

represents the discrete Caputo derivative. Here 𝑔(𝛽)
𝑘

is defined
as
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𝑘

= (−1)𝑘𝑘! 𝛽 (𝛽 − 1) ⋅ ⋅ ⋅ (𝛽 − 𝑘 + 1) ,
for 𝑘 = 1, 2, . . . . (6)

Because of the zero initial condition, we can rewrite (4) as

𝑇𝑀𝛼 (𝑢(𝑥, 𝑡1)𝑢 (𝑥, 𝑡2)...𝑢 (𝑥, 𝑡𝑀)) = 𝐼𝑀(((((((
(

𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡1)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡1)𝜕−𝑥𝛽 + V
𝜕𝑢 (𝑥, 𝑡1)𝜕𝑥𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡2)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡2)𝜕−𝑥𝛽 + V
𝜕𝑢 (𝑥, 𝑡2)𝜕𝑥...𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡𝑀)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡𝑀)𝜕−𝑥𝛽 + V
𝜕𝑢 (𝑥, 𝑡𝑀)𝜕𝑥

)))))))
)

+ 𝐼𝑀(𝑓(𝑥, 𝑡1)𝑓 (𝑥, 𝑡2)...𝑓 (𝑥, 𝑡𝑀)), (7)

and here the first line of (7) has the form

𝑔(𝛼)0 𝑢 (𝑥, 𝑡1) = 𝑑+ (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡1)𝜕+𝑥𝛽 + 𝑑− (𝑥) 𝜕𝛽𝑢 (𝑥, 𝑡1)𝜕−𝑥𝛽+ V
𝜕𝑢 (𝑥, 𝑡1)𝜕𝑥 + 𝑓 (𝑥, 𝑡1) . (8)

We use the central difference approximation to 𝜕𝑢(𝑥, 𝑡1)/𝜕𝑥
and approximate the spatial derivative of order 𝛽 (1 < 𝛽 ≤ 2)
by the shiftedGrünwald-Letnikov approximations [12] for the
right- and left-handed spatial fractional derivative; that is,

𝜕𝛽𝑢 (𝑥𝑖, 𝑡𝑚)𝜕+𝑥𝛽 = 1ℎ𝛽 𝑖+1∑
𝑘=0

𝑔(𝛽)
𝑘

𝑢(𝑚)𝑖−𝑘+1 + 𝑂 (ℎ) ,
𝜕𝛽𝑢 (𝑥𝑖, 𝑡𝑚)𝜕−𝑥𝛽 = 1ℎ𝛽 𝑁−𝑖+2∑

𝑘=0

𝑔(𝛽)
𝑘

𝑢(𝑚)𝑖+𝑘−1 + 𝑂 (ℎ) . (9)

Denote B fl (𝑇𝑀𝛼 )𝑇, u(𝑚) fl (𝑢(𝑚)1 , 𝑢(𝑚)2 , . . . , 𝑢(𝑚)𝑁 )𝑇, and
f(𝑚) fl (𝑓(𝑚)1 , 𝑓(𝑚)2 , . . . , 𝑓(𝑚)𝑁 )𝑇, 𝑚 = 0, 1, 2, . . . ,𝑀.

𝐷+ fl diag (𝑑+ (𝑥1) , 𝑑+ (𝑥2) , . . . , 𝑑+ (𝑥𝑁))≡ diag (𝑑+,1, 𝑑+,2, . . . , 𝑑+,𝑁) ,𝐷− fl diag (𝑑− (𝑥1) , 𝑑− (𝑥2) , . . . , 𝑑− (𝑥𝑁))≡ diag (𝑑−,1, 𝑑−,2, . . . , 𝑑−,𝑁) ,
(10)

𝐺𝑁𝛽 fl −ℎ−𝛽(((((((((
(

𝑔(𝛽)1 𝑔(𝛽)0 0 ⋅ ⋅ ⋅ 0 0𝑔(𝛽)2 𝑔(𝛽)1 𝑔(𝛽)0 0 ⋅ ⋅ ⋅ 0... 𝑔(𝛽)2 𝑔(𝛽)1 d d
...... d d d d 0𝑔(𝛽)𝑁−1 d d d 𝑔(𝛽)1 𝑔(𝛽)0𝑔(𝛽)𝑁 𝑔(𝛽)𝑁−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑔(𝛽)2 𝑔(𝛽)1

)))))))))
)

, (11)

𝑊 fl
((((
(

0 −1 0 ⋅ ⋅ ⋅ 01 0 −1 d
...0 1 d d 0... d d d −10 ⋅ ⋅ ⋅ 0 1 0
))))
)

. (12)

According to the boundary condition 𝑢(𝑚)0 = 𝑢(𝑚)𝑁+1 = 0, the
space-time discretization of (7) will lead to the following
algebraic linear system in Kronecker form:(B𝑇 ⊗ 𝐼𝑁 + 𝐼𝑀 ⊗ A) u = f̃ , (13)

where

A fl 𝐷+𝐺𝑁𝛽 + 𝐷− (𝐺𝑁𝛽 )𝑇 + V2ℎ𝑊, (14)

u fl [u(1); u(2); . . . ; u(𝑀)] using the MATLAB notation, and
each u(𝑚) is a vector of dimension𝑁 associated with the point𝑚 in time. Meanwhile, the right-hand side vector f̃ in (13) is
defined by f̃ fl [f(1); f(2); . . . ; f(𝑀)].

Let 𝑈 fl [u(1), u(2), . . . , u(𝑀)] ,𝐹 fl [f(1), f(2), . . . , f(𝑀)] . (15)
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Then we can rewrite the linear system (13) into a matrix
equation form

A𝑈 + 𝑈B = 𝐹, (16)

with A defined in (14) being a sum of some dense diagonal-
times-Toeplitz matrices and B = (𝑇𝑀𝛼 )𝑇 being upper trian-
gular matrix.

Note that A is a sum of some diagonal-times-Toeplitz
matrices andB is upper triangularmatrix, the right-hand side
matrix in (16) is not low rank, and the size of B usually has
much smaller size than that of A. Then the first column of 𝑈
can be obtained by solving the shifted system (A+B11I)u(1) =
f(1). All subsequent columns of𝑈may be obtained with some
substitutions as(A + B𝑚𝑚I) u(𝑚) = f(𝑚) − 𝑚−1∑

𝑘=1

u(𝑘)B𝑘𝑚,(𝑚 = 2, 3, . . . ,𝑀) , (17)

where B = (B𝑘𝑚); that is, B𝑘𝑚 denotes the (𝑘,𝑚)th-entry of
B.

Since B𝑚𝑚 ≡ 𝑔(𝛼)0 = 1, 𝑚 = 1, 2, . . . ,𝑀. Then we have to
solve these systems with the same coefficient matrix A + I =𝐷+𝐺𝑁𝛽 +𝐷−(𝐺𝑁𝛽 )𝑇+(V/2ℎ)𝑊+I, where𝐷+ and𝐷− are positive
diagonal matrices, I is an identity matrix, and𝑊 and 𝐺𝑁𝛽 are
described previously.

3. Banded Preconditioning Iteration Method

Define

A fl B𝑚𝑚I + A = I + 𝐷+𝐺𝑁𝛽 + 𝐷− (𝐺𝑁𝛽 )𝑇 + 𝜂𝑊, (18)

where 𝜂 = V/2ℎ < 0 and the matrices𝐷+,𝐷−,𝑊, and 𝐺𝑁𝛽 are
defined in Section 2. It can be easily found that𝑊 is a skew-
symmetric matrix.

Obviously, the main work for solving the discretized sys-
tem (17) concentrates on solving the system with coefficient
matrix A for 𝑚 = 1, 2, 3, . . . ,𝑀. Since A is a nonsymmetric
matrix, then we can use the Krylov subspace methods
[25], such as the generalized minimal residual (GMRES)
method, to solve the linear systems (17).The preconditioning
techniques are often employed to improve the performance
and reliability of the Krylov subspace methods.

Denote

𝐺𝑁𝛽,𝑘 fl −ℎ−𝛽((((
(

𝑔(𝛽)1 𝑔(𝛽)0... 𝑔(𝛽)1 𝑔(𝛽)0𝑔(𝛽)
𝑘

d d

d d d𝑔(𝛽)
𝑘

⋅ ⋅ ⋅ 𝑔(𝛽)1
))))
)

,
(2 ≤ 𝑘 ≤ 𝑁) ,

(19)

and define a banded preconditioner 𝑃𝑘 as𝑃𝑘 fl I + 𝐷+𝐺𝑁𝛽,𝑘 + 𝐷− (𝐺𝑁𝛽,𝑘)𝑇 + 𝜂𝑊. (20)

It can be easily seen that 𝐺𝑁𝛽,𝑘 is a banded Toeplitz matrix
with bandwidth 𝑘+ 1 containing the central diagonals of 𝐺𝑁𝛽 .
Therefore, 𝑃𝑘 is a banded matrix with bandwidth 2𝑘 − 1.

To study the property of the preconditioner 𝑃𝑘, we will
give the following lemmas first.

Lemma 1 (see [12]). Let 1 < 𝛽 ≤ 2 and 𝑔(𝛽)𝑗 be defined in (6).
Then we have 𝑔(𝛽)0 = 1,𝑔(𝛽)1 = −𝛽 < 0,𝑔(𝛽)2 > 𝑔(𝛽)3 > ⋅ ⋅ ⋅ > 0,

∞∑
𝑗=0

𝑔(𝛽)𝑗 = 0,
𝑛∑
𝑗=0

𝑔(𝛽)𝑗 < 0, for 𝑛 ≥ 1,
𝑔(𝛽)𝑗 = 𝑂 (𝑗−(𝛽+1)) .

(21)

Lemma 2. For 1 < 𝛽 ≤ 2, the matrix 𝐺𝑁𝛽,𝑘 defined in (19) is
a strongly diagonally dominant matrix and the real part of the
spectrum of 𝐺𝑁𝛽,𝑘 is contained in the open interval (0, 2ℎ−𝛽𝛽).
Proof. According to Lemma 1, it holds that ∑𝑛𝑗=0 𝑔(𝛽)𝑗 < 0 for𝑛 ≥ 1. Therefore, for each row of the matrix 𝐺𝑁𝛽,𝑘, we have∑𝑙𝑗=0 𝑔(𝛽)𝑗 < 0 or, equivalently, |𝑔(𝛽)1 | = −𝑔(𝛽)1 > ∑𝑙𝑗=0,𝑗 ̸=1 𝑔(𝛽)𝑗
for 𝑙 = 1, 2, . . . , 𝑘. That is, |𝑔(𝛽)1 | ≥ ∑𝑙𝑗=0,𝑗 ̸=1 |𝑔(𝛽)𝑗 | (𝑙 = 1, 2,. . . , 𝑘). Hence, 𝐺𝑁𝛽,𝑘 is a strongly diagonally dominant matrix.

Moreover, by simple computation, we can obtain the first
column of the matrix𝐻𝑘 fl (1/2)(𝐺𝑁𝛽,𝑘 + (𝐺𝑁𝛽,𝑘)𝑇) as−ℎ−𝛽[𝑔(𝛽)1 , 12 (𝑔(𝛽)0 + 𝑔(𝛽)2 ) , 12𝑔(𝛽)3 , . . . , 12𝑔(𝛽)𝑘 , 0, . . . , 0]𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

. (22)

Hence, the Gershgorin circles of 𝐻𝑘 are centered at−ℎ−𝛽𝑔(𝛽)1 = 𝛽ℎ−𝛽. Moreover, according to Lemma 1, the
largest radius 𝑟max is at most𝑟max = ℎ−𝛽 ((𝑔(𝛽)0 + 𝑔(𝛽)2 ) + 𝑔(𝛽)3 + ⋅ ⋅ ⋅ + 𝑔(𝛽)

𝑘
)= ℎ−𝛽( 𝑘∑

𝑗=0

𝑔(𝛽)𝑗 − 𝑔(𝛽)1 ) < ℎ−𝛽𝑔(𝛽)1 = ℎ−𝛽𝛽. (23)

It then follows that the real part of the spectrum of 𝐺𝑁𝛽,𝑘 is
contained in the open interval (0, 2ℎ−𝛽𝛽).
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Next, we will concentrate on the uniqueness of the
solution of the matrix equation (16).

Theorem 3. Let 𝐺 fl ℎ𝛽 ⋅ (𝐺𝑁𝛽 + (𝐺𝑁𝛽 )𝑇), where 𝐺𝑁𝛽 is defined
as in (11). Then 𝐺 is a symmetric positive definite matrix.

Proof. Suppose that {𝜆𝑗(𝐺), 𝑗 = 1, 2, . . . , 𝑁} are the eigenval-
ues set of thematrix𝐺. According to theGershgorin theorem,
all eigenvalues of 𝐺 are contained within a complex disk
centered at −2𝑔(𝛽)1 = 2𝛽, with the maximum radius being in
line ⌊𝑁/2⌋ + 1 or in line ⌊𝑁/2⌋ (dependent on whether𝑁 is
odd or even). Therefore, the maximum radius 𝑟max satisfies𝑟max = 2⌊𝑁/2⌋+1∑

𝑘=0,𝑘 ̸=1

𝑔(𝛽)
𝑘

< −2𝑔(𝛽)1 = 2𝛽. (24)

That is, {Re(𝜆𝑗(𝐺))} ⊂ (0, 4𝛽).
Because 𝐺 is a real symmetric matrix, then the eigenval-

ues are all real. So 𝐺 is symmetric positive definite.

Theorem 4. Suppose that 𝐹 defined in (16) satisfies 𝐹 ̸= 0, and
then there exists only one solution for the Sylvester equation
(16).

Proof. From [26, 27], we know that when 𝐶 ̸= 0, the
continuous Sylvester equation (16) has a unique solution
if there is no common eigenvalue between 𝐴 and −𝐵. It
is easy to know that B is upper triangular matrix and its
eigenvalues are all positive. Note that A + A𝑇 = (𝐷+𝐺𝑁𝛽 +(𝐷+𝐺𝑁𝛽 )𝑇) + (𝐷−(𝐺𝑁𝛽 )𝑇 + (𝐷−(𝐺𝑁𝛽 )𝑇)𝑇) + (V/2ℎ)(𝑊 +𝑊𝑇) =𝐷+(𝐺𝑁𝛽 + 𝐺𝑁𝛽 )𝑇) + 𝐷−(𝐺𝑁𝛽 )𝑇 + 𝐺𝑁𝛽 ) fl 𝐷1 + 𝐷2. According
to Theorem 3, if the real parts of the eigenvalues of 𝐺𝑁𝛽 are
positive, then the real parts of all eigenvalues of 𝐷+𝐺𝑁𝛽 are
also positive. Furthermore, the matrices 𝐷1 and 𝐷2 are both
symmetric positive definite. Therefore, A + A𝑇 is symmetric
positive definite, and the real parts of the eigenvalues ofA are
positive.Therefore, there is no common eigenvalues between
the matrices A and −B.
Theorem 5. For 2 ≤ 𝑘 ≤ 𝑁, the preconditioner 𝑃𝑘 defined in
(20) is nonsingular.

Proof. Since 𝐷+ is a positive diagonal matrix and from
Lemma 2, the real part of the spectrum of 𝐺𝑁𝛽,𝑘 is positive.
Then the real part of the spectrum of 𝐷+𝐺𝑁𝛽,𝑘 is also positive.
Using the same strategy, we can obtain that the real part of
the spectrum of𝐷−(𝐺𝑁𝛽,𝑘)𝑇 is also positive.

Assume that 𝑃𝑘 is a singular matrix and there exists a
nonzero eigenvector 𝑥 such that 𝑃𝑘𝑥 = 0. Then it follows that(I + 𝐷+𝐺𝑁𝛽,𝑘 + 𝐷− (𝐺𝑁𝛽,𝑘)𝑇) 𝑥 = −𝜂𝑊𝑥. (25)

Multiplying 𝑥∗/𝑥∗𝑥 by the left of the above equation, we get𝑥∗ (I + 𝐷+𝐺𝑁𝛽,𝑘 + 𝐷− (𝐺𝑁𝛽,𝑘)𝑇) 𝑥𝑥∗𝑥 = −𝜂𝑥∗𝑊𝑥𝑥∗𝑥 . (26)

As𝑊 is a skew-symmetric matrix and 𝜂 < 0 is a real number,
then −𝜂(𝑥∗𝑊𝑥/𝑥∗𝑥) is a pure imaginary. Because the real
part of 𝑥∗(𝐷+𝐺𝑁𝛽,𝑘 + 𝐷−(𝐺𝑁𝛽,𝑘)𝑇)𝑥/𝑥∗𝑥 is a positive number,
then the real part of 𝑥∗(I + 𝐷+𝐺𝑁𝛽,𝑘 + 𝐷−(𝐺𝑁𝛽,𝑘)𝑇)𝑥/𝑥∗𝑥 is a
positive number. According to (26), we can easily find that
there is a contradiction because the real part of the right hand
side of (26) is zero.That is, if 𝑃𝑘𝑥 = 0, it must hold that 𝑥 = 0;
that is, the matrix 𝑃𝑘 is nonsingular.
Theorem 6. For 2 ≤ 𝑘 ≤ 𝑁 and 1 < 𝛽 ≤ 2, the relative
difference between A and 𝑃𝑘 can be described asA − 𝑃𝑘∞‖A‖∞ ≤ 𝑂 (𝑘−𝛽) , (27)

which implies 𝑃𝑘 can be an efficient preconditioner for the
coefficient matrix A as 𝑘 increases.
Proof. The proof process is similar to [13].

At the end of this section, we will draw the main steps for
solving the discretized system (13).

Step 1. Compute the matrices A, B, and 𝐹 in (16).

Step 2. Solve the system 𝑔(𝛼)0 u(1) + Au(1) = f(1) by using the
banded preconditioner 𝑃𝑘.
Step 3. Compute b(𝑚) = f(𝑚) − ∑𝑚−1𝑘=1 u(𝑘)B𝑘𝑚.
Step 4. For𝑚 = 2, 3, . . . ,𝑀, solve the systems (A+B𝑚𝑚I)u(𝑚)= b(𝑚) by using the banded preconditioner 𝑃𝑘.
Step 5. Obtain the numerical solution 𝑈 fl [u(1), u(2), . . . ,
u(𝑀)].
4. Numerical Results

In this section, we will test the feasibility and effectiveness
of the banded preconditioning iteration method with the
preconditioner 𝑃𝑘 for TS-FADE (1). All runs at each time
step are started from zero initial guess and terminated if the
current iteration satisfies ERR ≤ 10−7 or the elapsed CPU
time is exceeding 2000 in seconds, where

ERR fl
b(𝑚) − Au(𝑚,𝑘)2b(𝑚) − Au(𝑚,0)2 . (28)

All the experiments are performed in MATLAB R2012a on
Intel� Core� i7-3770 CPU 3.40GHz and 8.00GB of RAM,
with machine precision 10−16. The average iteration counts
(denoted by “Iter”), elapsedCPU time in seconds (denoted by
“CPU”), and total iteration counts for solving the discretized
system (17) (denoted by “IT”) are reported. Here “Iter” is
defined as

Iter = IT𝑀. (29)
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Example 7. Consider TS-FADE (1) with 𝑥𝐿 = 0, 𝑥𝑅 = 2, and𝑇𝑓 = 1. The coefficient functions are

𝑑+ (𝑥) = 1 + 𝑥4,𝑑− (𝑥) = 1 + (2 − 𝑥)4 , (30)

and the forcing function is

𝑓 (𝑥, 𝑡) = 4 (𝜋2 )𝛼 sin( 𝑡2𝜋) − 4 sin( 𝑡2𝜋)⋅ [ Γ (5)Γ (5 − 𝛽) (𝑑+ (𝑥) 𝑥4−𝛽 + 𝑑− (𝑥) (2 − 𝑥)4−𝛽)
− 4 Γ (4)Γ (4 − 𝛽) (𝑑+ (𝑥) 𝑥3−𝛽 + 𝑑− (𝑥) (2 − 𝑥)3−𝛽)
+ 4 Γ (3)Γ (3 − 𝛽) (𝑑+ (𝑥) 𝑥2−𝛽 + 𝑑− (𝑥) (2 − 𝑥)2−𝛽)]
− 16 sin( 𝑡2𝜋) (𝑥3 − 3𝑥2 + 2𝑥) .

(31)

Then the true solution for the corresponding TS-FADE is𝑢(𝑥, 𝑡) = 4 sin((𝑡/2)𝜋)𝑥2(2 − 𝑥)2.
This example is amodification of the example from [13, 15,

23]. By applying the unshifted Grünwald-Letnikov approx-
imations to discretize the fractional time derivative, the
shifted Grünwald-Letnikov approximations to the fractional
spatial derivative, and the central difference finite scheme to
discretize the first-order derivative of spatial derivative, we
can obtain the linear systems (17) step by step. To obtain the
numerical solutions of this problem, we have to solve linear
equations with the same coefficient matrix and different
right-hand sides in each time step. In our experiments, we
choose the parameters 𝜂 = −1. To be more persuasive, we test
the methods according to different choices of the derivative
parameters 𝛼 ∈ {0.4, 0.8} and 𝛽 ∈ {1.3, 1.6, 1.9} and differ-
ent mesh grids 𝑁 + 1 ∈ {27, 28, 29, 210, 211, 212, 213} and𝑀 = 24.

When we use preconditioned GMRES method, we
test the banded preconditioners with varying bandwidth
(denoted as “P(k)-GMRES”), the Strang-like circulant pre-
conditioner (denoted as “S-GMRES”), the R. Chan-like
circulant preconditioner (denoted as “R-GMRES”), and the
T. Chan-like circulant preconditioner [28] (denoted as “T-
GMRES”):

𝐼 + 𝑑+𝐶 + 𝑑−𝐶𝑇 + 𝜂𝑊𝑐, (32)

where 𝑑+ and 𝑑− are the mean values of the diagonals of the
diagonal matrices 𝐷+ and 𝐷−, respectively. The matrix 𝑊𝑐 is
defined by

((((
(

0 −1 0 ⋅ ⋅ ⋅ 11 0 −1 d
...0 1 d d 0... d d d −1−1 ⋅ ⋅ ⋅ 0 1 0
))))
)

. (33)

The matrix 𝐶 is chosen as Strang’s circulant matrix (𝐶𝑠), R.
Chan’s circulant matrix (𝐶𝑟), and T. Chan’s circulant matrix
(𝐶𝑡), respectively. Further, the entries of the first column of
Strang’s circulant matrix 𝐶𝑠 are given by−ℎ−𝛽 (𝑔(𝛽)1 , 𝑔(𝛽)2 , . . . , 𝑔(𝛽)

⌊𝑁/2⌋
, 0, . . . , 0, 𝑔(𝛽)0 )𝑇 . (34)

The entries of the first column of R. Chan’s circulant matrix𝐶𝑟 are given by−ℎ−𝛽 (𝑔(𝛽)1 , 𝑔(𝛽)2 , . . . , 𝑔(𝛽)𝑁−1, 𝑔(𝛽)𝑁 + 𝑔(𝛽)0 )𝑇 . (35)

The entries of the first column of T. Chan’s circulant matrix𝐶𝑡 are given by− ℎ−𝛽(𝑔(𝛽)1 , (𝑁 − 1) 𝑔(𝛽)2 + 𝑔(𝛽)𝑁𝑁 , . . . ,
2𝑔(𝛽)𝑁−1 + (𝑁 − 2) 𝑔(𝛽)2𝑁 , 𝑔(𝛽)𝑁 + (𝑁 − 1) 𝑔(𝛽)0𝑁 )𝑇 . (36)

We test the preconditioners 𝑃(4) and 𝑃(16), which means
the half width of the corresponding banded preconditioner
is (𝑁 + 1)/4 and (𝑁 + 1)/16, respectively.

We show the experimental results for 𝛼 = 0.4 and 𝛼 = 0.8
in Tables 1 and 2, respectively. When the elapsed CPU time is
exceeding 2000 in seconds, the resultswill be denoted by “—”;
from these tables, we see that the performance for the banded
preconditioner with the half width being 1/16 of the problem
size is better compared to the circulant preconditioners.
However, if the half width is 1/4 of the problem size, the
performance reaches the best.

5. Conclusions

In this paper, we concentrate on the efficient solvers for time-
space fractional advection-diffusion equations. By employ-
ing the implicit finite difference schemes with the shifted
Grünwald-Letnikov approximations for spatial fractional
derivative and unshiftedGrünwald-Letnikov approximations
for time fractional derivative, we can discretize the time-
space fractional advection-diffusion equations. To solve the
discretization, we have to solve a series of linear systems
with the same coefficient matrix. Therefore, we proposed a
banded preconditioning iteration method for the numerical
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Table 1: Numerical results of the tested methods for 𝛼 = 0.4 and𝑀 = 24.𝛽 𝑁 + 1 S-GMRES T-GMRES R-GMRES 𝑃(16)-GMRES 𝑃(4)-GMRES
IT CPU IT CPU IT CPU IT CPU IT CPU

1.3

27 18 0.18 22 0.24 18 0.15 8 0.07 5 0.0528 20 0.51 26 0.58 19 0.43 8 0.18 5 0.1229 21 1.60 30 2.23 21 1.61 8 0.63 5 0.53210 22 9.12 35 14.14 22 9.14 8 3.02 5 2.33211 23 51.10 39 83.54 23 51.21 8 18.57 5 12.44212 23 306.29 44 560.60 23 307.80 8 110.39 5 75.95213 — — — — — — 8 741.27 5 495.16

1.6

27 11 0.09 18 0.17 11 0.11 8 0.08 4 0.0628 12 0.28 22 0.46 12 0.28 8 0.17 4 0.1129 12 0.97 26 1.93 12 0.97 8 0.63 4 0.43210 12 5.26 30 12.11 12 5.30 8 3.46 4 2.32211 12 28.88 36 77.01 12 28.60 8 18.7 4 12.4212 12 169.48 43 547.79 12 169.37 8 109.46 4 73.25213 12 1153.13 — — 12 1157.55 8 742.61 4 496.21

1.9

27 8 0.08 18 0.15 8 0.08 6 0.06 3 0.0428 8 0.19 22 0.46 8 0.19 6 0.14 3 0.129 8 0.71 27 2.00 8 0.70 6 0.49 3 0.36210 8 3.79 34 13.58 8 3.81 6 2.71 3 1.93211 8 21.18 44 93.08 8 20.57 6 14.45 3 10.36212 8 121.58 57 717.37 8 121.41 6 85.41 3 61.08213 7 745.34 — — 7 742.52 6 578.17 3 413.03

Table 2: Numerical results of the tested methods for 𝛼 = 0.8 and𝑀 = 24.𝛽 𝑁 + 1 S-GMRES T-GMRES R-GMRES 𝑃(16)-GMRES 𝑃(4)-GMRES
IT CPU IT CPU IT CPU IT CPU IT CPU

1.3

27 18 0.16 22 0.20 18 0.16 8 0.07 5 0.0528 20 0.43 26 0.55 19 0.40 8 0.17 5 0.1229 21 1.59 30 2.22 21 1.60 8 0.63 5 0.43210 22 9.12 35 14.03 22 9.11 8 3.04 5 2.32211 23 51.60 39 83.07 23 51.10 8 18.52 5 12.83212 23 302.65 44 559.36 23 308.72 8 109.32 5 73.38213 — — — — — — 8 736.5 5 493

1.6

27 11 0.10 18 0.15 11 0.10 8 0.07 4 0.0428 12 0.27 22 0.46 12 0.37 8 0.17 4 0.2729 12 0.96 26 1.92 12 0.97 8 0.62 4 0.44210 12 5.30 30 12.02 12 5.30 8 3.42 4 2.32211 12 28.66 36 77.11 12 30.14 8 18.55 4 12.38212 12 169.48 43 547.61 12 170.06 8 109.37 4 73.19213 12 1146.07 — — 12 1146.50 8 738.33 4 494.49

1.9

27 8 0.07 18 0.15 8 0.07 6 0.06 3 0.0428 8 0.19 22 0.46 8 0.19 6 0.14 3 0.129 8 0.70 27 2.00 8 0.72 6 0.49 3 0.35210 8 4.22 34 13.76 8 3.82 6 2.7 3 1.94211 8 20.79 44 93.85 8 20.52 6 14.44 3 10.39212 8 121.68 57 717.90 8 121.76 6 85.35 3 61.15213 7 740.29 — — 7 742.03 6 576.51 3 411.58
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solution of the resulting linear systems.Theoretical properties
for the preconditioning matrix are studied in detail. Numer-
ical implementations show that the banded preconditioner
leads to satisfactory experimental results when we choose
appropriate bandwidth in the preconditioner.
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