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The newmixture model of the two components of the inverseWeibull and inverse Burr distributions (MIWIBD) is proposed. First,
the properties of the investigated mixture model are introduced and the behaviors of the probability density functions and hazard
rate functions are displayed.Then, the estimates of the five-dimensional vector of parameters by using the classical method such as
themaximum likelihood estimation (MLEs) and the approximationmethod by using Lindley’s approximation are obtained. Finally,
a real data set for the proposed mixture model is applied to illustrate the proposed mixture model.

1. Introduction

The importance of mixture models comes from the fact that
most available data can be considered as data coming from
a mixture of two or more statistical models; see Sultan et
al. [1]. For books that dealt with the models of the mixture,
see Everitt and Hand [2] and McLachlan and Peel [3].
Because the mixing of statistical distributions gives a new
distribution with the properties of its compounds, we in
this paper propose the two-component mixture models of
inverse Weibull and inverse Burr distributions (MIWIBD).
For the importance of the inverseWeibull distribution (IWD)
as a single component from its uses in physical phenomena,
see Keller et al. [4]. Also, for the importance of the inverse
Burr distribution (IBD) as one component from its uses
in forestry applications, see Lindsay [5]. This importance
for each distribution alone has made us merge the two
distributions together to obtain new properties from the
distributive compounds. It should be noted that the mixing
of the IWIBD gives a mixture model with a unimodal and
bimodal peak for the hazard rate functions and these forms

are important in applications which will be displayed in
Section 2. The probability density function (pdf) from the
MIWIBD is as follows:

𝑓 (𝑥; Θ) = 2∑
𝑖=1

𝑝𝑖𝑓𝑖 (𝑥, Θ𝑖) , 0 ≤ 𝑝1 ≤ 1, 𝑝1 + 𝑝2 = 1, (1)

where the (pdf) of the first component (inverse Weibull) is
given by

𝑓1 (𝑥; Θ1) = 𝛽1𝛼−𝛽11 𝑥−(𝛽1+1)𝑒−(𝛼1𝑥)−𝛽1 ,𝑥 ≥ 0, 𝛼1, 𝛽1 > 0, (2)

and the (pdf) of the second component (inverse Burr) is given
by

𝑓2 (𝑥; Θ2) = 𝛽2𝛼2𝑥−(𝛽2+1) (1 + 𝑥−𝛽2)−(𝛼2+1) ,𝑥 ≥ 0, 𝛼2, 𝛽2 > 0, (3)
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where Θ = (𝑝1, 𝛼1, 𝛽1, 𝛼2, 𝛽2), Θ1 = (𝛼1, 𝛽1), and Θ2 =(𝛼2, 𝛽2). Evidently, the cumulative density function (cdf)
from the MIWIBD is as follows:

𝐹 (𝑥; Θ) = 2∑
𝑖=1

𝑝𝑖𝐹𝑖 (𝑥, Θ𝑖) , (4)

where the cdf for each distribution from the MIWIBD alone,
respectively, is as follows:𝐹1 (𝑥; Θ1) = 𝑒−(𝛼1𝑥)−𝛽1 , 𝑥 ≥ 0, 𝛼1 > 0, 𝛽1 > 0, (5)

𝐹2 (𝑥; Θ2) = (1 + 𝑥−𝛽2)−𝛼2 , 𝑥 ≥ 0, 𝛽2 > 0, 𝛼2 > 0. (6)

Some papers have dealt with the mixtures of two inverse
Weibull distributions (MTIWD), for example, Sultan et al. [1]
and Sultan and Al-Moisheer [6]. In addition, there are some
researches that have discussed the mixtures of two inverse
Burr distributions (MTIBD), for example, the works of Al-
Moisheer [7]. Also, there is amixture of one of its components
which is IWD; see Sultan and Al-Moisheer [8].

In this paper, the order is as follows: in Section 2, we intro-
duce fewproperties of theMIWIBD. In Section 3, through the
method of maximum likelihood we find the five unknown
parameters estimates of the MIWIBD. In Section 4, we use
Lindley’s approximation to estimate the unknownparameters
of theMIWIBD. In Section 5, we apply theMIWIBDbyfitting
it to a real data collected from Jeddah city for measuring the
carbonmonoxide level in different locations. Finally, we draw
expressions for Lindley’s approximationmatrix, and these are
displayed in Appendix.

2. Some Properties for the MIWIBD

From (2) and (3), Keller et al. [4] and Abd-Elfattah and
Alharbey [9] have discussed some properties of the IWD and
IBD, respectively. In this section, we discuss some properties
of the MIWIBD by merging the corresponding conclusions
of the IWD and IBD.

2.1.Measures of Location andDispersion (Mean andVariance).
The measures of location and dispersion for the mean and
variance of the MIWIBD in (1) are as follows:𝐸 (𝑋) = 𝑝1𝛼1 Γ (1 − 1𝛽1) + 𝑝2𝛼2Γ (𝛼2 − 1𝛽2) Γ (1

+ 1𝛽2) , 𝛽1 > 1, 𝛽2, 𝛼2 > 1,
Var (𝑋) = 𝑝1𝛼21 [Γ (1 − 2𝛽1) − Γ2 (1 − 1𝛽1)]

+ 𝑝2 [𝛼2Γ (𝛼2 − 2𝛽2) Γ (1 + 2𝛽2)
− 𝛼22Γ2 (𝛼2 − 1𝛽2) Γ2 (1 + 1𝛽2)] ,

𝛽1 > 2, 𝛽2, 𝛼2 > 2,

(7)

where Γ(⋅) denotes the gamma function.

Table 1: Numerical results for the mode(s) and median of the
MIWIBD.Θ = (𝑝1, 𝛼1, 𝛽1, 𝛼2, 𝛽2) Mode(s) Median0.2, 1, 1.5, 2, 3 1.0517 1.83320.3, 1, 1.5, 2, 3 1.0695 1.76660.5, 1, 1.5, 2, 3 1.1257 1.62700.6, 1, 1.5, 2, 3 1.1717 1.55540.8, 1, 1.5, 2, 3 1.3660 1.41250.2, 1, 0.75, 4, 6 3.2311, 8.5172 1.68760.3, 1, 0.75, 4, 6 3.2311, 8.7123 1.68570.5, 1, 0.75, 4, 6 3.2311, 9.0552 1.68040.6, 1, 0.75, 4, 6 3.2311, 9.2414 1.67660.8, 1, 0.75, 4, 6 3.2311, 9.7475 1.6637

2.2. Measures of Location (Mode andMedian). By solving the
nonlinear equations with respect to 𝑥 and from (4), the mode
and median of the MIWIBD are obtained, respectively, by

𝑝1𝛽1𝛼−𝛽11 𝑥−(𝛽1+2)𝑒−(𝛼1𝑥)−𝛽1 [− (𝛽1 + 1) + 𝛽1𝛼−𝛽11 𝑥−(𝛽1)]
− 𝑝2𝑥−(𝛽2+2) (1 + 𝑥−𝛽2)−(𝛼2+1)
⋅ [𝛽2 (𝛼2 + 1) 𝑥−𝛽2 (1 + 𝑥−𝛽2)−1 − (𝛽2 + 1)] = 0,

(8)

𝑝1𝑒−(𝛼1𝑥)−𝛽1 + 𝑝2 (1 + 𝑥−𝛽2)−𝛼2 = 0.5. (9)

Table 1 shows themodes andmedian of theMIWIBD for
some selections of the parameters.

In Table 1, the five parameters 𝑝1, 𝛼1, 𝛽1, 𝛼2, and 𝛽2 are
selected to display the unimodal and bimodal shapes for the
pdf of the proposed MIWIBD. Table 1 clearly shows that the
modes are not much affected by changing the value of 𝑝1,
but the median was affected by changing the value of 𝑝1.
Figures 1(a) and 2(a) show the pdf between the components
and their mixtures with parameters displaying the shapes for
the peak of the unimodal and bimodal cases for the proposed
MIWIBD.

2.3. Reliability and Failure Rate Functions. The following
equation gives the reliability function of the MIWIBD

𝑅 (𝑥) = 𝑝1 [1 − 𝑒−(𝛼1𝑥)−𝛽1 ] + 𝑝2 [1 − (1 + 𝑥−𝛽2)−𝛼2] ,𝑥 ≥ 0. (10)

Equations (1) and (4) help us in finding the failure rate
function (hazard rate function HRF) of theMIWIBD and are
given as

𝑟 (𝑥)
= 𝑝1𝛽1𝛼−𝛽11 𝑥−(𝛽1+1)𝑒−(𝛼1𝑥)−𝛽1 + 𝑝2𝛽2𝛼2𝑥−(𝛽2+1) (1 + 𝑥−𝛽2)−(𝛼2+1)𝑝1 (1 − 𝑒−(𝛼1𝑥)−𝛽1 ) + 𝑝2 (1 − (1 + 𝑥−𝛽2)−𝛼2) ,

𝑥 ≥ 0.
(11)
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Figure 1: (a) Density functions: components and their mixture with parameters (0.5, 1.0, 1.5, 2.0, and 3.0). (b) HR functions: components and
their mixture with parameters (0.5, 1.0, 1.5, 2.0, and 3.0), unimodal case.
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Figure 2: (a) Density functions: components and their mixture with parameters (0.5, 1.0, 0.75, 4.0, and 6.0). (b) HR functions: components
and their mixture with parameters (0.5, 1.0, 0.75, 4.0, and 6.0), bimodal case.

The above equation is expressed by viewing the result by
Al-Hussaini and Sultan [10], as𝑟 (𝑥) = ℎ (𝑥) 𝑟1 (𝑥) + (1 − ℎ (𝑥)) 𝑟2 (𝑥) , (12)

where

ℎ (𝑥) = 11 + 𝑝2𝑅2 (𝑥) /𝑝1𝑅1 (𝑥) ,
𝑟𝑖 (𝑥) = 𝑓𝑖 (𝑥)𝑅𝑖 (𝑥) , 𝑖 = 1, 2,

𝑅1 (𝑥) = 1 − 𝑒−(𝛼𝑥)−𝛽 ,
𝑅2 (𝑥) = 1 − (1 + 𝑥−𝛽2)−𝛼2 .

(13)

By taking the derivative of the failure rate function, we get

𝑟 (𝑥) = ℎ (𝑥) 𝑟1 (𝑥) + (1 − ℎ (𝑥)) 𝑟2 (𝑥)− ℎ (𝑥) (1 − ℎ (𝑥)) [𝑟1 (𝑥) − 𝑟2 (𝑥)]2 . (14)
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Observe that ℎ(𝑥) and 1 − ℎ(𝑥) assume values in interval[0, 1] ∀𝑥. Also, it follows from (14) that if the derivative of the
failure rate function is less than zero (𝑟𝑖 (𝑥) < 0, ∀𝑥, 𝑖 = 1, 2),
then the derivative of the failure rate function is less than zero
(𝑟(𝑥) < 0, ∀𝑥). After few conversions, the derivative of the
failure rate function can be reduced and is given in (14) whereℎ(𝑥) is determined in (12) and the derivative of the failure rate
function 𝑟𝑖 (𝑥), 𝑖 = 1, 2, is as follows:

𝑟1 (𝑥) = 𝑟1 (𝑥) 𝑥−(𝛽1+1) [ 𝛽1𝛼1−𝛽11 − 𝑒−(𝛼1𝑥)−𝛽1 − (𝛽1 + 1) 𝑥𝛽1] ,
𝑟2 (𝑥) = 𝑟2 (𝑥)

⋅ 𝑥−(𝛽2+1) [[
𝛽2 (𝛼2 + 1) (1 + 𝑥−𝛽2)−1 − 𝛼1−1 (𝛽2 + 1) 𝑥𝛽21 − (1 + 𝑥−𝛽2)−𝛼2 ]] .

(15)

Equation (11) that represents the failure function of the
MIWIBD holds for the following limits.

Lemma 1. We have

lim
𝑥→0

𝑟 (𝑥) = 0, (16)

if 𝛽2𝛼2 > 1, where 𝛽2 and 𝛼2 are the shape parameters in IBD.
And

lim
𝑥→∞

𝑟 (𝑥) = 0. (17)

Proof. First from (12) we see that lim𝑥→0ℎ(𝑥) = 𝑝1; then
from the mixture components, IWD and IBD, respectively,
we have lim𝑥→0𝑟1(𝑥) = 0 for the first component (IWD) from
the mixture [see Sultan et al. [1]]. Now, from (13) it can be
shown the failure rate function for the second component
(IBD) from the mixture takes a form

𝑟2 (𝑥) = 𝛽2𝛼2𝑥−(𝛽2+1) (1 + 𝑥−𝛽2)−(𝛼2+1)1 − (1 + 𝑥−𝛽2)−𝛼2 , (18)

and then in the IBD, we have three cases for the limit
dependent on themultiple of two shape parameters𝛽2,𝛼2 and
the limit for 𝑟2(𝑥) can be written in the following form:

lim
𝑥→0

𝑟2 (𝑥) = {{{{{{{{{
∞, 𝛽2𝛼2 < 1,1, 𝛽2𝛼2 = 1,0, 𝛽2𝛼2 > 1, (19)

sowe put the condition on the two shape parameters𝛽2𝛼2 > 1
in the (IBD) for lim𝑥→∞𝑟2(𝑥) = 0; thus (16) is proved. Second,
from (12) it can be shown that lim𝑥→∞ℎ(𝑥) ≤ 1, whichmeans0 ≤ ℎ(𝑥) ≤ 1.Then for (IWD) we can see that lim𝑥→∞𝑟1(𝑥) =0 [see Sultan et al. [1]]. Also for IBD the limit of failure rate
function 𝑟2(𝑥) is in (18). Simply by using Taylor expansion for(1 + 𝑥−𝛽2)𝛼2+1 then lim𝑥→∞𝑟2(𝑥) = 0, so (17) is proved, and
thus the proof is complete.

2.4. Performance of the Failure Rate Graphs. If 𝑥∗𝑖 , 𝑖 = 1, 2,
refers to the mode of the pdf 𝑓𝑖(𝑥), 𝑥1 = min(𝑥∗1 , 𝑥∗2 ) and𝑥2 = max(𝑥∗1 , 𝑥∗2 ). Also, 𝑟𝑖(𝑥) = 𝑓𝑖(𝑥)/𝑅𝑖(𝑥); we observe both𝑓1(𝑥) and 𝑓2(𝑥) in the numerator of 𝑟𝑖(𝑥) ↑ in (0, 𝑥1), with
the denominator ↓ in the same interval. Finally, 𝑟(𝑥) ↑ is in(0, 𝑥1). Moreover, as 𝑥 → ∞, 𝑟(𝑥) → 0. In such case of the
interval (𝑥1, ∞), two statuses appear.
(a) Unimodal Status. Here 𝑥∗ defines the maximum point of
the failure rate of the MIWIBD. In the interval (𝑥1, 𝑥∗) the
difference Δ between 𝑟1(𝑥) and 𝑟2(𝑥) is small so that the first
two terms of the derivative of the failure rate function 𝑟(𝑥)
in (14) dominate the third term and then the derivative of
the failure rate function 𝑟(𝑥) > 0. When the difference Δ
increases to the point that the third term in the derivative of
the failure rate function 𝑟(𝑥) dominates the first two terms,
then the derivative of the failure rate function 𝑟(𝑥) < 0
in (𝑥∗, ∞). Summarizing, we have the failure rate of the
MIWIBD to be ↑ in (0, 𝑥∗) and ↓ in (𝑥∗, ∞), reaching zero
as 𝑥 → ∞; see Figure 1(b).

(b) Bimodal Status.Here 𝑥∗ and 𝑥∗∗ refer to, respectively, the
smallest and largest maximum points of the failure rate of the
mixture. When the difference Δ between 𝑟1(𝑥) and 𝑟2(𝑥) in
the interval (𝑥1, 𝑥∗) is small, where 𝑥1 < 𝑥∗ < 𝑥2 < 𝑥∗∗, the
third term in (14) is dominated by the first two terms and so𝑟(𝑥) > 0 in (0, 𝑥∗).ThedifferenceΔ in the interval (𝑥∗, 𝑥∗∗∗),
where 𝑥∗∗∗ is the local minimum point of 𝑟(𝑥), becomes
larger to the point that the third term in 𝑟(𝑥) dominates the
first two terms resulting in 𝑟(𝑥) < 0 in (𝑥∗, 𝑥∗∗∗). In the
interval (𝑥∗∗∗, 𝑥∗∗), the difference becomes small so that the
third term in 𝑟(𝑥) is dominated by the first two terms, and
so 𝑟(𝑥) > 0. Summarizing, we have the failure rate of the
mixed model to be ↑ in (0, 𝑥∗), decreasing in (𝑥∗, 𝑥∗∗∗), ↑ in(𝑥∗∗∗, 𝑥∗∗), and ↓ again in (𝑥∗∗, ∞), reaching 0 as 𝑥 tends to∞; see Figure 2(b).

We observe, from Figures 1(b) and 2(b), the shape of
the model (unimodal and bimodal) is influenced by the
parameters selected. Clearly, when (𝛽1, 𝛼2, 𝛽2) varied from
1.5, 2.0, and 3.0 to 0.75, 4.0, and 6.0 the model is varied from
the unimodal case to the bimodal case.

3. Classical Method for Estimating the
Parameters from the MIWIBD

Here, we define the classical method estimation of the maxi-
mum likelihood approach for the five-dimensional parameter
vector Θ of the mixture density. Equation (1) is found on a
random sample of size 𝑛.TheMLE Θ̂ is determined as a result
of the likelihood equations𝜕𝐿 (Θ)𝜕𝜃𝑖 = 0, 𝑖 = 1, 2, 3, 4, 5, (20)

or given by

𝜕 log𝐿 (Θ)𝜕𝜃𝑖 = 0, 𝑖 = 1, 2, 3, 4, 5, (21)
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where

𝐿 (Θ) = 𝑛∏
𝑗=1

𝑓 (𝑥𝑗; Θ) (22)

explains the likelihood function formed under the assump-
tion of identically independent distributions (iid) data𝑥1, . . . , 𝑥𝑛. The likelihood function based on the mixture
density in (1) is obtained by

𝐿 (Θ) = 𝑛∏
𝑗=1

[𝑝1𝑓1 (𝑥𝑗; Θ1) + 𝑝2𝑓2 (𝑥𝑗; Θ2)] , (23)

where Θ1 = (𝛼1, 𝛽1) and Θ2 = (𝛼2, 𝛽2).
By taking the derivative of the log-likelihood function𝐿∗ = log𝐿(Θ) with respect to the five parameters from the

MIWIBD then, the derivatives from the first order of 𝐿∗
become 𝜕𝐿∗𝜕𝑝1 = 𝑛∑

𝑗=1

𝜔 (𝑥𝑗; Θ) = 0,
𝜕𝐿∗𝜕𝛼1 = 𝑛∑

𝑗=1

𝑝1𝜙1 (𝑥𝑗; Θ) 𝜂1 (𝑥𝑗; Θ) = 0,
𝜕𝐿∗𝜕𝛽1 = 𝑛∑

𝑗=1

𝑝1𝜙2 (𝑥𝑗; Θ) 𝜂1 (𝑥𝑗; Θ) = 0,
𝜕𝐿∗𝜕𝛽2 = 𝑛∑

𝑗=1

𝑝2𝜓1 (𝑥𝑗; Θ) 𝜂2 (𝑥𝑗; Θ) = 0,
𝜕𝐿∗𝜕𝛼2 = 𝑛∑

𝑗=1

𝑝2𝜓2 (𝑥𝑗; Θ) 𝜂2 (𝑥𝑗; Θ) = 0,

(24)

where 𝜔(𝑥𝑗; Θ), 𝜙1(𝑥𝑗; Θ), 𝜙2(𝑥𝑗; Θ), 𝜂1(𝑥𝑗; Θ), 𝜂2(𝑥𝑗; Θ),𝜓1(𝑥𝑗; Θ), and 𝜓2(𝑥𝑗; Θ) are given, respectively, by
𝜔 (𝑥𝑗; Θ) = 𝑓1 (𝑥𝑗; Θ1) − 𝑓2 (𝑥𝑗; Θ2)𝑓 (𝑥𝑗; Θ) ,
𝜙1 (𝑥𝑗; Θ) = −𝛽1𝛼−11 + 𝛽1𝛼−(𝛽1+1)1 (𝑥𝑗)−𝛽1 ,𝜙2 (𝑥𝑗; Θ)= 𝛽−11 − log (𝛼1) − log (𝑥𝑗)

+ (𝛼1𝑥𝑗)−𝛽1 log (𝛼1𝑥𝑗) ,
𝜂1 (𝑥𝑗; Θ) = 𝑓1 (𝑥𝑗; Θ1)𝑓 (𝑥𝑗; Θ) ,
𝜂2 (𝑥𝑗; Θ) = 𝑓2 (𝑥𝑗; Θ2)𝑓 (𝑥𝑗; Θ) ,
𝜓1 (𝑥𝑗; Θ)= 𝛽2−1

+ ((𝛼2 + 1) 𝑥−𝛽2𝑗 (1 + 𝑥−𝛽2𝑗 )−1 − 1) log (𝑥𝑗) ,
𝜓2 (𝑥𝑗; Θ) = 𝛼2−1 − log (1 + 𝑥−𝛽2𝑗 ) ,

(25)

and 𝑓(𝑥𝑗; Θ), 𝑓1(𝑥𝑗; Θ1), and 𝑓2(𝑥𝑗; Θ2) are as in (1)–(3),
respectively. We can obtain the solutions for (24) to get the
estimates of the five parameters from the MIWIBD and to
solve them using Newton-Raphson method.

4. Bayesian Method by Using Lindley’s
Approximation for Estimating the
Parameters from the MIWIBD

In Bayesian estimation the posterior distribution function is
defined by multiplying the likelihood function with a prior
distribution for Θ = (𝑝1, 𝛼1, 𝛽1, 𝛽2, 𝛼2). Hence, the likeli-
hood function is given by (3) in Section 3. The parameters𝑝1, 𝛼1, 𝛼2, 𝛽1, and 𝛽2 are independent random variables for
the prior distribution of Θ = (𝑝1, 𝛼1, 𝛽1, 𝛽2, 𝛼2) represented
by 𝑔(𝑝1, 𝛼1, 𝛽1, 𝛽2, 𝛼2) as follows:𝑔 (Θ) ∝ 1,0 < 𝑝1 < 1,𝛼𝑖 > 0,𝛽𝑖 > 0.

(26)

Thus, the joint posterior density of the vector Θ is
obtained by multiplying (22) and (26) as follows:𝑞 (Θ | 𝑥)

∝ 𝑔 (Θ) 𝑛∏
𝑗=1

[𝑝1𝑓1 (𝑥𝑗; Θ1) + 𝑝2𝑓2 (𝑥𝑗; Θ2)] . (27)

From (27), we observe that the posterior density of the
vectorΘ is proportional to the likelihood functionmentioned
in Section 3.

Lindley’s [11] approximation under the squared error loss
function is evaluated to get the Bayes estimator of 𝑈 ≡ 𝑈(Θ),
where Θ = (𝜃1, 𝜃1, . . . , 𝜃𝑚) and 𝑈 ≡ 𝑈(Θ) is a function of Θ.
For the unknown five parameters’ status, the approximation
form reduces to the following:

�̃�BL (Θ) = 𝑈 (Θ) + 12 [𝐴 + 5∑
𝑖=1

𝐵𝑖𝑑𝑖] , (28)

where 𝑖 = 1, 2, . . . , 5,
𝐴 = 5∑
𝑖=1

5∑
𝑗=5

𝑈𝑖𝑗 (Θ) 𝜏𝑖𝑗,
𝑑𝑖 = 5∑
𝑗=1

𝑈𝑗 (Θ) 𝜏𝑖𝑗,
𝐵𝑖 = 5∑
𝑗=1

𝜏𝑗𝑗𝑄𝑗𝑗𝑖 (Θ) + 2 [[
5∑
𝑗=2

𝜏𝑖𝑗𝑄𝑖𝑗𝑖 (Θ) + 𝐸𝑖]] ,
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𝐸𝑖 = 𝜏23𝑄23𝑖 + 𝜏24𝑄24𝑖 + 𝜏25𝑄25𝑖 + 𝜏34𝑄34𝑖 + 𝜏35𝑄35𝑖+ 𝜏45𝑄45𝑖,
(29)

where 𝑄(Θ) is the logarithm of a posterior function for 𝑛
observations, forming a random sample 𝑋, from a density𝑓(⋅) for 𝑖, 𝑗, 𝑠 = 1, 2, . . . , 5,

𝑈𝑖 (Θ̂) = 𝜕𝑈 (Θ)𝜕𝜃𝑖 Θ=Θ̂ ,
𝑈𝑖𝑗 (Θ̂) = 𝜕2𝑈 (Θ)𝜕𝜃𝑖𝜕𝜃𝑗 Θ=Θ̂ ,
𝑄𝑖𝑗 (Θ̂) = 𝜕2𝑄 (Θ)𝜕𝜃𝑖𝜕𝜃𝑗 Θ=Θ̂ ,
𝑄𝑖𝑗𝑠 (Θ̂) = 𝜕3𝑄 (Θ)𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑠 Θ=Θ̂ ,

Σ𝑚×𝑚 = 𝜏𝑖𝑗 = (−𝑄𝑖𝑗)−1𝑚×𝑚 .

(30)

All terms on (28) are to be computed at the posterior
mode since the logarithm of the posterior density in (27) is
defined by

𝑄 (Θ | 𝑥) ≡ log 𝑞
∝ 𝑛∑
𝑗=1

log [𝑝1𝑓1 (𝑥𝑗; Θ1) + 𝑝2𝑓2 (𝑥𝑗; Θ2)] . (31)

The mode of the posterior density can be obtained by
solving the five nonlinear equations 𝑖 = 1, 2, the same
as that mentioned before in Section 3 in (24) since the
noninformative previous ones 𝑔(Θ) ∝ 1, 0 < 𝑝1 < 1, 𝛼𝑖 > 0,
and 𝛽𝑖 > 0.

To evaluate Lindley’s [11] approximation for the Bayes
estimator of the vector of parameters form in (28), we define
the elements of the matrix (𝑄𝑖𝑗)5×5, 𝑖, 𝑗 = 1, 2, . . . , 5, in
(30). These elements are evaluated by (A.1) in Appendix A.
Numerically by inverting the matrix −𝑄𝑖𝑗, the elements𝜏𝑖𝑗, 𝑖, 𝑗 = 1, 2, . . . , 5, of the matrix Σ are computed where
the elements 𝑄𝑖𝑗𝑠, 𝑖, 𝑗, 𝑠 = 1, 2, . . . , 5, are defined by (B.1) in
Appendix B.

Now, for the MTBIIID, Lindley’s [11] approximation for
the Bayes estimator of the vector of five parameters of

𝑝1, 𝛼1, 𝛼2, 𝛽1, and 𝛽2 is evaluated by equating 𝑈(Θ) in (28)
to one of the five parameters, so that𝑈𝑖𝑗 = 0 and𝐴 = 0, 𝑖, 𝑗 =1, 2, . . . , 5.

𝑝1 = 𝑝1 + 12 5∑
𝑖=1

𝐵𝑖𝜏𝑖1,
𝛼1 = �̂�1 + 12 5∑

𝑖=1

𝐵𝑖𝜏𝑖2,
𝛼2 = �̂�2 + 12 5∑

𝑖=1

𝐵𝑖𝜏𝑖3,
𝛽1 = 𝛽1 + 12 5∑

𝑖=1

𝐵𝑖𝜏𝑖4,
𝛽2 = 𝛽2 + 12 5∑

𝑖=1

𝐵𝑖𝜏𝑖5,

(32)

where 𝐵𝑖, 𝑖 = 1, . . . , 5, are obtained in (29) and 𝜏𝑖𝑗, 𝑖, 𝑗 =1, 2, . . . , 5, are the elements of the inverse matrix 𝑄𝑖𝑗. In (31),
the functions are calculated at the posterior mode.

5. Application

In this section, we apply the real data collected to fit the
proposed mixture model. We use the data collected from
Jeddah city for measuring the carbon monoxide level in
different locations during the period of January–June 2009
with sample size 151.

Table 2 obtained the descriptive statistics for the carbon
monoxide data.

The maximum likelihood estimates (MLEs) and Bayes
estimates (Bs) for the MIWIBD are calculated in Table 3.

From Figure 3, the carbon monoxide data provides a
suitable fit for the proposed mixture model under MLEs and
Bayes estimates. In addition, we used Kolmogorov–Smirnov
test (K-S) to fit the carbonmonoxide data as shown inTable 4.

From Table 4, we observe that the values of the (K-S) test
under the MLEs and Bayesian estimates give appropriate fit
from the MIWIBD at 5% level of significance.

The Fisher information matrix 𝐼(Θ) is used to determine
the approximate100(1 − 𝛿) confidence intervals (CIs) of the
parametersΘ as Θ̂±𝜉𝛿/2√𝑉(Θ̂), where𝑉(Θ̂) are the variances
of the parameters given from 𝐼−1(Θ̂) and 𝜉𝛿/2 is the upper 𝜉𝛿/2
percentile of the standard normal distribution.The variance-
covariance matrix of Θ is calculated as

𝐼−1 (Θ̂) = ((
(

0.006571 0.000881 −0.005074 0.052351 −0.0189850.000881 0.000697 −0.000678 0.003241 −0.002062−0.005074 −0.000678 0.057469 −0.025678 0.0131210.052351 0.003241 −0.025678 0.857329 −0.255263−0.018985 −0.002062 0.013121 −0.255263 0.090989
))
)

. (33)
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Table 2: Descriptive statistics for the carbon monoxide data of the MIWIBD.

Mean data 𝑁 Mean Mode Median Variance St dev Minimum Maximum
Carbon monoxide level 151 2.0911 1.51 1.88 1.34 1.16 0.10 4.78

Mle-cdf theoretical
Bayes-cdf theoretical
cdf empirical

0.45 1.02 1.30 1.55 1.95 2.57 2.95 3.31 4.190.10
x

0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Figure 3: Empirical cdf for the fitted carbon data of the MIWIB
model.

Table 3: MLEs and Bs for the carbon monoxide data of the
MIWIBD.

Parameter 𝑝1 �̂�1 �̂�2 𝛽1 𝛽2
MLE 0.6995 0.5038 0.6461 2.7637 2.5551
Bayes estimate 0.6813 0.5058 0.7814 2.7275 2.6999

Table 4: MLEs and Bs (K-S) test for the carbon monoxide data of
the MIWIBD.

(K-S) MLE 0.0978
(K-S) Bayes estimate 0.0995

The 90% and 95% CIs for the MLEs of the parameters are
evaluated in Table 5.

6. Conclusion

In this paper, theMIWIBD are proposed and some important
measures of the MIWIBD are discussed such as measures of
locations and measures of dispersion. Also, numerical results
for the mode and median of the MIWIBD are computed
based on different choices of Θ and the performance of the
failure rate functions of the MIWIBD is interpreted through
the plots. In addition, the estimates of the vector of the
unknown parameters of the MIWIBD are given. Further, the
MIWIBDare fitted to the data from Jeddah city formeasuring
the carbon monoxide level in different locations. Finally, the
expressions for Lindley’s approximation matrix are shown in
Appendix.

Appendix

A. Elements 𝑄𝑖𝑗
From (28) and the definitions in (31), the elements 𝑄𝑖𝑗, 𝑖, 𝑗 =1, 2, 3, 4, 5, are derived as follows:

𝑄11 = − 𝑛∑
𝑗=1

𝜔2 (𝑥𝑗; Θ) ,
𝑄12 = 𝑛∑

𝑗=1

𝜙1 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ) = 𝑄21,
𝑄13 = 𝑛∑

𝑗=1

𝜙2 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ) = 𝑄31,
𝑄14 = − 𝑛∑

𝑗=1

𝜓1 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ) = 𝑄41,
𝑄15 = − 𝑛∑

𝑗=1

𝜓2 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ) = 𝑄51,
𝑄22 = 𝑛∑

𝑗=1

𝑝1𝜂1 (𝑥𝑗; Θ) [𝑉1 (𝑥𝑗; Θ)
+ [1 − 𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙21 (𝑥𝑗; Θ)] ,

𝑄23 = 𝑛∑
𝑗=1

𝑝1𝜂1 (𝑥𝑗; Θ) [𝑉2 (𝑥𝑗; Θ1)
+ [1 − 𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙1 (𝑥𝑗; Θ) 𝜙2 (𝑥𝑗; Θ)]= 𝑄32,

𝑄24 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙1 (𝑥𝑗; Θ) 𝜓1 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ)
= 𝑄42,

𝑄25 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙1 (𝑥𝑗; Θ) 𝜓2 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ)
= 𝑄52,

𝑄33 = 𝑛∑
𝑗=1

𝑝1𝜂1 (𝑥𝑗; Θ) [𝑉3 (𝑥𝑗; Θ1)
+ [1 − 𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙22 (𝑥𝑗; Θ)] ,
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Table 5: MLEs and Bs 90% CIs for the carbon monoxide data of the MIWIBD.

Parameter 𝑝1 �̂�1 �̂�2 𝛽1 𝛽2
90% CIs 0.5665, 0.8324 0.0001, 0.5468 0.1516, 1.1405 2.3705, 3.1568 1.0366, 4.0735
95% CIs 0.5406, 0.8583 0.4523, 0.5552 0.0551, 1.2370 2.2938, 3.2335 0.7403, 4.3698

𝑄34 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙2 (𝑥𝑗; Θ) 𝜓1 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ)
= 𝑄43,

𝑄35 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙2 (𝑥𝑗; Θ) 𝜓2 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ)
= 𝑄53,

𝑄44 = 𝑛∑
𝑗=1

𝑝2𝜂2 (𝑥𝑗; Θ) [𝑊2 (𝑥𝑗; Θ2)
+ [1 − 𝑝2𝜂2 (𝑥𝑗; Θ)] 𝜓21 (𝑥𝑗; Θ)] ,

𝑄45 = 𝑛∑
𝑗=1

𝑝2𝜂2 (𝑥𝑗; Θ) [𝑊3 (𝑥𝑗; Θ2)
+ [1 − 𝑝2𝜂2 (𝑥𝑗; Θ)] 𝜓1 (𝑥𝑗; Θ) 𝜓2 (𝑥𝑗; Θ)]
= 𝑄54,

𝑄55 = 𝑛∑
𝑗=1

𝑝2𝜂2 (𝑥𝑗; Θ) [𝑊4 (𝑥𝑗; Θ2)
+ [1 − 𝑝2𝜂2 (𝑥𝑗; Θ)] 𝜓22 (𝑥𝑗; Θ)] ,

(A.1)
where 𝑉1(𝑥𝑗; Θ1), 𝑉2(𝑥𝑗; Θ1), 𝑉3(𝑥𝑗; Θ1), 𝑊∗2 (𝑥𝑗; Θ2),𝑊∗3 (𝑥𝑗; Θ2), 𝑉1(𝑥𝑗; Θ1), 𝑉2(𝑥𝑗; Θ1), 𝑉3(𝑥𝑗; Θ1), 𝑊∗2 (𝑥𝑗; Θ2),𝑊∗3 (𝑥𝑗; Θ2), and 𝑊∗4 (𝑥𝑗; Θ2), for 𝑗 = 1, 2, . . . , 𝑛, are given,
respectively, by

𝜉 (𝑥𝑗; Θ) = 𝑓1 (𝑥𝑗; Θ1) 𝑓2 (𝑥𝑗; Θ2)𝑓2 (𝑥𝑗; Θ) ,
𝑉1 (𝑥𝑗; Θ1) = 𝛽1𝛼−21 − 𝛽1 (𝛽1 + 1) 𝛼−(𝛽1+2)1 𝑥−𝛽1𝑗 ,
𝑉2 (𝑥𝑗; Θ1) = −𝛼−11 + 𝛼−(𝛽1+1)1 𝑥−𝛽1𝑗 − 𝛽1𝛼−(𝛽1+1)1 𝑥−𝛽1𝑗⋅ log (𝛼1𝑥𝑗) ,
𝑉3 (𝑥𝑗; Θ1) = − (𝛽−21 + (𝛼1𝑥𝑗)−𝛽1 (log (𝛼1𝑥𝑗))2) ,
𝑊∗2 (𝑥𝑗; Θ2) = −𝛽2−2 + (𝛼2 + 1) 𝑥𝑗−𝛽2 (log (𝑥𝑗))2

⋅ (1 + 𝑥𝑗−𝛽2)−1 [𝑥𝑗−𝛽2 (1 + 𝑥𝑗−𝛽2)−1 − 1] ,

𝑊∗3 (𝑥𝑗; Θ2) = 𝑥𝑗−𝛽2 (1 + 𝑥𝑗−𝛽2)−1 log (𝑥𝑗) ,𝑊∗4 (𝑥𝑗; Θ2) = −𝛼2−2,
(A.2)

with 𝑓(𝑥𝑗; Θ), 𝑓1(𝑥𝑗; Θ1), 𝑓2(𝑥𝑗; Θ2), 𝜔(𝑥𝑗; Θ), 𝜙1(𝑥𝑗; Θ),𝜙2(𝑥𝑗; Θ), 𝜂1(𝑥𝑗; Θ), 𝜂2(𝑥𝑗; Θ), 𝜓1(𝑥𝑗; Θ), and 𝜓2(𝑥𝑗; Θ) being
as given in (1)–(3) and (25), respectively.

B. Elements 𝑄𝑖𝑗𝑠
From (28) and the definitions in (31), the elements𝑄𝑖𝑗𝑠,𝑄𝑖𝑗𝑠 =𝑄𝑖𝑠𝑗 = 𝑄𝑗𝑖𝑠 = 𝑄𝑗𝑠𝑖 = 𝑄𝑠𝑖𝑗 = 𝑄𝑠𝑗𝑖, for 𝑖, 𝑗, 𝑠 = 1, 2, . . . , 5, are
derived as follows:

𝑄111 = 2 𝑛∑
𝑗=1

𝜔3 (𝑥𝑗; Θ) ,
𝑄121 = −2 𝑛∑

𝑗=1

𝜙1 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ) 𝜔 (𝑥𝑗; Θ) = 𝑄112,
𝑄131 = −2 𝑛∑

𝑗=1

𝜙2 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ) 𝜔 (𝑥𝑗; Θ) = 𝑄113,
𝑄141 = 2 𝑛∑

𝑗=1

𝜓1 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ) 𝜔 (𝑥𝑗; Θ) = 𝑄114,
𝑄151 = 2 𝑛∑

𝑗=1

𝜓2 (𝑥𝑗; Θ) 𝜉 (𝑥𝑗; Θ) 𝜔 (𝑥𝑗; Θ) = 𝑄115,
𝑄122 = 𝑛∑

𝑗=1

[𝜙21 (𝑥𝑗; Θ) [1 − 2𝑝1𝜂1 (𝑥𝑗; Θ)]
+ 𝑉1 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ) = 𝑄221,

𝑄123 = (𝑛 − 𝑟) 𝑅2 (𝑥𝑟; Θ2)𝑅2 (𝑥𝑟; Θ) [ℓ∗1 (𝑥𝑟; Θ1) − 2𝑝1
⋅ 𝑎1 (𝑥𝑟; Θ1) 𝑏1 (𝑥𝑟; Θ1)𝑅 (𝑥𝑟; Θ) ] + 𝑟∑

𝑗=1

[𝜙1 (𝑥𝑗; Θ)
⋅ 𝜙2 (𝑥𝑗; Θ) [1 − 2𝑝1𝜂1 (𝑥𝑗; Θ)] + 𝑉2 (𝑥𝑗; Θ1)]⋅ 𝜉 (𝑥𝑗; Θ) = 𝑄132 = 𝑄231,

𝑄124 = 𝑛∑
𝑗=1

𝜙1 (𝑥𝑗; Θ) 𝜓1 (𝑥𝑗; Θ) [1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)]
⋅ 𝜉 (𝑥𝑗; Θ) = 𝑄142 = 𝑄241,
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𝑄125 = 𝑛∑
𝑗=1

𝜙1 (𝑥𝑗; Θ) 𝜓2 (𝑥𝑗; Θ) [1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)]
⋅ 𝜉 (𝑥𝑗; Θ) = 𝑄152 = 𝑄251,

𝑄134 = 𝑛∑
𝑗=1

𝜙2 (𝑥𝑗; Θ) 𝜓1 (𝑥𝑗; Θ) [1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)]
⋅ 𝜉 (𝑥𝑗; Θ) = 𝑄143 = 𝑄341,

𝑄135 = 𝑛∑
𝑗=1

𝜙2 (𝑥𝑗; Θ) 𝜓2 (𝑥𝑗; Θ) [1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)]
⋅ 𝜉 (𝑥𝑗; Θ) = 𝑄153 = 𝑄351,

𝑄145 = − 𝑛∑
𝑗=1

[𝜓1 (𝑥𝑗; Θ) 𝜓2 (𝑥𝑗; Θ)
⋅ [1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)] + 𝑊∗3 (𝑥𝑗; Θ2)] 𝜉 (𝑥𝑗; Θ)= 𝑄154 = 𝑄451,

𝑄331 = 𝑛∑
𝑗=1

[𝑉3 (𝑥𝑗; Θ1) + [1 − 2𝑝1𝜂1 (𝑥𝑗; Θ)]
⋅ 𝜙22 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ) = 𝑄133,

𝑄441 = − 𝑛∑
𝑗=1

[𝑊∗2 (𝑥𝑗; Θ2) + [1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)]
⋅ 𝜓21 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ) = 𝑄144,

𝑄551 = − 𝑛∑
𝑗=1

[𝑊∗4 (𝑥𝑗; Θ2) + [1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)]
⋅ 𝜓22 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ) = 𝑄155,

𝑄222 = 𝑛∑
𝑗=1

[𝑝1𝑝2𝜙1 (𝑥𝑗; Θ)
⋅ (3𝑉1 (𝑥𝑗; Θ1) + [1 − 2𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙21 (𝑥𝑗; Θ))⋅ 𝜉 (𝑥𝑗; Θ) + 𝑝1𝑊1 (𝑥𝑗; Θ1) 𝜂1 (𝑥𝑗; Θ)] ,

𝑄223 = 𝑛∑
𝑗=1

𝑝1𝜂1 (𝑥𝑗; Θ) [𝜙1 (𝑥𝑗; Θ) [1 − 𝑝1𝜂1 (𝑥𝑗; Θ)]
⋅ (𝑉3 (𝑥𝑗; Θ1) + [1 − 2𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙22 (𝑥𝑗; Θ))+ 𝑊3 (𝑥𝑗; Θ1) + (2𝜙2 (𝑥𝑗; Θ) 𝑉2 (𝑥𝑗; Θ1)⋅ [1 − 𝑝1𝜂1 (𝑥𝑗; Θ)])] = 𝑄232,

𝑄224 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜓1 (𝑥𝑗; Θ) (𝑉1 (𝑥𝑗; Θ1) + (1
− 2𝑝1𝜂1 (𝑥𝑗; Θ)) 𝜙21 (𝑥𝑗; Θ)) 𝜉 (𝑥𝑗; Θ) = 𝑄242,

𝑄225 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜓2 (𝑥𝑗; Θ) (𝑉1 (𝑥𝑗; Θ1) + (1
− 2𝑝1𝜂1 (𝑥𝑗; Θ)) 𝜙21 (𝑥𝑗; Θ)) 𝜉 (𝑥𝑗; Θ) = 𝑄252,

𝑄332 = 𝑛∑
𝑗=1

𝑝1𝜂1 (𝑥𝑗; Θ) [𝜙1 (𝑥𝑗; Θ) [1 − 𝑝1𝜂1 (𝑥𝑗; Θ)]
⋅ (𝑉3 (𝑥𝑗; Θ1) + [1 − 2𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙22 (𝑥𝑗; Θ))
+ 𝑊3 (𝑥𝑗; Θ1) + (2𝜙2 (𝑥𝑗; Θ) 𝑉2 (𝑥𝑗; Θ1)⋅ [1 − 𝑝1𝜂1 (𝑥𝑗; Θ)])] = 𝑄233,

𝑄244 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙1 (𝑥𝑗; Θ) [𝑊∗2 (𝑥𝑗; Θ2) + 𝜓21 (𝑥𝑗; Θ)
⋅ (1 − 2𝑝2𝜂2 (𝑥𝑗; Θ))] 𝜉 (𝑥𝑗; Θ) = 𝑄442,

𝑄255 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙1 (𝑥𝑗; Θ) [𝑊∗4 (𝑥𝑗; Θ2) + 𝜓22 (𝑥𝑗; Θ)
⋅ (1 − 2𝑝2𝜂2 (𝑥𝑗; Θ))] 𝜉 (𝑥𝑗; Θ) = 𝑄552,

𝑄234 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜓1 (𝑥𝑗; Θ) [𝑉2 (𝑥𝑗; Θ1) + (1
− 2𝑝1𝜂1 (𝑥𝑗; Θ)) 𝜙1 (𝑥𝑗; Θ) 𝜙2 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ)= 𝑄243 = 𝑄342,

𝑄235 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜓2 (𝑥𝑗; Θ) [𝑉2 (𝑥𝑗; Θ1) + (1
− 2𝑝1𝜂1 (𝑥𝑗; Θ)) 𝜙1 (𝑥𝑗; Θ) 𝜙2 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ)= 𝑄253 = 𝑄352,

𝑄245 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙1 (𝑥𝑗; Θ) [𝑊∗3 (𝑥𝑗; Θ2) + (1
− 2𝑝2𝜂2 (𝑥𝑗; Θ)) 𝜓1 (𝑥𝑗; Θ) 𝜓2 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ∗)= 𝑄254 = 𝑄452,

𝑄333 = 𝑛∑
𝑗=1

[𝑝1𝑝2𝜙2 (𝑥𝑗; Θ)
⋅ (3𝑉3 (𝑥𝑗; Θ1) + [1 − 2𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙22 (𝑥𝑗; Θ))⋅ 𝜉 (𝑥𝑗; Θ) + 𝑝1𝑊3 (𝑥𝑗; Θ1) 𝜂1 (𝑥𝑗; Θ)] ,

𝑄334 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜓1 (𝑥𝑗; Θ) [𝑉3 (𝑥𝑗; Θ1) + [1
− 2𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙22 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ) = 𝑄343,
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𝑄335 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜓2 (𝑥𝑗; Θ) [𝑉3 (𝑥𝑗; Θ1) + [1
− 2𝑝1𝜂1 (𝑥𝑗; Θ)] 𝜙22 (𝑥𝑗; Θ)] 𝜉 (𝑥𝑗; Θ) = 𝑄353,

𝑄344 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙2 (𝑥𝑗; Θ) [𝑊∗2 (𝑥𝑗; Θ2) + 𝜓21 (𝑥𝑗; Θ)
⋅ (1 − 2𝑝2𝜂2 (𝑥𝑗; Θ))] 𝜉 (𝑥𝑗; Θ) = 𝑄443,

𝑄355 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙2 (𝑥𝑗; Θ) [𝑊∗4 (𝑥𝑗; Θ2) + 𝜓22 (𝑥𝑗; Θ)
⋅ (1 − 2𝑝2𝜂2 (𝑥𝑗; Θ))] 𝜉 (𝑥𝑗; Θ) = 𝑄553,

𝑄345 = −𝑝1𝑝2 𝑛∑
𝑗=1

𝜙2 (𝑥𝑗; Θ) [𝑊∗3 (𝑥𝑗; Θ2) + 𝜓1 (𝑥𝑗; Θ)
⋅ 𝜓2 (𝑥𝑗; Θ) (1 − 2𝑝2𝜂2 (𝑥𝑗; Θ))] 𝜉 (𝑥𝑗; Θ) = 𝑄354= 𝑄453,

𝑄444 = 𝑛∑
𝑗=1

𝑝2𝜂2 (𝑥𝑗; Θ) [𝑛1 (𝑥𝑗; Θ) + 𝜓1 (𝑥𝑗; Θ) [1
− 𝑝2𝜂2 (𝑥𝑗; Θ)] (3𝑊∗2 (𝑥𝑗; Θ2) + 𝜓21 (𝑥𝑗; Θ)⋅ (1 − 2𝑝2𝜂2 (𝑥𝑗; Θ))) + 𝜓21 (𝑥𝑗; Θ)] ,

𝑄445 = 𝑛∑
𝑗=1

𝑝2𝜂2 (𝑥𝑗; Θ) [𝑛2 (𝑥𝑗; Θ) + 𝑊∗3 (𝑥𝑗; Θ2)
+ 𝜓2 (𝑥𝑗; Θ) (𝑊∗2 (𝑥𝑗; Θ2) + 𝜓21 (𝑥𝑗; Θ)⋅ [1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)])] = 𝑄454,

𝑄455 = 𝑛∑
𝑗=1

𝑝2𝜂2 (𝑥𝑗; Θ) (1 − 𝑝2𝜂2 (𝑥𝑗; Θ)) [𝜓1 (𝑥𝑗; Θ)
⋅ 𝑊∗4 (𝑥𝑗; Θ) + 2𝜓2 (𝑥𝑗; Θ) 𝑊∗3 (𝑥𝑗; Θ2)+ 𝜓1 (𝑥𝑗; Θ) 𝜓22 (𝑥𝑗; Θ) (1 − 𝑝2𝜂2 (𝑥𝑗; Θ))]= 𝑄554,

𝑄555 = 𝑛∑
𝑗=1

𝑝2𝜂2 (𝑥𝑗; Θ) [𝑛3 (𝑥𝑗; Θ) + 𝜓2 (𝑥𝑗; Θ) (1
− 𝑝2𝜂2 (𝑥𝑗; Θ)) (3𝑊∗4 (𝑥𝑗; Θ2) + 𝜓22 (𝑥𝑗; Θ)⋅ (1 − 2𝑝2𝜂2 (𝑥𝑗; Θ)))] ,

(B.1)

where𝑊1 (𝑥𝑗; Θ1) = −2𝛽1𝛼−31 + 𝛽1 (𝛽1 + 1) (𝛽1 + 2)
⋅ 𝛼−(𝛽1+3)1 𝑥−𝛽1𝑗 ,

𝑊2 (𝑥𝑗; Θ1) = 𝛼−21 − (2𝛽1 + 1) 𝛼−(𝛽1+2)1 𝑥−𝛽1𝑗+ 𝛽1 (𝛽1 + 1) 𝛼−(𝛽1+2)1 𝑥−𝛽1𝑗 log (𝛼1𝑥𝑗) ,
𝑊3 (𝑥𝑗; Θ1) = 𝛽1𝛼−(𝛽1+1)1 𝑥−𝛽1𝑗 (log (𝛼1𝑥𝑗))2

− 2𝛼−(𝛽1+1)1 𝑥−𝛽1𝑗 log (𝛼1𝑥𝑗) ,
𝑛1 (𝑥𝑗; Θ2) = 2𝛽−32 + (𝛼2 + 1) (log𝑥𝑗)3

⋅ 𝑥𝑗−𝛽2 (1 + 𝑥𝑗−𝛽2)−1 (𝑥𝑗−𝛽2 (1 + 𝑥𝑗−𝛽2)−1 − 1)2
+ 𝑥𝑗−𝛽2 log (𝑥𝑗) (1 + 𝑥𝑗−𝛽2)−1⋅ ((𝛼2 + 1) − 𝑥𝑗−𝛽2 (1 + 𝑥𝑗−𝛽2)−1) ,

𝑛2 (𝑥𝑗; Θ2) = 𝑥𝑗−𝛽2 (log𝑥𝑗)2 (1 + 𝑥𝑗−𝛽2)−1⋅ [𝑥𝑗−𝛽2 (1 + 𝑥𝑗−𝛽2)−1 − 1] ,
𝑛3 (𝑥𝑗; Θ2) = 2𝛼2−3.

(B.2)
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