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In this paper, we concentrate on the efficient solvers for the time-space fractional advection-diffusion equations. Firstly, the
implicit finite difference schemes with the shifted Griinwald-Letnikov approximations for spatial fractional derivative and unshifted
Griinwald-Letnikov approximations for time fractional derivative are employed to discretize time-space fractional advection-
diffusion equations. The discretization results in a series of large dense linear systems. Then, a banded preconditioner is proposed
and some theoretical properties for the preconditioning matrix are studied. Numerical implementations show that the banded
preconditioner may lead to satisfactory experimental results when we choose appropriate bandwidth in the preconditioner.

1. Introduction

Consider the following initial-boundary value problem of
time-space fractional advection-diffusion equations (TS-
FADE):

au(xt) au(x t)
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au (x, t) . F
)
xp <Sx<Xxp, tE [O,Tf],

u(xp,t) =u(xp,t)=0, 0<t<T,

u(x,0)=0, xe€[x,xg],

where f(x,t) is the source and sink term, the coefficient of
anomalous diffusion satisfyingd,, (x) > d}. > 0andd_(x) >
d_in > 0, the real constant v denotes the drift of the process,
that is, the mean advection velocity, and 8 € (1,2) and « €

(0, 1) are the differentiation parameters.

The Caputo time derivative of real order a with « € (0, 1)
in (1) is defined as [1, 2]
1 t(ou(x,s) /as)
ds. 2
r(1—o¢)L< s )= @

The right- and left-hand spatial fractional derivatives are
defined by [3]
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respectively, where I'(-) is the gamma function.

The TS-FADE of form (1) arises in variety of research
areas such as modeling chaotic dynamics of classical con-
servative systems [4], turbulent flow [5], groundwater con-
taminant transport [6], and applications in finance [7], image
processing [8], physics [9], biological systems [10], and so
on. Though many analytic approaches, such as the Fourier
transform method, the Mellin transform method, and the
Laplace transform methods, have been used to seek the
closed-form solutions [11], there are few available analytical
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closed-form solutions for fractional differential equations
(FDEs). Hence, it is important to find efficient methods to
solve fractional differential equations.

Traditional methods for solving FDEs generate the com-
putational cost of O(N %) and storage of O(N %) as a result of
full coefficient matrices, where N is the grid point number.
However, when we use the shifted Griinwald-Letnikov dis-
cretization scheme proposed by Meerschaert and Tadjeran
[12] to approximate the FDE, we will obtain a special Toeplitz-
like discretized coeflicient matrix [13, 14]. Therefore, accord-
ing to [13], the storage requirement is O(N) instead of O(N %),
and the complexity of the matrix-vector multiplication only
requires O(N log N) operations by fast Fourier transform
(FFT). By making use of this advantage, K. Wang and
H. Wang [14] showed that the conjugate gradient normal
residual (CGNR) method which has computational cost of
O(Nlog’N) is very efficient when the diffusion coefficients
are very small; that is, the discretized systems are well-
conditioned. However, when the diffusion coefficients are not
small, the discretized diffusion coefficient matrices become
ill-conditioned. Therefore, preconditioning technique must
be used to improve the efficiency of the CGNR method.
Many references proposed efficient methods. For example,
Pang and Sun [15] proposed the multigrid (MG) method
to solve the system. Lei and Sun [16] used the circulant
preconditioned CGNR method, which is proved to be more
efficient than the MG method. After that, Qu et al. [17]
introduced a circulant and skew-circulant splitting method
to solve the fractional diffusion equations. For more accuracy
analysis of the discretization from the fractional difference
equations, we refer to the documents [18-20]. Some efficient
algorithms for the discretized linear systems from the space
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fractional difference equations can be found in [16, 21-24]
and so on.

In this paper, we will first discretize TS-FADE (1) by
using the unshifted Griinwald-Letnikov approximation to the
Caputo time fractional derivative and the shifted Griinwald-
Letnikov approximation to the spatial fractional derivative.
Then this discretization will lead to a system with Toeplitz-
like coefficient matrix. Following the strategy proposed in
[21], we will propose a banded preconditioning technique for
solving the discretized system. Some theoretical results about
the preconditioning matrix will be presented. Numerical
experiments will also be given to testify the effectiveness of
the new preconditioning technique.

The remainder of this paper is organized as follows. In
Section 2, we give a detailed description for the discretization
of TS-FADE (1). In Section 3, a banded preconditioner is
constructed. Then some properties of the discretized system
(16) are given and some spectral properties for the precondi-
tioning matrix are studied. Numerical experiments are pre-
sented in Section 4 to illustrate the efficiency of the banded
preconditioning technique for solving the TS-FADE. Finally,
in Section 5, we draw some conclusions to end this paper.

2. Discretization of the TS-FADE

Let N and M be positive integers and h = (xp — x.)/(N +
1) and 7 = T;/M be the sizes of spatial grid and time step,
respectively. We first perform discretization in time using the
unshifted Griinwald-Letnikov approximation to the Caputo
time fractional derivative COD‘:u(x, t). By making use of the

abbreviations ul™ = u(x;,t,,) and f™ = f(x;t,,), where
x; = x +ih,t,, =mt,i=0,1,...,N+1l,andm =0,1,..., M,

we can obtain the following semidiscretized scheme:
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represents the discrete Caputo derivative. Here g}(f ) is defined
as
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and here the first line of (7) has the form

@ B Pu(x,t)) Pu (x,t,)
go u(xty)=d, (x) o +d_(x) o
(8)
) au(x,t) + flot).

We use the central difference approximation to ou(x, t,)/0x
and approximate the spatial derivative of order § (1 < § < 2)
by the shifted Griilnwald-Letnikov approximations [12] for the
right- and left-handed spatial fractional derivative; that is,
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a+xﬁ hﬁ;)gk Uik ( )
)
F) u(x,t N=i+2 o
F) xlls hﬁ Z g9 7). +Oh).
Denote B := (TM)", u™ = (ug ,ugm),...,ug,”)) , and
On) o (flm, £ DT = 0,1,2,..., M.
D, =diag(d, (x,).d, (x;),....d, (xy))
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D_ = diag(d_(x,),d_(x;),....d_(xy))
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According to the boundary condition u(() m - uN+ = 0, the
space-time discretization of (7) will lead to the following
algebraic linear system in Kronecker form:

(B eIN+1MeA)u=T, (13)
where
. N INeV AR
A_m@+D4%)+ﬁw (14)

u = [uW;u?;. . ;u™] using the MATLAB notation, and
each u™ is a vector of dimension N associated with the point
m in time. Meanwhile, the right-hand side vector fin (13) is
defined by f := [f; £?; . ; £,

Let

(15)



Then we can rewrite the linear system (13) into a matrix
equation form

AU +UB =F, (16)

with A defined in (14) being a sum of some dense diagonal-
times-Toeplitz matrices and B = (TOICVI)T being upper trian-
gular matrix.

Note that A is a sum of some diagonal-times-Toeplitz
matrices and B is upper triangular matrix, the right-hand side
matrix in (16) is not low rank, and the size of B usually has
much smaller size than that of A. Then the first column of U
can be obtained by solving the shifted system (A +B,,I)u? =
£ All subsequent columns of U may be obtained with some
substitutions as

(A+B,,)u™ = Zuk)Bkm,
(17)

(m=2,3,...,M),

where B = (B,,,); that is, B;,,, denotes the (k, m)th-entry of
B.

Since B,,,, = g =1, m = 1,2,..., M. Then we have to
solve these systems with the same coeﬂicient matrix A + I =
D+GEI+D_ (Gg)T+(v/2h)W+I, where D, and D_ are positive
diagonal matrices, I is an identity matrix, and W and GEI are
described previously.

3. Banded Preconditioning Iteration Method
Define

A=B,,I+A=1+D,GY+D_(GY) +nw. (8)

where # = v/2h < 0 and the matrices D, D_, W, and Gg are
defined in Section 2. It can be easily found that W is a skew-
symmetric matrix.

Obviously, the main work for solving the discretized sys-
tem (17) concentrates on solving the system with coefficient
matrix A for m = 1,2,3,..., M. Since A is a nonsymmetric
matrix, then we can use the Krylov subspace methods
[25], such as the generalized minimal residual (GMRES)
method, to solve the linear systems (17). The preconditioning
techniques are often employed to improve the performance
and reliability of the Krylov subspace methods.

Denote
o o
o o
e I
(2<k<N),
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and define a banded preconditioner P, as
T
P =1+ D,Gg, + D_(Ggy) +nW. (20)

It can be easily seen that Gg « is a banded Toeplitz matrix

with bandwidth k + 1 containing the central diagonals of GﬁN .
Therefore, Py is a banded matrix with bandwidth 2k - 1.

To study the property of the preconditioner Py, we will
give the following lemmas first.

Lemmal (see [12]). Let 1 < < 2 and gﬁ.ﬁ) be defined in (6).
Then we have

B
goﬂ

(ﬁ) ~B <0,

B B
92ﬁ>93ﬁ >0,

Z g(ﬁ) (21)

Zg(ﬁ) <0, fornx>1,

B _ —(B+1)

9j o).

Lemma 2. For 1 < 8 < 2, the matrix ng defined in (19) is
a strongly diagonally dominant matrix and the real part of the
spectrum ongk is contained in the open interval (0,2h7" ).

Proof. According to Lemma 1, it holds that Y =0 gjﬂ ) < 0 for

n > 1. Therefore, for each row of the matrix G} s> we have

ZZJ Ogﬁﬁ) < 0 or, equivalently, |g1ﬁ)| = iﬁ) > Z] 0,41 gﬁﬁ)

forl = 1,2,....k Thatis, [g/"| > ¥’ .11 (1 =
.,k). Hence, Gg « is a strongly diagonally dominant matrix.
Moreover, by simple computation, we can obtain the first
column of the matrix H; = (1/2)(Gg{k + (ng)T) as

® 1 (
h [glﬁ), (gw) N gzﬁ)) gg,&)m g<5>0

N

o]T. @)

Hence, the Gershgorin circles of H; are centered at

-hF giﬁ ) = BhP. Moreover, according to Lemma I, the
largest radius r,,,, is at most

1P (0P + gP) + g + 4 gP)
_hﬁ<zg(ﬂ) ()><hﬁ 1B,

(23)

It then follows that the real part of the spectrum of Gg  is
contained in the open interval (0, 2hF B). O



Mathematical Problems in Engineering

Next, we will concentrate on the uniqueness of the
solution of the matrix equation (16).

Theorem 3. Let G = hP - (GZ; + (Gg’ )T), where Gg’ is defined
as in (11). Then G is a symmetric positive definite matrix.

Proof. Suppose that {A j(G), j=12,..., N} are the eigenval-
ues set of the matrix G. According to the Gershgorin theorem,

all eigenvalues of G are contained within a complex disk

centered at —2 giﬁ ) = 23, with the maximum radius being in
line [N/2] + 1 or in line | N/2] (dependent on whether N is

odd or even). Therefore, the maximum radius r,,,, satisfies

N o) ®)
=2 Y gP <-2g¥ =28 (24)
k=0,k+1

That is, {Re(A,(G))} < (0,4p).
Because G is a real symmetric matrix, then the eigenval-
ues are all real. So G is symmetric positive definite. O

r]'IlB.X

Theorem 4. Suppose that F defined in (16) satisfies F # 0, and
then there exists only one solution for the Sylvester equation

(16).

Proof. From [26, 27], we know that when C # 0, the
continuous Sylvester equation (16) has a unique solution
if there is no common eigenvalue between A and —B. It
is easy to know that B is upper triangular matrix and its
eigenvalues are all positive. Note that A + AT = (D +G‘Ig’ +
(D,GY)T) + (DG + (D_GNNT) + (v/2hy(W + W) =
D+(Gl3N + Ggr)T) + D_(GEJ)T + GﬁN) == D, + D,. According
to Theorem 3, if the real parts of the eigenvalues of GﬁN are
positive, then the real parts of all eigenvalues of D +GE] are
also positive. Furthermore, the matrices D, and D, are both
symmetric positive definite. Therefore, A + AT is symmetric
positive definite, and the real parts of the eigenvalues of A are

positive. Therefore, there is no common eigenvalues between
the matrices A and —B. O

Theorem 5. For 2 < k < N, the preconditioner Py defined in
(20) is nonsingular.

Proof. Since D, is a positive diagonal matrix and from
Lemma 2, the real part of the spectrum of Gzﬁ\f « 1s positive.
Then the real part of the spectrum of D +Glﬁ\f « 1s also positive.
Using the same strategy, we can obtain that the real part of
the spectrum of D_ (Gg k)T is also positive.

Assume that Py is a singular matrix and there exists a
nonzero eigenvector x such that P.x = 0. Then it follows that

(I + D+G2{k +D_ (ng)T) x = -nWx. (25)

Multiplying x*/x" x by the left of the above equation, we get
* N N \T

x" (14 D,G} + D_(GY,) ) x Cxwr e

X*x x*x

As W is a skew-symmetric matrix and # < 0 is a real number,
then —#(x*Wx/x"x) is a pure imaginary. Because the real
part of x*(D+G2{k + D,(ng)T)x/x*x is a positive number,
then the real part of x™ (I + D+Glﬁ\fk + D_(ng)T)x/x*x isa
positive number. According to (26), we can easily find that
there is a contradiction because the real part of the right hand
side of (26) is zero. That is, if P.x = 0, it must hold that x = 0;
that is, the matrix P, is nonsingular. O

Theorem 6. For 2 < k < Nand 1 < f < 2, the relative
difference between A and Py can be described as

1A - Pl

<0 (kP), 27
i, <O 27

which implies P, can be an efficient preconditioner for the
coefficient matrix A as k increases.

Proof. The proof process is similar to [13]. O

At the end of this section, we will draw the main steps for
solving the discretized system (13).

Step 1. Compute the matrices A, B, and F in (16).

Step 2. Solve the system g(()“)u(l) + Au') = £ by using the
banded preconditioner P.

Step 3. Compute b"™ = £ — ¥ L u®B,

Step 4. Form = 2,3,..., M, solve the systems (A +B,,,,1)u™
= b™ by using the banded preconditioner P,.

Step 5. Obtain the numerical solution U := [uV,u®,.. .,

u(M)].

4. Numerical Results

In this section, we will test the feasibility and effectiveness
of the banded preconditioning iteration method with the
preconditioner P, for TS-FADE (1). All runs at each time
step are started from zero initial guess and terminated if the
current iteration satisfies ERR < 107 or the elapsed CPU
time is exceeding 2000 in seconds, where

|
- 2 28

ERR b7~ Aut], (28)
All the experiments are performed in MATLAB R2012a on
Intel® Core™ i7-3770 CPU 3.40 GHz and 8.00 GB of RAM,
with machine precision 107'°. The average iteration counts
(denoted by “Iter”), elapsed CPU time in seconds (denoted by
“CPU”), and total iteration counts for solving the discretized

system (17) (denoted by “IT”) are reported. Here “Iter” is
defined as

Tter = E (29)
M



Example 7. Consider TS-FADE (1) with x; = 0, x; = 2, and
Tf = 1. The coefficient functions are

d+(x):1+x4,

(30)
d_(x)=1+2-x",
and the forcing function is
Fonr=4(Z) sin () - asin L)
: [% (d, ) x* P +d_(x) 2-x)*F)
- 4% (d, )" FP+d x)@-x"") @)
+ 4% (d, )P +d_(x)2-x77F)

— 16 sin (%n) (x3 —3x% + Zx).

Then the true solution for the corresponding TS-FADE is
u(x, ) = 4sin((t/2)m)x*(2 - x)”.

This example is a modification of the example from [13, 15,
23]. By applying the unshifted Griinwald-Letnikov approx-
imations to discretize the fractional time derivative, the
shifted Griinwald-Letnikov approximations to the fractional
spatial derivative, and the central difference finite scheme to
discretize the first-order derivative of spatial derivative, we
can obtain the linear systems (17) step by step. To obtain the
numerical solutions of this problem, we have to solve linear
equations with the same coeflicient matrix and different
right-hand sides in each time step. In our experiments, we
choose the parameters 7 = —1. To be more persuasive, we test
the methods according to different choices of the derivative
parameters « € {0.4,0.8} and 8 € {1.3,1.6,1.9} and differ-
ent mesh grids N + 1 ¢ {27,28,29,210,2”,212,213} and
M =2

When we use preconditioned GMRES method, we
test the banded preconditioners with varying bandwidth
(denoted as “P(k)-GMRES”), the Strang-like circulant pre-
conditioner (denoted as “S-GMRES”), the R. Chan-like
circulant preconditioner (denoted as “R-GMRES”), and the
T. Chan-like circulant preconditioner [28] (denoted as “T-
GMRES”):

1+d,C+d C" +nqW,, (32)
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where d, and d_ are the mean values of the diagonals of the
diagonal matrices D, and D_, respectively. The matrix W, is
defined by

0 -1 0 1

1 0 -1

o 1 - " 0 . (33)
-1

-1 0 1 0

The matrix C is chosen as Strang’s circulant matrix (C,), R.
Chan’s circulant matrix (C,), and T. Chan’s circulant matrix
(C,), respectively. Further, the entries of the first column of
Strang’s circulant matrix C, are given by

B( B B (B) NG
—hﬁ(gl 295 e Gingap O 0 G ) N E )
The entries of the first column of R. Chan’s circulant matrix
C, are given by

-B( B (B ® B, B\
~h ﬁ(glﬁ’gzﬁ"“’gzg—pgz\e +goﬁ) : (35)
The entries of the first column of T. Chan’s circulant matrix
C, are given by
B) (B)
_h—ﬁ< ® N-1g" + gy
91 > N

3eeey

(36)

>

208+ -2gP g+ N-1g?\
N N '
We test the preconditioners P(4) and P(16), which means
the half width of the corresponding banded preconditioner
is (N + 1)/4 and (N + 1)/16, respectively.

We show the experimental results for « = 0.4 and « = 0.8
in Tables 1 and 2, respectively. When the elapsed CPU time is
exceeding 2000 in seconds, the results will be denoted by “—7;
from these tables, we see that the performance for the banded
preconditioner with the half width being 1/16 of the problem
size is better compared to the circulant preconditioners.
However, if the half width is 1/4 of the problem size, the
performance reaches the best.

5. Conclusions

In this paper, we concentrate on the efficient solvers for time-
space fractional advection-diffusion equations. By employ-
ing the implicit finite difference schemes with the shifted
Griinwald-Letnikov approximations for spatial fractional
derivative and unshifted Griinwald-Letnikov approximations
for time fractional derivative, we can discretize the time-
space fractional advection-diffusion equations. To solve the
discretization, we have to solve a series of linear systems
with the same coeflicient matrix. Therefore, we proposed a
banded preconditioning iteration method for the numerical
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TaBLE I: Numerical results of the tested methods for & = 0.4 and M = 2*.

8 Nl S-GMRES T-GMRES R-GMRES P(16)-GMRES P(4)-GMRES
IT CPU IT CPU IT CPU IT CPU IT CPU
2’ 18 018 22 0.24 18 015 8 0.07 5 0.05
28 20 0.51 26 0.58 19 0.43 8 0.18 5 0.12
2° 21 1.60 30 223 21 1.61 8 0.63 5 0.53
L3 210 22 9.12 35 14.14 22 9.14 8 3.02 5 2.33
2! 23 51.10 39 83.54 23 51.21 8 18.57 5 12.44
212 23 306.29 44 560.60 23 307.80 8 110.39 5 75.95
28 — — — — — — 8 741.27 5 49516
27 11 0.09 18 0.17 11 0.11 8 0.08 4 0.06
28 12 0.28 22 0.46 12 0.28 8 0.17 4 0.11
2° 12 0.97 26 1.93 12 0.97 8 0.63 4 0.43
L6 210 12 5.26 30 12.11 12 5.30 8 3.46 4 2.32
b 12 28.88 36 77.01 12 28.60 8 18.7 4 12.4
212 12 169.48 43 547.79 12 169.37 8 109.46 4 73.25
28 12 1153.13 — — 12 1157.55 8 742.61 4 496.21
27 8 0.08 18 0.15 8 0.08 6 0.06 3 0.04
28 8 0.19 22 0.46 8 0.19 6 0.14 3 0.1
2° 8 0.71 27 2.00 8 0.70 6 0.49 3 0.36
19 21 8 3.79 34 13.58 8 3.81 6 271 3 1.93
2! 8 2118 44 93.08 8 20.57 6 14.45 3 10.36
212 8 121.58 57 717.37 8 121.41 6 85.41 3 61.08
213 7 745.34 — — 7 742.52 6 578.17 3 413.03
TaBLE 2: Numerical results of the tested methods for « = 0.8 and M = 2*.
8 N S-GMRES T-GMRES R-GMRES P(16)-GMRES P(4)-GMRES
IT CPU IT CPU IT CPU IT CPU IT CPU
27 18 0.16 22 0.20 18 0.16 8 0.07 5 0.05
28 20 0.43 26 0.55 19 0.40 8 017 5 0.12
2° 21 1.59 30 222 21 1.60 8 0.63 5 0.43
13 210 22 9.12 35 14.03 22 9.11 8 3.04 5 232
2! 23 51.60 39 83.07 23 51.10 8 18.52 5 12.83
212 23 302.65 44 559.36 23 308.72 8 109.32 5 73.38
2B — — — — — — 8 736.5 5 493
27 1 0.10 18 015 1 0.10 8 0.07 4 0.04
28 12 0.27 22 0.46 12 0.37 8 0.17 4 0.27
2° 12 0.96 26 1.92 12 0.97 8 0.62 4 0.44
1.6 210 12 5.30 30 12.02 12 5.30 8 3.42 4 2.32
2! 12 28.66 36 7711 12 30.14 8 18.55 4 12.38
212 12 169.48 43 547,61 12 170.06 8 109.37 4 73.19
2 12 1146.07 — — 12 1146.50 8 738.33 4 494.49
27 8 0.07 18 015 8 0.07 6 0.06 3 0.04
28 8 0.19 22 0.46 8 0.19 6 0.14 3 0.1
2° 8 0.70 27 2.00 8 0.72 6 0.49 3 0.35
1.9 210 8 422 34 13.76 8 3.82 6 2.7 3 1.94
2! 8 20.79 44 93.85 8 20.52 6 14.44 3 10.39
212 8 121.68 57 717.90 8 121.76 6 85.35 3 6115
2" 7 740.29 — — 7 742.03 6 576.51 3 411.58




solution of the resulting linear systems. Theoretical properties
for the preconditioning matrix are studied in detail. Numer-
ical implementations show that the banded preconditioner
leads to satisfactory experimental results when we choose
appropriate bandwidth in the preconditioner.
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