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Task allocation is the key factor in the spraying pesticides process using unmanned aerial vehicles (UAVs), and maximizing the
effects of pesticide spraying is the goal of optimizing UAV pesticide spraying. In this study, we first introduce each UAV’s kinematic
constraint and extend the Euclidean distance between fields to the Dubins path distance. We then analyze the two factors affecting
the pesticide spraying effects, which are the type of pesticides and the temperature during the pesticide spraying.The time window
of the pesticide spraying is dynamically generated according to the temperature and is introduced to the pesticide spraying efficacy
function. Finally, according to the extensions, we propose a team orienteering problem with variable time windows and variable
profits model. We propose the genetic algorithm to solve the above model and give the methods of encoding, crossover, and
mutation in the algorithm. The experimental results show that this model and its solution method have clear advantages over the
commonmanual allocation strategy and can provide the same results as those of the enumeration method in small-scale scenarios.
In addition, the results also show that the algorithm parameter can affect the solution, and we provide the optimal parameters
configuration for the algorithm.

1. Introduction

With the development of artificial intelligence andunmanned
processes in agriculture, UAVs have rapidly become an
important platform in agricultural aviation operations due
to their high efficiency, low labor intensity, and low compre-
hensive cost, and they have been widely applied in precision
seeding, vegetation testing, pesticide spraying, and other
agricultural aviation operations [1, 2]. The current operation
of UAVs to carry out agricultural aviation work is mainly
through manual remote control. Therefore, the actual results
of the work are closely related to the skill level of the operator.
The workload of the operator increases with the increased
number of UAVs and tasks. This may cause high missing
and repetition rates in operations. Thus, with the minimum
of human intervention, using UAVs to complete agricul-
tural aviation operations tasks autonomously has attracted
widespread attention.

Pesticide spraying requires multi-UAVs to do blanket
spraying on multiple farmlands. Such tasks not only need to

ensure that all crops in the farmland are sprayed but also need
to assign a specific task sequence and flight trajectory for each
UAV in order for them to fly betweenmultiple farmlands. For
pesticide spraying assignments, without considering theUAV
flight trajectory inside the farmland, each farmland can be
abstracted as a task point, and the process of UAV visiting
all task points can be described as the traveling salesman
problem (TSP). However, due to UAV flight distance and the
factors of farm size, number, and distribution, it is difficult
for the UAV to traverse all the farmlands in a single flight.
Therefore, we regard the assignment of pesticide spraying
tasks as a team orienteering problem (TOP). With this
problem, as the efficacy of pesticide spraying ismainly related
to the temperature during spraying [3], the time window of
spraying each farmland varies. Meanwhile, the UAV spraying
strategy within a farmland can affect the UAV flight distance
and change the time for the UAV to reach the next farmland,
thus affecting the efficacy of the pesticide spraying for the next
farmland. Therefore, the farmland cannot be abstracted as a
task point in the pesticide spraying task assignment process.
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We need to consider not only the task allocation scheme and
order of execution but also the UAV flight trajectory inside
and outside of the farmland.

Thus, the optimization of multi-UAV pesticide spray-
ing assignments studied in this paper can be described as
requiring that multi-UAVs must spray pesticides for multiple
farmlands in the time window and that each farmland can
be sprayed by only one UAV. Under a variety of factors, we
selected the appropriate farmland from the candidate farm-
lands and assigned the UAV for pesticide spraying, the
spraying order, and sprayingmethod tomaximize the efficacy
of the pesticide spraying [4]. To this end, we proposed a
Dubins team orienteering problem- (DTOP-) variable time
windows- (VTW-) variable profits (VP) model. Compared
to the regular TOP, this model facilitated research on the
following three aspects of pesticide spraying.

First, this model extends the TOP model to the DTOP
model by taking into account the impact of the each UAV’s
turning radius onUAVflight time. In the process of UAVpes-
ticide spraying, it is necessary to adjust the flight direction at
the edge of the farmland according to the minimum turning
radius in order to achieve the spray coverage for the farmland.
Meantime, the UAVs are subject to kinematics and dynamics
in the course of flight. At this time, UAV flight distance is
not described by the Euclidean distance in the regular TOP
but by the length of the Dubins path [5]. Therefore, the
distance between the two farmlands discussed in this paper is
described in terms of Dubins path length. Because there are
many changes in the points where the UAV enters and leaves
the farmland, there are multiple Dubins paths between the
two farmlands,which is describedherein as theDTOPmodel.

Second, in the regular team orienteering problem with
time windows (TOPTW), the time window is generally
divided into two categories: one is from the perspective of
the points of interests (POIs) to generate multiple fixed target
access time windows based on the opening hours [6]; the
other is from the perspective of the customers to generate
multiple fixed available time windows based on each cus-
tomer’s time slots [7]. Obviously, the creation of these time
windows is static or predetermined. However, the time
window inwhich the farmland can be sprayedwith pesticides
is affected by the temperature, and the resulting time window
would change with the temperature. These time windows
are the type of time window with uncertainties which is
manifested by the uncertainty of the number and length of
time windows. Therefore, we determined the time window
based on the dynamics of the temperature and extended the
DTOP model to the DTOP-VTWmodel.

Third, in the orienteering problem with variable profits
(OPVP), the profit from visiting each node and the visiting
time are related by a concave or convex function [8].However,
for the pesticide spraying process, the profit from each farm-
land after spraying pesticides also changes with the temper-
ature [9]. The relation between the efficacy of the sprayed
farmland and the time is not fixed on one function, and
it could be another functional relationship. Therefore, we
calculated the spraying efficacy based on the dynamics of
temperature in this paper and extended the DTOP-VTW
model further to the DTOP-VTW-VP model.

In terms of the model solution, solving the TOP has
been proven to be a typical NP-hard (nondeterministic
polynomial-time hard) problem [10]. Although the exact
algorithm can be used to obtain the optimal TOP solution,
it is difficult to obtain the optimal solution within the poly-
nomial solvable timewhen the scale of the problem increases.
Therefore, we can only use the heuristic algorithm to obtain
the solution [11]. At present, there are many heuristic algo-
rithms used to solve the TOP. Among them, the GA has been
proven to be an effective heuristic algorithm for solving the
TOP [12]. It is very effective in solving standard benchmark
instances and can obtain better results by adjusting the
corresponding parameter configuration. In solving practical
problems, the GA is also used as an efficient algorithm for
solving the problem of task assignment and trajectory opti-
mization [5]. In most cases, it exhibits better results [13] and
shorter solution times [14] than other algorithms. Therefore,
we used the GA to solve the DTOP-VTW-VP in this study.

The rest of this paper is organized as follows. The re-
searches related to this topic are reviewed and analyzed in
Section 2. In Section 3, the DTOP-VTW-VPmodel under the
impact of temperature is proposed. The GA based on the
model solution algorithm is detailed in Section 4.Thenumer-
ical experiments and comparative experiments conducted
are described in Section 5, and conclusions are presented in
Section 6.

2. Related Work

TOP is an extension of the orienteering problem (OP). The
OP is also referred to as the selective traveling salesman
problem (STSP) [15]. So, when the objective function in the
STSP is only a profit and there are targets that are not visited,
the STSP is the TOP [16]. In the TOP, several members are
given, and each member starts from the same starting point
within the specified time and score to the same ending point.
In this process, after the target is visited by a member for the
first time, the member can obtain the appropriate score. Each
member needs to visit as many targets as possible, so that
the total score of all members can be maximized [17]. The
TOP has two characteristics [4, 18]: the objective function
is the maximum total profit and all targets are visited, at
most, once. Clearly, for such problems, it is difficult to build
the vehicle routing problem (VRP) model because the goal
of the VRP is to use the minimum number of vehicles to
serve all the vertices or to use the minimum total travel
distance with a fixed number of vehicles [19, 20]. Currently,
the TOP has been widely used in solving tourist trip design
problems [6, 10, 21], mobile crowdsourcing problems [22–
24], UAV task allocation problems [25, 26], pharmaceutical
sales representative planning problems [27], and resource
management allocation problem during wildfires [28].

In the above-mentioned application scenarios, the path
length between targets is generally considered to be fixed,
such as the distance between different POIs, the distance
between hospitals, and the distance between the locations
on wildfire. To solve these types of problems, one only
needs to select and combine the existing routes to maximize
the total profits [4, 18]. However, for UAV task allocation
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problems, due to the constraints of the UAV’s kinematic
constraints, the distance between targets visited by UAVs is
no longer Euclidean distance but rather Dubins path length.
The Dubins path is a feasible trajectory of the minimum
length over a bounded curvature trajectory at a constant
rate [29], and it has been widely used in the field of UAV
trajectory planning [5, 30–32]. In addition, for multi-UAV
pesticide spraying assignment problems, due to the many
possible points for UAVs to enter and exit the farmland,
there are multiple Dubins paths between farmlands. When
all of the farmlands must be sprayed with pesticides, the
problem can be regarded as aDTSP [33–35] and can be solved
by using decoupling methods and transformation methods.
However, in the case where UAVs cannot spray pesticides
for all farmlands due to the constraints of flight distances
and profits of targets, the problem is described as a Dubins
traveling salesman problem (DTOP). To solve this model, we
need to determine the visiting order of the targets under the
condition that the trajectory length is changeable.

At the same time, when the visiting of targets must be
completed within a time window, the TOP is extended to the
TOP with time windows [36]. According to the number of
time windows, the TOP can be further divided into single
time window (TOP-TW) or multiple time windows (TOP-
MTW) problems, which are NP-hard problems [37]. In the
TOP-TW, each vertex has a fixed timewindow [11, 38, 39], and
the timewindowconstraints require that the visit to the vertex
must start within the specified time [40]. In the TOP-MTW,
each vertex can havemultiple fixed time windows. According
to the different standards of classification, the time windows
are divided into the following two categories. The first is to
determine different time windows according to the available
visiting time of each target. For example, the opening hours
of different points are different, and the working hours of the
same point are intermittent. Therefore, multiple fixed time
windows are generated [6]. The second category is to classify
the timewindows according to the customers’ time slots, such
as those based on the fact that different visitors have different
amounts of free time during the trip to generatemultiple fixed
time windows [7]. As for problems with the above two cases
occurring at the same time, literature [41] includes a study of
tourist trip problems under the constraints of opening hours
of points and tourist time. There are related studies in other
models on multiple time windows, such as the VRP about
multiple time windows [42, 43], and the TSP of multiple time
windows [44]. However, for UAV task allocation problems,
due to the fact that the timewhen the farmland can be sprayed
with pesticides changes with the temperature, the resulting
time windows have the characteristic of uncertainty.

In terms of the profit of the targets, the goal of the OP and
TOP is tomaximize the profits of all targets after the selection
of the routes. Under normal circumstances, the profit of each
target is fixed [45, 46]. However, the spraying efficacy for
each farmland changes with time in UAV task allocation
problems. The model of this type of problem is similar to the
OPVP. OPVP is a special case of the optional TSP (STSP),
and it is also an NP-hard problem [8]. In the OPVP, the
relationship between the profit of target and time can be a
concave or convex function, such as the relationship between

the profit of being able to catch the fish and time in fishing
operations or the relationship between the profit of the time
length of viewing a program and time [8].These relationships
can randomly change with the normal distribution function
[47]. However, in the process of UAV pesticide spraying
task allocation, the profit of each farmland after spraying
the pesticides does not necessarily change with time and
completely exhibits the above-described concave or convex
functional relationship. There may be a diminishing profit
relationship [48] or any other type of functional relationship.

Currently, the GA [49], branch-and-cut algorithm [50],
tabu search algorithm [51], simulated annealing algorithm [11,
41], ant colony algorithm [38], and so forth are usually used
to solve the regular TOP or extended TOP models. Through
analyzing the results of solving 24 standard TOP benchmark
instances using a heuristic algorithm, Ferreira et al. believed
that the GA’s results for 60% of the benchmark instances were
better than those from other heuristic algorithms [12] and
proved that using GA to solve the TOP within the acceptable
time can produce good results. When solving the OP with
time windows [52] or OP with stochastic profits [47], the
GA results have advantages over those from other heuristic
algorithms. Meanwhile, in practical application processes
such as UAVs task allocation [53] and mission planning [54],
the GA not only requires less calculating time [14] but also
gives better results [13].

3. Problem Description and Formulation

The characteristics of the pesticide spraying task make the
number and length of time windows in which the farmland
can be sprayed affected by the temperature, and the efficacy
of spraying pesticide (i.e., the profit in the model) is also
affected by the temperature. At the same time, the UAV’s
performance, size of the farmlands, trajectories of pesticide
spraying, and flight trajectories of UAVs between farmlands
all have impacts on the results of the allocated tasks. In this
regard, this section describes in detail the TOP proposed
for UAVs to carry out pesticide spraying tasks, with variable
profits and variable time windows under the impact of the
ambient temperature.

3.1. UAVs. Consider

𝑈 = {𝑈1, 𝑈2, . . . , 𝑈𝑁𝑈} (1)

denotes the set of 𝑁𝑈 UAVs performing the spraying tasks,
and each UAV can carry only one type of pesticide. During
the flight, all of the UAVs have the same minimum turning
radius 𝑅𝑈 and flight speed 𝑉 and carry a nozzle with a spray
radius of 𝑅𝐷.

Considering the characteristics of UAVs performing pes-
ticide spraying, we make the following assumptions:

(1) UAVs have the ability to automatically avoid obsta-
cles. In the face of a collision, UAVs can use the con-
trol strategy of self-circumvention, and the resulting
path deviation relative to the length of the total flight
trajectory is very small and negligible.
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Figure 1: Relationship between daily temperature and time windows.

(2) UAVs fly at the same cruising speed and same cruising
altitude, so that the impacts of these factors on the
spray effect are not considered.

(3) The impacts of the external environments on a UAV’s
flight trajectory are not considered.

(4) UAVs can carry the pesticides required to carry out
the task, but the amount of fuel carried is limited.

3.2. Farmlands. Set

𝐴0, 𝐴𝑁𝐴+1 (2)

as the starting and ending points of UAVs,

{𝐴1, 𝐴2, . . . , 𝐴𝑁𝐴} , (3)

as the 𝑁𝐴 rectangular farmlands to be sprayed with pesti-
cides, and𝐴 𝑖 as a rectangle with an area of𝐷𝑖.The set of UAV
beginning point, the farmlands, and ending point are

𝐴 = {𝐴0, 𝐴1, 𝐴2, . . . , 𝐴𝑁𝐴 , 𝐴𝑁𝐴+1} . (4)

When 𝑈𝑢 overlays spraying pesticides for 𝐴 𝑖, a UAV’s enter-
ing point to the farmland is In𝑖𝑢, its exit point is Out𝑖𝑢, and it
is assumed that the UAV can only leave after it has completely
sprayed the entire farmland. At the same time, each farmland
can only be sprayed, at most, once.

3.3. Time Window. The temperature range over which pes-
ticide spraying can achieve a satisfactory level of efficacy is
limited; therefore, only one or several time snippets can be
used in a day. The time snippets are defined as the time
windows in which pesticide spraying tasks can be carried out.

The temperature range [𝑇𝑆𝐶, 𝑇𝑆𝑂] in which the farmland
can be sprayed with pesticides generates 𝑊 time windows
[𝑂𝑖𝑤𝑢, 𝐶𝑖𝑤𝑢] for a UAV to carry out the tasks, where𝑂𝑖𝑤𝑢 and
𝐶𝑖𝑤𝑢 represent the beginning and ending times in the time
window 𝑤 for the UAV to spray pesticides on the farmlands.

In general, the temperature in a day usually changes from
low to high and then from high to low. This pattern can
be approximated as a quadratic function distribution or a
normal distribution. The temperature range in which the
farmland can be sprayed with pesticides can further generate
three types of time windows, as shown in Figure 1, when

𝑇max < 𝑇𝑠𝑜. (5)

UAVs do not have any time window to do pesticide spraying;
when

𝑇𝑠𝑜 < 𝑇max < 𝑇𝑠𝑐, (6)

only one timewindow can be generated to carry out the tasks;
when

𝑇𝑠𝑐 < 𝑇max, (7)

only two time windows can be generated. Thus, for the
pesticide spraying assignment problems described in this
paper, the number of time windows may be 1 or 2.

3.4. Flight Trajectory. When spraying pesticides, UAVs not
only conduct the covered spray inside the farmland but
also need to fly among different farmlands to complete the
pesticide spraying tasks. Therefore, there are two types of
flight trajectories: that inside the farmland and that between
farmlands.

3.4.1. Flight Trajectory inside the Farmland. Within𝐴 𝑖, UAVs
fly along Dubins paths under kinematic constraints and
conduct the covered pesticide spray using back-and-forth
path strategy. During this process, 𝑈𝑢 enters 𝐴 𝑖 from point
In𝑖𝑢 in time window𝑤. After entering the farmland, the flight
trajectory is parallel to one of the farmland’s edges, and then
the UAV exits the farmland from point Out𝑖𝑢. At this time,
the time that it takes 𝑈𝑢 to spray farmland is 𝑡𝑖𝑤𝑢.

The back-and-forth path strategy is one of the most
optimal strategies for UAVs to conduct covered pesticide
spray on rectangular farmlands. It is also themost convenient
control strategy to implement and is widely applied to tasks
for covered areas [55]. There are two implementations of this
strategy, namely, parallel track search and creeping line search
[56].

For example, in Figure 2(a), there are two ways to execute
a covered scan of the rectangular area. One is the parallel
track search [as shown in Figure 2(b)] and the other is the
creeping line search [as shown in Figure 2(c)].

At the same time, both the position of a UAV entering the
rectangle and the UAV’s actual turning radius at the edge of
the rectangle have impacts on the length of the UAV’s flight
trajectory inside the farmland. Although the UAV can enter
the farm from any point on the edge, the entering point with
the shortest flight trajectory for UAVs to cover a rectangular
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Figure 2: Schematic of farmland spraying.
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Figure 3: Dubins flight path under the RSL circumstance.

area is the point that has a distance of 𝑅𝐷 to the apex of the
farmland, according to literature [55].Therefore, UAV’s entry
points into the rectangular area are discretized in this paper.
We have chosen eight points,

{𝑅𝐷1, 𝑅𝐷2, . . . , 𝑅𝐷8} , (8)

on the edges of the rectangle with a distance of 𝑅𝐷 to the four
vertexes of the rectangle as the entry points for the UAVs to
enter the rectangular area. For a UAV to have the shortest
covered flight trajectory in a rectangular region, it must enter
the rectangular area from one of the eight entry points. The
UAV’s exit point on the shortest trajectory of the rectangular
area is also uniquely determined.

3.4.2. Flight Trajectory between Farmlands. After spraying
pesticides for farmland𝐴 𝑖 in time window𝑤, the UAV needs
to spray for𝐴𝑗.Thus, theUAVmust fly along theDubins path
between𝐴 𝑖 and𝐴𝑗 [57]. Meanwhile, the UAV does not spray
pesticides when flying between farmlands. The beginning
point of this trajectory is 𝑈𝑢’s exit point Out𝑖𝑢 from 𝐴 𝑖, the
ending point is𝑈𝑢’s entry point In𝑗𝑢 to𝐴𝑗, and the time spent
on the Dubins path is 𝑡𝑖𝑗𝑤𝑢.

For example, Figure 3 describes a UAV’s flight trajectory
between farmlands under the kinematic constraints. Accord-
ing to the generating principle of a Dubins path [31], the

UAV starts from 𝑅𝐷6 of 𝐴 𝑖, turns right (denoted by R), and
flies along the arc path and then along a straight linear path
(denoted by S), and finally turns left (denoted by L) and
takes the arc flight path to arrive at 𝑅𝐷1 of 𝐴𝑗. Owing to the
back-and-forth path strategy used inside the farmland, the
angles of the UAV entering or leaving the farmland must be
perpendicular to the edge of the farmland. Therefore, in the
process of optimizing the shortest Dubins path, the angles
of the UAV at the beginning point and ending point are
determined, and the varying factors are 𝑈𝑢’s exit point Out𝑖𝑢
from 𝐴 𝑖 and the entering point of In𝑗𝑢 to 𝐴𝑗.

Although the lengths of the flight trajectory and flight
duration in Figure 3(a) are greater than those in Figure 3(b),
this does not mean the result of pesticide spraying by the
UAV is worse. The overall optimal result is affected by flight
trajectories both inside and outside of the farmland.

3.5. Task Profit. Since the spraying equipment, spraying
method, and other hardware and software conditions have
been determined, a task profit in this paper is defined by the
efficacy of pesticide spraying by a UAV on a farmland.

When aUAV sprays pesticides on farmlands, the spraying
efficacy is closely related to temperature and temperature will
differ with changes in time. Therefore, the efficacy of a UAV
spraying pesticides on farmland 𝐴 𝑖 within time window 𝑤
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can be described by the efficacy function 𝑃𝑖𝑤(𝑡) over time 𝑡.
While using different type of pesticides, 𝑃𝑖𝑤(𝑡) may manifest
as a concave function, convex function, normal distribution,
or linear decreasing function.

Suppose that 𝑈𝑢 begins to spray pesticides on farmland
𝐴 𝑖 with an area of 𝐷𝑖 at 𝑠𝑖𝑤𝑢 in time window 𝑤, and it takes
𝑡𝑖𝑤𝑢 for𝑈𝑢 to spray the entire farmland𝐴 𝑖 in time window𝑤.
The task profit can be defined as

𝑆𝑃𝑖𝑤𝑢 =
𝐷𝑖
104

∗
∫𝑠𝑖𝑤𝑢+𝑡𝑖𝑤𝑢
𝑠𝑖𝑤𝑢

𝑃𝑖𝑤 (𝑡) 𝑑𝑡

𝑡𝑖𝑤𝑢
. (9)

3.6. DTOP-VTW-VP Model. For the pesticide spraying task
allocation problem described in this paper, we take the
DTOP-VTW-VP as the model. 𝑁𝑈 UAVs and 𝑁𝐴 farmlands
are given, and each farmland 𝐴 𝑖 (𝑖 ∈ {1, 2, . . . , 𝑁𝐴}) has 𝑊
time windows. 𝐴0 is the starting point, and 𝐴𝑁𝐴+1 is the
ending point. 𝑠𝑖𝑤𝑢 is the starting time for UAV 𝑈𝑢 to spray
pesticides on farmland 𝐴 𝑖 in time window 𝑤, 𝑡𝑖𝑤𝑢 is the
spraying time for UAV𝑈𝑢 to spray pesticides on farmland𝐴 𝑖
in time window 𝑤, and 𝑡𝑖𝑗𝑤𝑢 is the flight time for UAV 𝑈𝑢
flying between farmlands 𝐴 𝑖 and 𝐴𝑗 within time window 𝑤.
Note that𝑂𝑖𝑤𝑢 and𝐶𝑖𝑤𝑢 are the opening time and closing time
in timewindow𝑤 forUAV𝑈𝑢 to spray pesticides on farmland
𝐴 𝑖. 𝐸𝑤𝑢 is the longest flight time for UAV𝑈𝑢 in time window
𝑤 and𝑀 is a large constant.

Two decision variables are used: 𝑥𝑖𝑤𝑢 = 1 if UAV 𝑈𝑢
completes the pesticide spraying task for farmland 𝐴 𝑖 within
time window 𝑤 and 0 otherwise; 𝑦𝑖𝑗𝑤𝑢 = 1 if UAV 𝑈𝑢
begins to fly between 𝐴 𝑖 and 𝐴𝑗 within time window 𝑤 and
0 otherwise.

The objective function of optimization is defined as the
maximization of the total task profits for all the UAVs. The
formulation of the DTOP-VTW-VP is the following:

𝐽 = max
𝑁𝑈

∑
𝑢=1

𝑊

∑
𝑤=1

𝑁𝐴

∑
𝑖=1

𝑆𝑃𝑖𝑤𝑢𝑥𝑖𝑤𝑢, (10)

𝑁𝑈

∑
𝑢=1

𝑊

∑
𝑤=1

𝑁𝐴

∑
𝑖=0

𝑦𝑖𝑁𝐴𝑤𝑢 =
𝑁𝑈

∑
𝑢=1

𝑊

∑
𝑤=1

𝑁𝐴+1

∑
𝑗=1

𝑦1𝑗𝑤𝑢 = 𝑊𝑁𝑈, (11)

𝑁𝐴

∑
𝑖=0

𝑦𝑖𝑘𝑤𝑢 =
𝑁𝐴+1

∑
𝑗=1

𝑦𝑘𝑗𝑤𝑢 = 𝑥𝑘𝑤𝑢;

∀𝑘 = 1, . . . , 𝑁𝐴; ∀𝑢 = 1, . . . , 𝑁𝑈; ∀𝑤 = 1, . . . ,𝑊,

(12)

𝑠𝑖𝑤𝑢 + 𝑡𝑖𝑗𝑤𝑢 − 𝑠𝑗𝑤𝑢 ≤ 𝑀(1 − 𝑦𝑖𝑗𝑤𝑢) ;

∀𝑖, 𝑗 = 0, . . . , 𝑁𝐴+1; ∀𝑢 = 1, . . . , 𝑁𝑈; ∀𝑤 = 1, . . . ,𝑊,
(13)

𝑁𝑈

∑
𝑢=1

𝑊

∑
𝑤=1

𝑥𝑖𝑤𝑢 ≤ 1; ∀𝑖 = 0, . . . , 𝑁𝐴+1, (14)

𝑂𝑖𝑤𝑢 ≤ 𝑠𝑖𝑤𝑢 ≤ 𝐶𝑖𝑤𝑢,

𝑡𝑖𝑤𝑢 ≤ 𝐶𝑖𝑤𝑢 − 𝑠𝑖𝑤𝑢;

∃𝑤 ∈ {1, 2, . . . ,𝑊] ; ∀𝑖 = 1, . . . , 𝑁𝐴; ∀𝑢 = 1, . . . , 𝑁𝑈,

(15)

𝑁𝐴+1

∑
𝑖=0

(𝑥𝑖𝑤𝑢𝑡𝑖𝑤𝑢 + 𝑦𝑖𝑗𝑤𝑢𝑡𝑖𝑗𝑤𝑢) ≤ 𝐸𝑤𝑢;

∀𝑢 = 1, . . . , 𝑁𝑈; ∀𝑤 = 1, . . . ,𝑊,

(16)

𝑥𝑖𝑤𝑢 ∈ {1, 0} ;

𝑦𝑖𝑗𝑤𝑢 ∈ {1, 0} ;

∀𝑖, 𝑗 = 0, . . . , 𝑁𝐴+1; ∀𝑢 = 1, . . . , 𝑁𝑈; 𝑤 = 1, . . . ,𝑊.

(17)

The objective function (10) maximizes the total tasks
profits for all the UAVs. Constraint (11) ensures that all
routes have the same starting point and ending point, and
the number of routes is the sum of UAV routes in each
time window. Constraint (12) ensures the connectivity of the
route. Constraint (13) shows that the spraying time is needed
when visiting farmlands. Constraint (14) ensures that each
farmland can be visited at most once in all of time windows.
Constraint (15) ensures that the time of spraying must be
within time window. Constraint (16) transforms the UAV’s
fuel limitation to the limitation of the UAV’s flight time.
Constraint (17) defines the decision variables.

4. GA for DTOP-VTW-VP

TheGA is used to solve the DTOP-VTW-VP in this paper. In
the algorithm, the initial population is generated by amount
of chromosomes which represent different solutions of this
problem, and it is updated by three operators: selection,
crossover, and mutation. The process continues until the
satisfactory solution is obtained or the maximum iteration is
reached. The specific process is shown in Figure 4.

4.1. Encoding. Chromosome encoding represents a selected
solution to the problem. A feasible solution for the DTOP-
VTW-VP can be formed by determining the entry point of
the UAV visiting the farmland, the starting time, and the
visiting order.Therefore, the chromosome corresponds to the
serial number of the farmland, UAV and entry point of the
farmland, and the starting time of the UAV visiting the first
farmland in each route. Among them, the serial number of
the farmland belongs to the set

{1, 2, . . . , 𝑁𝐴} , (18)

the UAV’s serial numbers belong to the set

{0, 1, . . . , 𝑁𝑈} , (19)

and the serial number of the entry point of the farmland
belongs to the set

{1, 2, . . . , 8} . (20)

The starting time of visiting the first farmland in each route
must be within the time window.

The chromosome shown in Table 1 describes a potential
solution for𝑈1 and𝑈2 to spray pesticides on seven farmlands
in two time windows. In the first time window [9:00:00,
12:00:00], 𝑈1 first enters 𝐴5 from 𝑅𝐷5 at 9:55:34 and then
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chromosomes

Replace the chromosomes by
the mutated chromosomes

Figure 4: GA flowchart for DTOP-VTW-VP.

Table 1: Chromosome encoding and examples.

Farmland 3 1 5 4 2 7 6
UAV 2 0 1 2 1 2 1
Entering point 7 1 5 8 6 4 3
Starting time 9.071 9.878 9.926 9.071 9.926 15.57 15.53

enters 𝐴2 from 𝑅𝐷6 and finally returns to the starting point;
𝑈2 first enters 𝐴3 from 𝑅𝐷7 at 9:04:16 and then enters 𝐴4
from 𝑅𝐷8 and finally returns to the starting point. Similarly,
in the second time window [14:00:00, 17:00:00],𝑈1 enters 𝐴6
from 𝑅𝐷3 at 15:31:48 and returns to the starting point after
completing the tasks; 𝑈2 enters 𝐴7 from 𝑅𝐷4 at 15:34:12 and
returns to the starting point after completing the tasks. In this
scenario, 𝐴1 is not sprayed with pesticides.

4.2. Fitness Function and Selection. In the algorithm, the
objective function in formulation (10) is defined as the
fitness function.The chromosome selection operation among
population is carried out through the roulette wheel method.
Therefore, the fitter the chromosome becomes, the higher
probability it has to be selected to be included into the pa-
rental population.

4.3. Crossover. Through the crossover operator, the offspring
can inherit the relatively good genes from the parent. Single-
point crossover and multipoint crossover are some common
approaches of crossover. Those crossover approaches are all
integral operations of part gene in parent chromosomes.That
is, for the selected part of parent chromosomes, the gene bits
are either entirely replaced with new chromosome structures

or are not replaced. According to the chromosome encoding,
the same UAV must have the identical starting time in the
chromosome. However, in these common approaches, the
offspring chromosomes can hardly satisfy this constraint.

A new crossover operator has been proposed. That is,
the crossover site is randomly decided and the genes are
replaced in the two parent chromosomes. The fourth row of
the gene represents the starting time of the UAV visiting the
first farmland via the same route. Therefore, in the crossed
offspring chromosomes, it is also necessary to replace the
fourth row of the other genes involved in the same route with
the new time.

The crossover example is illustrated in Figure 5. For off-
spring A, the second column of parent B is copied to the fifth
column of parent A, and since the starting time of𝑈1 visiting
the first farmland is adjusted to 8.574 in the first timewindow,
the third and fourth columns of offspringA have also to be set
as 8.574. Similarly, another offspring chromosome, B, can be
obtained.

4.4. Mutation. Mutation operator is done to prevent the
GA from falling into the local optimum. In our study, the
chromosome mutations include four ways, which are the
mutation of the first row of farmland order and the
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Figure 5: Schematic of chromosome crossover.
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Figure 6: Schematic of chromosome mutation.

single-point mutations of the second, third, and fourth rows
of the chromosomes, that is, themutation of the visiting UAV,
entry point, and entry time. According to the mutation prob-
ability, these four kinds of mutation may not occur, or one or
more than one kinds may occur.

The mutation example is illustrated in Figure 6; the
second and third rows of chromosome A mutated. The
second row and second column of chromosome A mutated
from 0 to 2.Thismutation represents the fact that𝑈2 will visit
𝐴1, which would not be visited originally. The third row and
third column mutated from 5 to 7. This mutation represents
the fact that the entry point 𝑅𝐷5 of 𝑈1 visiting farmland 𝐴5
was replaced by𝑅𝐷7. To ensure the consistency of the starting
time of𝑈2 visiting the first farmland in the first time window,
on the basis of the above mutation, the second column and
fourth row of chromosome B were updated to 9.071.

5. Experiment Analysis

5.1. Experimental Settings. The experiment of solving the
DTOP-VTW-VP is performed on CPUs with 3.1 GHz proces-
sors and 4GB of memory in the MATLAB Version: 8.1.0.604
(R2013a) environment. All of the results are the average
results of the same experiment that was run ten times. The
relevant parameters in the experiment are defined as follows.

5.1.1. UAV Parameter Configuration. In the experiment, we
used two UAVs, UAV𝑎 and UAV𝑏, with different maximum
flight time. The heading angle of taking-off (𝜑0) and heading
angle of returning (𝜑𝑒) are all 0. The detailed UAV configura-
tions are shown in Table 2.

5.1.2. Farmland Parameter Configuration. The targets de-
scribed in regular TOP and related TOP extendedmodels are
all point targets, and thereby the corresponding benchmark
instances [4, 16] are also generated for the point targets. At

Table 2: UAVs’ parameters.

Type 𝐴0\𝐴𝑁𝐴+1 𝑉 𝑅𝑈 𝑅𝐷 𝐸
UAV𝑎 (0, 0) 4m/s 3m 5m 2600 s
UAV𝑏 (0, 0) 4m/s 3m 5m 3600 s

present, there are no benchmark instances for the problem
studied and reported in this paper. Therefore, we randomly
generated four instances according to the number of farm-
lands, labeled 𝐹𝑎, 𝐹𝑏, 𝐹𝑐, and 𝐹𝑑. All of the farmlands in the
instances are rectangles, as shown by the shaded areas in
Figure 7.

5.1.3. Parameter Configuration for the Profit of Pesticide Spray-
ing and TimeWindows. We have chosen four pesticides with
different potencies in this study. Table 3 shows the tem-
perature range required for the different pesticides to be
effective and the spraying time windows generated according
to the temperature curve (shown in Figure 8) on the day the
pesticides were sprayed.

5.2. Experiment 1. When spraying pesticides by UAVs in real
life, the UAVs are operated mainly by operators who assign
spraying tasks manually. This experiment compares the pro-
posed DTOP-VTW-VP and the method of solving it with
manual allocation strategies. In this experiment, we used two
UAVs of the type UAV𝑎 to carry out pesticide spraying task
𝑀𝑎 on the six farmlands in area 𝐹𝑎, the thirty farmlands
in area 𝐹𝑐, and the fifty farmlands in area 𝐹𝑑 under the
environment 𝐷𝑎, respectively. The UAVs needed to return
to 𝐴0 after completing the tasks. In this experiment, the
crossover probability is 0.9, the mutation probability is 0.5,
and the number of iterations is 100.The population size is 200
for 𝐹𝑎 and 600 for 𝐹𝑐 and 𝐹𝑑.
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Figure 7: Distribution of farmlands to be sprayed with pesticides in four instances.

Table 3: Parameters of spraying pesticides.

Type of
pesticide

Effective temperature
range

Temperature curve
in a day The time window Efficacy function

𝑀𝑎 [30, 35] 𝐷𝑎 [08:30:00, 11:30:00] 𝑃𝑖1(𝑡) = −0.1𝑡2 + 2𝑡 − 9.05.
𝑀𝑏 [30, 35] 𝐷𝑏 [11:00:00, 13:00:00] 𝑃𝑖1(𝑡) = 0.2𝑡2 − 4.8𝑡 + 29.55.
𝑀𝑐 [20, 30] 𝐷𝑐 [07:17:42, 16:40:20] 𝑃𝑖1(𝑡) = −0.01𝑡2 + 0.24𝑡 − 0.44.

𝑀𝑑 [20, 30] 𝐷𝑑
[07:42:09, 10:53:18],
[15:25:11, 18:36:20]

𝑃𝑖1(𝑡) = 0.08𝑡 + 0.1,
𝑃𝑖2(𝑡) = −0.094 + 2.45.

Currently, there are two typical manual assignments. The
first is to spray in the order of the serial number of the farm-
lands (FCFS) and the second is to divide the environmental
areas based on the number of UAVs (AA) and route each
UAV to spray the multiple farmlands in its assigned area in
an orderly manner. According to the different approaches
used to partition the area, this AA strategy can be further
subdivided into horizontal partitioning (HAA) and vertical
partitioning strategy (VAA).

Taking 𝐹𝑎 as an example, when using the FCFS strategy,
due to the constraint of the UAVs’ maximum flight time,

𝑈1 can only spray farmlands 1, 2, and 3 one after the other;
𝑈2 can only spray farmlands 4 and 5 by turns; and no
UAV sprays pesticides for farmland 6. When using the HAA
strategy, farmlands 1 and 6 are divided into two parts, namely,
farmlands 1-U and 1-D and 6-U and 6-D. At this time, 𝑈1
can only spray farmlands 1-D, 2, and 3; 𝑈2 can only spray
farmlands 1-U, 4, and 5; and no UAV sprays farmlands 6-U
and 6-D, shown in Figure 9(a); when using the VAA strategy,
farmland 4 is divided into two parts, namely, farmlands 4-L
and 4-R. At this time,𝑈1 can only spray farmlands 1, 2, and 3;
𝑈2 can only spray farmlands 4-L and 6; and there is no UAV
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Figure 8: Temperature curve corresponding to pesticide spraying date.

Table 4: Total profits of different strategies.

Strategy FCFS HAA VAA HAA-GA VAA-GA GA

Profit (𝐹𝑎)
Best 11.375929 11.377640 12.321728 13.163538 13.262648 14.207891

Average 11.375927 11.377570 12.321727 13.163482 13.262647 14.207630
Worst 11.375924 11.376944 12.321725 13.163280 13.262644 14.207054

Profit (𝐹𝑐)
Best 13.598946 16.114927 14.177219 19.798079 19.755321 20.841820

Average 13.598857 16.113556 14.176789 19.566585 19.485146 20.803396
Worst 13.598820 16.109182 14.173178 19.254607 19.233586 20.563810

Profit (𝐹𝑑)
Best 15.240267 17.025706 15.542191 19.750809 19.575570 21.164493

Average 15.238925 17.023981 15.540840 19.452674 19.253614 21.141369
Worst 15.237859 17.021032 15.538872 19.095573 18.672814 20.933253

to spray farmlands 4-R and 5, shown in Figure 9(b). Similarly,
when usingHAAorVAA strategy, the areas𝐹𝑐 and𝐹𝑑 can also
have corresponding divisions, shown in Figures 9(c)–9(f).

Furthermore, on the basis of theHAAandVAApartition-
ing strategies, it is not necessary to use the simple sequential
sprayingmethod to spray pesticides after the partitioning.We
used the proposed GA to solve the problem, and the results

are recorded as HAA-GA and VAA-GA. The experimental
results for the six strategies are listed in Table 4.

In actual operations, the FCFS strategy is very simple and
convenient but ignores the many factors that influence the
efficacy of pesticide spraying, causing low spraying efficiency
or even the need to respray pesticides on farmlands. When
making a simple partition of area 𝐹𝑎 according to the number
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Figure 9: Strategies to divide two environments.
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Table 5: Total profits of different algorithms.

Algorithm Enumeration method GA (best) GA (average) GA (worst)
𝐹𝑎 12.87509416 12.87509416 12.87509416 12.87509416
𝐹𝑏 3.68693186 3.68693186 3.68693186 3.68693186

Table 6: Profits by using the GA with different crossover probability and mutation probability to solve the problem in 𝐹𝑐 area.

Crossover probability Mutation probability Profit
Best Average Worst

0.6

0.1 18.746294 18.2830218 17.848443
0.2 19.396301 18.8087832 18.306828
0.3 19.096581 18.6825238 18.136924
0.4 19.546193 18.9225651 18.476077
0.5 19.854999 19.3839069 18.277796

0.7

0.1 18.985041 18.3877006 17.797626
0.2 19.057171 18.5054134 17.845470
0.3 19.289189 18.8459193 18.295809
0.4 19.744276 19.1485988 18.276355
0.5 20.005192 19.3001108 18.737504

0.8

0.1 19.653727 18.94321789 18.257300
0.2 19.206603 18.7216859 18.197193
0.3 19.495514 18.9371575 18.436387
0.4 19.594068 19.2097174 18.845762
0.5 19.896023 19.5798137 19.246180

0.9

0.1 19.034872 18.4822167 18.026126
0.2 19.216349 18.7607619 18.265439
0.3 19.834902 18.9186706 18.338060
0.4 19.834990 19.1950335 18.797545
0.5 20.206175 19.6581126 19.286954

of UAVs, the efficacy of pesticide spraying exhibits a certain
degree of improvement from the FCFS strategy, although
after the partitioning the FCFS strategy is still used for
pesticide spraying. For example, the profit of VAA strategies
is 8.31% higher than that of FCFS strategy. However, if we
use the GA to solve for the assignment after partitioning,
the spraying efficacy can be further improved. For example,
the profit of HAA-GA strategy is 15.70% higher than that
of HAA strategy. When we use the GA to solve the DTOP-
VTW-VP, we can achieve the best results in the pesticide
spraying process. The average profit of 14.2076302 obtained
from the experiment has improved by 24.89%, 24.87%, and
15.30% compared to the FCFS, HAA, and VAA strategies,
respectively. In the ten experiments, the deviation from the
lowest profit of 14.207054 to the highest profit of 14.207891
is only 0.589‰. The stability of the solution, therefore, is
reasonable. Similarly, for areas 𝐹𝑐 and 𝐹𝑑 with larger number
of farmlands, the solutions of the GA are also better than
other strategies.

5.3. Experiment 2. This experiment is to analyze the quality
of the solution of the problem obtained by the GA. However,
due to the new characteristics of DTOP-VTW-VP, there is no
specific exact algorithm for solving it so far. In small-scale
scenario, enumeration method is a suitable method to obtain
optimal solution of this problem. So, we choose enumeration

method to obtain the optimal solution first, and then the
solution obtained by the GA at the same scale is compared
to it. In both methods, the time was discretized to 0.001-hour
slices.

Firstly, we considered the case of two UAVs of type UAV𝑎
spraying pesticides𝑀𝑏 on two farmlands of 𝐹𝑏 area in the𝐷𝑏
environment.The two UAVs returned to𝐴0 after completing
the tasks. Furthermore, we considered spraying six farmlands
of 𝐹𝑎 area under the same conditions. In the experiment, the
crossover probability is 0.9, the mutation probability is 0.5,
and the number of iterations is 100.The population size is 300
for𝐹𝑎 and 200 for𝐹𝑏. As shown inTable 5, the results obtained
by the GA are the same as the enumeration results.

5.4. Experiment 3. In this study, we further analyzed the
solution result of the DTOP-VTW-VP in the GA with differ-
ent crossover andmutation probabilities so as to find the best
GA parameter settings. Firstly, we considered the case of two
UAVs of UAV𝑏 type spraying pesticide𝑀𝑐 on 30 farmlands in
𝐹𝑐 area under the 𝐷𝑐 environment. The two UAVs needed to
return to 𝐴0 after completing the tasks. In this experiment,
the population size is 600, the number of iterations is 100,
and the different combinations of crossover and mutation
probabilities are tested. The results of the experiment are
shown in Table 6.
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Table 7: Profits by using the GA with different crossover probability and mutation probability to solve the problem in 𝐹𝑑 area.

Crossover probability Mutation probability Profit
Best Average Worst

0.6

0.1 32.146313 31.063109 30.158819
0.2 31.657627 31.1924874 30.237465
0.3 32.546799 31.3829089 30.616506
0.4 31.947100 31.4342386 30.811790
0.5 33.207930 31.8172000 31.169049

0.7

0.1 32.195687 31.0616860 30.468131
0.2 32.668609 31.2538480 30.485102
0.3 32.617468 31.5489710 31.085788
0.4 32.928398 31.7442040 31.113465
0.5 32.643838 31.7436435 30.533254

0.8

0.1 31.820305 31.6226008 31.063741
0.2 32.704727 31.2754686 30.503450
0.3 32.350841 31.8024295 31.381897
0.4 32.741668 31.9405945 31.547788
0.5 32.353212 32.0858842 31.575301

0.9

0.1 32.117330 31.4044922 30.561087
0.2 32.068228 31.4085898 30.666836
0.3 32.507261 31.7834013 31.050291
0.4 32.577798 31.8160464 31.287455
0.5 33.675813 32.7698301 32.135570
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Figure 10: Profits under different crossover and mutation probability.

Furthermore, we considered the case of two UAVs of
type UAV𝑏 spraying pesticide𝑀𝑑 on 50 farmlands in 𝐹𝑑 area
under environment𝐷𝑑.The twoUAVsneeded to return to𝐴0
after completing the tasks. In this experiment, the population
size is 600, the number of iterations is 150, and different
combinations of crossover and mutation probabilities are
tested. The experimental results are shown in Table 7.

As can be seen from the above results, in the case of
different numbers of farmlands, different temperature curves,
different time windows, and different pesticide efficacy profit
functions, using the GA to solve the DTOP-VTW-VP is more
stable in general. However, the demonstrated effects with

different crossover andmutation probabilities aremoderately
different (Figure 10).

When the crossover probability is fixed, the profit of
the experiment increases in general with the increase of
mutation probability. The profit reaches the maximum when
the crossover probability is 0.9 and the mutation probability
is 0.5. When the mutation probability is fixed, the profit
of the experiment also shows an upward trend as a whole
with the increase of crossover probability. Therefore, in
the process of solving the DTOP-VTW-VP, the crossover
probability can be set at 0.9 and the mutation probability as
0.5.
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6. Conclusion

The process of allocating pesticide spraying tasks by multiple
UAVs is closely related to theUAVs’ flight trajectory planning.
In the face of the constraints of the time factor, pesticide
effect, and UAVs’ own kinematic factors during pesticide
spraying, the DTOP-VTW-VP model proposed in this paper
was able to produce a satisfactory allocation scenario for
pesticide spraying and provide the flight route for each UAV.
The model extends the distance between two points in the
regular TOP to the Dubins path distance and dynamically
determines time windows of pesticide spraying according to
the temperature conditions at the time the UAVs perform
the tasks. Based on these factors, maximizing the profit of
pesticide spraying was set as the optimization target of the
model, thus avoiding the problem that in the practical appli-
cation process the pesticide spraying result is not satisfied
after the pesticide spraying task is completed. However, the
DTOP-VTW-VP is also an extension problem of TOP, and
we used the GA to solve it. We gave the methods of the GA
encoding, crossover, and mutation to obtain the satisfactory
solution. During the experiment, we not only validated the
advantages of this model and the solving method over the
manual operations but also verified the consistency of the
results of the GA and the enumeration method in small-
scale scenarios.Meanwhile, in the scenario of pesticide spray-
ing task assignment for large-scale farmlands, we used the
parameter sensitivity analysis method to further analyze the
performance of solving the DTOP-VTW-VP by using the GA
and provided the optimal algorithmparameter configuration.
In future research work, we plan to extend the rectangular
farmland in this problem to any irregularly shaped farmland,
propose an optimization model, and solve the problem by
optimizing the flight trajectory inside the farmlands.
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de Doentes em Véıculo Partilhado,” RISTI Revista Ibérica de
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