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This paper overviews the research investigations pertaining to stability and stabilization of control systems with time-delays. The
prime focus is the fundamental results and recent progress in theory and applications.Theoverview sheds light on the contemporary
development on the linear matrix inequality (LMI) techniques in deriving both delay-independent and delay-dependent stability
results for time-delay systems. Particular emphases will be placed on issues concernedwith the conservatism and the computational
complexity of the results. Key technical bounding lemmas and slack variable introduction approaches will be presented.The results
will be compared and connections of certain delay-dependent stability results are also discussed.

1. Introduction

The occurrence of time-delay phenomenon appears to
present many real-world systems and engineering applica-
tions. This takes place in either the state, the control input
side, or the measurements side. It turns out that delays are
strongly involved in challenging areas of communication
and information technologies including stabilization of net-
worked controlled systems and high-speed communication
networks. In many cases, time-delay is a source of instability.
However, for some systems, the presence of delay can have
a stabilizing effect. The stability analysis and robust control
of time-delay systems (TDS) are, therefore, of theoretical and
practical importance.

On the other hand, time-delay systems (TDS) are also
termed systems with aftereffect or dead-time, hereditary
systems, equations with deviating argument, or differential-
difference equations [1]. As opposed to ordinary differential
equations (ODE), TDS belong to the class of functional
differential equations (FDE) which are infinite dimension
[2, 3]. A wide variety of dynamical systems can be modeled
as time-delay systems [4]. Loosely speaking, time-delay is
usually a source of poor performance and instability of a
control system. Alternatively, in some few cases, the presence
of time-delay is helpful for the stabilization of some systems.

Therefore, stability analysis of time-delay systems is of both
practical and theoretical importance [5–9].

A great deal of the basic results is reported in [10–16].
Broadly speaking, stability conditions for time-delay systems
can be broadly classified into two categories. One is delay-
independent stability conditions and the other is delay-
dependent stability conditions. Much attention was paid to
the study of delay-dependent stability conditions as they yield
less conservative results. Recently much work was presented
in [17–30] covering alternative issues pertaining to stability
and stabilization of dynamical systems with time-delays.

The primary objective of this paper is to

(i) familiarize wider readers with TDS,
(ii) provide a systematic treatment of modern ideas and

techniques for researchers.

The paper bridges the huge gap from some basic classical
results to recent developments on Lyapunov-based analysis
and design with applications to the attractive topics of
network-based control and interconnected time-delay con-
trol systems. Essentially, it provides an overview on the
progress of stability and stabilization of time-delay sys-
tems (TDS). Particular emphases will be placed on issues
concerned with the conservatism and the computational
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complexity of the results. For simplicity in exposition, the
discussions are limited to linear or linearizable systems. Some
methods and techniques used to derive stability conditions
for time-delay systems are reviewed. Several future research
directions on this topic are also discussed.

Notations. Let R𝑛 denote the 𝑛-dimensional Euclidean space
equipped with the norm ‖ ⋅ ‖. We use𝑊𝑡,𝑊−1, 𝜆𝑚(𝑊), and𝜆𝑀(𝑊) to denote, respectively, the transpose, the inverse,
the minimum eigenvalue, and the maximum eigenvalue of
any square matrix 𝑊 and 𝑊 > 0 (𝑊 < 0) stands
for a symmetrical and positive- (negative-) definite matrix𝑊. 𝐼 stands for unit matrix with appropriate dimension.‖𝛼‖22 = ∑∞𝑘=0 𝛼𝑡(𝑘)𝛼(𝑘). 𝛿𝐻 denotes the first difference of𝐻. We let R+ denote the set of nonnegative real numbers;
C𝑛 = C([−ℎ, 0],R𝑛) denotes the Banach space of continuous
functions 𝜑 : [−ℎ, 0] → R𝑛, and for 𝜑 ∈ C𝑛, the associated
norm is ‖𝜑‖𝑐 = sup−ℎ≤𝑠≤0‖𝜑‖. We let N = {1, . . . , 𝑁}.

Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations. In
symmetric block matrices, we use the symbol ∙ to represent a
term that is induced by symmetry. Sometimes, the arguments
of a function will be omitted when no confusion can arise.

The following facts are provided in [6].

Fact 1. Let Σ1, Σ2, Σ3, and 0 < 𝑅 = 𝑅𝑡 be real constant
matrices of compatible dimensions and let 𝐻(𝑡) be a real
matrix function satisfying𝐻𝑡(𝑡)𝐻(𝑡) ≤ 𝐼.Then for any 𝜌 > 0
satisfying 𝜌Σ𝑡2Σ2 < 𝑅, the following matrix inequality holds:

(Σ3 + Σ1𝐻(𝑡) Σ2) 𝑅−1 (Σ𝑡3 + Σ𝑡2𝐻𝑡 (𝑡) Σ𝑡1)
≤ 𝜌−1Σ1Σ𝑡1 + Σ3 (𝑅 − 𝜌Σ𝑡2Σ2)−1 Σ𝑡3. (1)

Fact 2. For any real matrices Σ1, Σ2, and Σ3 with appropriate
dimensions and Σ𝑡3Σ3 ≤ 𝐼, it follows that

Σ1Σ3Σ2 + Σ𝑡2Σ𝑡3Σ𝑡1 ≤ 𝛼−1Σ1Σ𝑡1 + 𝛼Σ𝑡2Σ2, ∀𝛼 > 0. (2)

Lemma 1 (Finsler’s lemma, [31]). Let𝑋 ∈ R𝑛, 𝑃 = 𝑃𝑡 ∈ R𝑛×𝑛,
and 𝐻 ∈ R𝑚×𝑛 such that rank(𝐻) = 𝑟 < 𝑛. The following
statements are equivalent:

(i) 𝑥𝑡𝑃𝑥 < 0 ∀𝐻𝑥 = |0, 𝑥 ̸= 0.
(ii) (𝐻⊥)𝑡𝑃(𝐻⊥) < 0.
(iii) ∃𝑁 ∈ R𝑛×𝑚 : 𝑃 + 𝑁𝐻 +𝐻𝑡𝑁𝑡 < 0.
(iv) ∃𝜆 ∈ R : 𝑃 − 𝜆𝐻𝑡𝐻 < 0.

2. Overview

There are many applications where time-delay phenomena
appear quite naturally. This includes, but not limited to, the
following:

(A) Automotive: combustionmodel (ignition delay); elec-
tromechanical brakes (actuator delay).

(B) Heat exchanger: distributed delay due to conduction
in a tube.

(C) Hydraulic networks: the transport phenomenon of
water which is modeled as a varying time-delay.

(D) Electrical networks.
(E) Intelligent building: time-delay due to wireless trans-

mission of sensor data.
(F) Marine robotics: transport delay due to sonar mea-

surement of depth.
(G) Population dynamics: predator-prey model based on

Volterra model with predator (𝑦) and prey (𝑥) popu-
lations (𝑡 is the time-life of prey):

𝑥̇ (𝑡) = 𝑟𝑥 (1 − 𝑥 (𝑡 − 𝜏)𝐾 ) − 𝛼𝑥𝑦,
̇𝑦 (𝑡) = −𝑐𝑦 + 𝛽𝑥𝑦. (3)

(H) Manufacturing process: the metal cutting process on
a lathe which can be described as

𝑚 ̈𝑦 (𝑡) + 𝑐 ̇𝑦 (𝑡) + 𝑘𝑦 (𝑡) = −𝐹𝑡 [𝑓 + 𝑦 (𝑡) − 𝑦 (𝑡 − 𝜏)] . (4)

The study of this model is critical in understanding
the regenerative chattering phenomenon.

(I) Epidemics: understanding the dynamics of biolog-
ical processes and epidemics which is a challenge
for health workers engaged in managing treat-
ment strategies. The underlying mechanisms can
be revealed by considering epidemics and diseases
as dynamical processes, for which the hematology
dynamics can be modeled by

̇𝑦 (𝑡) = −𝜆𝑦 (𝑡) + 𝐹 [𝑦 (𝑡 − 𝜏)] (5)

which formulates the circulating cell populations in
one compartment, where 𝑦 represents the circulating
cell population, 𝜆 is the cell-loss rate, and the mono-
tone function 𝐹 (describing a feedback mechanism)
denotes the flux of cells from the previous compart-
ment. The delay 𝜏 represents the average length of
time required to go through the compartment.

(J) Glucose-insulinmodel: letting𝐺(𝑡) and 𝐼(𝑡) represent
the levels of plasma glycemia and insulinemia; then

𝐺̇ (𝑡) = 𝐾𝑥𝑔𝑖𝐺 (𝑡) 𝐼 (𝑡) + 𝑇𝑔ℎ𝑉𝐺 ,
̇𝐼 (𝑡) = −𝐾𝑥𝑖𝐼 (𝑡) + 𝑇𝑖𝐺max𝑉𝐼 𝑓 [𝐺 (𝑡 − 𝜏𝑔)] ,

(6)

where

(i) 𝐾𝑥𝑔𝑖 is rate of glucose uptake by tissues (insulin-
dependent) per pM of plasma insulin concen-
tration,

(ii) 𝑇𝑔ℎ is net balance between hepatic glucose out-
put and insulin-independent zero-order glucose
tissue uptake (mainly by the brain),
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(iii) 𝑉𝐺 is apparent distribution volume for glucose,
(iv) 𝐾𝑥𝑖 is apparent first-order disappearance rate

constant for insulin,
(v) 𝑇𝑖𝐺max

is maximal rate of second-phase insulin
release,

(vi) 𝑉𝐼 is apparent distribution volume for insulin,
(vii) 𝜏𝑔 is apparent delay with which the pancreas

varies secondary insulin release in response to
varying plasma glucose concentrations,

(viii) 𝑓(⋅) is nonlinear function that models the
Insulin Delivery Rate.

(K) Neutral delay systems: arising, for instance, in the
analysis of the coupling between transmission lines
and population dynamics: evolution of forests. The
model is based on a refinement of the delay-free
logistic (or Pearl-Verhulst equation) where effects as
soil depletion and erosion have been introduced

𝑥̇ (𝑡) = 𝑟𝑥 (𝑡) [1 − 𝑥 (𝑡 − 𝜏) + 𝑐𝑥̇ (𝑡 − 𝜏)𝐾 ] , (7)

where 𝑥 is the population, 𝑟 is the intrinsic growth
rate, and𝐾 is the environmental carrying capacity.

3. Models and Solutions

A general model of TDS can be expressed as

𝑥̇ (𝑡) = 𝑓 (𝑥𝑡, 𝑡, 𝑢𝑡) , 𝑡 ≥ 𝑡𝑜
𝑦 (𝑡) = 𝑔 (𝑥𝑡; 𝑡; 𝑢𝑡) , (8)

where

𝑥𝑡 (𝜃) = 𝑥 (𝑡 + 𝜃) ; − ℎ ≤ 𝜃 ≤ 0,
𝑢𝑡 (𝜃) = 𝑢 (𝑡 + 𝜃) ; − ℎ ≤ 𝜃 ≤ 0,
𝑥 (𝜃) = 𝜑 (𝜃) ; 𝑡0 − ℎ ≤ 𝜃 ≤ 𝑡0.

(9)

3.1. Retarded Systems. It is quite natural to consider, as state-
space, the set S = S([−ℎ; 0];R𝑛) of continuous functions
mapping the interval [−ℎ; 0] → R𝑛, with the topology of
uniform convergence. The initial condition 𝜑(𝜃) must be
prescribed as Φ : [−ℎ; 0];R𝑛. Observe that Φ ∈ C or
may involve bounded jumps at some discontinuity instants.
The nature of the solution (and of its initial value) then
distinguishes FDE from ODE.

Definition 2 (see [3]). A function 𝑥 is said to be a solution on[𝜎 − ℎ; 𝜎 + 𝑎] of the retarded functional differential equation
(RDE)

𝑥̇ (𝑡) = 𝑓 (𝑡, 𝑥𝑡) ,
𝑓 : Ω ⊂ R × S → R

𝑛, (10)

if there are 𝜎 ∈ R and 𝑎 > 0 such that 𝑥 ∈ S([𝜎−ℎ; 𝜎+ℎ];R𝑛),(𝑡, 𝑥𝑡) ∈ Ω, and 𝑥(𝑡) satisfies (10) for 𝑡 ∈ [𝜎 − ℎ; 𝜎 + 𝑎]. For

given 𝜎 ∈ R; 𝜑 ∈ S, we say that 𝑥(𝜎; 𝜑; 𝑓) is a solution of (10)
with initial value 𝜑 at 𝜎 or simply a solution through (𝜎; 𝜑)
if there is 𝑎 > 0 such that 𝑥(𝜎; 𝜑; 𝑓) is a solution of (10) on𝑡 ∈ [𝜎 − ℎ; 𝜎 + 𝑎] and 𝑥𝜎(𝜎; 𝜑; 𝑓) = 𝜑.

Supposing that Ω is open and 𝑓 ∈ S(Ω,R𝑛), then a
function 𝑥 ∈ S([𝜎 − ℎ − 𝛼; 𝜎];R𝑛), 𝛼 > 0, is referred to
as a backward continuation of the solution through (𝜎; 𝜑) if𝑥𝜎 = 𝜑 and for any 𝜎1 ∈ [𝜎 − 𝛼, 𝜎]; (𝜎1; 𝑥𝜎1) ∈ Ω and 𝑥 is a
solution of (10) on (𝜎1 − ℎ; 𝜎) through (𝜎1; 𝑥𝜎1).

The interested reader is referred to [3] for further useful
discussions.

3.2. Neutral Systems. Neutral systems also are delay systems
but involve the same highest derivation order for some
components of 𝑥(𝑡) at both time 𝑡 and past time(s) 𝑡𝑜 < 𝑡,
which implies an increasedmathematical complexity.Neutral
systems are represented by

𝑥̇ (𝑡) = 𝑓 (𝑥𝑡, 𝑡, 𝑥̇𝑡, 𝑢𝑡) (11)

or

𝑑F𝑥𝑡𝑑𝑡 = 𝑓 (𝑥𝑡, 𝑡, 𝑢𝑡) , (12)

where F : S → R𝑛 is a regular operator with deviating
argument in time, as, for instance, with𝐷 constant matrix

F𝑥𝑡 = 𝑥 (𝑡) − 𝐷𝑥 (𝑡 − 𝜔) . (13)

It is significant to observe that the solutions of retarded
systems have their differentiability degree smoothed with
increasing time, but this is no longer true for neutral systems
due to the implied difference-equation involving 𝑥̇(𝑡); the tra-
jectory may replicate any irregularity of the initial condition𝜑(𝑡), even if 𝑓 and 𝐹 satisfy many smoothness properties.

3.3. Models for Linear Time-Invariant Systems. In the linear,
time-invariant case (LTI), the corresponding general time-
delay model is

𝑥̇ (𝑡) = 𝑝∑
ℓ=1

𝐷ℓ𝑥̇ (𝑡 − 𝜔ℓ)
+ 𝑞∑
𝑗=0

[𝐴𝑗𝑥 (𝑡 − ℎ𝑗) + 𝐵𝑗𝑢 (𝑡 − ℎ𝑗)]
+ 𝑟∑
𝑚=1

∫𝑡
𝑡−𝜏𝑚

[𝐺𝑚 (𝜃) 𝑥 (𝜃) + 𝐻𝑚 (𝜃) 𝑢 (𝜃)] 𝑑𝜃,
(14)

𝑦 (𝑡) = 𝑞∑
𝑗=0

𝐶𝑗𝑥 (𝑡 − ℎ𝑗) + 𝑟∑
𝑚=1

∫𝑡
𝑡−𝜏𝑚

𝑁𝑚 (𝜃) 𝑥 (𝜃) 𝑑𝜃, (15)

where

(i) ℎ0 = 0 and 𝐴0 is constant instantaneous matrix;
(ii) constant matrices 𝐴𝑗; 𝑗 > 0 represent discrete-delay

phenomena;
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(iii) the sum of integrals corresponds to distributed delay
effects, weighted by 𝐺𝑚 over the time intervals [𝑡 −𝜏𝑚; 𝑡];

(iv) matrices𝐷ℓ account for the neutral part;
(v) matrices 𝐵𝑗 and𝐻𝑚(𝑠) are input matrices;
(vi) in brief, ℎ = max𝑗,𝑚,ℓ{ℎ𝑗; 𝜏𝑚; 𝜔ℓ}.

Note that (15), 𝑦(𝑡) ∈ R𝑝, represents the output description,
with discrete 𝐶𝑗 and distributed𝑁𝑚(𝜃) delayed parts as well.
The special case of (14)-(15)

𝑥̇ (𝑡) = 𝑞∑
𝑗=0

[𝐴𝑗𝑥 (𝑡 − ℎ𝑗) + 𝐵𝑗𝑢 (𝑡 − ℎ𝑗)] ,
ℎ0 = 0 < ℎ1 < ⋅ ⋅ ⋅ , ℎ𝑞−1 < ℎ𝑞

(16)

has been investigated extensively in the literature.

4. Notion of Stability

As a starting point, we recall the following stability notion for
time-delay system (3).

Definition 3. If, for any 𝑡0 ∈ R and any 𝜀 > 0, there exists a𝛿 = 𝛿(𝑡0, 𝜀) > 0 such that ‖𝑥𝑡0‖𝑐 < 𝛿 implies ‖𝑥(𝑡)‖ < 𝜀 for
all 𝑡 ≥ 𝑡0, then the trivial solution of time-delay system (3) is
stable.

The following properties are readily recognized.

(i) If the trivial solution of time-delay system (3) is stable
and if 𝛿 can be chosen independently of 𝑡0, then the
trivial solution of time-delay system (3) is uniformly
stable.

(ii) If the trivial solution of time-delay system (3) is stable
and if, for any 𝑡0 ∈ R and any 𝜀 > 0, there exists𝛿𝑎 = 𝛿𝑎(𝑡0, 𝜀) > 0 such that ‖𝑥𝑡0‖𝑐 < 𝛿𝑎 implies
lim𝑡→∞𝑥(𝑡) = 0, then the trivial solution of time-
delay system (3) is asymptotically stable.

(iii) If the trivial solution of time-delay system (3) is
uniformly stable and there exists 𝛿𝑎 > 0, such that‖𝑥𝑡0‖𝑐 < 𝛿𝑎 implies ‖𝑥(𝑡)‖ < 𝜂 for 𝑡 ≥ 𝑡0 + 𝑇 and𝑡0 ∈ R, then the trivial solution of time-delay system
(3) is uniformly asymptotically stable.

(iv) If the trivial solution of time-delay system (3) is
(uniformly) asymptotically stable and if 𝛿𝑎 can be
arbitrarily large but finite number, then the trivial
solution of time-delay system (3) is globally (uni-
formly) asymptotically stable.

5. Fundamental Stability Theorems

In the study of stability analysis of time-delay systems, the
methods of Lyapunov functions and Lyapunov-Krasovskii
functionals play important roles. There are two Lyapunov
methods are often used:

(A) Lyapunov-Krasovskii functional (LKF)method,
(B) Lyapunov-Razumikhin function (LRF)method.

It is significant to observe that LKF method deals with
functionals which essentially have scalar values whereas
Lyapunov-Razumikhin function (LRF)method involves only
functions rather than functionals.

In this section, these two methods are reviewed; see [6]
for details.

Consider the following time-delay system described by

𝑥̇ (𝑡) = 𝑓 (𝑡, 𝑥𝑡) , 𝑡 ≥ 𝑡𝑜, (17)

where

(i) 𝑥𝑡 = 𝑥(𝑡 + 𝜃); −𝜃𝑚 ≤ 𝜃 ≤ 0,
(ii) 𝑓;R × C𝑛 → R𝑛 is continuous and is Lipschitz in 𝑥𝑡,
(iii) 𝑓(𝑡, 0) = 0.

In the sequel, we let 𝑥𝑡(𝑠, 𝜑) be the solution of (17) at time 𝑡
with initial condition 𝑥𝑠 = 𝜑. Let G be a bounded subset of
C𝑛 and let H be a bounded subset of R𝑛.

A statement of Lyapunov-Krasovskii stability method is
provided by the following theorem.

Theorem 4. Suppose that 𝑓 maps R × G into H and 𝑢, V, 𝑤 :
R+ → R+ are continuous, nondecreasing functionswith𝑢(0) =
V(0) = 0 and 𝑢(𝛽) > 0 and V(𝛽) > 0, for 𝛽 > 0. If there exists a
continuous functional V : R × C𝑛 → R such that

(1) 𝑢(‖𝜑(0)‖) ≤ V(𝑡, 𝜑) ≤ V(‖𝜑(0)‖),
(2) V̇(𝑡, 𝜑) ≤ −𝑤(‖𝜑(0)‖),

where

V̇ (𝑡, 𝜑)
= lim
Δ𝑡→0+

1Δ𝑡 (V (𝑡 + Δ𝑡, 𝑥𝑡+Δ𝑡 (𝑡, 𝜑)) − V (𝑡, 𝜑)) , (18)

then the trivial solution of time-delay system (3) is uniformly
stable. If 𝑤(𝛽) > 0, for 𝛽 > 0, then the trivial solution
of time-delay system (3) is uniformly asymptotically stable.
Additionally, if lim𝛽→∞𝑢(𝛽) → ∞, then the trivial solution
of time-delay system (3) is globally uniformly asymptotically
stable.

In some cases, the LKF involving terms depending on
the state derivatives 𝑥̇𝑡 are quite effective in the derivation
of the stability conditions. This will in turn requires the
modification of the conditions in Theorem 4. See [8] for
details.

A statement of Lyapunov-Razumikhin stability method is
provided by the following theorem.

Theorem 5. Suppose that 𝑓 maps R × G into H and 𝑢, V, 𝑤 :
R+ → R+ are continuous, nondecreasing functionswith𝑢(0) =
V(0) = 0 and 𝑢(𝛽) > 0 and V(𝛽) > 0, for 𝛽 > 0, and V is strictly
increasing. If there exists a continuous functional V : R×R𝑛 →
R such that

(1) 𝑢(‖𝑥‖) ≤ V(𝑡, 𝑥) ≤ V(‖𝑥‖),
(2) V̇(𝑡, 𝜑) ≤ −𝑤(‖𝜑(0)‖), if
[V (𝑡 + 𝜃, 𝑥 (𝑡 + 𝜃)) ≤ V (𝑡, 𝑥 (𝑡))] , for 𝜃 ∈ [−ℎ, 0] , (19)
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where

V̇ (𝑡, 𝑥 (𝑡)) = 𝑑𝑑𝑡V (𝑡, 𝑥 (𝑡))
= 𝜕V (𝑡, 𝑥 (𝑡))𝜕𝑡 + 𝜕V (𝑡, 𝑥 (𝑡))𝜕𝑥 𝑓 (𝑡, 𝑥𝑡) ,

(20)

then the trivial solution of time-delay system (3) is uniformly
stable. If 𝑤(𝛽) > 0, for 𝛽 > 0, there exists a continuous
nondecreasing function 𝑞(𝛽) > 0, for 𝛽 > 0, and the foregoing
condition (2) is strengthened to V̇(𝑡, 𝑥(𝑡)) ≤ −𝑤(‖𝑥(𝑡)‖), if
(V (𝑡 + 𝜃, 𝑥 (𝑡 + 𝜃)) ≤ 𝑞 (V (𝑡, 𝑥 (𝑡)))) ,

for 𝜃 ∈ [−ℎ, 0] , (21)

then the trivial solution of time-delay system (3) is uniformly
asymptotically stable. Additionally, if lim𝛽→∞𝑢(𝛽) → ∞,
then the trivial solution of time-delay system (3) is globally
uniformly asymptotically stable.

The following Halanay result [7] also plays an important
role in the stability analysis of time-delay systems.

Theorem 6. Suppose that constant scalars 𝑘1 and 𝑘2 satisfy𝑘1 > 0, 𝑘2 > 0, and 𝑦(𝑡) is a nonnegative continuous function
on [𝑡0 − 𝜏, 𝑡0] satisfying

̇𝑦 (𝑡) ≤ −𝑘1𝑦 (𝑡) + 𝑘2𝑦 (𝑡) , 𝑡 ≥ 𝑡0,
𝑦 (𝑡) = sup

𝑡−𝜏≤𝑠≤𝑡
{𝑦 (𝑠)} , 𝜏 ≥ 0. (22)

Then, for 𝑡 ≥ 𝑡0, one has
𝑦 (𝑡) ≤ 𝑦 (𝑡0) exp (−𝜅 (𝑡 − 𝑡0)) , (23)

where 𝜅 > 0 is the unique solution to the following equation:

𝜅 = 𝑘1 − 𝑘2 exp (−𝜅𝜏) . (24)

Remark 7. Theorems 4 through 6 can be used to derive sta-
bility conditions for the case when the delay is time-varying,
which is continuous but not necessarily differentiable.

Remark 8. In the sequel, stability conditions for time-delay
systems can be broadly classified into two types:

(1) Delay-independent stability (DIS) conditions which
do not include information about the delay. Generally
speaking, DIS conditions are simpler to apply.

(2) Delay-dependent stability (DDS) conditions which
involve information on the size and pattern of the
delay. DDS conditions are less conservative especially
in the case when the time-delay is small.

In the sequel, this paper focuses on the delay-dependent
stability problem and the objective is twofold:

(A) to develop delay-dependent conditions to provide a
maximal allowable delay as large as possible,

(B) to develop delay-dependent conditions by using as
few as possible decision variables while keeping the
same maximal allowable delay.

Alternatives approaches were proposed in the literature
to obtain DDS conditions, among which the linear matrix
inequality (LMI) approach is the most popular. The LMI
approach has played a significant role due to the fact that
family linear matrix inequalities can be readily converted
into a convex optimization problem. The latter can be han-
dled efficiently by resorting to recently developed numerical
algorithms for solving LMIs [31]. Additional reason that
makes LMI conditions appealing is their frequent readiness to
solve the corresponding synthesis problems once the stability
(or other performance) conditions are established, especially
when state feedback is employed.

6. Stability Results for Linear Delay Systems

For the sake of simplicity, the following linear system with a
single discrete delay is considered:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐴𝑑 (𝑡 − 𝜏 (𝑡)) , 𝑡 ≥ 𝑡0, (25)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝐴 and 𝐴𝑑 are system
matrices with appropriate dimensions, and 𝜏(𝑡) is the time-
delay factors. There are several classes of time-delay patterns
considered in the literature as follows:

Class A: constant delay,

𝜏 (𝑡) = 𝑑, ∀𝑡. (26)

Class B: unknown-but-bounded delay,

0 < 𝜏 (𝑡) ≤ 𝜏𝑀, ∀𝑡. (27)

Class C: bounded time-varying delay,

𝜏𝑚 ≤ 𝜏 (𝑡) ≤ 𝜏𝑀, ∀𝑡. (28)

Class D: bounded time-varying delay with bounded
derivative,

𝜏𝑚 ≤ 𝜏 (𝑡) ≤ 𝜏𝑀, ∀𝑡
𝑑𝑚 ≤ ̇𝜏 (𝑡) ≤ 𝑑𝑀, ∀𝑡. (29)

6.1. Constant Delay. When the time-delay is constant, the
system described by (30) can be rewritten as

𝑥̇ (𝑡) = 𝐴0𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑) , 𝑡 ≥ 𝑡0. (30)

Natural extensions of the quadratic Lyapunov functions can
be particularly used to study in the framework of LTI delay
systems (30) and the functional

V0 (𝑥𝑡) = 𝑥𝑡 (𝑡)P𝑥 (𝑡) + ∫0
−𝑑
𝑥𝑡 (𝑡 + 𝜃)Q𝑥 (𝑡 + 𝜃) 𝑑𝜃. (31)

One obtains sufficient conditions by the following theorem.
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Theorem 9. The time-delay system (30) is asymptotically
stable for any 𝑑 ≥ 0 if there exist matricesP > 0 andQ > 0,R
verifying

P𝐴0 + 𝐴𝑡0P +P𝐴𝑑Q−1𝐴𝑡𝑑P + Q +R = 0 (32)

or equivalently the LMI

[P𝐴0 + 𝐴𝑡0P + Q P𝐴𝑑∙ −Q ] < 0. (33)

It is significant to observe in the delay-free case, 𝐴𝑑 = 0,
that (33) provides the link with the Lyapunov equation for
ODE. Nevertheless, in the delayed case𝐴𝑑 ̸= 0, this sufficient
condition is far from being necessary. From here, many
generalizations were proposed, involving different alternative
terms:

V1 (𝑥𝑡) = 𝑥𝑡 (𝑡)P𝑥 (𝑡) ,
V2 (𝑥𝑡) = 𝑥𝑡 (𝑡) ∫0

−𝑑𝑗

Q𝑗𝑥 (𝑡 + 𝜃) 𝑑𝜃,
V3 (𝑥𝑡) = ∫0

−𝑑𝑗

𝑥𝑡 (𝑡 + 𝜃)S𝑗𝑥 (𝑡 + 𝜃) 𝑑𝜃,

V4 (𝑥𝑡) = ∫0
−𝜏𝑗

∫0
𝑡+𝜃

𝑥𝑡 (𝜃)R𝑗𝑥 (𝜃) 𝑑𝜃 𝑑𝑠,
V5 (𝑥𝑡) = 𝑥𝑡 (𝑡) ∫0

−𝑑𝑗

P𝑗 (𝜂) 𝑥 (𝑡 + 𝜂) 𝑑𝜂,
V6 (𝑥𝑡) = ∫0

−𝑑𝑗

∫0
−𝑑𝑗

𝑥𝑡 (𝑡 + 𝜂)P (𝜂, 𝜃) 𝑥 (𝑡 + 𝜃) 𝑑𝜂 𝑑𝜃.
(34)

The following points are noteworthy:

(1) Loosely speaking, the terms V2; V3 are used for the
delay-independent stability of discrete delays.

(2) The term 𝑉4 is meant for distributed delays or
discrete-delay dependent stability. On considering
system (30) along with

V (𝑥𝑡) = V1 (𝑥 (𝑡)) + V4 (𝑥𝑡) + V4 (𝑥𝑡−ℎ) (35)

standard manipulation leads, with 𝑅1 for 𝑉4(𝑥𝑡); 𝑅2
for 𝑉4(𝑥𝑡 − ℎ), to the following delay-dependent LMI
condition:

[[[
[
P (𝐴0 + 𝐴𝑑) + (𝐴0 + 𝐴𝑑)𝑡P + 𝑑R1 + 𝑑R2 𝑑P𝐴𝑑𝐴0 ℎP𝐴2𝑑∙ −𝑑R1 0

∙ ∙ −𝑑R2

]]]
]
< 0. (36)

(3) Although the terms 𝑉5 and 𝑉6 appear, in a general
form, in necessary and sufficient schemes (see [10–
12]), the general computation of the time-varying
matrices is excessively burden. To avoid such compu-
tational limitations, a discretization scheme incorpo-
rating piecewise-constant functions 𝑃𝑗(:) was intro-
duced in [15, 16].

6.2. Time-Varying Delay. In what follows, we will review the
LMI techniques in deriving DDS results for the single-delay
case. Extension to themultiple-delay case is a straightforward
task. We consider the class of time-delay systems (class B) in
which the delay factor is continuous but bounded.

𝑥̇ (𝑡) = 𝐴0𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝜏 (𝑡)) ,
𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏𝑀, 0] . (37)

Similar to (31), we consider the LKF of the form

𝑉̂0 (𝑥𝑡) = 𝑥𝑡 (𝑡)P𝑥 (𝑡)
+ ∫𝑡

𝑡−𝜏(𝑡)
𝑥𝑡 (𝑡 + 𝜃)Q𝑥 (𝑡 + 𝜃) 𝑑𝜃. (38)

Since the time-varying delay 𝜏(𝑡)(𝑡)may not be differentiable,
we introduce the following equalities for any matricesY,W,
and S with appropriate dimensions:

𝑥̇𝑡 (𝑡)Y [𝐴0𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥̇ (𝑡)] = 0,
𝑥𝑡 (𝑡)W [𝐴0𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥̇ (𝑡)] = 0,

𝑥̇𝑡 (𝑡 − 𝜏 (𝑡))S [𝐴0𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝜏 (𝑡)) − 𝑥̇ (𝑡)] = 0.
(39)

The following theorem summarized the main result.

Theorem 10. The time-delay system (37) is asymptotically
stable if there exist matricesP > 0,Y,W, and S such that

[[[
[

W𝐴0 + 𝐴𝑡0W𝑡 W𝐴𝑑 + 𝐴𝑡0S𝑡 𝐴𝑡0Y𝑡 +P −W

∙ S𝐴𝑑 + 𝐴𝑡𝑑S𝑡 𝐴𝑡𝑑Y𝑡 −S

∙ ∙ −Y −Y𝑡

]]]
]

< 0.
(40)
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Consider the time-delay system

𝑥̇ (𝑡) = 𝐴0𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝜏 (𝑡)) ,
𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝜏𝑀, 0] ,

0 ≤ 𝜏𝑚 ≤ 𝜏 (𝑡) ≤ 𝜏𝑀,
(41)

𝜎 ≤ ̇𝜏 (𝑡) ≤ 𝜇. (42)

According to the Lyapunov-Razumikhin stabilitymethod
Theorem 5, the following stability condition can be obtained.

Theorem 11. The time-delay system (41) is asymptotically
stable if there exist matrix P > 0 and a scalar 𝜎 > 0 such
that

[P𝐴0 + 𝐴𝑡0P + 𝜎P P𝐴𝑑∙ −𝜎P] < 0. (43)

On choosing the LKF (31), a delay-independent stability
condition can be derived in the following form.

Theorem 12. The time-delay system (41) is asymptotically
stable if there exist matricesP > 0 and Q > 0 such that

[P𝐴0 + 𝐴𝑡0P + Q P𝐴𝑑∙ − (1 − 𝜇)Q] < 0. (44)

Remark 13. It should be noted that Theorem 12 is indepen-
dent of the time-delay and therefore is very conservative
especially when the time-delay is small. When the delay is
constant, 𝜏(𝑡) ≡ 𝑑, it follows from the Schur complements
that (40) is equivalent to

P𝐴0 + 𝐴𝑡0P + Q +P𝐴𝑑Q−1𝐴𝑑P < 0. (45)

In turn this implies that

P (𝐴0 + 𝐴𝑑) + (𝐴0 + 𝐴𝑑)𝑡P < 0 (46)

which is a necessary and sufficient condition for the stability
of system (41) with zero delay.

In the literature, the following Lyapunov functional is
often used to derive delay-dependent results.

V (𝑡, 𝑥𝑡) = 𝑥𝑡 (𝑡)P𝑥 (𝑡) + ∫𝑡
𝑡−𝜏(𝑡)

𝑥𝑡 (𝑠)Q𝑥 (𝑠) 𝑑𝑠
+ ∫0

−𝜏𝑀

∫𝑡
𝑡+𝜃

𝑥̇𝑡 (𝑠)Z𝑥̇ (s) 𝑑𝑠 𝑑𝜃.
(47)

It was first introduced in [32, 33]. Using the free-weighting
[34], the following DDS condition can be derived based on
the LKF (47).

Theorem 14. The time-delay system (41) is asymptotically
stable if there exist matrices P > 0, Q > 0, Z > 0, and

[𝑋11 𝑋12∙ 𝑋22
] ≥ 0, and any matrices 𝑀 and 𝑁 of appropriate

dimensions such that

[[[
[

L11 L12 𝜏𝑀𝐴𝑡0Z
∙ L22 𝜏𝑀𝐴𝑡𝑑Z∙ ∙ −𝜏𝑀Z

]]]
]
< 0,

[[[
[

𝑋11 𝑋12 𝑀
∙ 𝑋22 𝑁
∙ ∙ Z

]]]
]
≥ 0,

(48)

where

L11 = P𝐴0 + 𝐴𝑡0P +𝑀 +𝑀𝑡 + Q + 𝜏𝑀𝑋11,
L12 = P𝐴𝑑 +𝑀 +𝑁𝑡 + 𝜏𝑀𝑋12,
L22 = −𝑁 −𝑁𝑡 − (1 − 𝜇)Q + 𝜏𝑀𝑋22.

(49)

6.3. Augmented Lyapunov Functional. Recalling that the first
term in most LKFs is 𝑥𝑡(𝑡)𝑃𝑥(𝑡) which involves the current
state 𝑥(𝑡) only and does not reflect the delayed state. Hence,
an augmented Lyapunov functional was proposed in [35] for
system described by (30).

V (𝑡, 𝑥𝑡) = 𝜉𝑡 (𝑡)P𝜉 (𝑡) + ∫𝑡
𝑡−𝑑

󰜚𝑡 (𝑠)Q󰜚 (𝑠) 𝑑𝑠
+ ∫0

−𝑑
∫𝑡
𝑡+𝜃

󰜚𝑡 (𝑠)Z󰜚 (𝑠) 𝑑𝑠 𝑑𝜃,
(50)

𝜉𝑡 (𝑡) = [𝑥𝑡 (𝑡) 𝑥𝑡 (𝑡 − 𝑑) ∫𝑡
𝑡−𝑑

𝑥𝑡 (𝑠) 𝑑𝑠] ,
󰜚𝑡 (𝑠) = [𝑥𝑡 (𝑠) 𝑥̇𝑡 (𝑠)] .

(51)

Remark 15. Compared with the Lyapunov functional (47),
the augmented Lyapunov functional can lead to less conser-
vative results. Additionally, it is also applicable for systems
with time-varying delay, which can be seen in [36] and
references therein.

6.4. Triple Integral Lyapunov Functional. On examining the
LKFs (31) and (50), it can be seen that the Lyapunov
functional often contains integral terms: single ∫𝑡

𝑡−𝜏(𝑡)
𝑥𝑡(𝑡 +

𝜃)Q𝑥(𝑡+𝜃)𝑑𝜃 and double ∫0
−𝑑
∫𝑡
𝑡+𝜃

󰜚𝑡(𝑠)Z󰜚(𝑠)𝑑𝑠𝑑𝜃 in order to
bring the effect of time-delays.

A natural question which arose is whether introducing
triple integral terms in the Lyapunov functional would
yield improvement in the stability behavior. This question
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is addressed [37, 38] by extending the LKFs (50)-(51) and
incorporating a triple integral term to yield the form

V (𝑡, 𝑥𝑡) = 𝜉𝑡 (𝑡)P𝜉 (𝑡) + ∫𝑡
𝑡−𝑑

󰜚𝑡 (𝑠)Q󰜚 (𝑠) 𝑑𝑠
+ ∫0

−𝑑
∫𝑡
𝑡+𝜃

󰜚𝑡 (𝑠)Z󰜚 (𝑠) 𝑑𝑠𝑑𝜃
+ ∫0

−𝑑
∫0
𝜃
∫𝑡
𝑡+𝛽

𝑥̇𝑡 (𝑠)R𝑥̇ (𝑠) 𝑑𝑠 𝑑𝛽 𝑑𝜃.
(52)

Remark 16. It is reported in [37, 38] by simulation results that
the Lyapunov functional containing triple integral terms is
quite effective in reduction of the conservatism of the stability
conditions.

6.5. Newton-Leibniz Formula. An alternative route can be
pursued by using the Newton-Leibniz formula

𝑥 (𝑡 − 𝑑) = 𝑥 (𝑡) − ∫𝑡
𝑡−𝑑

𝑥̇ (𝛼) 𝑑𝛼
= 𝑥 (𝑡) − ∫𝑡

𝑡−𝑑
[𝐴0𝑥 (𝛼) + 𝐴𝑑𝑥 (𝛼 − 𝑑)] 𝑑𝛼

(53)

and recalling (30) to yield

𝑥̇ (𝑡) = [𝐴0 + 𝐴𝑑] 𝑥 (𝑡)
− 𝐴𝑑 ∫𝑡

𝑡−𝑑
[𝐴0𝑥 (𝛼) + 𝐴𝑑𝑥 (𝛼 − 𝑑)] 𝑑𝛼. (54)

Remark 17. It should be clear that the asymptotic stability of
the time-delay system in (54) implies that of system (30).

Following [6], we proceed to study theDDSof system (54)
using the following LKF candidate:

V (𝑡, 𝑥𝑡) = 𝑥𝑡 (𝑡)P−1𝑥 (𝑡)
+ ∫0

−ℎ
∫𝑡
𝑡+𝛼

𝑥𝑡 (𝜃) 𝐴𝑡𝑑Q−11 𝐴𝑑𝑥 (𝜃) 𝑑𝜃 𝑑𝛼
+ ∫0

−ℎ
∫𝑡
𝑡−ℎ+𝛼

𝑥𝑡 (𝜃) 𝐴𝑡𝑑Q−12 𝐴𝑑𝑥 (𝜃) 𝑑𝜃 𝑑𝛼,
P > 0, Q1 > 0, Q2 > 0.

(55)

Define

Γ = P (𝐴0 + 𝐴𝑑) + (𝐴0 + 𝐴𝑑)𝑡P
+ 𝐴𝑑 (Q1 + Q2) 𝐴𝑡𝑑.

(56)

The main stability result is established by the following
theorem.

Theorem 18. The time-delay system (54) is asymptotically
stable for any delay satisfying 0 < 𝑑 ≤ 𝑑𝑀 if there existmatrices
P > 0, Q1, and Q2 such that

[[[
[

Γ 𝑑𝑀P𝐴𝑡0 𝑑𝑀P𝐴𝑡𝑑
∙ −Q1 0
∙ ∙ −Q2

]]]
]
< 0. (57)

Remark 19. The technique by using the Newton-Leibniz
formula to transform the time-delay system to appropriate for
DDS analysis is quite useful. However, still a different route of
writing (54) would be

𝑥̇ (𝑡) = [𝐴0 + 𝐴𝑑] 𝑥 (𝑡) − 𝐴𝑑 ∫𝑡
𝑡−𝑑

𝑥̇ (𝑑𝛼) 𝑑𝛼,
𝑑𝑑𝑡 [𝑥 (𝑡) + 𝐴𝑑 ∫

𝑡

𝑡−𝑑
𝑥 (𝛼) 𝑑𝛼] = (𝐴0 + 𝐴𝑑) 𝑥 (𝑡) .

(58)

However, all the transformed time-delay systems by using
the Newton-Leibniz formula introduce additional dynamics
which may cause conservatism as the delay-dependent con-
ditions derived based on the transformed systems.

6.6. Bounding Techniques. In studying delay-dependent sta-
bility for time-delay systems, it is desirable to find methods
that yield stability conditions with reduced conservatism. A
wide class of early methods rely on generating improved
bounds on some weighted cross products arising in the
analysis of the delay-dependent stability problem. This class
of methods is obtained by using the well-known algebraic
inequality

−2𝛼𝑡𝛽 ≤ 𝛼𝑡Ξ𝛼 + 𝛽𝑡Ξ−1𝛽, (59)

where the vectors 𝛼, 𝛽 ∈ R𝑛 andmatrixΞ ∈ R𝑛×𝑛. An integral
bounding inequality is as follows.

Lemma 20 (see [39]). Assume that 𝑎(𝛼) ∈ R𝑛𝑎 and 𝑏(𝛼) ∈
R𝑛𝑏 are given for 𝛼 ∈ 𝑂𝑚𝑒𝑔𝑎. Then, for any 0 < 𝑋 ∈ R𝑛𝑎×𝑛𝑎

and any matrix𝑀 ∈ R𝑛𝑎×𝑛𝑎 , one has

− ∫
Ω
𝑎𝑡 (𝛼) 𝑏 (𝛼) 𝑑𝛼 ≤ ∫

Ω
[𝑎 (𝛼)𝑏 (𝛼)]

𝑡

⋅ [[
𝑋 𝑋𝑀
∙ (𝑀𝑡𝑋 + 𝐼)𝑋−1 (𝑀𝑡𝑋 + 𝐼)𝑡]][𝑎 (𝛼)𝑏 (𝛼)] 𝑑𝛼

(60)

which when applied to time-delay systems of the type (30), it
yields the following.
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Theorem 21. The time-delay system (30) is asymptotically
stable for any delay satisfying 0 < ℎ ≤ ℎ𝑀 if there exist matrices
P > 0,Q,V, andW such that

[[[[[
[

Φ −W𝑡𝐴𝑡𝑑 𝐴𝑡0𝐴𝑡𝑑V ℎ𝑀 (P +W𝑡)
∙ −Q 𝐴𝑡𝑑𝐴𝑡𝑑V 0
∙ ∙ −V 0
∙ ∙ ∙ −V

]]]]]
]
< 0

Φ
= P (𝐴0 + 𝐴𝑑) + (𝐴0 + 𝐴𝑑)𝑡P +W

𝑡𝐴𝑑
+ 𝐴𝑡𝑑W1 + Q.

(61)

An improved version of Lemma 20 is expressed by the
following.

Lemma 22 (see [40]). Assume that 𝑎(𝛼) ∈ R𝑛𝑎 and 𝑏(𝛼) ∈
R𝑛𝑏 and N(𝛼) ∈ R𝑛𝑎×𝑛𝑏 are given for 𝛼 ∈ 𝑂𝑚𝑒𝑔𝑎. Then, for
any 0 < 𝑋 ∈ R𝑛𝑎×𝑛𝑎 and any matrix𝑀 ∈ R𝑛𝑎×𝑛𝑎 , one has

− ∫
Ω
𝑎𝑡 (𝛼)N (𝛼) 𝑏 (𝛼) 𝑑𝛼

≤ ∫
Ω
[𝑎 (𝛼)𝑏 (𝛼)]

𝑡 [𝑋 𝑌 −N (𝛼)
∙ 𝑍 ][𝑎 (𝛼)𝑏 (𝛼)] 𝑑𝛼,

(62)

where

[𝑋 𝑌
∙ 𝑍] ≥ 0. (63)

By considering the following LKF,

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑡 (𝑡)P𝑥 (𝑡) + ∫𝑡
𝑡−𝑑

𝑥𝑡 (𝛼)Q𝑥 (𝛼) 𝑑𝛼
+ ∫0

−𝑑
∫𝑡
𝑡+𝛽

𝑥̇𝑡 (𝛼) 𝑍𝑥̇ (𝛼) 𝑑𝛼 𝑑𝛽.
(64)

Applying Lemma 22, we obtain the following delay-depend-
ent stability theorem.

Theorem 23. The time-delay system (30) is asymptotically
stable for any delay satisfying 0 < 𝑑 ≤ 𝑑𝑀 if there existmatrices
P > 0,Q, 𝑋, 𝑌, and 𝑍 such that

[[[
[
Λ P𝐴𝑑 − 𝑌 𝑑𝑀𝐴𝑡0𝑍∙ −Q 𝑑𝑀𝐴𝑡𝑑𝑍∙ ∙ −𝑑𝑀𝑍

]]]
]
< 0,

[𝑋 𝑌
∙ 𝑍] ≥ 0,

Λ
= P (𝐴0 + 𝐴𝑑) + (𝐴0 + 𝐴𝑑)𝑡P +W

𝑡𝐴𝑑
+ 𝐴𝑡𝑑W1 + Q.

(65)

On the other hand, deploying Lemma 1 together with
Lemma 22, a different delay-dependent stability criterion is
provided by the following theorem.

Theorem 24 (see [41]). The time-delay system (30) is asymp-
totically stable for any delay satisfying 0 < 𝑑 ≤ 𝑑𝑀 if there exist
matrices P1 > 0,S, 𝑃2, 𝑃3, 𝑃4, 𝑌1, 𝑌2, 𝑍1, 𝑍2, 𝑍3 and 𝑅 > 0
such that the following LMIs hold:

[[
[
Θ1 Θ2 Θ3∙ Θ4 Θ5∙ ∙ Θ6

]]
]
< 0,

[[
[
𝑅 𝑌1 𝑌2∙ 𝑍1 𝑍2∙ ∙ 𝑍3

]]
]
≥ 0,

Θ1 = 𝐴𝑡0𝑃2 + 𝑃𝑡2𝐴0 + 𝑌1 + 𝑌𝑡1 +S

+ 𝑑𝑀𝑍1,
Θ2 = P1 − 𝑃𝑡2 + 𝐴𝑡0𝑃3 + 𝑌2 + 𝑑𝑀𝑍2,
Θ3 = 𝑃𝑡2𝐴𝑑 − 𝑌𝑡1 + 𝐴𝑡0𝑃4,
Θ4 = 𝑑𝑀 (𝑅 + 𝑍3) − 𝑃𝑡3 − 𝑃3,
Θ5 = 𝑃𝑡3𝐴𝑑 − 𝑌𝑡2 − 𝑃4,
Θ6 = 𝐴𝑡𝑑𝑃4 + 𝑃𝑡4𝐴𝑑 −S.

(66)

Remark 25. The inequality in Lemma 22 is more general than
both inequalities (59) and (60) and for this reason, it was
extensively used in dealingwith various issues related to time-
delay systems to obtain delay-dependent results.

Now, we present another important inequality, which is
also effective in the derivation of DDS conditions.

Lemma 26 (see [42]). For any constant matrix 0 < M ∈
R𝑚×𝑚, scalars 𝑏 > 𝑎, and vector function 𝜔 : [𝑎, 𝑏] → R𝑚 such
that the integrations in the following are well-defined, then

(𝑏 − 𝑎) ∫𝑏
𝑎
𝜔𝑡 (𝛼)M𝜔 (𝛼) 𝑑𝛼

≥ ∫𝑏
𝑎
[∫𝑏
𝑎
𝜔𝑡 (𝛼) 𝑑𝛼]𝑡M[∫𝑏

𝑎
𝜔𝑡 (𝛼) 𝑑𝛼] .

(67)

Using Lemma 26 and selecting the LKF

𝑉 (𝑡, 𝑥𝑡) = 𝑥𝑡 (𝑡)P𝑥 (𝑡) + ∫𝑡
𝑡−𝑑

𝑥𝑡 (𝜃)Q𝑥 (𝜃) 𝑑𝜃
+ 𝑑∫0

−𝑑
∫𝑡
𝑡+𝛼

𝑥̇𝑡 (𝜃)Z𝑥̇ (𝜃) 𝑑𝜃 𝑑𝛼,
P > 0, Q > 0, Z > 0,

(68)

we obtain the following stability result.
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Theorem 27 (see [6]). The time-delay system (30) is asymp-
totically stable for any delay satisfying 0 < 𝑑 ≤ 𝑑𝑀 if there
exist matricesP > 0, Q > 0 andZ > 0 such that
[[[
[
P𝐴0 + 𝐴𝑡0P + Q −Z P𝐴𝑑 +Z 𝑑𝑀𝐴𝑡0Z∙ −Q −P 𝑑𝑀𝐴𝑡𝑑Z∙ ∙ −Z

]]]
]
< 0. (69)

Alternatively, selecting the LKF

V (𝑡, 𝑥𝑡) = 𝑥𝑡 (𝑡)P𝑥 (𝑡)
+ 𝜏𝑀∫0

−𝜏𝑀

∫𝑡
𝑡+𝛼

𝑥̇𝑡 (𝜃)Z𝑥̇ (𝜃) 𝑑𝜃 𝑑𝛼,
P > 0, Z > 0,

(70)

we obtain the following stability result.

Theorem28 (see [6]). The time-delay system (37) is asymptot-
ically stable for all continuous delay 𝜏(𝑡) satisfying 0 < 𝜏(𝑡) ≤𝜏𝑀 if there exist matricesP > 0 andZ > 0 such that

[[[
[
P𝐴0 + 𝐴𝑡0P −Z P𝐴𝑑 +Z 𝜏𝑀𝐴𝑡0Z∙ −Z −P 𝜏𝑀𝐴𝑡𝑑Z∙ ∙ −Z

]]]
]
< 0. (71)

A useful result is summarized by the following lemma.

Lemma 29 (the integral inequality [43]). For any constant
matrix 0 < Σ ∈ R𝑛×𝑛, scalar 𝜏∗ < 𝜏(𝑡) < 𝜏+, and vector
function 𝑥̇ : [𝑡 − 𝜏+, 𝑡 − 𝜏∗] → R𝑛 such that the following
integration is well-defined, then it holds that

− (𝜏+ − 𝜏∗) ∫𝑡−𝜏∗
𝑡−𝜏+

𝑥̇𝑡 (𝑠) Σ𝑥̇ (𝑠) 𝑑𝑠
≤ − [𝑥 (𝑡 − 𝜏∗) − 𝑥 (𝑡 − 𝜏+)]𝑡
⋅ Σ [𝑥 (𝑡 − 𝜏∗) − 𝑥 (𝑡 − 𝜏+)] .

(72)

Lemma 29 is frequently called the “integral inequality”
and it is derived from Jensen’s inequality [44].

Remark 30. It is significant to observe that Theorem 27
establishes that the time-delay system (30) is asymptotically
stable for any delay 𝑑 satisfying 0 < 𝑑 ≤ 𝑑𝑀 when the
LMI (69) attains a feasible solution, which implies that, for𝑑 satisfying 0 < 𝑑 ≤ 𝑑𝑀/2, the time-delay system (30) is
asymptotically stable as well.Then, introducing the half delay
into the time-delay system (30) will take more information
on the system and thus may tend to reduce the conservatism
inTheorem 27. For further elaboration on this argument, see
[45].

6.7. Discrete-Time Systems. Less attention has been paid to
discrete-time systems with a time-delay because a linear dis-
crete-time system with a constant time-delay can be trans-
formed into a delay-free system by means of a state-aug-
mentation approach. However this approach is not suitable

for systems with either unknown or time-varying delays. For
a small time-varying delays, the descriptor model transfor-
mation approach was employed [46].

Consider a class of discrete-time systems with state-delay
is represented by

𝑥 (𝑘 + 1) = 𝐴𝑜𝑥 (𝑘) + 𝐷𝑜𝑥 (𝑘 − 𝑑 (𝑘)) , (73)

where for 𝑘 ∈ Z+ ≜ {0, 1, . . .}, 𝑥(𝑘) ∈ R𝑛 is the state and𝐴𝑜 ∈ R𝑛×𝑛 and 𝐷𝑜 ∈ R𝑛×𝑛 are constant matrices. The delay
factor 𝑑(𝑘) is unknown-but-bounded in the form

0 < 𝑑𝑚 ≤ 𝑑 (𝑘) ≤ 𝑑𝑀, 𝑑𝑠 = 𝑑𝑀 − 𝑑𝑚 + 1, (74)

where the scalars 𝑑𝑚 and 𝑑𝑀 represent the lower and upper
bounds, respectively, and 𝑑𝑠 denotes the number of samples
within the delay interval.

Remark 31. By setting 𝑑(𝑘) ≡ 0 in (73), it is readily seen that|𝜆(𝐴𝑜 + 𝐷𝑜)| < 1 is a necessary condition for stability of
system (73). From all studies on discrete-time-delay systems,
it is assumed that this is always the case.

Remark 32. The class of systems (73) represents a nominally
linear model which emerges in many areas dealing with
the applications functional difference equations or delay-
difference equations. These applications include cold rolling
mills, decision-making processes, and manufacturing sys-
tems.

Related results for a class of discrete-time systems with
time-varying delays can be found in [47] where delay-
dependent stability and stabilization conditionswere derived.
It should be stressed that although we consider only the case
of single time-delay, extension tomultiple time-delay systems
can be easily attained using an augmentation procedure.

Intuitively if we associate with system (73) a positive-
definite Lyapunov-Krasovskii functional 𝑉(𝑘, 𝑥(𝑘)) > 0 and
we find that its first difference Δ𝑉(𝑘, 𝑥(𝑘)) = 𝑉(𝑘 + 1, 𝑥(𝑘 +1))−𝑉(𝑘, 𝑥(𝑘)) is negative-definite along the solutions of (73),
then the origin of system (73) is globally asymptotically stable.
Formally, we present the following theorem for discrete-time
systems of the type (73).

Theorem 33. The equilibrium 0 of the discrete-time system

𝑥 (𝑘 + 1) = ℎ (𝑥 (𝑘)) (75)

is globally asymptotically stable if there is a function 𝑉 :{0, 1, 2, . . .} ×R𝑛 → R such that

(i) 𝑉(𝑘, 𝑥(𝑘)) is a positive-definite function, decrescent,
and radially unbounded,

(ii) Δ𝑉(𝑘, 𝑥(𝑘)) = 𝑉(𝑘 + 1, 𝑥(𝑘 + 1)) − 𝑉(𝑘, 𝑥(𝑘)) is
negative-definite along the solutions of system (73).

For arbitrary value of 𝑑(𝑘), denote
𝑧 (𝑘) = [𝑥𝑡 (𝑘) | 𝑥𝑡 (𝑘 − 𝑑 (𝑘))]𝑡 . (76)
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We have

𝑧 (𝑘 + 1) =
[[[[[[
[

𝐴𝑜 0 . . . 0 𝐷𝑜𝐼 0 . . . 0 0... d . . . ... ...
0 0 . . . 𝐼 0

]]]]]]
]
𝑧 (𝑘) . (77)

It is obvious that system (73) is globally asymptotically stable
if and only if system (75) is globally asymptotically stable. For
system (75), we define

𝑉̂ (𝑘, 𝑧 (𝑘)) = 𝑧𝑡 (𝑘) diag [P Q ⋅ ⋅ ⋅ Q] 𝑧 (𝑘) , (78)

whereP > 0 and Q > 0. It is easy to see that 𝑉̂(𝑘, 𝑧(𝑘)) > 0,
decrescent and radially unbounded, and hence system (75) is
globally asymptotically stable.

By selecting the Lyapunov-Krasovskii functional

𝑉 (𝑘) = 𝑥𝑡 (𝑘)P𝑥 (𝑘) + 𝑘−1∑
𝑚=𝑘−𝑑(𝑘)

𝑥𝑡 (𝑚)Q𝑥 (𝑚) ,
0 < P, 0 < Q,

(79)

and invoking the Lyapunov-Krasovskii theorem, the follow-
ing stability condition can be derived.

Theorem 34. The discrete-delay system (73) is asymptotically
stable if there exist matricesP > 0 and Q > 0 such that

[[[
[
− (P − Q) 0 𝐴𝑡𝑜P∙ −Q 𝐷𝑡𝑜P∙ ∙ −P

]]]
]
< 0. (80)

We stress that LMI (80) is virtually delay-independent
since it is satisfied no matter the size of delay 𝑑(𝑘) is.

Next, sufficient delay-dependent LMI-based stability
conditions are given. The approach used here does not intro-
duce any dynamics and leads to a product separation between
the matrices of the system and those from the Lyapunov-
Krasovskii functional. The following theorem provides some
LMI conditions depending on the values 𝑑𝑚 and 𝑑𝑀.
Theorem 35. Given the delay sample number 𝑑𝑠, system (73)
subject to (74) is delay-dependent asymptotically stable if one
of the following equivalent conditions is satisfied:

(A)There exist matrices 0 < P ∈ R𝑛×𝑛 and 0 < Q ∈ R𝑛×𝑛

such that

Ξ𝑎 = [𝐴𝑡𝑜P𝐴𝑜 + 𝑑𝑠Q −P 𝐴𝑡𝑜P𝐷𝑡𝑜∙ 𝐷𝑡𝑜P𝐷𝑜 − Q
] < 0. (81)

(B) There exist matrices 0 < P ∈ R𝑛×𝑛, 0 < Q ∈ R𝑛×𝑛,
X ∈ R𝑛×𝑛,Y ∈ R𝑛×𝑛, andZ ∈ R𝑛×𝑛 such that

Ξ𝑐 = [[[
[
P +X +X𝑡 Y −X𝐴𝑜 Z −X𝐷𝑜∙ ΓV −𝐴𝑡𝑜Z𝑡 −Y𝐷𝑜∙ ∙ Γ𝑤

]]]
]

< 0,
(82)

where

ΓV = −𝐴𝑡𝑜Z𝑡 −Y𝐴𝑜 + 𝑑𝑠Q −P,
ΓV = −Q −Z𝐷𝑜 − 𝐷𝑡𝑜Z𝑡. (83)

In this case, the Lyapunov-Krasovskii functional (LKF)

𝑉̃ (𝑘) = 𝑥𝑡 (𝑘)P𝑥 (𝑘) + 𝑘−1∑
𝑚=𝑘−𝑑(𝑘)

𝑥𝑡 (𝑚)Q𝑥 (𝑚)

+ 1−𝑑𝑚∑
𝑠=2−𝑑𝑀

𝑘−1∑
𝑚=𝑘+𝑠−1

𝑥𝑡 (𝑚)Q𝑥 (𝑚) > 0
(84)

is such that

Δ𝑉̃ (𝑘) < 0, ∀ [𝑥𝑡 (𝑘) 𝑥𝑡 (𝑘 − 𝑑 (𝑘))]𝑡 ̸= 0. (85)

The result of Theorem 35 was developed in [47–49].
Next, we consider the following discrete-time piecewise

linear systems with infinite distributed delays [50]:

𝑥 (𝑘 + 1) = 𝐴ℓ𝑥 (𝑘) + 𝐷ℓ ∞∑
𝑑=1

𝜇𝑑𝑥 (𝑘 − 𝑑) + 𝐵ℓ𝑢 (𝑘) , (86)

where 𝑥(𝑘) ∈ R𝑛 is the state and {𝑆ℓ}ℓ∈𝐿 denotes a partition of
the state-space into a number of closed polyhedral subspaces,𝐿 is the index set of subspaces, and 𝑢(𝑘) ∈ R𝑚 is the
control input. Matrices 𝐴ℓ 𝐷ℓ 𝐵ℓ are constant matrices with
appropriate dimensions corresponding to the ℓth local model
of the systems.When the state of the system transits from one
region to another at the time 𝑘, the dynamics is governed by
the local model of the former one. 𝜇𝑑 ≥ 0 is the convergence
constants that satisfy the following condition:

𝜇 ≜ ∞∑
𝑑=1

𝜇𝑑 ≤ ∞∑
𝑑=1

𝑑𝜇𝑑 < +∞. (87)

Distributed time-delays have been widely recognized and
intensively studied for continuous-time systems [51]. How-
ever, the corresponding results for discrete-time systems have
been very few due mainly to the difficulty in formulating the
distributed delays in a discrete-time domain. The distributed
delay term∑∞𝑑=1 𝜇𝑑𝑥(𝑘 − 𝑑) can be regarded as the discretiza-
tion of the infinite integral form ∫𝑡

−∞
𝑘(𝑡 − 𝑠)𝑥(𝑠)𝑑𝑠 for the

continuous-time system.The following result is recalled [51].

Lemma 36. Let 0 ≤ 𝑀 ∈ R𝑛×𝑛, 𝑥𝑗 ∈ R𝑛, and 𝑎𝑗 > 0,𝑗 = 1, 2, . . . , are constants. If the series concerned is convergent,
then one has

(∞∑
𝑗=1

𝑎𝑗𝑥𝑗)
𝑡

𝑀(∞∑
𝑗=1

𝑎𝑗𝑥𝑗) ≤ (∞∑
𝑗=1

𝑎𝑗) ∞∑
𝑗=1

𝑎𝑗𝑥𝑡𝑗𝑀𝑥𝑗. (88)

Introduce the following Lyapunov-Krasovskii functional
candidate:

𝑉 (𝑘) = 𝑥𝑡 (𝑘)Pℓ𝑥 (𝑘) + ∞∑
𝑑=1

𝜇𝑑 𝑘−1∑
𝑚=𝑘−𝑑

𝑥𝑡 (𝑚)Q𝑥 (𝑚) . (89)
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By setting Q = 𝜇𝑑Q and invoking Theorem 34, the following
result is obtained.

Theorem 37. Consider the piecewise linear system (86) with𝑢 ≡ 0. If there exist matrices 𝑋ℓ > 0 and 𝑄 > 0 such that the
following linear matrix inequalities hold for (ℓ, 𝑗) ∈ Ω ≜ {ℓ, 𝑗 |𝑥(𝑘) ∈ 𝑆ℓ, 𝑥(𝑘 + 1) ∈ 𝑆𝑗, 𝑗 ̸= ℓ}:

[[[[[
[

−P + Q 0 𝐴𝑡𝑜P
∙ − Q𝜇𝑑 𝐷𝑡𝑜P∙ ∙ −P

]]]]]
]
< 0. (90)

We emphasize that Theorem 37 was established in [50].

7. Model Transformations

It must be recalled that the prototype system (30), the
independent of delay (IOD) stability demands matrix 𝐴0 to
beHurwitz which, coherently, can be found in condition (33).
On the other hand, the criteria ensuring delay-dependent
stability for ℎ ∈ [0, ℎ𝑀) require the matrix 𝐴0 + 𝐴𝑑 to be
Hurwitz as evident in condition (36). On this basis, several
results concerning delay-dependent stability were derived,
from the formula

∫𝑡
𝑡−𝑑

𝑥̇ (𝑠) 𝑑𝑠 = 𝑥 (𝑡) − 𝑥 (𝑡 − 𝑑) . (91)

Consider the change of variables

𝐴𝑗𝑥 (𝑡 − 𝑑) = [𝐴𝑗 − 𝐿𝑗] 𝑥 (𝑡 − 𝑑𝑗)
+ 𝐿𝑗 [𝑥 (𝑡) − ∫𝑡

𝑡−𝑑𝑗

𝑥̇ (𝑠) 𝑑𝑠] . (92)

This will transform the multiple-delay system with possibly𝑑1 = 0
𝑥̇ (𝑡) = 𝑚∑

𝑗=1

𝐴𝑗𝑥 (𝑡 − 𝑑𝑗) (93)

into the system having augmented delay ℎ = max(ℎ𝑗 + ℎ𝑘)
𝑥̇ (𝑡) = [

[
𝑚∑
𝑗=1

𝐿𝑗]]𝑥 (𝑡) + 𝑚∑
𝑗=1

𝐴𝑗𝑥 (𝑡 − 𝑑𝑗)

+ 𝑚∑
𝑗=1,𝑘=1

∫𝑡
𝑡−𝑑𝑗

𝐿𝑗𝐴𝑘𝑥 (𝑠 − 𝑑𝑗) 𝑑𝑠.
(94)

Model (94) guarantees that the unstable nondelayed part 𝐴𝑑
in system (30) is absorbed in the stable part [∑𝑚𝑗=1 𝐿𝑗]. Indeed
such decomposition can be conveniently handled using LMI

tools. It is shown in [5, 52] that the foregoing system can be
written in the three following forms:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) − 𝑚∑
𝑗,𝑘=1

𝐴𝑗𝑘 ∫𝑡−𝑑𝑘
𝑡−𝑑𝑗𝑘

𝑥 (𝑠) 𝑑𝑠,
𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) − 𝑚∑

𝑗=1

𝐴𝑗 ∫𝑡
𝑡−𝑑𝑗

𝑥̇ (𝑠) 𝑑𝑠,
𝑑𝑑𝑡 [[𝑥 (𝑡) +

𝑚∑
𝑗=1

𝐴𝑗 ∫𝑡
𝑡−𝑑𝑗

𝑥 (𝑠) 𝑑𝑠]] = 𝐴𝑥 (𝑡) ,

𝐴 = 𝑚∑
𝑗=1

𝐴𝑗, 𝐴𝑗𝑘 = 𝐴𝑗𝐴𝑘, 𝑑𝑗𝑘 = 𝑑𝑗 + 𝑑𝑘.

(95)

It turns out that each of the above formulations can be
studied by using specific Lyapunov-Krasovskii functionals
(34) leading to the three different Riccati equations [5]:

Π + 𝑚𝑑R +P
𝑚∑
𝑗,𝑘=1

𝑑𝑗𝐴𝑗𝑘R−1𝐵𝑡𝑗𝑘P = −Q,
Π + 𝑚∑

𝑗=1

(𝑑𝑗P𝐴𝑗R−1𝐵𝑡𝑗P + 𝑚𝑑𝐴𝑡𝑗R𝐴𝑗) = −Q,
Π + 𝑚∑

𝑗=1

𝑑𝑗R𝑗 + 𝑚∑
𝑗,𝑘=1

𝑑𝑗𝐴𝑡P𝐴𝑗R−1
𝑗 𝐴𝑡𝑗P𝐴 = −Q,

Π = P𝐴 + 𝐴𝑡P.

(96)

Remark 38. In the literature, there were other different
methods to develop delay-dependent stability criteria. These
methods include the discretized LKF approach [4], the
descriptor system approach [53], and the delay-partitioning
projection approach [54]. Declaring the stability result as
conservative or not requires well-defined quantitative mea-
sures. More importantly, it must be pointed out that the issue
of computational complexity and the associated number of
manipulated matrices deserve a serious investigation.

8. Delay-Dependent Stabilization

Extending the time-delay system (30) for stabilization studies,
we start with the form

𝑥̇ (𝑡) = 𝐴0𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑) + 𝐵0𝑢 (𝑡) , 𝑡 ≥ 𝑡0, (97)

where 𝑢(𝑡) is the control input and 𝐵0 is the input matrix with
the pair 𝐴0, 𝐵0 being controllable. We seek to design a state
feedback controller

𝑢 (𝑡) = K0𝑥 (𝑡) , (98)

such that the closed-loop system

𝑥̇ (𝑡) = 𝐴𝑐𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑) , 𝐴𝑐 = 𝐴0 + 𝐵0K0, (99)

is asymptotically stable [55]. This is attained by convex
analysis [31] leading to the following theorem.
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Theorem39. Theclosed-loop time-delay system (97) is asymp-
totically stable for any 𝑑 ≥ 0 if there exist matrices X >0,Y,W > 0 verifying

[
[
𝐴0X +X𝐴𝑡0 + 𝐵0Y +Y𝑡𝐵𝑡0 +W 𝐴𝑑X

∙ −W ]
] < 0. (100)

8.1. A Class of Nonlinear Systems. One of the standard classes
of nonlinear time-delay systems is given by

𝑥̇ (𝜎) = 𝐴𝑜𝑥 (𝜎) + 𝐴𝑑𝑥 (𝜎 − 𝜎𝑑) + 𝐵𝑜𝑢 (𝜎)
+ ℎ (𝑡, 𝑥, 𝑥 (𝑡 − 𝑑)) (101)

in the dimensionless coordinates 𝜎, where 𝑥(𝜎) is the state
vector, 𝑢(𝑡) is the control input, and 𝐴𝑜, 𝐵𝑜, and 𝐴𝑑 are
known real constant matrices. The nonlinear vector functionℎ(⋅, ⋅) is a piecewise-continuous function in its arguments.
In the discussions to follow, we assume that this function is
uncertain satisfying the quadratic inequality

ℎ𝑡 (𝑡, 𝑥, 𝑥 (𝑡 − 𝑑)) ℎ (𝑡, 𝑥, 𝑥 (𝑡 − 𝑑))
≤ 𝛼2𝑥𝑡𝐻𝑡

𝑜𝐻𝑜𝑥 + 𝜃2𝑥𝑡 (𝑡 − 𝑑)𝐻𝑡
𝑑𝐻𝑑𝑥 (𝑡 − 𝑑) ,

(102)

where 𝛼 > 0 and 𝜃 > 0 are the bounding parameters. The
matrices 𝐻𝑜 ∈ R𝑟×𝑛 and 𝐻𝑑 ∈ R𝑝×𝑛 are constants and
characterize the upper bound on system nonlinearities.

For stability purposes, we let 𝛼−2 = 𝛾 and 𝜃−2 = 𝜓. The
following convex optimization result holds.

Theorem 40. Nonlinear system (101) with 𝑢 ≡ 0 is robustly
stable if the following LMI feasibility problem is solvable:

min 𝛾, 𝜓
subject to X > 0

[[[[[[[[[[
[

𝐴𝑜X +X𝐴𝑡𝑜 XW X𝐻𝑡
𝑜 𝐼 𝐴𝑑 0∙ −W 0 0 0 0∙ ∙ −𝛾𝐼 0 0 0∙ ∙ ∙ −𝐼 0 0

∙ ∙ ∙ ∙ −𝑊 𝐻𝑡
𝑑∙ ∙ ∙ ∙ ∙ −𝜓

]]]]]]]]]]
]

< 0.

(103)

Given that the pair (𝐴𝑜, 𝐵𝑜) is stabilizable. We achieve
state feedback stabilization in two stages as follows.

(S1) Let the linear state feedback be 𝑢(𝑡) = 𝐾𝑜𝑥(𝑡), and
then the closed-loop system becomes

𝑥̇ (𝑡) = 𝐴𝑘𝑥 (𝑡) + 𝐴𝑑𝑥 (𝑡 − 𝑑) + ℎ (𝑡, 𝑥, 𝑥 (𝑡 − 𝑑)) ,
𝐴𝑘 = (𝐴𝑜 + 𝐵𝑜𝐾𝑜) . (104)

This establishes the following theorem.

Theorem 41. Nonlinear system (101) is robustly stabilized by
control law 𝑢(𝑡) = 𝐾𝑜𝑥(𝑡), if the following LMI problem has a
feasible solution.

min 𝛾, 𝜓
subject to X > 0,

Y

[[[[[[[[[[[[[[[[
[

𝐴𝑜X +X𝐴𝑡𝑜 + 𝐵𝑜Y +Y𝑡𝐵𝑡𝑜 XW X𝐻𝑡
𝑜 𝐼 𝐴𝑑 0

∙ −W 0 0 0 0
∙ ∙ −𝛾𝐼 0 0 0
∙ ∙ ∙ −𝐼 0 0
∙ ∙ ∙ ∙ −𝑊 𝐻𝑡

𝑑

∙ ∙ ∙ ∙ ∙ −𝜓

]]]]]]]]]]]]]]]]
]

< 0.
(105)

(S2) Next, to include bounds the gain matrix 𝐾𝑜, we set
the bounding relations

𝑀𝑡𝑀 < 𝜇𝐼, 𝜇 > 0,
𝑋−1 < 𝜑𝐼, 𝜑 > 0. (106)

Moreover, to guarantee desired values {𝛼, 𝜃} of the bound-
ing factors {𝛼, 𝜃}, we enforce 𝛼−2 = 𝛾 and 𝜃−2 = 𝜓. The
following theorem summarizes the main result.

Theorem 42. Nonlinear system (101) is robustly stabilized by
control law 𝑢(𝑡) = 𝐾𝑜𝑥(𝑡), with constrained feedback gains if
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following convex optimization problem over LMIs has a feasible
solution:

min 𝛾 + 𝜓 + 𝜇 + 𝜑
subject to X > 0,

Y

[[[[[[[[[[[
[

𝐴𝑜X +X𝐴𝑡𝑜 + 𝐵𝑜Y +Y𝑡𝐵𝑡𝑜 XW X𝐻𝑡
𝑜 𝐼 𝐴𝑑 0

∙ −W 0 0 0 0
∙ ∙ −𝛾𝐼 0 0 0
∙ ∙ ∙ −𝐼 0 0
∙ ∙ ∙ ∙ −𝑊 𝐻𝑡

𝑑∙ ∙ ∙ ∙ ∙ −𝜓

]]]]]]]]]]]
]

< 0

𝛾 − 1𝛼2 < 0,
𝜓 − 1𝜎2 < 0,
[−𝜇𝐼 Y𝑡

∙ −𝐼] < 0,
[−𝜑𝐼 𝐼

∙ −𝑋] < 0.

(107)

Remark 43. One can address the performance deterioration
issue by considering that the actual linear state feedback
controller has the form 𝑢(𝑡) = [𝐾𝑜+Δ𝐾𝑜]𝑥(𝑡), 𝐾𝑜 ∈ R𝑚×𝑛 is a
constant gain matrix, and Δ𝐾𝑜 is a gain perturbation matrix.

9. Kalman Filtering

The seminal Kalman filtering algorithm [56] is the optimal
estimator over all possible linear ones and gives unbiased
estimates of the unknown state vectors under the condi-
tions that the system and measurement noise processes are
mutually independent Gaussian distributions. Robust state-
estimation arose out of the desire to estimate unmeasurable
state variables when the plant model has uncertain parame-
ters. In the sequel, we consider the state-estimation problem
for a class of linear continuous-time-lag systems with norm-
bounded parameter uncertainties. Specifically, we address
the state-estimator design problem such that the estimation
error covariance has a guaranteed bound for all admissible
uncertainties.

9.1. A Class of Continuous-Time-Lag Systems. We consider a
class of uncertain time-delay systems represented by

𝑥̇ (𝑡) = [𝐴 (𝑡) + Δ𝐴 (𝑡)] 𝑥 (𝑡) + 𝐴𝑑 (𝑡) 𝑥 (𝑡 − 𝜏)+ 𝑤 (𝑡)
= 𝐴Δ (𝑡) 𝑥 (𝑡) + 𝐴𝑑 (𝑡) 𝑥 (𝑡 − 𝜏) + 𝑤 (𝑡) ,

(108)

𝑦 (𝑡) = [𝐶 (𝑡) + Δ𝐶 (𝑡)] 𝑥 (𝑡) + V (𝑡)
= 𝐶Δ (𝑡) 𝑥 (𝑡) + V (𝑡) , (109)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝑦(𝑡) ∈ R𝑚 is the measured
output, and 𝑤(𝑡) ∈ R𝑛 and V(𝑡) ∈ R𝑚 are, respectively, the
process and measurement noises. In (1)-(2), 𝐴(𝑡) ∈ R𝑛×𝑛,𝐴𝑑(𝑡) ∈ R𝑛×𝑛, and 𝐶(𝑡) ∈ R𝑚×𝑛 are piecewise-continuous
matrix functions. Here, 𝜏 is a constant scalar representing the
amount of time-lag in the state.ThematricesΔ𝐴(𝑡) andΔ𝐶(𝑡)
represent time-varying parametric uncertainties which are of
the form:

[Δ𝐴 (𝑡)
Δ𝐶 (𝑡)] = [𝐻 (𝑡)

𝐻𝑐 (𝑡)]Δ (𝑡) 𝐸 (𝑡) , (110)

where 𝐻(𝑡) ∈ R𝑛×𝛼, 𝐻𝑐(𝑡) ∈ R𝑚×𝛼, and 𝐸(𝑡) ∈ R𝛽×𝑛 are
known piecewise-continuous matrix functions and Δ(𝑡) ∈
R𝛼×𝛽 is an unknown matrix with Lebesgue measurable
elements satisfying

Δ𝑡 (𝑡) Δ (𝑡) ≤ 𝐼 ∀𝑡. (111)

The initial condition is specified as ⟨𝑥(0), 𝑥(𝑠)⟩ = ⟨𝑥𝑜, 𝜙(𝑠)⟩,
where 𝜙(⋅) ∈ L2[−𝜏, 0] which is assumed to be a zero-mean
Gaussian random vector. The following standard assump-
tions on noise statistics are recalled.
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Assumption 44. ∀𝑡, 𝑠 ≥ 0
(a)

E [𝑤 (𝑡)] = 0;
E [𝑤 (𝑡) 𝑤𝑡 (𝑠)] = 𝑊 (𝑡) 𝛿 (𝑡 − 𝑠) ;

𝑊 (𝑡) > 0.
(112)

(b)

E [V (𝑡)] = 0;
E [V (𝑡) V𝑡 (𝑠)] = 𝑉 (𝑡) 𝛿 (𝑡 − 𝑠) ;

𝑉 (𝑡) > 0.
(113)

(c)

E [𝑥 (0) 𝑤𝑡 (𝑡)] = 0;
E [𝑥 (0) V𝑡 (𝑡)] = 0. (114)

(d)

E [𝑤 (𝑡) V𝑡 (𝑠)] = 0;
E [𝑥 (0) 𝑥𝑡 (0)] = 𝑅𝑜, (115)

where E[⋅] stands for the mathematical expectation and 𝛿(⋅)
is the Dirac function.

9.2. Robust Kalman Filtering. Our objective is to design a
stable state estimator of the form:

̇̂𝑥 (𝑡) = 𝐺 (𝑡) 𝑥 (𝑡) + 𝐾 (𝑡) 𝑦 (𝑡) , 𝑥 (0) = 0, (116)

where 𝐺(𝑡) ∈ R𝑛×𝑛 and 𝐾(𝑡) ∈ R𝑛×𝑚 are piecewise-
continuous matrices to be determined such that there exists
a matrix Ψ ≥ 0 satisfying

E [(𝑥 − 𝑥) (𝑥 − 𝑥)𝑡] ≤ Ψ, ∀Δ : Δ𝑡 (𝑡) Δ (𝑡) ≤ 𝐼. (117)

Note that (112) implies

E [(𝑥 − 𝑥)𝑡 (𝑥 − 𝑥)] ≤ tr (Ψ) , ∀Δ : Δ𝑡 (𝑡) Δ (𝑡) ≤ 𝐼. (118)

In this case, the estimator (116) is said to provide a guaranteed
cost (GC) matrix Ψ.

Examination of the proposed estimator proceeds by
analyzing the estimation error

𝑒 (𝑡) = 𝑥 (𝑡) − 𝑥 (𝑡) . (119)

Substituting (109) and (116) into (119), we express the dynam-
ics of the error in the form

̇𝑒 (𝑡) = 𝐺 (𝑡) 𝑒 (𝑡) + [𝐴 (𝑡) − 𝐺 (𝑡) − 𝐾 (𝑡) 𝐶 (𝑡)] 𝑥 (𝑡)
+ [Δ𝐴 (𝑡) − 𝐾 (𝑡) Δ𝐶 (𝑡)] 𝑥 (𝑡)
+ 𝐴𝑑 (𝑡) 𝑥 (𝑡 − 𝜏) + [𝑤 (𝑡) − 𝐾 (𝑡) V (𝑡)] .

(120)

By introducing the extended state vector

𝜉 (𝑡) = [𝑥 (𝑡)𝑒 (𝑡)] ∈ R
2𝑛, (121)

it follows from (108)-(109) and (120) that
̇𝜉 (𝑡) = [󵱰𝐴 (𝑡) + 󵱰𝐻 (𝑡) 𝐹 (𝑡) 󵱰𝐸 (𝑡)] 𝜉 (𝑡) + 󵱰𝐷 (𝑡) 𝜉 (𝑡 − 𝜏)

+ 󵱰𝐵 (𝑡) 𝜂 (𝑡)
= 󵱰𝐴Δ (𝑡) 𝜉 (𝑡) + 󵱰𝐷 (𝑡) 𝜉 (𝑡 − 𝜏) + 󵱰𝐵 (𝑡) 𝜂 (𝑡) ,

(122)

where 𝜂(𝑡) is a stationary zero-mean noise signal with identity
covariance matrix and

󵱰𝐴 (𝑡) = [ 𝐴 (𝑡) 0
𝐴 (𝑡) − 𝐺 (𝑡) − 𝐾 (𝑡) 𝐶 (𝑡) 𝐺 (𝑡)] ,

󵱰𝐻 (𝑡) = [ 𝐻 (𝑡)
𝐻 (𝑡) − 𝐾 (𝑡)𝐻𝑐 (𝑡)] ,

󵱰𝐸 (𝑡) = [𝐸 (𝑡) 0] ,
󵱰𝐵󵱰𝐵𝑡 (𝑡) = [𝑊 (𝑡) 𝑊 (𝑡)

𝑊 (𝑡) 𝑊 (𝑡) + 𝐾 (𝑡) 𝑉 (𝑡)𝐾𝑡 (𝑡)] ,
󵱰𝐷 (𝑡) = [𝐴𝑑 (𝑡) 0

𝐴𝑑 (𝑡) 0] ,
𝜂 = [𝑤 (𝑡)

V (𝑡) ] .

(123)

Definition 45. Estimator (111) is said to be a quadratic estima-
tor (QE) associated with a matrixΩ(𝑡) > 0 for system (108) if
there exists a scalar 𝜆(𝑡) > 0 and a matrix

0 < Ω (𝑡) = [Ω1 (𝑡) Ω3 (𝑡)Ω𝑡3 (𝑡) Ω2 (𝑡)] (124)

satisfying the algebraic inequality

− Ω̇ (𝑡) + 󵱰𝐴Δ (𝑡) Ω (𝑡) + Ω (𝑡) 󵱰𝐴𝑡Δ (𝑡) + 𝜆 (𝑡)Ω (𝑡 − 𝜏)
+ 𝜆−1 (𝑡) 󵱰𝐷 (𝑡)Ω (𝑡 − 𝜏) 󵱰𝐷𝑡 (𝑡) + 󵱰𝐵 (𝑡) 󵱰𝐵𝑡 (𝑡)

≤ 0.
(125)

The next result shows that if (112) is QE for system (108)-
(109) with costmatrixΩ(𝑡), thenΩ(𝑡) defines an upper bound
for the filtering error covariance; that is,

E [𝑒 (𝑡) 𝑒𝑡 (𝑡)] ≤ Ω2 (𝑡) ∀𝑡 (126)

for all admissible uncertainties satisfying (110)-(111).

Theorem 46. Consider the time-delay (108)-(109) satisfying
(110)-(111) and with known initial state. Suppose there exists a
solution Ω(𝑡) ≥ 0 to inequality (125) for some 𝜆(𝑡) > 0 and for
all admissible uncertainties. Then the estimator (116) provides
an upper bound for the filtering error covariance; that is,

E [𝑒 (𝑡) 𝑒𝑡 (𝑡)] ≤ Ω2 (𝑡) . (127)
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We employ hereafter a Riccati equation approach to solve
the robust Kalman filtering for time-delay systems. To this
end, we define piecewise matrices 𝑃(𝑡) = 𝑃𝑡(𝑡) ∈ R𝑛×𝑛;𝐿(𝑡) = 𝐿𝑡(𝑡) ∈ R𝑛×𝑛 as the solutions of the Riccati differential
equations (RDE):

𝑃̇ (𝑡) = 𝐴 (𝑡) 𝑃 (𝑡) + 𝑃 (𝑡) 𝐴𝑡 (𝑡) + 𝜆 (𝑡) 𝑃 (𝑡 − 𝜏)
+ 𝑊̂ (𝑡) + 𝜆−1 (𝑡) 𝐴𝑑 (𝑡) 𝑃 (𝑡 − 𝜏)𝐴𝑡𝑑 (𝑡) + 𝜇 (𝑡)
⋅ 𝑃 (𝑡) 𝐸𝑡 (𝑡) 𝐸 (𝑡) 𝑃 (𝑡) ;

𝑃 (𝑡 − 𝜏) = 0 ∀𝑡 ∈ [0, 𝜏] ,
𝐿̇ (𝑡) = 𝐴 (𝑡) 𝐿 (𝑡) + 𝐿 (𝑡) 𝐴𝑡 (𝑡) + 𝜆 (𝑡) 𝐿 (𝑡 − 𝜏)

+ 𝑊̂ (𝑡) + 𝜆−1 (𝑡) 𝐴𝑑 (𝑡) 𝑃 (𝑡 − 𝜏)𝐴𝑡𝑑 (𝑡) + 𝜇 (𝑡)
⋅ 𝐿 (𝑡) 𝐸𝑡 (𝑡) 𝐸 (𝑡) 𝐿 (𝑡)
− [𝐿 (𝑡) 𝐶𝑡 (𝑡) + 𝜇−1 (𝑡)𝐻 (𝑡)𝐻𝑡

𝑐 (𝑡)] 𝑉̂−1 (𝑡)
⋅ [𝐶 (𝑡) 𝐿 (𝑡) + 𝜇−1 (𝑡)𝐻𝑐 (𝑡)𝐻𝑡 (𝑡)] ;

𝐿 (𝑡 − 𝜏) = 0 ∀𝑡 ∈ [0, 𝜏] ,

(128)

where 𝜆(𝑡) > 0 and 𝜇(𝑡) > 0 ∀𝑡 are scaling parameters and
the matrices 𝐴(𝑡), 𝑉̂(𝑡), and 𝑊̂(𝑡) are given by

𝑊̂ (𝑡) = 𝑊 (𝑡) + 𝜇−1 (𝑡)𝐻 (𝑡)𝐻𝑡 (𝑡) , (129)

𝑉̂ (𝑡) = 𝑉 (𝑡) + 𝜇−1 (𝑡)𝐻𝑐 (𝑡)𝐻𝑡
𝑐 (𝑡) , (130)

𝐴 (𝑡) = 𝐴 (𝑡) + 𝛿𝐴 (𝑡)
= 𝐴 (𝑡) + 𝜇−1 (𝑡) 𝐿𝑡 (𝑡) 𝐸𝑡 (𝑡) 𝐸 (𝑡) . (131)

Let the (𝜆, 𝜇)-parameterized estimator be expressed as

̇̂𝑥 (𝑡) = {𝐴 (𝑡) + 𝜇−1 (𝑡) 𝐿𝑡 (𝑡) 𝐸𝑡 (𝑡) 𝐸 (𝑡)} 𝑥 (𝑡)
+ 𝐾 (𝑡) {𝑦 (𝑡) − 𝐶 (𝑡) 𝑥 (𝑡)} , (132)

where the gain matrixK𝑒(𝑡) ∈ R𝑛×𝑚 is to be determined. The
following theorem summarizes the main result.

Theorem47. Consider system (108)-(109) satisfying the uncer-
tainty structure (110)-(111) with zero initial condition. Suppose
the process andmeasurement noises satisfy Assumption 44. For
some 𝜇(𝑡) > 0, 𝜆(𝑡) > 0, let 𝑃(𝑡) = 𝑃𝑡(𝑡) and 𝐿(𝑡) = 𝐿𝑡(𝑡) be
the solutions of RDE (131)-(132), respectively. Then the (𝜆, 𝜇)-
parametrized estimator (132) is QE estimatorwithGC such that

E [{𝑥 (𝑡) − 𝑥 (𝑡)}𝑡 {𝑥 (𝑡) − 𝑥 (𝑡)}] ≤ tr [𝐿 (𝑡)] . (133)

Moreover, the gain matrix K(𝑡) is given by

K𝑒 (𝑡) = {𝐿 (𝑡) 𝐶𝑡 (𝑡) + 𝜇−1 (𝑡)𝐻 (𝑡)𝐻𝑡
𝑐 (𝑡)} 𝑉̂−1 (𝑡) . (134)

Further details can be found in [57].

Remark 48. Had we considered a class of uncertain time-
delay systems represented by

𝑥𝑘+1 = [𝐴𝑘 + Δ𝐴𝑘] 𝑥𝑘 + 𝐷𝑘𝑥𝑘−𝜏 + 𝑤𝑘
= 𝐴𝑘,Δ𝑥𝑘 + 𝐷𝑘𝑥𝑘−𝜏 + 𝑤𝑘,

𝑦𝑘 = [𝐶𝑘 + Δ𝐶𝑘] 𝑥𝑘 + V𝑘 = 𝐶𝑘,Δ𝑥𝑘 + V𝑘,
𝑧𝑘 = 𝐶1,𝑘𝑥𝑘,

(135)

where 𝑥𝑘 ∈ R𝑛 is the state, 𝑦𝑘 ∈ R𝑚 is the measured output,𝑧𝑘 ∈ R𝑝 is a linear combination of the state variables to
be estimated, and 𝑤𝑘 ∈ R𝑟 and V𝑘 ∈ R𝑚 are, respectively,
the process andmeasurement noise sequences, and following
parallel development to the continuous-case, we would be
able to generate a robust discrete-time Kalman filter.

10. Neural Networks

We consider a continuous-time-delayed uncertain neural
network (UNN) which is described by the following nonlin-
ear retarded functional differential equations:

̇𝑦 (𝑡) = − (𝐴o + Δ𝐴𝑜) 𝑦 (𝑡)
+ (𝑊𝑜 + Δ𝑊𝑜) 𝑔 (𝑦 (𝑡) , 𝑡)
+ (𝑊1 + Δ𝑊1) 𝑔 (𝑦 (𝑡 − 𝜏) , 𝑡) + 𝑏,

(136)

where 𝑦(𝑡) = [𝑦1(𝑡), . . . , 𝑦𝑛(𝑡)]𝑡 ∈ R𝑛 is the neuron state
vector with 𝑛 being the number of neurons in NN, 𝑔(𝑦(𝑡)) =[𝑔1(𝑦1(𝑡)), . . . , 𝑔𝑛(𝑦𝑛(𝑡))]𝑡 ∈ R𝑛 denotes the neuron activa-
tion function, 𝑔(𝑦(𝑡 − 𝜏(𝑡))) = [𝑔1(𝑦1(𝑡 − 𝜏(𝑡))), . . . , 𝑔𝑛(𝑦𝑛(𝑡 −𝜏(𝑡)))]𝑡 ∈ R𝑛, 𝐴𝑜 = diag{𝑎𝑜𝑗} ∈ R𝑛×𝑛 is a positive diagonal
matrix,𝑊𝑜 = (𝑊𝑜

𝑗𝑘) ∈ R𝑛×𝑛 and𝑊1 = (𝑊1
𝑗𝑘) ∈ R𝑛×𝑛 are the

interconnectionmatrices representing the weight coefficients
of the neurons, 𝑏 = [𝑏1, . . . , 𝑏𝑛]𝑡 ∈ R𝑛 is a constant input
vector, and Δ𝐴(𝑡), Δ𝑊𝑜(𝑡), and Δ𝑊1(𝑡) are uncertain system
matrices of the form

Δ𝐴𝑜 = 𝐸𝐺 (𝑡) 𝐹,
Δ𝑊𝑜 = 𝐸𝑜𝐺𝑜 (𝑡) 𝐹𝑜,
Δ𝑊1 = 𝐸1𝐺1 (𝑡) 𝐹1,

𝐺𝑡 (𝑡) 𝐺 (𝑡) ≤ 𝐼,
𝐺𝑡𝑜 (𝑡) 𝐺𝑜 (𝑡) ≤ 𝐼,
𝐺𝑡1 (𝑡) 𝐺1 (𝑡) ≤ 𝐼.

(137)

In the sequel, it is assumed that the delay 𝜏(𝑡) is a differen-
tiable time-varying function satisfying

0 < 𝜏 (𝑡) ≤ 󰜚,
̇𝜏 (𝑡) ≤ 𝜇, (138)

where the bounds 󰜚 and 𝜇 are known constant scalars.
Observe that there is no restriction on the derivative of the
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time-varying delay function 𝜇, thereby allowing fast time-
delays to occur. This is in contrast with other methods which
places 𝜇 < 1, thereby limiting the method to slow variations
in time-delay.

Assumption 49. The neuron activation functions, 𝑔𝑜𝑗(𝑦𝑗(𝑡)),𝑗 = 1, . . . , 𝑛, and 𝑔𝑜𝑗((𝑦𝑗(𝑡 − 𝜏(𝑡)))), 𝑗 = 1, . . . , 𝑛, are assumed
to be nondecreasing, bounded, globally Lipschitz and satisfy

0 ≤ 𝑔𝑗 (𝜁𝑗) − 𝑔𝑘 (𝜁𝑘)𝜁𝑗 − 𝜁𝑘 ≤ 𝑘𝑗,
𝜁𝑗, 𝜁𝑘 ∈ R, 𝜁𝑗 ̸= 𝜁𝑘, 𝑗 = 1, . . . , 𝑛,

(139)

where 𝑘𝑗, 𝑗 = 1, . . . , 𝑛, are positive constants.
We note that the existence of an equilibrium point of

system (136) is guaranteed by the fixed point theorem. Now
let 𝑦∗ = [𝑦∗1 , . . . , 𝑦∗𝑛 ]𝑡 be an equilibrium of (136), and let

𝑥 (𝑡) = 𝑦 (𝑡) − 𝑦∗. (140)

It is easy to see that (136) is transformed to

𝑥̇ (𝑡) = − [𝐴𝑜 + Δ𝐴𝑜 (𝑡)] 𝑥 (𝑡)
+ [𝑊𝑜 + Δ𝑊𝑜 (𝑡)] 𝑓 (𝑥 (𝑡))
+ [𝑊1 + Δ𝑊1 (𝑡)] 𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

= −𝐴𝑜Δ𝑥 (𝑡) + 𝑊𝑜Δ𝑓 (𝑥 (𝑡))
+ 𝑊1Δ𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

(141)

where 𝑓(𝑥(𝑡)) = [𝑓1(𝑥(𝑡)), . . . , 𝑓𝑛(𝑥(𝑡))]𝑡 and 𝑓𝑗(𝑥𝑗(𝑡)) =𝑔𝑗(𝑥𝑗(𝑡) + 𝑦∗𝑗 ) − 𝑔𝑗(𝑦∗𝑗 ) with 𝑓𝑗(0) = 0, 𝑗 = 1, . . . , 𝑛. It
is observed that 𝑓(𝑥(𝑡)) satisfies 𝑓(0, 𝑡) = 0, ∀𝑡, and the
following condition for all (𝑥, 𝑡), ∈ R𝑛 ×R:

𝑓 (𝑥 (𝑡) , 𝑡) ≤ 𝑘𝑥,
𝑓 (𝑥 (𝑡 − 𝜏) , 𝑡) ≤ 𝑘𝑥 (𝑡 − 𝜏) , (142)

where 𝑘 > 0 is a constant. In the absence of uncertainties, we
get from (141) the nominal NN model

𝑥̇ (𝑡) = −𝐴𝑜𝑥 (𝑡) + 𝑊𝑜𝑓 (𝑥 (𝑡)) + 𝑊1𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) . (143)

In the sequel, the global delay-dependent asymptotic
stability the equilibrium of system (136) is investigated, which
corresponds to the uniqueness of the equilibrium point.

The following theorem establishes the main result for
global delay-dependent asymptotic stability of the NN sys-
tem.

Theorem 50. Given 󰜚 > 0 and 𝜇 > 0. System (143) is globally
delay-dependent asymptotically stable if there exist weighting
matricesP > 0, Q > 0,R > 0, andZ > 0 and free-weighting

parameter matrices 𝑁𝑎, 𝑁𝑐,𝑀𝑎,𝑀𝑐,S > 0,M > 0 satisfying
the following LMI:

Ξ =
[[[[[[
[

Ξ𝑜 P̂𝑜 P̂𝑐 󰜚N
∙ −2𝑘−1S 0 0
∙ ∙ −2𝑘−1M 0
∙ ∙ ∙ −󰜚Z

]]]]]]
]
< 0, (144)

where

Ξ𝑜 =
[[[[[
[

Ξ𝑜1 Ξ𝑜2 𝑁𝑎 P −𝑀𝑡
𝑎 − 𝐴𝑡𝑜𝑀𝑐∙ Ξ𝑜3 𝑁𝑐 0

∙ ∙ −R 0
∙ ∙ ∙ −𝑀𝑐 −𝑀𝑡

𝑐 + 󰜚Z

]]]]]
]
,

Ξ𝑜1 = −𝑀𝑡
𝑎𝐴𝑜 − 𝐴𝑡𝑜𝑀+

𝑎Q +R + 𝑁𝑎 + 𝑁𝑡𝑎,
Ξ𝑜2 = −2𝑁𝑎 + 𝑁𝑡𝑐 ,
Ξ𝑜3 = − (1 − 𝜇)Q − 2𝑁𝑐 − 2𝑁𝑡𝑐 ,

N = [[[[[
[

𝑁𝑎𝑁𝑐0
0
]]]]]
]
,

P̂𝑜 =
[[[[[
[

𝑀𝑡
𝑎𝑊𝑜 +S

0
0

𝑀𝑡
𝑐𝑊𝑜

]]]]]
]
,

P̂𝑐 =
[[[[[
[

𝑀𝑡
𝑎𝑊1
M

0
𝑀𝑡
𝑐𝑊1

]]]]]
]
.

(145)

On considering the UNN system in (141) with the uncer-
tainty in (137), it follows from Theorem 50 that the UNN
system is globally delay-dependent asymptotically stable if
there exist weighting matrices P > 0, Q > 0, R >0, and Z > 0 and free-weighting parameter matrices𝑁𝑎, 𝑁𝑐,𝑀𝑎,𝑀𝑐,S > 0,M > 0 satisfying the following LMI:

ΞΔ =
[[[[[
[

Ξ𝑜Δ P𝑜 P𝑐 󰜚N
∙ −2𝑘−1S 0 0
∙ ∙ −2𝑘−1M 0
∙ ∙ ∙ −󰜚Z

]]]]]
]
< 0, (146)
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where

Ξ𝑜Δ =
[[[[[
[

Ξ𝑜1Δ Ξ𝑜2 𝑁𝑎 P −𝑀𝑡
𝑎 − 𝐴𝑡𝑜Δ𝑀𝑐∙ Ξ𝑜3 𝑁𝑐 0

∙ ∙ −R 0
∙ ∙ ∙ −𝑀𝑐 −𝑀𝑡

𝑐 + 󰜚Z

]]]]]
]
,

Ξ𝑜1Δ = −𝑀𝑡
𝑎𝐴𝑜Δ − 𝐴𝑡𝑜Δ𝑀𝑎 + Q +R + 𝑁𝑎 + 𝑁𝑡𝑎,

(147)

where Ξ𝑜2, Ξ𝑜3,N,P𝑜,P𝑐 are given in (145). Applying Fact 1
for some scalars 𝜀1 > 0, 𝜀2 > 0, and 𝜀3 > 0 and invoking Schur
complements, it is easy to show that the following theorem
holds.

Theorem 51. System (141) with norm-bounded uncertainty
(137) is globally delay-dependent asymptotically stable if there
exist weighting matrices P > 0, Q > 0, R > 0, and Z >0, free-weighting parameter matrices 𝑁𝑎, 𝑁𝑐,𝑀𝑎,𝑀𝑐,S >0,M > 0, and scalars 𝜎 > 0, 𝜅 > 0, 𝜀𝑖 > 0, 𝑖 = 1, 2, 3,
satisfying the following LMI:

Ξ̂ = [Ξ𝑠 Ξ𝑥∙ Ξ𝑦] < 0, (148)

where

Ξ𝑠 =
[[[[[
[

Ξ𝑜𝑠 P̂𝑜 P̂𝑐 󰜚𝑁𝑎∙ Ξ𝑓1 0 󰜚𝑁𝑐∙ ∙ Ξ𝑓2 0
∙ ∙ ∙ −󰜚W

]]]]]
]
,

Ξ𝑜𝑠 =
[[[[[
[

Ξ𝑜1𝑠 Ξ𝑜2 𝑁𝑎 P −𝑀𝑡
𝑎 − 𝐴𝑡𝑀𝑐∙ Ξ𝑜3 𝑁𝑐 0

∙ ∙ −R 0
∙ ∙ ∙ −𝑀𝑐 −𝑀𝑡

𝑐 + 󰜚Z

]]]]]
]
,

Ξ𝑜1𝑠 = −𝑀𝑡
𝑎𝐴𝑜 − 𝐴𝑡𝑜𝑀𝑎 + Q +R + 𝑁𝑎 + 𝑁𝑡𝑎

+ 𝜀1𝐹𝑡𝐹,
Ξ𝑓1 = −2𝑘−1S + 𝜀2𝐹𝑡𝑜𝐹𝑜,
Ξ𝑓2 = −2𝑘−1M + 𝜀3𝐹𝑡1𝐹1,

Ξ𝑥 =

[[[[[[[[[[[[[[
[

−𝑀𝑡
𝑎𝐸 𝑀𝑡

𝑎𝐸𝑜 𝑀𝑡
𝑎𝐸10 0 0

0 0 0
−𝑀𝑡

𝑐𝐸 𝑀𝑡
𝑐𝐸𝑜 𝑀𝑡

𝑐𝐸10 0 0
0 0 0
0 0 0

]]]]]]]]]]]]]]
]

,

Ξ𝑦 = [[
[
−𝜀1𝐼 0 0
∙ −𝜀2𝐼 0
∙ ∙ −𝜀3𝐼

]]
]
.

(149)

The reader is referred to [58] for further results on using
expanded LKFs.

11. Networked Control Systems

Typically in process industries, a network used at the lowest
level of a process/factory communication hierarchy is called
a fieldbus. Fieldbuses are intended to replace the tradi-
tional wiring between sensors, actuators, and controllers. In
distributed control system applications, a feedback control
loop is often closed through the network, which is called
a network-based control system (NBCS); see details in
[44, 59–69]. In theNBCS, various delayswith variable lengths
occurred due to sharing a common network medium, which
are called network-induced delays.These delays are dependent
on configurations of the network and the given system.Those
make the NBCS unstable.

In feedback control systems, it is significant that sampled
data must be transmitted within a sampling period and
stability of control systems should be guaranteed. While a
shorter sampling period is preferable inmost control systems,
for some cases, it can be lengthened up to a certain bound
within which stability of the system is guaranteed in spite of
the performance degradation. This certain bound is called
a maximum allowable delay bound (MADB). The MADB
depends only on parameters and configurations of the given
plant and the controller.

In addition, a faster sampling is said to be desirable
in sampled-data systems because the performance of the
discrete-time system controller can approximate that of the
continuous-time system. But in NBCS (see Figure 1), the high
sampling rate can increase network load,which in turn results
in longer delay of the signals. Thus finding a sampling rate
that can both tolerate the network-induced delay and achieve
desired system performance is of fundamental importance in
the NBCS design.

11.1. State Feedback Stabilization. Consider the plant model
described as

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,
𝑡 ∈ [𝑘ℎ + 𝜏𝑘, (𝑘 + 1) ℎ + 𝜏𝑘+1) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,
𝑢 (𝑡+) = −𝐾𝑖𝑥 (𝑡 − 𝜏𝑘) ,

𝑡 ∈ {𝑘ℎ + 𝜏𝑘, 𝑘 = 0, 1, 2, . . .} .

(150)

Sampling the above system with period ℎ and defining𝑧(𝑘ℎ) = [𝑥𝑇(ℎ), 𝑢𝑇((𝑘 − 1)ℎ)]𝑇 yielded the following closed-
loop system:

𝑧 ((𝑘 + 1) ℎ) = Φ̃ (𝐾𝑖) 𝑧 (𝑘ℎ) ∀𝑖 = 1, 2, . . . , 𝑝. (151)
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Figure 1: A feedback control loop with network-induced delays.

A recent survey of the stabilization methods is reported in
[44].

11.2. Observer-Based Feedback Stabilization. An observer-
based stabilizing controller can be designed for networked
systems involving both random measurement and actuation
delays. The LTI plant under consideration was assumed to be
of the form

𝑥𝑝 (𝑘 + 1) = 𝐴𝑥𝑝 + 𝐵𝑢𝑝,
𝑦𝑝 = 𝐶𝑥𝑝, (152)

where 𝑥𝑝(𝑘) ∈ R𝑛 is the state vector and 𝑢𝑝(𝑘) ∈ R𝑚 and𝑦𝑝(𝑘) ∈ R𝑝 are the control input and output vectors of the
plant, respectively. The measurement subjected to random
communication delay is given by

𝑦𝑐 (𝑘) = (1 − 𝛿 (𝑘)) 𝑦𝑝 (𝑘) + 𝛿 (𝑘) 𝑦𝑝 (𝑘 − 𝜏𝑚𝑘 ) , (153)

where 𝜏𝑚𝑘 is the measurement delay, whose occurrence is
governed by the Bernoulli distribution, and 𝛿(𝑘) is Bernoulli
distributed sequence with

Prob {𝛿 (𝑘) = 1} = E {𝛿 (𝑘)} = 𝛿,
Prob {𝛿 (𝑘) = 0} = 1 − E {𝛿 (𝑘)} = 1 − 𝛿. (154)

The following observer-based controller is designedwhen
the full state vector is not available.

Observer

𝑥 (𝑘 + 1) = 𝐴𝑥 + 𝐵𝑢𝑐 (𝑘) + 𝐿 (𝑦𝑐 (𝑘) − 𝑦𝑐 (𝑘)) ,
𝑦𝑐 (𝑘) = (1 − 𝛿)𝐶𝑥 (𝑘) + 𝛿𝐶𝑥 (𝑘 − 𝜏𝑚𝑘 ) . (155)

Controller

𝑢𝑐 (𝑘) = 𝐾𝑥 (𝑘)
𝑢𝑝 = (1 − 𝛼) 𝑢𝑐 (𝑘) + 𝛼𝑢𝑐 (𝑘 − 𝜏𝑎𝑘 ) , (156)

where 𝑥(𝑘) ∈ R𝑛 is the estimate of system (152), 𝑦𝑐(𝑘) ∈ R𝑝

is the observer output, and 𝐿 ∈ R𝑛×𝑝 and 𝐾 ∈ R𝑚×𝑛 are
the observer gain and the controller gain, respectively. The
stochastic variable 𝛼, mutually independent of 𝛿, is also a
Bernoulli distributed white sequence with

Prob {𝛼 (𝑘) = 1} = E {𝛼 (𝑘)} = 𝛼,
Prob {𝛼 (𝑘) = 0} = 1 − E {𝛼 (𝑘)} = 1 − 𝛼, (157)

where 𝜏𝑎𝑘 is the actuation delay. It is assumed that 𝜏𝑎𝑘 and 𝜏𝑚𝑘
are time-varying and have the following bounded condition:

𝑑𝑚 ≤ 𝜏𝑚𝑘 ≤ 𝑑𝑚,
𝑑𝑎 ≤ 𝜏𝑎𝑘 ≤ 𝑑𝑎. (158)

The estimation error is defined by

𝑒 (𝑘) = 𝑥𝑝 (𝑘) − 𝑥 (𝑘) . (159)

This yields

𝑥𝑝 (𝑘 + 1) = [𝐴 + (1 − 𝛼) 𝐵𝐾] 𝑥𝑝 (𝑘)
− (1 − 𝛼) 𝐵𝐾𝑒 (𝑘) + 𝛼𝐵𝐾𝑥𝑝 (𝑘 − 𝜏𝑎𝑘 )
− 𝛼𝐵𝐾𝑒 (𝑘 − 𝜏𝑎𝑘 )
− (𝛼 − 𝛼) 𝐵𝐾𝑥𝑝 (𝑘)
+ (𝛼 − 𝛼) 𝐵𝐾𝑒 (𝑘)
+ (𝛼 − 𝛼) 𝐵𝐾𝑥𝑝 (𝑘 − 𝜏𝑎𝑘 )
− (𝛼 − 𝛼) 𝐵𝐾𝑒 (𝑘 − 𝜏𝑎𝑘 ) ,

𝑒 (𝑘 + 1) = [𝐴 − (1 − 𝛿) 𝐿𝐶] 𝑒 (𝑘)
− 𝛿𝐿𝐶𝑒 (𝑘 − 𝜏𝑚𝑘 )
+ (𝛿 − 𝛿) 𝐿𝐶𝑥𝑝 (𝑘)
− (𝛿 − 𝛿) 𝐿𝐶𝑥𝑝 (𝑘 − 𝜏𝑚𝑘 ) .

(160)
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Figure 2: Networked output-feedback control system.

System (160) is equivalent to the following compact form:

𝜀 (𝑘 + 1) = (𝐴 + 𝐴) 𝜀 (𝑘) + (𝐵 + 𝐵) 𝜀 (𝑘 − 𝜏𝑚𝑘 )
+ (𝐶 − 𝐶) 𝜀 (𝑘 − 𝜏𝑎𝑘 ) , (161)

where

𝜀 (𝑘) = [𝑥𝑇𝑝 (𝑘) 𝑒𝑇 (𝑘)]𝑇 ,
𝐴 = [𝐴 + (1 − 𝛼) 𝐵𝐾 − (1 − 𝛼) 𝐵𝐾

0 𝐴 − (1 − 𝛿) 𝐿𝐶] ,

𝐴 = [− (𝛼 − 𝛼) 𝐵𝐾 (𝛼 − 𝛼) 𝐵𝐾
(𝛿 − 𝛿) 𝐿𝐶 0 ] ,

𝐵 = [0 0
0 −𝛿𝐿𝐶] ,

𝐵 = [ 0 0
− (𝛿 − 𝛿) 𝐿𝐶 0] ,

𝐶 = [𝛼𝐵𝐾 −𝛼𝐵𝐾
0 0 ] ,

𝐶 = [(𝛼 − 𝛼) 𝐵𝐾 − (𝛼 − 𝛼) 𝐵𝐾
0 0 ] .

(162)

Remark 52. It is noted that a majority of the existing works
on the stability of NCS (in the framework of time-delay
approach) are reduced to some Lyapunov-based analysis of
systemswith uncertain and bounded time-varying delays; see
[44]. In the following sections, we will present alternative
approaches that will lead to improved results.

11.3. Lyapunov-Based Sampled-Data Stabilization. Three
main approaches have been used to the sampled-data control
and later to theNetworkedControl Systems (NCS), where the
plant is controlled via communication network:

(A) The first one is based on discrete-timemodels [70, 71].
This approach is not applicable to the performance

analysis (like the exponential decay rate) of the
resulting continuous-time closed-loop system.

(B) The second one is a time-delay approach, where
the system is modeled as a continuous-time system
with a time-varying sawtooth delay in the con-
trol input [8, 72–74]. The time-delay approach via
time-independent Lyapunov-Krasovskii functionals
or Lyapunov-Razumikhin functions leads to linear
matrix inequalities (LMIs) for analysis and design of
linear uncertain NCS.

(C) The third approach is based on the representation
of the sampled-data system in the form of impul-
sive model [72, 73]. Recently, the impulsive model
approach was extended to the case of uncertain
sampling intervals [75] by employing a discontinuous
Lyapunov function method, which improved the
existing Lyapunov-based results. Recently, the latter
result was recovered via an input-output approach
by application of the vector extension of Wirtinger’s
inequality [76].

Consider the continuous-time system depicted in Fig-
ure 2:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐸𝑤 (𝑡) ,
𝑧 (𝑡) = 𝐶1𝑥 (𝑡) + 𝐷1𝑢 (𝑡) , (163)

where 𝑥(𝑡) ∈ R𝑛 is the state, 𝑧(𝑡) ∈ R𝑟 is the signal to be
controlled or estimated, 𝑤(𝑡) ∈ R𝑞 is the disturbance, 𝑢(𝑡) ∈
R𝑚 is the control input, and 𝐴(𝑡) ∈ R𝑛×𝑛, 𝐵(𝑡) ∈ R𝑛×𝑚, 𝐶1 ∈
R𝑝×𝑛,𝐷1 ∈ R𝑝×𝑚, and 𝐸 ∈ R𝑛×𝑞 are system matrices.

In Figure 2, the sampler is time-driven, whereas the
controller and the Zero-Order Hold (ZOH) are event-driven
(in the sense that the controller and the ZOH update their
outputs as soon as they receive a new sample). For simplicity
in exposition, we assume that the measurement output𝑦(𝑠𝑘) ∈ R𝑝 is available at discrete sampling instants

0 = 𝑠0 < 𝑠1 < ⋅ ⋅ ⋅ < 𝑠𝑘 < ⋅ ⋅ ⋅ , lim
𝑘→∞

𝑠𝑘 = ∞, (164)

and it may be corrupted by a measurement noise signal V(𝑠𝑘):
𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) . (165)
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Figure 3: NCS timing diagram.

By considering nonuniform sampling, data packet drop-
outs can be accommodated. In this respect, 𝑦(𝑠𝑘), 𝑘 =0, 1, 2, . . ., correspond to the measurements that are not lost.
The timing diagram of the considered NCS with both delay
and packet dropout is shown in Figure 3, where 𝑠𝑘 = 𝑡𝑘 − 𝜆𝑘
accounts for the sampling time of the data that has not been
lost. In this setup, 𝑡𝑘 denotes the updating instant time of the
ZOH, and suppose that the updating signal at the instant 𝑡𝑘
has experienced a signal transmission delay 𝜆𝑘. Adopting the
approach of [75], we allow the delays 𝜆𝑘 to grow larger than𝑠𝑘+1 − 𝑠𝑘, provided that the sequence of input update times 𝑡𝑘
remains strictly increasing. This implies that if an old sample
gets to the destination after the most recent one, it should be
dropped.

The static output-feedback controller has a form

𝑢 (𝑡𝑘) = 𝐾𝑜𝑦 (𝑡𝑘 − 𝜆𝑘) , 𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1, (166)

where 𝐾𝑜 is the controller gain and 𝑡𝑘+1 is the next updating
instant time of the ZOH after 𝑡𝑘. It is known that

𝑡𝑘+1 − 𝑡𝑘 + 𝜆𝑘 ≤ 𝜏𝑀, 0 ≤ 𝜆𝑘 ≤ 𝜆𝑀, 𝑘 = 0, 1, 2, . . . , (167)

where 𝜆𝑀 is a known upper bound on the network-induced
delays 𝜆𝑘 and 𝜏𝑀 denotes the maximum time span between
the time 𝑠𝑘 = 𝑡𝑘−𝜆𝑘 atwhich the state is sampled, and the time𝑡𝑘+1 at which next update arrives at the ZOH. Observe that
the sampling intervals and the numbers of successive packet
dropouts are uniformly bounded.

Within the foregoing representation, exponential stabil-
ity, state feedback, and static output-feedback results are
developed in [77].More elaborate results can be found in [74].

12. Interconnected Systems

We consider a class of linear systems S structurally composed
of 𝑛𝑠 coupled subsystems Sj depicted in Figure 4 andmodeled
by the state-space model:

𝑥̇𝑗 (𝑡) = 𝐴𝑗Δ𝑥𝑗 (𝑡) + 𝐴𝑑𝑗Δ𝑥𝑗 (𝑡 − 𝜏𝑗) + 𝐵𝑗Δ𝑢𝑗 (𝑡)
+ 𝑐𝑗 (𝑘) + Γ𝑗Δ𝑤𝑗 (𝑡) ,

Cj (interaction)

wj

uj

zj

yj

�휏j

Delay

Subsystem
Sj

Figure 4: Subsystem model.

𝑧𝑗 (𝑡) = 𝐺𝑗Δ𝑥𝑗 (𝑡) + 𝐺𝑑𝑗Δ𝑥 (𝑡 − 𝜏𝑗) + 𝐷𝑗Δ𝑢𝑗 (𝑡)
+ Φ𝑗Δ𝑤𝑗 (𝑡) ,

𝑦𝑗 (𝑡) = 𝐶𝑗Δ𝑥𝑗 (𝑡) + 𝐶𝑑𝑗Δ𝑥 (𝑡 − 𝜏𝑗) ,
𝑐𝑗 (𝑡) = 𝑛𝑠∑

𝑘=1

𝐹𝑗𝑘Δ𝑥𝑘 (𝑡) + 𝑛𝑠∑
𝑘=1

𝐸𝑗𝑘Δ𝑥𝑘 (𝑡 − 𝜂𝑗𝑘 (𝑡))
(168)

whose matrices are containing uncertainties which belong to
a real convex bounded polytopic model of the type

[[
[
𝐴𝑗Δ 𝐴𝑑𝑗Δ 𝐵𝑗Δ Γ𝑗Δ𝐺𝑗Δ 𝐺𝑑𝑗Δ 𝐷𝑗Δ Φ𝑗Δ𝐶𝑗Δ 𝐶𝑑𝑗Δ 𝐸𝑗𝑘Δ 𝐹𝑗𝑘Δ

]]
]
∈ Π𝜆

≜ {{{{{{{
[[
[
𝐴𝑗𝜆 𝐴𝑑𝑗𝜆 𝐵𝑗𝜆 Γ𝑗𝜆𝐺𝑗𝜆 𝐺𝑑𝑗𝜆 𝐷𝑗𝜆 Φ𝑗𝜆𝐶𝑗𝜆 𝐶𝑑𝑗𝜆 𝐸𝑗𝑘𝜆 𝐹𝑗𝑘𝜆

]]
]

= 𝑁∑
𝑠=1

𝜆𝑠 [[[
𝐴𝑗𝑠 𝐴𝑑𝑗𝑠 𝐵𝑗𝑠 Γ𝑗𝑠𝐺𝑗𝑠 𝐺𝑑𝑗𝑠 𝐷𝑗𝑠 Φ𝑗𝑠𝐶𝑗𝑠 𝐶𝑑𝑗𝑠 𝐸𝑗𝑘𝑠 𝐹𝑗𝑘𝑠

]]
]
, 𝜆𝑠 ∈ Λ

}}}}}}}
,

(169)
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where Λ is the unit simplex:

Λ ≜ {{{(𝜆1, . . . , 𝜆𝑁) :
𝑁∑
𝑗=1

𝜆𝑗 = 1, 𝜆𝑗 ≥ 0}}} . (170)

Define the vertex set N = {1, . . . , 𝑁}. We use {𝐴, . . . , Φ} to
imply generic system matrices and {𝐴𝑗, . . . , Φ𝑗, 𝑗 ∈ N} to
represent the respective values at the vertices.

In the absence of uncertainties, system (168) reduces to
the nominal state-space model

𝑥̇𝑗 (𝑡) = 𝐴𝑗𝑥𝑗 (𝑡) + 𝐴𝑑𝑗𝑥𝑗 (𝑡 − 𝜏𝑗 (𝑡)) + 𝐵𝑗𝑢𝑗 (𝑡)
+ 𝑐𝑗 (𝑡) + Γ𝑗𝑤𝑗 (𝑡) ,

𝑧𝑗 (𝑡) = 𝐺𝑗𝑥𝑗 (𝑡) + 𝐺𝑑𝑗𝑥𝑗 (𝑡 − 𝜏𝑗 (𝑡)) + 𝐷𝑗𝑢𝑗 (𝑡)
+ Φ𝑗𝑤𝑗 (𝑡) ,

𝑦𝑗 (𝑡) = 𝐶𝑗𝑥𝑗 (𝑡) + 𝐶𝑑𝑗𝑥𝑗 (𝑡 − 𝜏𝑗 (𝑡)) ,
𝑐𝑗 (𝑡) = 𝑛𝑠∑

𝑘=1

𝐹𝑗𝑘𝑥𝑘 (𝑡) + 𝑛𝑠∑
𝑘=1

𝐸𝑗𝑘𝑥𝑘 (𝑡 − 𝜂𝑗𝑘 (𝑡)) ,

(171)

where, for 𝑗 ∈ {1, . . . , 𝑛𝑠}, 𝑥𝑗(𝑡) ∈ R𝑛𝑗 is the state vector,𝑢𝑗(𝑡) ∈ R𝑚𝑗 is the control input, 𝑦𝑗(𝑡) ∈ R𝑝𝑗 is the measured
output, 𝑤𝑗(𝑡) ∈ R𝑞𝑗 is the disturbance input which belongs
toL2[0,∞), 𝑧𝑗(𝑡) ∈ R𝑞𝑗 is the performance output, 𝑐𝑗(𝑡) ∈
R𝑛𝑗 is the coupling vector, and 𝜏𝑗, 𝜂𝑗𝑘, 𝑗, 𝑘 ∈ {1, . . . , 𝑛𝑠}, are
unknown time-delay factors satisfying

0 ≤ 𝜏𝑗 (𝑡) ≤ 󰜚𝑗, ̇𝜏𝑗 (𝑡) ≤ 𝜇𝑗,
0 ≤ 𝜂𝑗𝑘 (𝑡) ≤ 󰜚𝑗𝑘, ̇𝜂𝑗𝑘 (𝑡) ≤ 𝜇𝑗𝑘, (172)

where the bounds 󰜚𝑗, 󰜚𝑗𝑘, 𝜇𝑗, 𝜇𝑗𝑘 are known constants in order
to guarantee smooth growth of the state trajectories. The
matrices 𝐴𝑗 ∈ R𝑛𝑗×𝑛𝑗 , 𝐵𝑗 ∈ R𝑛𝑗×𝑚𝑗 , 𝐷𝑗 ∈ R𝑞𝑗×𝑚𝑗 , 𝐴𝑑𝑗 ∈
R𝑛𝑗×𝑛𝑗 , Φ𝑗 ∈ R𝑞𝑗×𝑞𝑗 , Γ𝑗 ∈ R𝑛𝑗×𝑞𝑗 , 𝐶𝑗 ∈ R𝑝𝑗×𝑛𝑗 , 𝐶𝑑𝑗 ∈ R𝑝𝑗×𝑛𝑗 ,𝐺𝑗 ∈ R𝑞𝑗×𝑛𝑗 , 𝐺𝑑𝑗 ∈ R𝑞𝑗×𝑛𝑗 , 𝐹𝑗𝑘 ∈ R𝑛𝑗×𝑛𝑘 , and 𝐸𝑗𝑘 ∈ R𝑛𝑗×𝑛𝑘

are real and constants. The initial condition ⟨𝑥𝑗(0), 𝑥𝑗(𝑟)⟨=⟨𝑥𝑜𝑗, 𝜙𝑗⟨, 𝑗 ∈ {1, . . . , 𝑛𝑠}, where 𝜙𝑗(⋅) ∈ L2[−𝜏∗𝑗 , 0], 𝑗 ∈{1, . . . , 𝑛𝑠}. The inclusion of the terms 𝐴𝑑𝑗𝑥𝑗(𝑡 − 𝜏𝑗(𝑡)) and𝐸𝑗𝑘𝑥𝑘(𝑡 − 𝜂𝑗𝑘(𝑡)) is meant to emphasize the delay within each
subsystem (local delay) and among the subsystems (coupling
delay), respectively.

We develop new criteria for LMI-based characterization
of delay-dependent asymptotic stability andL2 gain analysis
which requires only subsystem information thereby assur-
ing decentralization. The criteria include some parameter
matrices aims at expanding the range of applicability of the
developed conditions. The following theorem establishes the
main result subsystem Sj.

Theorem 53. Give 󰜚𝑗 > 0, 𝜇𝑗 > 0, 󰜚𝑗𝑘 > 0, and 𝜇𝑗𝑘 > 0, 𝑗, 𝑘 =1, . . . , 𝑛𝑠. The family of nominal subsystems {S𝑗} with 𝑢𝑗(⋅) ≡ 0
where Sj is described by (171) is delay-dependent asymptotically
stable with L2-performance bound 𝛾𝑗, 𝑗 = 1, . . . , 𝑛𝑠, if

there exist positive-definite matrices P𝑗,Q𝑗,W𝑗,Z𝑘𝑗, 𝑘, 𝑗 =1, . . . , 𝑛𝑠, and parameter matrices Θ𝑗 and Υ𝑗 satisfying the
following LMIs for 𝑗 = 1, . . . , 𝑛𝑠

[[[[[[[[[[[[[[[[
[

Ξ𝑜𝑗 Ξ𝑎𝑗 −󰜚𝑗Θ𝑗 Ξ𝑐𝑗 P𝑗Γ𝑗 𝐺𝑡𝑗 󰜚𝑗𝐴𝑡𝑗W𝑗∙ −Ξ𝑚𝑗 −󰜚𝑗Υ𝑗 0 0 𝐺𝑡𝑑𝑗 󰜚𝑗𝐴𝑡𝑑𝑗W𝑗∙ ∙ −󰜚𝑗W𝑗 0 0 0 0
∙ ∙ ∙ −Ξ𝑛𝑗 0 0 󰜚𝑗 𝑛𝑠∑

𝑘=1

𝐸𝑘𝑗W𝑗

∙ ∙ ∙ ∙ −𝛾2𝑗 𝐼𝑗 Φ𝑡𝑗 󰜚𝑗Γ𝑡𝑗W𝑗∙ ∙ ∙ ∙ ∙ −𝐼𝑗 0
∙ ∙ ∙ ∙ ∙ ∙ −󰜚𝑗W𝑗

]]]]]]]]]]]]]]]]
]

< 0,

(173)

where

Ξ𝑜𝑗 = P𝑗 [𝐴𝑗 + 𝑛𝑠∑
𝑘=1

𝐹𝑘𝑗] + [𝐴𝑗 + 𝑛𝑠∑
𝑘=1

𝐹𝑘𝑗]
𝑡

P
𝑡
𝑗 + Θ𝑗

+ Θ𝑡𝑗 + Q𝑗 + 𝑛𝑠∑
𝑘=1

Z𝑘𝑗,
Ξ𝑚𝑗 = Υ𝑗 + Υ𝑡𝑗 + (1 − 𝜇𝑗)Q𝑗,
Ξ𝑎𝑗 = P𝑗𝐴𝑑𝑗 − Θ𝑗 + Υ𝑡𝑗 ,
Ξ𝑛𝑗 = 𝑛𝑠∑

𝑘=1

(1 − 𝜇𝑘𝑗)Z𝑘𝑗,
Ξ𝑐𝑗 = P𝑗

𝑛𝑠∑
𝑘=1

𝐸𝑘𝑗.

(174)

More detailed results can be found in [78].

13. Conclusions and Future Work

This paper has overviewed the research area of stability and
stabilization of systems with time-delayswith emphasis on the
following topics:

(i) Systems with time-delays constitute a good com-
promise between the too simple models with finite
dimension and the great complexity of PDEs. The
behavior features and the structural characteristics of
delay systems are particular enough to justify specific
techniques.

(ii) The main Lyapunov-based tools have to be used
developing robust stability in combination with
model transformations. Several extensions are antic-
ipated when examining different forms of Lyapunov-
Krasovskii functionals.

(iii) In the robust control area, existing results can be
generally subdivided into two classes:
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(C1) The first class consists in systems with input
or output delays (mainly, H∞ performance or
predictor-like techniques).

(C2) The second class in state delays (discrete or
distributed). The intersection of the two classes
is still to be addressed.

(iv) Many contemporary dynamical systems with afteref-
fect are still requiring further investigation: this is the
case, for instance, of delay systems with strong non-
linearities, as well as time-varying or state-dependent
delays.

(v) There are classes of nonlinear dynamical systems with
delays including jump systems, fuzzy systems, and
switched systems inviting additional research efforts.

(vi) Recently, a surge of interests has been recently arisen
regarding Wirtinger-based integral inequality and
augmented Lyapunov-Krasovskii functionals [79–
83].The ensuing results triggered recent development
in the time-delay system stability. Further discussions
and assessments of these results and related issues
suggest attractive research directions at least from the
computational standpoint.

(vii) The class of uncertain nonlinear networked systems
with both multiple stochastic time-varying commu-
nication delays and multiple packet dropouts was
addressed in [84] for filtering design and in [85] for
reliable control. A promising research direction is to
extend the role of delay patterns to alternative forms.
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