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Consensus of first-order and second-order multiagent systems has been wildly studied. However, the convergence of high-order
(especially the third-order to the sixth-order) state variables is also ubiquitous in various fields. The paper handles consensus
problems of high-ordermultiagent systems in the presence ofmultiple time delays. Obtained by a novel frequency domain approach
which properly resolves the challenges associated with nonuniform time delays, the consensus conditions for the first-order and
second-order systems are proven to be nonconservative, and those for the third-order to the sixth-order systems are provided in
the form of simple inequalities. The method revealed in this article is applicable to arbitrary-order systems, and the results are less
conservative than those based on Lyapunov approaches, because it roots in sufficient and necessary criteria of stabilities. Simulations
are carried out to validate the theoretical results.

1. Introduction

Consensus problems of multiagent systems have foundmany
applications in the fields that hold great promise, including
(but not limited to) biosciences, robotics, and computer
sciences. Consensus is the agreement regarding a certain
quality of interest on specific states of all the agents, which
is widely demanded in the engineering applications. The
research on consensus problems has lasted for decades. Vari-
ous techniques are developed to solve consensus problems of
numerous multiagent systems [1–23].

This paper addresses the consensus control problems
of high-order multiagents systems with nonuniform time
delays. One motivation for studying high-order systems is
to achieve accurate control of complex motion: for example,
when performing consensus motion that requires abrupt
change of heading, a team of vehicles shouldmaintain consis-
tency of acceleration (as well as position and velocity) among
them by controlling the third-order state (acceleration),
while lower-order (first-order and second-order) consensus
protocols are usually designed for more regular motion (e.g.,

rectilinear [16] and rotational [23] motion). Besides high-
order dynamics [3–9], nonlinearities [1, 2, 24], time delays
[8–21, 24, 25] and fuzziness [26, 27] also bring complexities to
the control systems, which often lead to difficulties in stability
analysis.

A novel frequency-domain-basedmethod is developed to
challenge the system complexities and derive the consensus
conditions. Comparing to the universal stability analysis
tool Lyapunov approaches, frequency domain methods are
more possibly conducing to less conservative results as it
roots in sufficient and necessary stability criteria. On the
other hand, Lyapunov approaches applied inmany literatures
yield consensus conditions in the form of Linear Matrix
Inequalities (LMIs) [7–9], while with frequency domain
methods authors of [12–16, 22] as well as this note obtain
consensus conditions in the form of inequalities which
are more perspicuous and simple to calculate. However,
frequency domain methods are limited to linear and time-
invariant systems, and consequently most of the aforemen-
tioned articles [1–11, 24, 25] especially those coping with
nonlinear and high-order systems have adopted Lyapunov
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approaches instead.Moreover, both high-order dynamics and
nonuniform time delays give rise to dramatic increment of
the systems’ dimensionality, whichmakes it a knotty problem.
In existing literatures, methods based on the properties of
nonnegative matrices [17, 18] and Nyquist stability theories
[19–21] are introduced as alternative stability analysis tools.

The main idea of the proposed approach is to transform
the high-order systems’ dynamics into high-degree poly-
nomials with respect to hypothetically existing imaginary
eigenvalues of the systems. By studying the monotonicity of
the polynomials and their derivatives, consensus conditions
can be figured out in the form of inequalities. The present
work first brings out sufficient consensus conditions for
the first-order to sixth-order nonuniformly delayed systems
which are most likely to apply to practical engineering
applications [28]: if all the delays are bounded by a given value
and all the parameters agree to corresponding inequalities,
the systems can achieve consensus and in addition, for the
sake of nonconservativeness, the paper provides stronger
conditions for the first-order and second-order systems by
thorough derivation: the states converge when all the delays
are bounded by a given value but diverge when all the delays
exceed that value.

Literature [29] has proposed a high-order nonlinear con-
sensus tracking algorithm with unmeasurable system states
which applies to wide-range multiagent systems and proven
the achievement of consensus by constructing Lyapunov
functions, while time delays are not considered. In [9], Zhang
et al. have solved average consensus problem of high-order
multiagent system with time-varying delays and provided
stability conditions in the form of LMIs via a Lyapunov-
Krasovskii approach. The authors of [19] have derived nec-
essary and sufficient consensus conditions for large-scale
high-order linear multiagent systems with heterogeneous
communication delays by using the generalized Nyquist
criterion; however, the derived consensus conditions are set-
valued graphical conditions, and inequality conditions are
only derived for the first-order system. The previous work in
[30] has studied consensus motion of delayed second-order
multiagent systems by a nonconservative frequency-domain-
based method, while this article will present stationary con-
sensus conditions for more complex high-order multiagent
systems.

The remainder of this note is organized as follows:
Section 2 states the consensus problemwith the help of graph
theory; Section 3 presents the main results by demonstrating
the stability analysis; Section 4 depicts the selected simula-
tion experiments; Section 5 draws conclusions with future
research directions.

2. Problem Statement

This section starts with some definitions and results in graph
theory.

Consider an 𝑛-agent system. The communication net-
work topology among them is represented by an undirected
graphG(V,E,A), which consists of a set of nodesV = {𝑠𝑖},𝑖 ∈ I = {1, 2, . . . , 𝑛}, a set of edgesE ⊆V×V, and aweighted

adjacency matrix A = [𝑎𝑖𝑗], where 𝑎𝑖𝑖 = 0 and 𝑎𝑖𝑗 = 𝑎𝑗𝑖 ≥ 0
(forG is undirected). 𝑎𝑖𝑗 > 0 if and only if there exists an edge𝑒𝑖𝑗 ∈ E between the 𝑖th and 𝑗th nodes, which implies that they
can get information from each other. The set of neighbors of
node 𝑠𝑖 is denoted by𝑁𝑖 ≜ {𝑠𝑗 ∈ V : 𝑒𝑗𝑖 ∈ E}. The Laplacian
corresponding to the graph G is defined as 𝐿𝜎 ≜ [ℓ𝑖𝑗], whereℓ𝑖𝑖 = ∑𝑛𝑗=1 𝑎𝑖𝑗 and ℓ𝑖𝑗 = −𝑎𝑖𝑗, 𝑖 ̸= 𝑗. A path is a sequence of
indexed edges 𝑒𝑘1𝑘2 , 𝑒𝑘2𝑘3 , . . ., where 𝑒𝑘𝑖𝑘𝑖+1 ∈ E. If there is a
path between every pair of nodes in graph G, the graph is
said to be connected. The following lemma is given by [31].

Lemma 1. If the undirected graph G is connected, then its
Laplacian 𝐿𝜎 has one singleton zero eigenvalue (with eigenvec-
tor 1), and the rest 𝑛 − 1 eigenvalues of 𝐿𝜎 are all positive.

Consider an 𝑙th-order multiagent system consisting of 𝑛
agents. The dynamics of the 𝑖th agent (𝑖 ∈ I) is

𝜓̇(0)𝑖 (𝑡) = 𝜓(1)𝑖 (𝑡) ,...
𝜓̇(𝑙−2)𝑖 (𝑡) = 𝜓(𝑙−1)𝑖 (𝑡) ,
𝜓̇(𝑙−1)𝑖 (𝑡) = 𝑢𝑖 (𝑡) ,

(1)

where 𝜓(𝑘)𝑖 ∈ R is the 𝑘th state variable of the 𝑖th agent, 𝑘 =0, 1, . . . , 𝑙 − 1, and 𝑢𝑖(𝑡) ∈ R is the control input. Let 𝜓𝑖 ≜[𝜓(0)𝑖 , 𝜓(1)𝑖 , . . . , 𝜓(𝑙−1)𝑖 ]𝑇 be the state vector of the 𝑖th agent; we
assume that the initial conditions are 𝜓(0)𝑖 (𝑠) = 𝜓(0)𝑖 (0) and𝜓(𝑘)𝑖 (𝑠) = 𝜓(𝑘)𝑖 (0) = 0, 𝑘 = 1, 2, . . . , 𝑙 − 1, for 𝑠 ∈ (−∞, 0].
The control input 𝑢𝑖(𝑡) is said to solve the consensus problem
asymptotically, if and only if lim𝑡→+∞[𝜓𝑖(𝑡) − 𝜓𝑗(𝑡)] = 0 for
all 𝑖, 𝑗 ∈ I.

In [8], a discrete-time control input was introduced as

𝑢𝑖 (𝑘) = −𝑙−1∑
𝑗=1

𝑝𝑗𝜓(𝑗)𝑖 (𝑘)
− ∑
𝑠𝑗∈𝑁𝑖(𝑘)

𝑎𝑖𝑗 (𝑘) [𝜓(0)𝑖 (𝑘) − 𝜓(0)𝑗 (𝑘 − 𝜏𝑖𝑗)] . (2)

In this paper, we introduce an continuous-time consensus
algorithm for system (1) with multiple time delays, and the
input delays are supposed to occur. The protocol is

𝑢𝑖 (𝑡) = −𝑙−1∑
𝑗=1

𝑝𝑗𝜓(𝑗)𝑖 (𝑡)
− ∑
𝑠𝑗∈𝑁𝑖

𝑎𝑖𝑗 [𝜓(0)𝑖 (𝑡 − 𝜏𝑖𝑗) − 𝜓(0)𝑗 (𝑡 − 𝜏𝑖𝑗)] , (3)

for any 𝑖 ∈ I, where 𝑝𝑗 > 0 for 𝑗 = 1, 2, . . . , 𝑙 − 1; 𝑎𝑖𝑗 > 0
denotes the edge weight, and 𝜏𝑖𝑗 = 𝜏𝑗𝑖 is the time delay for
the 𝑖th agent to get the state information of the 𝑗th agent. We
assume that the system has𝑀 different time delays, denoted
by 𝜏𝑚 ∈ (𝜏𝑖𝑗, 𝑖, 𝑗 ∈ I(𝑚 = 1, 2, . . . ,𝑀).
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Let 𝜓(𝑡) ≜ [𝜓1(𝑡), 𝜓2(𝑡), . . . , 𝜓𝑛(𝑡)], and

𝐴 ≜
[[[[[[[[[[[

0 1 0 0 00 0 1 0 0... d d d 0
0 ... 0 0 10 −𝑝1 . . . −𝑝𝑙−2 −𝑝𝑙−1

]]]]]]]]]]]
∈ R𝑙×𝑙,

𝐵 ≜ [[[[[[[

0 0 . . . 0... ... ... ...0 0 . . . 01 0 . . . 0
]]]]]]]
∈ R𝑙×𝑙.

(4)

Under the control input given by (3), the network dynamics
of the multiagent system becomes

𝜓̇ (𝑡) = (𝐼𝑛 ⊗ 𝐴)𝜓 (𝑡) − 𝑀∑
𝑚=1

(𝐿𝜎𝑚 ⊗ 𝐵)𝜓 (𝑡 − 𝜏𝑚) (5)

with the initial condition 𝜓(𝑠) = 𝜓(0), 𝑠 ∈ (−∞, 0], where𝐿𝜎𝑚 denotes the Laplacian of a subgraph associated with the
delay 𝜏𝑚. Clearly, 𝐿𝜎 = ∑𝑀𝑚=1 𝐿𝜎𝑚. If all the time delays are
equal to zero, system (5) could be rewritten as𝜓̇ (𝑡) = (𝐼𝑛 ⊗ 𝐴 − 𝐿𝜎 ⊗ 𝐵)𝜓 (𝑡) . (6)

This paper assumes that the graphG is always connected
and undirected.

3. Main Results

The following lemma presents a sufficient condition for the
stability of high-degree polynomials given by [32], which is
helpful in the present work.

Lemma 2. Consider a polynomial 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋅ ⋅ ⋅ +𝑎𝑛𝑥𝑛, where 𝑎𝑘 > 0, 𝑘 = 0, 1, . . . , 𝑛, 𝑛 ≥ 3, with coefficients of
determination defined as

𝜇𝑖 ≜ 𝑎𝑖−1𝑎𝑖+2𝑎𝑖𝑎𝑖+1 , (7)

if all the coefficients of determination satisfy that 𝜇𝑖 < 𝛽/2 ≈0.4655, where 𝑖 = 1, 2, . . . , 𝑛 − 2, 𝑛 ≥ 3, and 𝛽 is the only real
root of equation

𝛽34 + 𝛽2 + 𝛽 − 2 = 0; (8)

then all the roots of 𝑓(𝑥) = 0 have negative real parts.
Let Φ ≜ 𝐼𝑛 ⊗ 𝐴 − 𝐿𝜎 ⊗ 𝐵 (9)

and suppose that the eigenvalues of 𝐿𝜎 are 0 = 𝜆1 < 𝜆2 ≤𝜆3 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑛 according to Lemma 1.

Assumption 3. Assume for 𝑙 ≥ 3 that all 𝑝𝑗 > 0 (𝑗 =1, 2, . . . , 𝑙 − 1) satisfy the following:𝑝𝑙−1𝑝𝑙−2 > 3𝑝𝑙𝑝𝑙−3𝑝𝑙−2𝑝𝑙−3 > 3𝑝𝑙−1𝑝𝑙−4...𝑝3𝑝2 > 3𝑝4𝑝1𝑝2𝑝1 > 2.15𝑝3𝜆𝑛,
(10)

where 𝑝𝑙 = 1 and 𝜆𝑛 is the largest eigenvalue of 𝐿𝜎.
Under Assumption 3, the following lemma can be proven.

Lemma 4. Matrix Φ has a singleton zero eigenvalue and all
other eigenvalues have negative real parts if Assumption 3 is
satisfied.

Proof. According to Lemma 1, there exists an orthogonal
matrix𝑊, such that𝑊𝑇𝐿𝜎𝑊 = diag {0, 𝜆2, . . . , 𝜆𝑛} , (11)

and then it follows that(𝑊 ⊗ 𝐼𝑙)𝑇Φ(𝑊 ⊗ 𝐼𝑙)= diag {𝐴, 𝐴 − 𝜆2𝐵, . . . , 𝐴 − 𝜆𝑛𝐵} . (12)

Through simple calculations, the eigenpolynomial of (𝐴 −𝜆𝑗𝐵) could be obtained; then we get

det (𝑠𝐼2 − 𝐴 + 𝜆𝑗𝐵) = 𝑠𝑙 + 𝑙−1∑
𝑖=1

𝑝𝑖𝑠𝑖 + 𝜆𝑗 = 0. (13)

To simplify the following statements, let𝑝𝑙 = 1, and (13) could
be written as

𝑙∑
𝑖=1

𝑝𝑖𝑠𝑖 + 𝜆𝑗 = 0. (14)

For the first-order system, since 𝑙 = 1, it is evident that −𝜆𝑗
are the eigenvalues of the system; thus the lemma is proven.
For the second-order system, (14) becomes 𝑠2 + 𝑝1𝑠 + 𝜆𝑗 = 0
and its roots are −𝑝1 ± √𝑝21 − 4𝜆𝑗2 . (15)

If 𝑝21 < 4𝜆𝑗, the real part of (15) is −𝑝1/2 < 0, and when 𝑝21 ≥4𝜆𝑗, (15) apparently is a pair of nonpositive real numbers, and
the bigger one equals zero if and only if 𝜆𝑗 = 0; then the
lemma is proven.

When 𝑙 ≥ 3, note that 𝑝𝑖 > 0 for 𝑖 = 1, 2, . . . , 𝑙, and 𝜆𝑛
is the largest eigenvalue of 𝐿𝜎. It is apparent that 3 > 2.15 >2.1482 ≈ 1/0.4655; according to Lemma 2, (10) is a group of
more conservative condition, which ensures that all the roots
of (14) have negative real parts except that there exists one
singleton zero root for 𝜆𝑗 = 0. Thus, matrixΦ has a singleton
zero eigenvalue and all its other 𝑛 ∗ 𝑙 − 1 eigenvalues have
negative real parts.
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Remark 5. Lemma 4 has shown that each of the nondelayed
multiagent systems given by (6) has all its eigenvalues on the
open LHP except one equals zero.That implies that system (6)
is stable, and all the states of each agent will reach a common
value. The existence of the only zero root indicates that only
the first-order state variable of each agent reaches a value that
is decided by the initial state and all the other high-order state
variables return to zero at last; that is, if all 𝜏𝑚 = 0, multiagent
system (5) will reach consensus.

By analyzing the effect of nonuniform time delays on the
stability of the systems, we will give a proof to the ensuing
theorem.

Theorem 6. Consider 𝑙th-order (𝑙 = 1, 2, . . . , 6) system given
by (5) that satisfies Assumption 3, and the following inequalities
(16), (17), and (18) are satisfied for 𝑙 = 4, 5, 6, respectively:

𝑝2 > 𝜆𝑛√𝑝3𝑝1 + 2𝑝1𝑝3 . (16)

𝑝1 > 14 (𝑝2𝑝4)
2

(17)

𝑝1 > max{𝑝54 (𝑝2𝑝4)
2 , 𝜆𝑛√ 3𝑝4} . (18)

Define functions 𝜃𝑙(𝜔) and 𝑇𝑙(𝜔) (𝑙 = 1, 2, . . . , 6) as follows:
𝜃𝑙 (𝜔) ≜ arg [𝐹𝑙 (𝜔)] = arg[− 𝑙∑

𝑖=1

(−𝑗𝜔)𝑖 𝑝𝑖]
∈ (0, 2𝜋] , (19)

𝑇𝑙 (𝜔) ≜ 1𝜔𝜃𝑙 (𝜔) , (20)

where 𝐹𝑙(𝜔) is defined in (27). If all 𝜏𝑚 satisfy 𝜏𝑚 < 𝜏 for 𝑙th-
order multiagent system, where

𝜏
=
{{{{{{{{{{{{{{{

𝑇𝑙 (𝜆𝑛) 𝑙 = 1𝑇𝑙 (√𝜆𝑛/𝑝2) 𝑙 = 2, 3𝑇𝑙 (√2𝜆𝑛/𝑝2) 𝑙 = 4
min {𝑇𝑙 (√2𝜆𝑛/𝑝2) , 𝑇𝑙 (√𝑝𝑙−2/ (𝑙 − 3))} 𝑙 = 5, 6,

(21)

then control input (3) can solve the consensus problem of system
(5).

Proof. Consider the network of high-order multiagents with
nonuniform time delays. Let Ψ(𝑠) = 𝐺−1𝜏 Ψ(0), where Ψ(𝑠) is
the Laplace transform of 𝜓(𝑡), and

𝐺𝜏 (𝑠) = 𝑠𝐼𝑛×𝑙 − (𝐼𝑛 ⊗ 𝐴) + 𝑀∑
𝑚=1

(𝐿𝜎𝑚 ⊗ 𝐵) 𝑒−𝜏𝑚𝑠. (22)

According to the foregoing discussions, to study the stability
of the delayed system, we only need to investigate the values

of 𝜏𝑚 that guarantee the existence of nonzero roots of 𝐺𝜏(𝑠)
on imaginary axis, which represents the crossing of the
characteristic roots from the stable region to the unstable
one.The roots of characteristic polynomials such as𝐺𝜏(𝑠) are
hereinafter referred to as “the eigenvalues of the system.”

Suppose 𝑠 = 𝑗𝜔 ̸= 0 is an imaginary root of 𝐺𝜏(𝑠), and𝑢 = 𝑢1⊗[1, 0, . . . , 0]𝑇+𝑢2⊗[0, 1, . . . , 0]𝑇+⋅ ⋅ ⋅+𝑢𝑙⊗[0, 0, . . . , 1]𝑇
is a corresponding eigenvector, where ‖𝑢‖ = 1, 𝑢𝑖 ∈ C𝑛, 𝑖 =1, 2, . . . , 𝑛. Then we have

[𝑗𝜔𝐼𝑛×𝑙 − (𝐼𝑛 ⊗ 𝐴) + 𝑀∑
𝑚=1

(𝐿𝜎𝑚 ⊗ 𝐵) 𝑒−𝑗𝜔𝜏𝑚]𝑢 = 0. (23)

Note that all the complex roots of each 𝐺𝜏(𝑠) appeared in
conjugated pairs; we only need to study the situation that𝜔𝑞 > 0. Since all of the first 𝑙 − 1 elements of the vector
obtained by calculating the left part of (23) are equal to zero,
we get 𝑗𝜔𝑢𝑖 = 𝑢𝑖+1, (24)

for all 𝑖 = 1, 2, . . . , 𝑙 − 1. Multiplied by 𝑢∗ (the conjugate
transpose of 𝑢) on the left side of the left part of (23), and
with (24) substituted, we obtain

𝑀∑
𝑚=1

𝛼𝑚𝑒−𝑗𝜔𝜏𝑚 + 𝑙∑
𝑖=1

(𝑗𝜔)𝑖 𝑝𝑖 = 0, (25)

where 𝑝𝑙 = 1, and
𝛼𝑚 = 𝑢∗ (𝐿𝜎𝑚 ⊗ 𝐼𝑙) 𝑢𝑢∗𝑢 . (26)

Rewrite (25) as
𝑀∑
𝑚=1

𝛼𝑚𝑒𝑗𝜔𝜏𝑚 = − 𝑙∑
𝑖=1

(−𝑗𝜔)𝑖 𝑝𝑖 ≜ 𝐹𝑙 (𝜔) . (27)

Take modulus of both sides of (27); then, we have

𝑀𝑙 (𝜔) ≜ 󵄨󵄨󵄨󵄨𝐹𝑙 (𝜔)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑀∑
𝑚=1

𝛼𝑚𝑒𝑗𝜔𝜏𝑚 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑀∑
𝑚=1

𝛼𝑚󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝑢∗ (𝐿𝜎 ⊗ 𝐼𝑙) 𝑢𝑢∗𝑢 ≤ 𝜆𝑛.

(28)

Another necessary condition of (27) is

arg( 𝑀∑
𝑚=1

𝛼𝑚𝑒𝑗𝜔𝜏𝑚) = arg [𝐹𝑙 (𝜔)] = 𝜃𝑙 (𝜔) . (29)

As 𝜔𝜏𝑚 > 0, 𝜃𝑙(𝜔) should be discussed in the positive
interval (0, 2𝜋]. From (29), it is obvious that

𝜃𝑙 (𝜔) = arg( 𝑀∑
𝑚=1

𝛼𝑚𝑒𝑗𝜔𝜏𝑚) ≤ max {𝜔𝜏𝑚} . (30)

Define

𝑅𝑙 (𝜔) ≜ Im [𝐹𝑙 (𝜔)]
Re [𝐹𝑙 (𝜔)] = tan [𝜃𝑙 (𝜔)] , (31)
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where Im(𝑐) and Re(𝑐) denote the imaginary part and real
part of the complex number 𝑐, respectively. 𝑅𝑙(𝜔) is an access
to 𝜃𝑙(𝜔).

Consider the first-order system; then, we have 𝐹1(𝜔) =0 + 𝑗𝜔 and 𝑅1(𝜔) = 𝜔/0. It is apparent that 𝜃1(𝜔) = 𝜋/2,
and𝑀1(𝜔) = 𝜔; according to (28), we should only consider𝜔 ≤ 𝜆𝑛; if we set all 𝜏𝑚 < 𝜏 = 𝑇1(𝜆𝑛) = 𝜋/(2𝜆𝑛), then𝜔𝜏𝑚 < 𝜆𝑛𝜏 = 𝜋/2 = 𝜃1 (𝜔) , (32)

which contradicts (30). Then when all 𝜏𝑚 < 𝜏, the first-order
system is impossible to have an imaginary eigenvalue which
presents the first contact of the eigenvalues from the stable
region to the unstable one. Hence the system is still stable
then, and it can reach consensus, and the theorem is proven
for 𝑙 = 1.

Unlike 𝜃1(𝜔), 𝜃𝑙(𝜔) (𝑙 ≥ 2) are not a fixed value. But we
have found that the derivatives of 𝑅𝑙(𝜔) (2 ≤ 𝑙 ≤ 6) listed
below are negative values when Assumption 3 is applied:

𝑅󸀠2 = −𝑝1𝑝2(𝑝2𝜔)2 < 0,
𝑅󸀠3 = −𝑝2𝑝3𝜔2 − 𝑝1𝑝2(𝑝2𝜔)2 < 0,
𝑅󸀠4 = −𝑝3𝑝4𝜔4 − (𝑝2𝑝3 − 3𝑝1𝑝4) 𝜔2 − 𝑝1𝑝2(𝑝2𝜔 − 𝑝4𝜔3)2 < 0,
𝑅󸀠5 = −𝑝4𝑝5𝜔6 − (𝑝3𝑝4 − 3𝑝2𝑝5) 𝜔4 − (𝑝2𝑝3 − 3𝑝1𝑝4) 𝜔2 − 𝑝1𝑝2(𝑝2𝜔 − 𝑝4𝜔3)2 < 0,
𝑅󸀠6 = −𝑝5𝑝6𝜔8 − (𝑝4𝑝5 − 3𝑝3𝑝6) 𝜔6 − (𝑝3𝑝4 − 3𝑝2𝑝5 + 5𝑝1𝑝6) 𝜔4 − (𝑝2𝑝3 − 3𝑝1𝑝4) 𝜔2 − 𝑝1𝑝2(𝑝2𝜔 − 𝑝4𝜔3)2 < 0.

(33)

𝑅󸀠𝑙 < 0 means that 𝑅𝑙 = tan[𝜃𝑙(𝜔)] are monotonically de-
creasing with the growth of 𝜔. Then it can be deduced
that the arguments 𝜃𝑙(𝜔) also decrease monotonically and
continuously because the values of 𝐹𝑙(𝜔) vary smoothly.
Evidently, we have

lim
𝜔→0+

𝑅𝑙 = 𝑝1𝜔 + 𝑜 (𝜔)𝑝2𝜔2 + 𝑜 (𝜔) = +∞, (34)

for 𝑙 ≥ 2, which implies that the arguments 𝜃𝑙(𝜔) start at 𝜋/2
when 𝜔 → 0+.

By investigating the locus of 𝐹6(𝜔) on a complex plane,
we have found that the value of the argument 𝜃6(𝜔) first
falls from 𝜋/2, tending to 0; as the trajectory of 𝐹6(𝜔)
passes from the first quadrant to the fourth, 𝜃6(𝜔) does
not really turn negative but jumps to 2𝜋 instead and then
it falls again, without second “jump” to perform. Similar
phenomena occur in the other high-order systems when 𝑙 <6; in each system, the argument 𝜃𝑙(𝜔)performs a jump atmost
once and no jumps for some of these systems, such as the
second-order system, because the real and imaginary parts
of 𝐹2(𝜔) are always positive when 𝜔 > 0. The trajectories of𝐹2(𝜔) and𝐹6(𝜔) on the complex plane are shown in Figure 1 to
give evidence of the variation on their arguments. For those
whose arguments perform jumps, we consider the value of
each 𝜃𝑙(𝜔) in two continuous intervals: (0, 𝜋/2) and (0, 2𝜋].

For 𝑙 = 2, 3, if 𝜔 > √𝜆𝑛/𝑝2 then Re[𝐹𝑙(𝜔)] = 𝑝2𝜔2 > 𝜆𝑛
and𝑀𝑙(𝜔) > 𝜆𝑛, which we do not want. Thus, 𝜃𝑙(√𝜆𝑛/𝑝2) is
the minimum to consider. Then 𝑝1𝜔 − 𝑝3𝜔3 > 0 holds when

𝑙 = 3, which implies 𝜃3(𝜔) ∈ (0, 𝜋/2). Setting all 𝜏𝑚 < 𝜏 =𝑇𝑙(√𝜆𝑛/𝑝2), we have
𝜔𝜏𝑚 < √𝜆𝑛𝑝2 𝑇𝑙(√𝜆𝑛𝑝2) = 𝜃𝑙(√𝜆𝑛𝑝2) < 𝜃𝑙 (𝜔) , (35)

which contradicts (30); then by the same idea of the proof for
the first-order system, the theorem for 𝑙 = 2, 3 is proven.

Investigate the following parabola when 𝜔 ∈ [√2𝜆𝑛/𝑝2,√𝑝2/𝑝4 − 2𝜆𝑛/𝑝2]:
𝜉 (𝜔) = −𝑝4𝜔4 + 𝑝2𝜔2 − 𝜆𝑛. (36)

Apparently, its maximal value comes at the point when𝜔 = √𝑝2/2𝑝4. According to the symmetry of parabolas,𝜉(√2𝜆𝑛/𝑝2) = 𝜉(√𝑝2/𝑝4 − 2𝜆𝑛/𝑝2) are the minima of 𝜉(𝜔).
According to Assumption 3 that 𝑝2/𝑝4 > 3𝑝1/𝑝3 > 6𝜆𝑛/𝑝2,
which implies 𝑝22 > 4𝜆𝑛𝑝4, we have
𝜉(√2𝜆𝑛𝑝2) = 2𝜆𝑛 − 4𝑝4 𝜆

2
𝑛𝑝22 − 𝜆𝑛 = 𝜆𝑛𝑝22 (𝑝22 − 4𝜆𝑛𝑝4)> 0. (37)

Thus, 𝜉(𝜔) ≥ 𝜉(√2𝜆𝑛/𝑝2) > 0. Then we have 𝑀𝑙(𝜔) ≥
Re[𝐹𝑙(𝜔)] ≥ 𝑝2𝜔2−𝑝4𝜔4 > 𝜆𝑛 for 𝑙 ≥ 4, when 𝜔 ∈ [√2𝜆𝑛/𝑝2,√𝑝2/𝑝4 − 2𝜆𝑛/𝑝2].

Let𝐹𝑙(𝜔0) be the first contact of its trajectory from the first
quadrant to the fourth, as is shown in Figure 1. We analyze 𝜔
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in two intervals: (0, 𝜔0) and [𝜔0, +∞). Obviously, 𝜔0 is the
smallest positive real root of Im[𝐹𝑙(𝜔0)] = 0.

Consider the interval 𝜔 < 𝜔0. If 𝜔0 ∈ (√2𝜆𝑛/𝑝2,√𝑝2/𝑝4 − 2𝜆𝑛/𝑝2), then 𝜃𝑙(√2𝜆𝑛/𝑝2) would be smaller than
the minimal possible value of 𝜃𝑙(𝜔) to satisfy (27), because𝑀(𝜔) > 𝜆𝑛 if√2𝜆𝑛/𝑝2 < 𝜔 < 𝜔0.

Taking the fourth-order system into account, we have

𝜔0 = √𝑝1𝑝3 ∈ (√2𝜆𝑛𝑝2 , √ 𝑝2𝑝4 − 2𝜆𝑛𝑝2 ) . (38)

According to (16), one can obtain󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Im[𝐹4(√𝑝2𝑝4 − 2𝜆𝑛𝑝2)]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑝3√𝑝2𝑝4 − 2𝜆𝑛𝑝2 (𝑝2𝑝4 − 2𝜆𝑛𝑝2 − 𝑝1𝑝3)
> 𝑝3√𝑝1𝑝3 (𝑝2𝑝4 − 2𝑝1𝑝3) = √𝑝3𝑝1 (𝑝2𝑝4 − 2𝑝1𝑝3)> 𝜆𝑛,

(39)

where 𝑝4 = 1. Because |Im[𝐹4(𝜔)]| = 𝑝3𝜔3 − 𝑝1𝜔 is mono-
tonically increasing when 𝜔 ≥ 𝜔0, we have |Im[𝐹4(𝜔)]| >

|Im[𝐹4(√𝑝2/𝑝4 − 2𝜆𝑛/𝑝2)]| > 𝜆𝑛 for 𝜔 > √𝑝2/𝑝4 − 2𝜆𝑛/𝑝2.
Then we know that𝑀4(𝜔) > 𝜆𝑛 holds if 𝜔 > √2𝜆𝑛/𝑝2. The
only situation that needs to be considered is 𝜔 ≤ √2𝜆𝑛/𝑝2,
where 𝜃𝑙(√2𝜆𝑛/𝑝2) is the smallest value of 𝜃𝑙(𝜔); if we set all𝜏𝑚 < 𝜏 = 𝑇4(√2𝜆𝑛/𝑝2), it can be obtained that

𝜔𝜏𝑚 < √2𝜆𝑛𝑝2 𝑇𝑙(√2𝜆𝑛𝑝2 ) = 𝜃𝑙(√2𝜆𝑛𝑝2 ) < 𝜃𝑙 (𝜔) , (40)

which brings about the impossibility of (30) and provides the
fourth-order system with consensus achievement.

For 𝑙 = 5, 6, Im[𝐹𝑙(𝜔)] = 𝑝1𝜔 − 𝑝3𝜔3 + 𝑝5𝜔5, then
𝜔0 = √𝑝3 − √𝑝23 − 4𝑝1𝑝52𝑝5 . (41)

Comparing 𝜔20 and 𝑝2/𝑝4 − 2𝜆𝑛/𝑝2, we have
(𝑝2𝑝4 − 2𝜆𝑛𝑝2 ) −(𝑝3 − √𝑝

2
3 − 4𝑝1𝑝52𝑝5 )

= √( 𝑝32𝑝5)
2 − 𝑝1𝑝5 − ( 𝑝32𝑝5 − 𝑝2𝑝4 + 2𝜆𝑛𝑝2 ) .

(42)

According to (17) and (18), 4 − 𝑝5𝑝22/𝑝1𝑝24 > 0, so that
[( 𝑝32𝑝5)

2 − 𝑝1𝑝5] − ( 𝑝32𝑝5 − 𝑝2𝑝4 + 2𝜆𝑛𝑝2 )
2

= 𝑝1𝑝5 [(2𝑝2𝑝3𝑝1𝑝4 − 6) + 4𝑝5𝜆𝑛𝑝1𝑝2 (𝑝2𝑝4 − 𝜆𝑛𝑝2 ) + (4 − 𝑝5𝑝
2
2𝑝1𝑝24) + (1 − 2𝑝3𝜆𝑛𝑝1𝑝2 )] > 0

(43)

under Assumption 3. Thus (42) is also positive, which means𝜔0 < √𝑝2/𝑝4 − 2𝜆𝑛/𝑝2. When 𝜔 < 𝜔0, if we set all 𝜏𝑚 <𝑇𝑙(√2𝜆𝑛/𝑝2), for 𝑙 = 5, 6, (30) is impossible.
Consider the interval 𝜔 ≥ 𝜔0. Evidently, when 𝜔 ≥√𝑝3/2 > √𝑝2/𝑝4, |Re[𝐹5(𝜔)]| = 𝑝4𝜔4 − 𝑝2𝜔2 is mono-

tonically increasing, According to Assumption 3, we have𝑝2𝑝3 > 18𝜆𝑛. Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Re[𝐹5 (√𝑝32 )]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑝4𝑝

3
34 − 𝑝2𝑝32 > 3𝑝2𝑝34 − 𝑝2𝑝32

= 𝑝2𝑝34 > 𝜆𝑛. (44)

Therefore, all 𝜏𝑚 < 𝑇𝑙(√𝑝3/2) would make (30) impossible
when 𝜔 ≥ 𝜔0. As is described in Theorem 6, if all 𝜏𝑚 <
min{𝑇𝑙(√2𝜆𝑛/𝑝2), 𝑇𝑙(√𝑝3/2)}, the consensus problem of the
fifth-order system is solved.

Likewise, for 𝑙 = 6, according to (18) we have
Re[𝐹6 (√𝑝43 )] − 𝜆𝑛
= √𝑝43 [𝑝1 − 𝑝3𝑝43 + 𝑝5 (𝑝43 )2] − 𝜆𝑛
= (√𝑝43 )3 [13 (𝑝5𝑝4 − 3𝑝3)] + (𝑝1√𝑝43 − 𝜆𝑛)
> 0;

(45)

when 𝜔 > √𝑝4/3 > √𝑝3/𝑝5, Re[𝐹6(𝜔)] is a monotonically
increasing function. Since Re[𝐹6(√𝑝4/3)] > 𝜆𝑛 is positive
already, 𝑀6(𝜔) would be further greater than 𝜆𝑛 as the
growth of 𝜔 has passed through √𝑝4/3 where the sit-
uation should be ignored. Consequently, if all 𝜏𝑚 <
min{𝑇𝑙(√2𝜆𝑛/𝑝2), 𝑇𝑙(√𝑝4/3)}, the sixth-order system is sta-
ble, and the theorem is proven out.



Mathematical Problems in Engineering 7

Imag

Real0 0
0

Imag

Real

Th
e t

ra
je

ct
or

ie
s o

fF
2
(�휔

)

Th
e t

ra
je

ct
or

ie
s o

fF
6
(�휔

)

�휃2(�휔)

�휔0

�휃6(�휔)

2�휋

Figure 1: The trajectories of 𝐹2(𝜔) and 𝐹6(𝜔) on the complex plane.

Remark 7. Despite the fact that it is difficult to present
a general solution in the form of inequality to consensus
problems of all high-order multiagent systems because the
monotonicity of each high-degree polynomial that the solu-
tion relies on requires specialized derivation to figure out,
the process of deriving the consensus conditions for the first-
to-sixth-order systems has demonstrated a general approach,
with which one can work out consensus conditions for an
arbitrary-order system. Moreover, by further calculation, we
provide stronger consensus conditions for the first-order and
second-order multiagent systems in the following theorem.

Theorem 8. Consider the first-order and second-order multi-
agent system (5) with the control input (3) (𝑙 = 1, 2); then, the
systems reach consensus if all the delays 𝜏𝑚 < 𝜏𝑙, where𝜏1 = 𝜋2𝜆𝑛 ,

𝜏2 = √ 2√𝑝41 + 4𝜆2𝑛 − 𝑝21
⋅ arctan(√ 2𝑝21√𝑝41 + 4𝜆2𝑛 − 𝑝21).

(46)

Moreover, if all the delays 𝜏𝑚 ≥ 𝜏𝑙, the systems will be unstable,
and the agents will fail to reach consensus.

Proof. For the first-order multiagent system, we have already
proven in Theorem 6 that 𝜏𝑚 < 𝜏1 is a sufficient condition
for the system to reach consensus. If all 𝜏𝑚 = 𝜏1, 𝑗𝜆𝑛 is the
imaginary eigenvalue and its corresponding eigenvector 𝑢 is
the one ensuring | ∑𝑀𝑚=1 𝛼𝑚| = 𝜆𝑛 ≜ 𝜔1. With these values
substituted into (27) (𝑙 = 1), the equation

𝑀∑
𝑚=1

𝛼𝑚𝑒𝑗𝜔1𝜏1 = 𝐹1 (𝜔1) (47)

holds true; that is, 𝜏1 is the “delay margin” equal to which the
delays of the first-order system present the first contact of the
eigenvalues from the stable region to the unstable one. When
all the delays exceed the delay margin, the systems will be
unstable, because there then exist eigenvalues in the unstable
region (the RHP). The instabilities become stronger and the
delays get greater distances exceeding the delay margin.

1 2
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�휏14

�휏12 1 2

34
�휏34

�휏24
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�풢1 �풢2

Figure 2: Two communication topologies of the 4-agent system.

For 𝑙 = 2, 𝑀2(𝜔) = √𝜔4 + 𝑝21𝜔2. Let 𝜔∗ =
√(√𝑝41 + 4𝜆2𝑛 − 𝑝21)/2 be the only positive root of 𝑀2(𝜔) =𝜆𝑛; thus𝑀2(𝜔) ≤ 𝜆𝑛 as long as 𝜔 ≤ 𝜔∗. Owing to the decline
of 𝜃(𝜔), we can set all 𝜏𝑚 < 𝜃(𝜔∗)/𝜔∗ = 𝜏2 to avoid the
possibility of (27) (𝑙 = 2). Therefore the sufficiency of the
condition has been proven. By the same principle as that for
the first-order system, 𝜏2 is also the delay margin bringing
about the failure of the system to reach consensus.

4. Numerical Simulations

In this section, some simulations are provided to illustrate the
theoretical results obtained by the previous analysis.

Consider a multiagent system consisting of 4 agents.
Figure 2 shows two different communication topologies
described with undirected graphs G1 and G2, respectively.
With three different time delays on each connection, G1
presents the simplest connected topology, while G2 having
six different time delays displays full connectivity. All the
delays are marked with 𝜏𝑖𝑗, where 𝑖 and 𝑗 are the indices of
the connected agents. Suppose the weight of each edge on
both graphs is 1; then, for G1, 𝜆𝑛 ≈ 3.4142, and, for G2,𝜆𝑛 = 4. Selected experiments will be carried out to validate
the obtained results on 4-agent systems with both topologies
illustrated byG1 andG2.

For a third-order multiagent system with simply con-
nected graph G1, set 𝑝1 = 9 and 𝑝2 = 6; thus 𝜏 = 1.43
according to Theorem 6. Let 𝜏12 = 1.42, 𝜏23 = 1.40, and 𝜏34 =1.38. Seen from the simulation results shown in Figure 3, it
is apparent that agents have reached consensus. And for the
systemwith topologyG2 showing full connectivity, let 𝑝1 = 9
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Figure 3: The trajectories of agents in the third-order system (the topology isG1).
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Figure 4: The trajectories of agents in the third-order system (the topology isG2).
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Figure 5: The trajectories of agents in the sixth-order system (the topology isG1).



Mathematical Problems in Engineering 9

0 20 40 60 80
Time (s)

0 20 40 60 80
Time (s)

0 20 40 60 80
Time (s)

0 20 40 60 80
Time (s)

0 20 40 60 80
Time (s)

0 20 40 60 80
Time (s)

40

35

30

25

20

15

10

5

8

4

0

−4

−8

3

1

−1

−3

2.5

1.6

0.7

−0.2

−1.1

−2

2

1

0

−1

−2

4

1

−2

−5

Th
e t

ra
je

ct
or

ie
s o

f�휓
(5
)

i
Th

e t
ra

je
ct

or
ie

s o
f�휓

(2
)

i

Th
e t

ra
je

ct
or

ie
s o

f�휓
(4
)

i
Th

e t
ra

je
ct

or
ie

s o
f�휓

(1
)

i

Th
e t

ra
je

ct
or

ie
s o

f�휓
(3
)

i
Th

e t
ra

je
ct

or
ie

s o
f�휓

(0
)

i

Figure 6: The trajectories of agents in the sixth-order system (the topology isG2).
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Figure 7: The trajectories of agents in the second-order system (the topology isG1).
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Figure 8: The trajectories of agents in the second-order system (the topology isG2).

and 𝑝2 = 6, and then one gets 𝜏 = 1.2729. With time delays𝜏12 = 1.27, 𝜏23 = 1.26, 𝜏34 = 1.25, 𝜏14 = 1.24, 𝜏13 = 1.23, and𝜏24 = 1.22, simulation results are depicted in Figure 4, where
the consensus achievement recurs.

For a sixth-order system connected asG1, the parameters𝑝1 = 12, 𝑝2 = 27, 𝑝3 = 40, 𝑝4 = 28, and 𝑝5 = 12 yield𝜏 = 0.51. Figure 5 has shown that the consensus achievement
is guaranteed, where 𝜏12 = 0.50, 𝜏23 = 0.48, and 𝜏34 = 0.46.
With connections in G2, the system reaches consensus as
shown in Figure 6, where 𝑝1 = 12, 𝑝2 = 27, 𝑝3 = 35, 𝑝4 = 28,
and𝑝5 = 12 and time delays 𝜏12 = 0.47, 𝜏23 = 0.46, 𝜏34 = 0.45,𝜏14 = 0.44, 𝜏13 = 0.43, and 𝜏24 = 0.42 which are bounded by𝜏 = 0.4713 calculated according toTheorem 6.

To examine Theorem 8, we set 𝑝1 = 0.4 for the second-
order system. According to Theorem 8, for G1, the delay
margin 𝜏 = 0.1181. Two groups of delays are set: 𝜏12 =0.11, 𝜏23 = 0.10, 𝜏34 = 0.09, which are bounded by the delay
margin, and 𝜏12 = 0.12, 𝜏23 = 0.13, 𝜏34 = 0.14, which exceed
the delay margin. The results are shown in Figure 7: the first
two figures are the trajectories of agents when time delays
are bounded, which indicates that and consensus is reached;
the last two figures are the trajectories of agents when all
time delays exceed the delay margin, where the system is

unstable. These phenomena have attested the theorem. And
for G2, similar experiment is carried out: the delay margin
is obtained as 𝜏 = 0.1007, and then, respectively, gives the
bounded delays 𝜏12 = 0.10, 𝜏23 = 0.09, 𝜏34 = 0.08, 𝜏14 =0.07, 𝜏13 = 0.06, and 𝜏24 = 0.05 and the exceeded delays𝜏12 = 0.101, 𝜏23 = 0.104, 𝜏34 = 0.107, 𝜏14 = 0.11, 𝜏13 = 0.113,
and 𝜏24 = 0.116. As shown in Figure 8, the simulation results
validate the theorem again.

5. Conclusions

This paper has studied consensus problem of high-order
multiagent systems with nearest-neighbor control rules in
the presence of nonuniform time delays. For each delayed𝑙th-order (𝑙 = 1, 2, . . . , 6) system, a sufficient condition
has been provided in the form of inequalities and, for the
first-order and second-order system, consensus conditions
have been presented in the form of delay margins, which
are less conservative and simpler in calculation than the
existing results by Lyapunov methods in the form of LMIs.
Numerical simulations on systems with two sets of different
topologies have been carried out to testify the theorems. The
simulation results show that the selected experiments have
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reached expected effect: the systems achieve consensus under
given conditions.

Future research will seek solutions to consensus problems
of nonuniformly delayed high-order systems with directed
topologies by applying this method. The main challenge is
the calculation of 𝐹𝑙(𝜔)’s arguments (see (27)), because the
eigenvalues of systems with directed topologies are complex
values even in the absence of time delays and it is hard to
tell the relationship among the arguments of several complex
values and their summation.
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