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Reliability is one of the quantifiable software quality attributes. Software Reliability Growth Models (SRGMs) are used to assess
the reliability achieved at different times of testing. Traditional time-based SRGMs may not be accurate enough in all situations
where test effort varies with time. To overcome this lacuna, test effort was used instead of time in SRGMs. In the past, finite test
effort functions were proposed, which may not be realistic as, at infinite testing time, test effort will be infinite. Hence in this paper,
we propose an infinite test effort function in conjunction with a classical Nonhomogeneous Poisson Process (NHPP) model. We
use Artificial Neural Network (ANN) for training the proposed model with software failure data. Here it is possible to get a large
set of weights for the same model to describe the past failure data equally well. We use machine learning approach to select the
appropriate set of weights for the model which will describe both the past and the future data well. We compare the performance
of the proposed model with existing model using practical software failure data sets. The proposed log-power TEF based SRGM
describes all types of failure data equally well and also improves the accuracy of parameter estimation more than existing TEF and
can be used for software release time determination as well.

1. Introduction

Early Software Reliability GrowthModels (SRGMs) represent
the relationship between the time to failure and the cumula-
tive number of faults detected till then. Many such SRGMs
have been proposed as parametric [1–14] and nonparametric
[15–18] models since the year 1972 to estimate future failure
occurrence times and assess the reliability growth of software
systems during the testing phase. The traditional SRGMs are
based on the premise that the mean value function of the
model follows either exponential growth [1, 3] or S-shaped
growth [2, 11] or both [4–8].

Some SRGMs have been proposed with testing effort
function (TEF) [11–13], since the fault detection and cor-
rection depend on efforts consumed such as test cases
executed, man-days expended, computer utilization time,
and other resources consumed, rather than only testing time
or calendar time. The effort based SRGMs proposed in the
past use exponential, Rayleigh, logistic, or Weibull distri-
butions to specify testing effort function (TEF) to denote

effort consumption during testing [11–13]. Although these
functions seem to give good result and can well fit in some
cases, there is a fallacy in assuming finite total test effort at
an infinite time. Xie and Zhao proposed a Nonhomogeneous
Poisson Process (NHPP) reliability growth model based on
log-power distribution which is a graphical model where
fitting of the data or not can be visualized in a graph before
parameter estimation [19].

In this paper, we propose using log-power [19] distribu-
tion to describe TEF in Goel and Okumoto [1] SRGM to
provide an SRGMwith infinite TEF. We use Artificial Neural
Network (ANN) for parameter estimation and applymachine
learning technique to determine the most suitable weights
for the proposed model that will fit the past and future data
equally well. We study and compare the goodness of fit (GoF)
performance of the proposedmodel with a popular test effort
function based SRGM. We use ANN for parameter estima-
tion uniformly in all cases sinceANN improves the parameter
estimation accuracy and gives better goodness of fit rather
than traditional statistical parametric models [15–18].
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Table 1: Testing effort functions.

Models Equation Notations

Weibull TEF [11] 𝑊(𝑡) = 𝛼 (1 − 𝑒(−𝛽𝑡
𝛾))

𝑊(𝑡): cumulative testing effort
consumption in (0, 𝑡]
𝛼: expected total testing effort consumed
during testing
𝛽: scale parameter and 𝛾: shape parameter

Logistic TEF [12] 𝑊(𝑡) = 𝑁
1 + 𝐴𝑒(−𝛼𝑡)

𝑁: total testing effort consumed
𝐴: constant
𝛼: consumption rate of testing effort
expenditure

Proposed log-power TEF 𝑊(𝑡) = 𝑛 ln𝑐(1 + 𝑡) 𝑛 and 𝑐 are constants

This paper is organized in the followingmanner. Section 2
presents the proposed testing effort function. Section 3
presents the proposed Software Reliability Growth Model.
Section 4 gives the approach to check the validity of the
proposed model. Section 5 describes parameter estimation
using ANN. Section 6 presents the machine learning tech-
nique used to select appropriate weights of the proposed
model. Section 7 describes the performance analysis. Sec-
tion 8 describes one application of the proposed model,
namely, software release time determination. Summary and
conclusions are given in Section 9.

2. Proposed Testing Effort Function

Since the resources consumedduring software testing directly
impact software reliability improvement, few SRGMs with
testing effort functions were proposed in the past. To study
the properties of testing effort functions, we compare the
proposed log-power TEF with already proposed test effort
functions such as Weibull and logistic. The comparison is
given in Table 1.

The exponential and Rayleigh TEFs are special cases of
Weibull TEF when the shape parameter is 1 and 2, respec-
tively. Weibull TEF displays a peak curve when the shape
parameter in theWeibull function increases.The exponential
TEF is used, when the effort is uniformly consumed on the
testing time whereas the Rayleigh TEF is used when the
testing effort first increases to a peak and then decreases. In
case of logistic TEF, at time “𝑡 = 0,” the effort𝑊(𝑡) = 𝑊(0)
is nonzero. It is unrealistic, because at the initial stages when
time is zero no testing effort can be consumed.

There are innumerable chances for faults creeping in
software systems. Therefore one has to adopt a strategy for
the generation of effective test cases for minimizing the error
content. It is believed that achieving zero defect in software
is possible but impractical due to the requirement of infinite
efforts. At time “𝑡 = 0,” the effort 𝑊(𝑡) = 𝑊(0) is not
zero since test cases and test plan are drawn before testing
starts. Thereafter it grows with testing. We chose log-power
TEF because of its simplicity with just two parameters and
it was found to be growing logarithmically with time and
representing real testing projects better.

3. Proposed Software Reliability
Growth Model with Log-Power Testing
Effort Function

Instead of proposing a brand new SRGM for the sake of it, we
propose building on the past good work done by researchers
[1, 19]. We time transform the G-O model using log-power
testing effort function. In the classical Goel-Okumoto SRGM,
the independent variable, that is, time “𝑡,” is replaced with
log-power testing effort function “𝑊(𝑡)” by applying the time
transformation as applicable to NHPP models [20].

If𝑊(𝑡) is the log-power testing effort spent at time 𝑡 then
the mean value function 𝜇(𝑡) of the Goel-Okumoto model
can be transformed as given below:

𝜇 (𝑡) = 𝑎 (1 − 𝑒(−𝑏∗𝑊(𝑡))) ,

𝑊 (𝑡) = 𝑛 ∗ ln𝑐 (1 + 𝑡) ,
(1)

where𝑊(𝑡) is total testing effort consumed in time interval
(0, 𝑥], 𝑎 is the expected number of software errors to be
detected, and 𝑏, 𝑐, and 𝑛 are constants.

Thus, themean value function𝜇(𝑡) of the SRGMwith log-
power TEF is as follows:

𝜇 (𝑡) = 𝑎 (1 − 𝑒(−𝑏(𝑛∗ln
𝑐(1+𝑡)))) . (2)

4. Checking Validity of the Model

We evaluate the performance of the proposedmodel by using
four practical software failure data sets which are available in
the form of (𝑡𝑛, 𝑤𝑛, 𝑦𝑛). The data set needs to be normalized
in the range of [0, 1] before feeding to the ANNs. Table 2
provides the description of the software failure data sets.

We measure and compare the goodness of fit (GoF)
performance of the proposed model by using Mean Square
Error (MSE) [22]. MSE is used to measure the square of
the difference between the actual and estimated values.
The smaller MSE indicates the less fitting error and better
performance.
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Step 1
(1) Normalize the input and output data set patterns.
(2) Initialize the weight values to small random numbers.
(3) Set the error rate condition criteria.
(4) Derive the activation functions for hidden layer and output layer from the mean value function.

Step 2
Calculate the Input value and Output value for hidden and output neurons using activation functions.

(1) Output of Input Neuron 𝑗 =The input data value 𝑝𝑖
(2) The output of Hidden neurons or output neuron 𝑝𝑗 = 𝐴(NET) where NET = ∑𝑖 𝑤𝑗𝑖 ⋅ 𝑝𝑖, 𝐴 is the activation function,

𝑤𝑗𝑖 is the weight from 𝑖 to 𝑗 and 𝑝𝑖 is the input data set pattern values.
Step 3
Calculate error 𝜕, Start from output layer & work backward to hidden layers recursively.

Error 𝜕𝑜 = (𝑑 − 𝑜) ∗ (𝐴1(NET)) where 𝜕𝑜 is the error for output layer neurons.
Similarly calculate error 𝜕𝑗 for hidden layer neurons.
Step 4
Do the Weight Adjustments for output and hidden layers.

Weight adjustments for output layer 𝑤𝑗𝑖 = 𝑤𝑗𝑖 + Δ𝑤𝑗𝑖 where 𝑤𝑗𝑖 = 𝑐 ⋅ 𝜕𝑜 ⋅ 𝑝𝑖 here 𝑐 is the learning rate co-efficient
and the weights are adjusted by gradient descent method in which the weight change is proportional to the partial derivative
of the error.

Repeat step 2 to step 4 until the stopping criteria are met.

Box 1: ANN feed-forward back-propagation procedure.

Table 2: Software failure data sets.

Data sets Description

DS-1 [20]

Release-1 which is a subset of four software
releases cited fromWood for Tandem Computers
Company. It was tested for 20 weeks (𝑡𝑛) in which
100 software failures (𝑦𝑛) were found and 10000
CPU hours (𝑤𝑛) were consumed.

DS-2 [20]
Release-2 from Tandem Computers Company. It
was tested for 19 weeks (𝑡𝑛) in which 120 software
failures (𝑦𝑛) were found and 10272 CPU hours
(𝑤𝑛) were consumed.

DS-3 [20]
Release-3 from Tandem Computers Company. It
was tested for 12 weeks (𝑡𝑛) in which 61 software
failures (𝑦𝑛) were found and 5053 CPU hours (𝑤𝑛)
were consumed.

DS-4 [21]
Cited from Brooks and Motley which was tested
for 35 weeks (𝑡𝑛) and 1301 failures (𝑦𝑛) were found
& 1846.92 CPU hours (𝑤𝑛) were consumed.

5. Parameter Estimation Using Artificial
Neural Network

We use feed-forward ANN with back-propagation algorithm
for estimating parameters of the proposed model. Thus, the
mean value function of the proposed SRGM with log-power
TEF (2) is given as follows:

𝑌 (𝑡) = 𝑤4 (1 − 𝑒
(−𝑤3(𝑤2∗ln𝑤1 (1+𝑡)))) , (3)

where𝑤1,𝑤2,𝑤3, and𝑤4 are theweights of software reliability
model and their values are determined using ANN. Here,
the activation functions of the ANN are developed according
to the mean value function of the selected SRGM and
testing effort function [16]. In order to estimate the weight

values, software failure data which is available in the form
of (𝑡𝑛, 𝑤𝑛, 𝑦𝑛) is used where 𝑡𝑛 is the cumulative testing time
which is measured in terms of appropriate time such as
months and hours, 𝑤𝑛 is the effort expended in terms of
number of hours, and 𝑦𝑛 is the corresponding cumulative
number of failures.

First, we estimate 𝑤1 and 𝑤2 values for log-power TEF
𝑊(𝑡) = 𝑤2 ∗ ln𝑤1(1 + 𝑡) using software failure data pair
(𝑡𝑛, 𝑤𝑛). Then,𝑤3 and𝑤4 values are estimated for mean value
function𝑌(𝑡) = 𝑤4(1−𝑒(−𝑤3(𝑊(𝑡)))) using software failure data
pair (𝑤𝑛, 𝑦𝑛) and here𝑤𝑛 is the estimated values of𝑊(𝑡). The
activation functions for hidden layers are ln(1+𝑡) and 1−𝑒(−𝑡).
The linear activation function 𝑡 is used for output layers.

The ANN feed-forward back-propagation procedure for
parameter estimation is given in Box 1.

6. Machine Learning Technique to Select
Appropriate Weights of the Proposed Model

The goodness of fit statistic indicates the quality of fitting
of past data. The objective is not only to get a better fit for
the past data, but also to ensure that the model will describe
the future data equally well. Traditionally the predictive
validity, both short-term and long-term of the software
reliability models, was measured in order to confirm that the
model will describe the future data well. We apply hold-out
cross-validation approach which is one of the conventional
machines’ learning technique to get the better goodness of fit
for the past data as well as predictive validity to describe the
future data [23].

Multiple sets of weights may lead to equally good fit when
we use ANN. Different good fits are possible depending on
the start values assigned at random for the weights. Selection
of weights based only on minimum training error could be
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(1) Train on the 60% training data set.
(2) Calculate the training data set accuracy by propagating error through the network and by adjusting the weights using ANN

feed-forward back-propagation algorithm.
(3) Validate on the next 20% validation data set.
(4) If

the threshold validation accuracy is met stop training.
Else

continue training until the threshold validation accuracy met.
(5) Test on the next 20% test data set to confirm the selection of the model with appropriate weights.

Box 2: Description of machine learning cross-validation procedure to select appropriate weight values.

Table 3: MSE for training and validation.

Data sets Weight sets Training MSE Validation MSE

DS-1 Trial-1 0.4829 1.6251
Trial-2 0.4831 0.4829

DS-2 Trial-1 0.4823 1.5382
Trial-2 0.4742 0.4745

DS-3 Trial-1 0.3465 1.3074
Trial-2 0.3482 0.3478

DS-4 Trial-1 0.4157 1.3876
Trial-2 0.4028 0.4031

misleading since the model may not describe future data
accurately in the same manner. If the selected weights result
in low training error but have high validation error, it is due to
high variance or overfitting. Hence after arriving minimum
training error (for 60% training data set) with the selected
weights, we carry out validation (for 20% nonoverlapping
validation data set) to ensure that the model will fit new data
adequately. Box 2 describes the cross-validation procedure to
select appropriate weights of the model.

Table 3 provides the Mean Squared Error values for both
training and cross-validation for two trial weight sets of the
proposed model.

It can be seen that although training error is more or less
the same for both Trial-1 and Trial-2, the validation error is
significantly higher for Trial-1 for both data sets. So it will
not describe the future data better. Since the training and
validation errors are both lower for the Trial-2 weights, the
model will fit the future data also equally well.

7. Performance Analysis

Once the appropriate weights of the proposed model are
determined as above, then the model is tested for perfor-
mance using the remaining 20% test data to confirm the
selected weights. The MSE calculated with test data is given
in Table 4.

To study the relative performance of the testing effort
function, we compare the proposed log-power TEF with
already proposed Weibull test effort function [11], both used
in G-O model [1]. The results confirm the suitability of

Table 4: MSE for test data.

Models MSE
DS-1 DS-2 DS-3 DS-4

G-O SRGM with
Weibull TEF [11] 0.5327 0.5262 0.4028 0.8935

Proposed G-O SRGM
with log-power TEF 0.4823 0.4741 0.3485 0.4031

log-power test effort function which appears to be the logical
choice for TEF.

8. Determining When to Stop Testing: Use of
Proposed SRGM

When to stop testing and release the software for operational
use is one of the applications of Software Reliability Growth
Models [22, 24]. Since the estimation of optimum release
time based on conditional reliability does not converge [19],
release time determination was carried by Subburaj and
Gopal using minimum target failure intensity as the criterion
instead of reliability [5], which converged after a few phases
of testing. We adopt the same approach to determine when
to stop testing using the proposed model. Box 3 describes
the procedure for software release time determination using
failure intensity to stop testing.

The equation of failure intensity function of proposed log-
power TEF based SRGM is given as follows:

𝜆 (𝑡) =
𝑑𝑦
𝑑𝑡

=
𝑑 (𝑤4 ⋅ (1 − 𝑒(−𝑤3∗𝑤2 ⋅(ln(1+𝑡)

𝑤1 ))))
𝑑𝑡

,

𝜆 (𝑡)

= 𝑤4 ⋅ 𝑤3 ⋅ 𝑤2 ⋅ 𝑤1 ⋅ 𝑒−𝑤3 ⋅𝑤2⋅ln(𝑡+1)
𝑤1 ⋅ ln (𝑡 + 1)(𝑤1−1)

𝑡 + 1
.

(4)

A target failure intensity of 1.663 failures per week is set
for software failure data set DS-4. The target failure intensity
has been achieved, and testing can be stopped at 25 weeks by
which time 1166 failures were observed as given in Table 5.
When we use effort based SRGM we can not only find the
optimum testing time (𝑇OPT), but also determine the effort
needed to achieve target reliability as illustrated in Table 5.
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(1) Set the target failure intensity to stop testing that depends on the software failure data set and customer requirements.
(2) In Phase I, estimate the parameters upto 25% of total number of failures in the software failure data set.
(3) Find the Optimal Testing Time (𝑇OPT) needed to meet the target failure intensity using 𝜆(𝑡).
(4) In the next Phase, estimate the parameters upto 𝑇OPT with the software failure data set.

Repeat step (3) with the updated estimated parameters.
(5) Find the 𝑇OPT.

if
it is less than or equal to target then stop testing.

else
repeat step (3) till the target failure intensity achieved with the required 𝑇OPT.

Box 3: Procedure for software release time determination to stop testing.

Table 5: Release time determination of the proposed SRGM for DS-4.

Phase Time (in weeks) Number of failures 𝑊4 𝑊3 𝑊2 𝑊1 𝑇OPT Effort needed
1 10 312 1350.04 1.54𝐸 − 03 265.78 0.2158 17 645
2 17 771 1350.08 1.35𝐸 − 03 650.62 0.3127 25 1200
3 25 1166 1350.15 1.15𝐸 − 03 1185.84 0.4910 25 1200

9. Summary and Conclusions

In time-based Software Reliability Growth Models (SRGMs),
we assume that the testing efforts are constant over time
which may be unrealistic at times. Effort based SRGMs are
more realistic and result in better goodness of fit. Hence,
some SRGMs with testing effort functions were proposed in
the past. We propose log-power TEF which is an infinite test
effort function, since logically the test efforts will be infinite at
the infinite testing time. The proposed log-power TEF based
SRGM describes all types of failure data equally well. The
goodness of fit indicates the quality of fitting of past data. It
does not assure that the future data will be fitted equally well.
Hence we determine the appropriate weights using machine
learning technique to select the SRGM that will describe both
the past and future failures equally well. The study confirms
that SRGM with log-power TEF improves the accuracy of
parameter estimation more than existing TEF and can be
used for software release time determination as well. Instead
of conventional parameter estimation methods, we use ANN
for parameter estimation. Although already proposed SRGM
usesWeibull distribution for effort function, our study reveals
the log-power TEF to be simple and equally good and it is
a natural choice for TEF. It is clear that the proposed log-
power TEF based SRGM which is selected using machine
learning technique improves the accuracy of the goodness
of fit performance better than the Weibull TEF based SRGM
which is already proposed.
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