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To control the furnace temperature of a power plant boiler precisely, a dual-optimized adaptivemodel predictive control (DoAMPC)
method is designed based on the data analytics. In the proposed DoAMPC, an accurate predictive model is constructed adaptively
by the hybrid algorithm of the least squares support vector machine and differential evolution method. Then, an optimization
problem is constructed based on the predictive model and many constraint conditions. To control the boiler furnace temperature,
the differential evolution method is utilized to decide the control variables by solving the optimization problem. The proposed
method can adapt to the time-varying situation by updating the sample data. The experimental results based on practical
data illustrate that the DoAMPC can control the boiler furnace temperature with errors of less than 1.5% which can meet the
requirements of the real production process.

1. Introduction

Fossil-fuel-fired power plants can produce stable and control-
lable energy. Despite the quick development of sustainable
power generation methods, such as solar power systems and
wind power systems, the fossil-fuel-fired power generation
system is and will be an import part of the power system.
In the meantime, more effort must be made to reduce the
waste gas emission of the thermal power production process
in order to protect the environment. To realize this target,
the boiler furnace temperature should be controlled to follow
certain curves. However, there are several challenges that
need to be overcome.

To start with, there is a lack of a dynamic and accurate
model of the boiler furnace temperature. There are several
mechanism models constructed for the boiler. Gao and Dai
[1] extended a new linear model of the steam unit. The
model showed a good performance in the dynamic analysis
of the power system. Alobaid et al. [2] mentioned numerical
models at different steady-state operation points.Themodels
obtain relative error of less than 1% at the steady-state
situation. They perform well in a certain situation, but when

the situation changes, the accuracy of the model will drop
significantly. Wu et al. [3] presented data-driven modeling
based on subspace method. It shows good performance in
the simulation, but the selection of the modeling method
needs to be done by experience before the application. There
weremany other nonlinearmodels constructed for the boiler-
turbine unit, such as [4, 5]. They considered the unit as a
whole system, and there was no boiler model mentioned
alone. Motivated by the successful usage of data-mining
method in boiler wall temperature prediction [6], a predictive
model is constructed based on the least square support vector
machine in this paper. To improve the predictive accuracy,
differential evolution algorithm is employed to optimized
parameters for different problems dynamically.

Second, amodern controlmethod should by tailored to fit
the boiler furnace temperature control problem. The widely
used control method in thermal power plants is PID control
method. Although this method is easy to utilize and simple
to understand, the control accuracy cannot meet the require-
ment. Besides the PID method, many other methods are
utilized in boiler control. Park et al. [7] presented robust con-
troller for cogeneration plants. Keshavarz et al. [8] provided
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Figure 1: The production process of the boiler.

a discrete-time piecewise affine model and model predictive
control method for the boiler-turbine unit. Heo et al. [9] and
Li et al. [10] proposed intelligent control methods based on
particle swarm optimization and genetic algorithm relatively.
These methods mainly focus on the application of these
modernmethods, and little attention is paid to high accuracy
modeling.Wu et al. [3] presented a predictive controlmethod
and demonstrated the effectiveness of themethods. However,
the rolling optimization problem in model predictive control
method was solved by a simple mathematic method which
is inefficient in solving the nonlinear problem. In [11, 12],
model predictive control methods like dynamic matrix con-
trol and nonlinear model predictive control were utilized
relatively. Liu et al. [13] presented two alternative methods
of exploiting the performance of model predictive control.
These methods obtained good performance, but they paid
little attention to the optimization of the predictive model.
With the development of the model predictive method, a
generalized predictive control method was proposed and
utilized in boiler steam temperature [14]. The generalized
predictive control method provides a more flexible structure
and fewer constraints of the predictive model.

Motivated by the two mentioned issues, we proposed a
dual-optimized adaptivemodelpredictive control (DoAMPC)
method. The proposed DoAMPC has the following main
features compared with the previous researches:

(1) The DoAMPC adopts LSSVM to construct the pre-
dictive model for the boiler furnace temperature with
high accuracy rapidly. This model considered the
main state variables and control variables. Addition-
ally, to improve the prediction accuracy, differential
evolution (DE) is utilized to optimize the parameters
of LSSVM for each different problem.

(2) The DoAMPC includes a rolling optimization prob-
lem with a black-box model and bound constraint
conditions. Furthermore, DE is employed to solve this
nonlinear problem to get optimized control variable
values.

(3) The DoAMPC presents a new way to realize model
predictive control in practical problems by utilizing
data-driven algorithm and intelligent optimization
algorithms. Instead of the canonical linear predictive

model and linear optimization problem, the nonlin-
ear predictive model and optimization problem is
constructed and solved in this method.

The remainder of this paper is organized as follows. Section 2
describes some background knowledge of the boiler control
problem, LSSVM, and DE briefly.The details of the proposed
DoAMPC are provided in Section 3. In Section 4, some
practical cases are employed to testify the performance of
the proposed DoAMPC by comparing with other common
methods. The conclusions based on the present studies are
drawn in Section 5.

2. Background Knowledge

2.1. Boiler Temperature Control Problem. The production
process is shown in Figure 1.The boiler turns the fossil energy
into thermal energy. And the steam generated by the boiler is
transferred to the engine for further usage. There are dozens
of variables in this process. Most of these variables can be
separated into two types briefly. The control variables, such
as feedwater flow, are variables that can be controlled by the
operator directly. And to set these control variables properly
is the main purpose of this paper. The state variables, such
as oxygen content, are the variables detected to monitor
the production process. These state variables can reflect the
situation of the process. Actually, all the variables contain the
information that influences the boiler furnace temperature.
So, these variables are employed as the input variables in the
proposed DoAMPC.

2.2. LSSVM. Suykens and Vandewalle [15] proposed LSSVM
to improve the calculation efficiency of SVM. LSSVM is a
supervised learning method. So, a training dataset is needed
to construct a model. Assume that 𝑇 = {(󳨀󳨀󳨀󳨀→𝑥num,𝑦num)} num =1, 2, . . . , 𝑛 is the training dataset, where 𝑛 denotes the number
of samples; 󳨀󳨀󳨀→𝑥num ∈ 𝑅nf denotes the input and 𝑦num ∈ 𝑅
denotes output; nf is the number of input features. Then, the
predictive model can be described as formula (1). Hence,

𝑓 (𝑥⃗) = 𝑛∑
num=1

𝛼num𝐾(󳨀󳨀󳨀→𝑥num, 𝑥⃗) + 𝑏, (1)
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Figure 2: The main procedure of DoAMPC.

where 𝑓(𝑥⃗) means the predictive value of a new input𝑥⃗. 𝐾(󳨀󳨀󳨀→𝑥num, 𝑥⃗) means the kernel function which provides
outstanding ability to deal with nonlinear problems. The
main target of LSSVM is to obtain the coefficients 𝛼num and𝑏. Then, the predictive model is established.

The selection of the kernel parameters influences the
predictive accuracy significantly. To maintain the predictive
accuracy in a different situation, DE is employed to optimize
the parameters dynamically.

2.3. DE. DE was proposed by Storn and Price [16]. To solve
an optimization problem with DE, the search area should be
specified. Then, the swarm is initialized randomly. Assume
that

󳨀→𝑝𝑔𝑖 (𝑖 = 1, 2, . . . , np) is the 𝑖th particle in 𝑔 iteration.

Then, the fitness value of
󳨀→𝑝𝑔𝑖 is calculated considering the obj-

ective function of the optimization problem. Then, the
particles are updated following certain rules to improve the
quality of the swarm. After certain iterations, which depend
on the optimization problem, the swarm should converge to
a relatively small area. Finally, the particle information with
the best fitness value is considered to be the solution of the
optimization problem.

3. Dual-Optimized Adaptive Model Predictive
Control (DoAMPC) Method

The dual-optimization model predictive control method is
proposed in this section. In Section 3.1, the relationship of
differential evolution algorithm and LSSVM and the main
procedure are shown. Then, the data preparation method
used in this paper is given in Section 3.2. Consequently, the
predictive model based on optimized LSSVM is described
in Section 3.3. Additionally, the optimization model is con-
structed and solved in Section 3.4. Finally, the feedback
correction method is given in Section 3.5.

3.1. TheMain Procedure of DoAMPC. Themain procedure of
DoAMPC is shown in Figure 2.

Firstly, the practical data (PD) collected from power
industry are preprocessed to reduce the noise and guarantee
the effectiveness of the sample data (SD).

Then, to realize the predictive control of boiler furnace
temperature, a predictive model of boiler furnace tempera-
ture must be constructed. Due to the nonlinearity and time-
varying boiler furnace temperature, a black-box model based
on data analytics is conducted. The control variables u𝑡 and
process variables x𝑡 are utilized as inputs to obtain the boiler
furnace temperature (btt). 𝑡 used as the subscript means the
time index of each variable. In this model, DE algorithm
is utilized to improve the model accuracy by solving an
optimization problem.

Thirdly, an optimization problem based on the black-box
model and several constraint conditions is given and solved
by DE. The solution is the optimized set value of control
variables u(𝑡).

Finally, a model correction method is proposed to impr-
ove the control accuracy.

3.2. Preprocess the Practical Data. The practical data are read
from the database which stores the real process variables.
These data can reflect the state of the boiler which is precious
to construct the prediction model. However, due to the
tough process environment, there are data missing, outliers
in practical data. To ensure the accuracy of the prediction
model, the practical data must be preprocessed. In this paper,
we utilize two different methods to deal with themissing data
and outliers, respectively.

First, to deal with the data missing, the cubic spline
interpolation is employed. Actually, the state variables of the
boiler are continuous. The cubic spline interpolation is good
at solving this kind of question. It can recover themissing data
with relatively smooth data. Additionally, the cubic spline
interpolation is easy to program with good stability and
convergence property.

Second, the outliers are deleted and replaced by the cubic
spline interpolation. The 3𝛿 criterion is utilized to find out
the outliers. 1000 continuous samples are used to calculate
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the mean (𝑚) and variance (𝛿) of every variable. If a variable
value exceeds 𝑚 ± 3𝛿, then this variable value is considered
as an outlier. The reason for choosing this method is that this
method can perform calculation with high efficiency to deal
with a large amount of data. To ensure the effectiveness of
this method, the amount of the data should be large. In fact,
there is a large amount of practical data collected from the
production process every minute.

After the preprocessing of the practical data, the sample
data are utilized in the following procedure. The preprocess-
ing is done repetitively when there are new data collected.

3.3. Construct the Predictive Mode. As mentioned before, the
traditional boiler furnace temperaturemodels are not good at
dealing with the dynamic situation and cannot be utilized in
the model predictive control method directly. So, the black-
box model based on DE and LSSVM is constructed.

DE is a swarm-based optimization algorithm which was
proposed by Storn in 1995. In this algorithm, several particles
made up of parameters that need to be determined are
initialized with random values within a constraint. Then, the
fitness of each particle is calculated. And the particles are
updated following certain formulas considering their fitness.
Finally, the swarm converges to a global best location which
is the solution of the optimization problem.

LSSVM was proposed in 1995 by Suykens as a variant
of SVM. A linear programming problem instead of the
quadratic programming problem is solved in LSSVM, which
accelerates the calculation while inheriting the ability to
solve nonlinear problems. Additionally, LSSVM shows an
outstanding generalization ability. The selections of kernel
function parameters and regularization parameter are the
keys tomaintain the predictive accuracy. Due to the complex-
ity of the selection, an optimization problem is constructed
and then solved by DE.

Assume that the sample data used to train the predictive
model is SD = {(󳨀→in𝑡, bt𝑡)}, 𝑡 = 1, 2, . . . , ns, where 󳨀→in𝑡 de-
notes the input of predictionmodel made up with the control
variables 󳨀→𝑢𝑡 and the state variables 󳨀→𝑥𝑡. btt denotes the boiler
furnace temperature. ns denotes the number of samples.
Then, the predictive model obtained by LSSVM is 𝑓(󳨀→in) =∑ns
𝑡=1 𝛼𝑡𝐾(󳨀→in, 󳨀→in𝑡) + 𝑏, where 󳨀→in denotes new input data, 𝑓(󳨀→in)

means the prediction value of 󳨀→in, 󳨀→𝛼𝑡 and 𝑏 are the coefficients
calculated by LSSVM, and 𝐾(󳨀→in, 󳨀→in𝑡) is the kernel. In this
paper, we utilize radial basis function as the kernel. The
formula is shown in (2).Whenever the LSSVM is utilized, the
kernel parameter 𝜎2 and the penalty factor 𝛾 influence the
prediction accuracy significantly. And the best parameters
for the different problem are verified. To obtain the best
parameters dynamically, DE is employed. Hence,

𝐾(󳨀→in, 󳨀→in𝑡) = exp(−
󵄩󵄩󵄩󵄩󵄩󵄩󳨀→in − 󳨀→in𝑡󵄩󵄩󵄩󵄩󵄩󵄩2𝜎2 ) . (2)

In the hybrid of DE and LSSVM,DE calculates the candidates
of parameters while the LSSVM offers the fitness value of
each candidate. To testify the accuracy of the predictive

model, new data which are different from SD are prepared.
Assume that TD = {(󳨀→in𝑘, bt𝑘)}, 𝑘 = 1, 2, . . . , nt, is the
new database, where nt denotes the number of test data.
The optimization problem to select the best parameters is
to choose the parameters which can allow the prediction
accuracy to minimize. The mathematical representation is
given as

min
nt∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨bt𝑘 − 𝑓(󳨀→in𝑘)󵄨󵄨󵄨󵄨󵄨󵄨
s.t. 𝑓(󳨀→in𝑘) = ns∑

𝑡=1

𝛼𝑡𝐾(󳨀→in𝑘, 󳨀→in𝑡) + 𝑏
𝐾(󳨀→in𝑘, 󳨀→in𝑡) = exp(−

󵄩󵄩󵄩󵄩󵄩󵄩󳨀→in𝑘 − 󳨀→in𝑡󵄩󵄩󵄩󵄩󵄩󵄩2𝜎2 )
𝜎2 ≥ 0;
𝛾 ≥ 0;
𝑘 = 1, 2, . . . , nt.

(3)

To solve this problem with DE, the following steps should be
done.

Step 1 (initialize DE swarm and parameters). Assume that󳨀→𝑝𝑔𝑖 (𝑖 = 1, 2, . . . , np) is the 𝑖th particle. np denotes the total
number of particles in the 𝑔th iteration. 𝑔means the iteration
times. Set 𝑔 = 1 in this step. 𝑝𝑔𝑖,1 and 𝑝𝑔𝑖,2 represent the kernel
parameter 𝜎2 and the penalty factor 𝛾, respectively. 𝑝1𝑖,1 and𝑝1𝑖,2 are initialized randomly by the following equation:

𝑝1𝑖,1, 𝑝1𝑖,2 = 5000 + rand (0, 1) ∗ 5000, (4)

where rand(0, 1) means a random number obeying normal
distribution.

Step 2 (calculate the fitness of particles). To calculate the
fitness of particles, the kernel parameter 𝜎2 and the penalty
factor 𝛾 are set based on each particle firstly.Then, a predictive
model based on sample data is constructed. Calculate the
objective function in (3). Next, the value is considered as the
fitness of the corresponding particle. Finally, let the global
best location 󳨀󳨀→𝑝𝑔𝑖 be equal to the best particle.
Step 3 (exchange the information among different particles).
To update particles, the particles change their location by the
following equation:

󳨀󳨀󳨀→𝑢𝑔+1𝑖 = 󳨀→𝑝𝑔𝑖 + 𝑐1 ∗ 𝑟1𝑔 ∗ (󳨀󳨀→𝑝𝑔𝑟3 − 󳨀󳨀→𝑝𝑔𝑟4) + 𝑐2 ∗ 𝑟2𝑔
∗ (󳨀󳨀→𝑝𝑔𝑖 − 󳨀→𝑝𝑔𝑖 ) ,

(5)

where
󳨀󳨀󳨀→𝑢𝑔+1𝑖 denotes a new candidate particle; 𝑐1 and 𝑐2

denote the scale factor to control the update velocity;
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𝑟1𝑔, 𝑟2𝑔 = rand[0, 1] mean random number in the range[0, 1] obeying uniform distribution. 𝑟3 and 𝑟4 are a random
integer in the range [1, np] which is different from 𝑖. These
numbers are generated every iteration.

Step 4 (select the particles). After the update, run Step 2 to
calculate the fitness of candidate particles. Compare the

fitness of
󳨀󳨀󳨀→𝑢𝑔+1𝑖 and

󳨀→𝑝𝑔𝑖 and let the better particle be
󳨀󳨀󳨀→𝑝𝑔+1𝑖 .

Step 5. If one of the termination conditions is met, stop the
algorithm and output the predictive model. If not, go to
Step 3.

The termination conditions utilized in this paper are as
follows: (1) the fitness of 󳨀󳨀→𝑝𝑔𝑖 is smaller than 0.1% and (2) 𝑔
reaches a specified integer 𝐺.

The outputs stored in a specified file for further applica-
tion include the best parameters, the coefficients󳨀→𝛼𝑡 and 𝑏, and
the sample data.

3.4. Construct and Solve a Rolling Optimization Problem. To
control the boiler furnace temperature, we attempt to control
the temperature to change following a certain curve. This
curve named reference curve is given considering the prac-
tical requirement. In other words, the objective target is to
minimize the error between the outputs and reference curve.
After discretization of the reference curve, assume that 𝑟𝑗 is
the reference value at time 𝑗. Then, the objective function
of the rolling optimization problem is set as the following
formula:

min
𝑀∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (󳨀→in) − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨󵄨 , (6)

where𝑀 denotes the predictive length and𝑓𝑗(󳨀→in) denotes the
predictive value of 󳨀→in. To realize the prediction of 𝑀 steps,𝑀 predictive models need to be constructed. In the input 󳨀→in,
there are two parts. The first part includes the proposal con-
trol variables 𝑢⃗, and the second part includes the state
variables at the prediction moment. 𝑢⃗ is the solution which
needs to be optimized. Considering the predictive model
constructed in Section 3.3 and the bound constraint of 𝑢⃗,
the rolling optimization problem is shown in the following
formula:

min
𝑀∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (󳨀→in) − 𝑟𝑗󵄨󵄨󵄨󵄨󵄨󵄨
s.t. 𝑓𝑗 (󳨀→in) = ns∑

𝑡=1

𝛼𝑡,𝑗𝐾(󳨀→in, 󳨀→in𝑡) + 𝑏𝑗;
󳨀→𝑢𝐿 ≤ 𝑢⃗ ≤ 󳨀→𝑢𝑈;
𝑗 = 1, 2, . . . ,𝑀;
𝑡 = 1, 2, . . . , ns,

(7)

Initialize the swarm

Calculate the fitness of particles

Update the particles

Is termination 
condition met?

Output the result; end

Yes

No

Begin

Figure 3: The flowchart of solving the rolling optimization.

where 󳨀󳨀→𝛼𝑡,𝑗 and 𝑏𝑗 denote the coefficients of the 𝑗th predictive

model;
󳨀→𝑢𝑈 denotes the upper bound of the control variables;󳨀→𝑢𝐿 denotes the lower bound of the control variables.

To solve the problem, DE is utilized to obtain the
optimized control variables. The flowchart of the procedure
is shown in Figure 3. The content of each step is given in
Figure 3.

Initialize the swarm. As in Section 3.3, assume that󳨀→𝑝𝑔𝑖 (𝑖 = 1, 2, . . . , np) is the particle. However, 𝑝𝑔𝑖,𝑘 represents
the 𝑘th control variable which is different from Section 3.3.𝑝𝑔
𝑖,𝑘
is initialized randomly by the following equation:

𝑝1𝑖,𝑘 = 𝑢𝐿𝑘 + rand [0, 1] ∗ (𝑢𝑈𝑘 − 𝑢𝐿𝑘) , (8)

where rand[0, 1] means a random number obeying uniform
distribution. This number is different for each 𝑘.

To calculate the fitness of each particle, the predictive val-
ues are calculated.Then, the error between the predictive out-
puts and reference curve is calculated by formula (6).

The terminal conditions and the method to update the
particle are the same as the ones in Section 3.3.

The result outputted byDE includes the optimized control
variables and the objective value for further analysis.

3.5. Model Correction. The state of the boiler is dynamic.
And the boiler load should change with the requirement. In
this case, the prediction model needs to be corrected if the
predictive error exceeds the acceptable range. In this paper,
considering that the modeling can be done in seconds, a
reconstruction strategy is employed.

If the relative predictive error is bigger than 1% for contin-
uous 𝑇 sample period, the prediction model is reconstructed
with updated sample data.
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Table 1: The details of the datasets.

Name of the dataset Number of instances Number of inputs Number of outputs
Case 1 500 12 1
Case 2 500 12 1
Case 3 500 12 1

4. Computational Results

To testify the performance of the proposed algorithm, exper-
iments based on the practical production data are carried
out. Both the accuracy of the predictive model and the
effectiveness of the DoAMPC method are testified. All the
algorithms are implemented using VC++. All the following
experiments are run on a PC with Intel Core i7-4712MQ
CPU (2.30GHz), 4.00GB RAM, and Windows 10 operating
system.

4.1. Experiment Design. The data utilized in the following ex-
periments are collected from a Chinese thermal power plant.
The details of the data are shown inTable 1.The inputs include
the control variables (such as feedwater flow, pulverized coal
flow, andwindflow) and the state variables (the boiler furnace
temperature, oxygen content, etc.). The control object is the
temperature of the boiler. Case 1 includes a step change
in the boiler furnace temperature which can illustrate the
sudden change in practical production. Case 2 and case 3
represent the frequent continuous change of boiler furnace
temperature.

To utilize DE to solve the two optimization problems,
some of the DE parameters need to be set up. By the com-
monly used trial-and-error method, the parameters are set
up as follows: np = 100, 𝑐1 = 1.4, 𝑐2 = 1.9, and 𝐺 = 1000.
4.2. The Experimental Results of the Predictive Model. To ver-
ify the accuracy of the proposed black-box model, several
experiments based on the datasets mentioned in Section 4.1
are provided. And the other 3 widely used methods, radial
basis function neural network (RBFNN), multilayer percep-
tion (MLP), and linear programming (LP), are utilized as
comparisonmethods.The 5-fold method is employed. In this
method, the dataset is divided into 5 subsets randomly, and
4 of the 5 subsets (including 400 instances) are utilized as
the training data while the rest of the subsets (including 100
instances) are utilized as test data. The predictive results of
the test data are shown in Figure 4. There are six subplots
in the figure. Subplots (a)–(c) show the predictive errors
of 4 different methods. Subplots (d)–(f) show the boxplot
of the prediction errors of the methods in the 3 different
applications.

The results in subplots (a)–(c) illustrate that (1) the pre-
diction errors of the proposed method are smaller than other
comparative methods. This shows the effectiveness of the
proposed predictive method. (2) The predictive errors of the
proposed method are smaller than 10 which can meet the
requirement of the practical control. We also note that when
the load of the unit changes, the prediction error becomes
bigger than that in a stable situation. This may be caused by

lack of the training data which can reflect the load change.
In other words, most of the training data are collected in a
stable situation. The number of samples which contain the
information of load changing is smaller than that of stable
samples. The results in subplots (d)–(f) indicate that (1) the
proposed method can obtain stable high accuracy in three
cases and (2) the predictive relative errors of the proposed
method are below 1.0%.

All the results illustrate that the proposed modeling met-
hod can construct an accurate model for nonlinear problems.

4.3. The Experimental Results of DoAMPC. The control res-
ults of the proposed DoAMPC method and the widely used
PID control method are shown in Figure 5. Three different
datasets are utilized in the experiment. Scene 1 represents the
situation of decreasing boiler temperature. Scene 2 represents
the situation of normal production. Scene 3 represents the
situation of increasing boiler temperature. 495 samples are
utilized in each scene. There are also 4 subplots in this
figure. Subplots (a)–(c) show the control results of 2 different
methods and the reference curves. Subplot (d) shows the
boxplot of the control errors of the proposed method in the 3
different applications.

From subplots (a)–(c), the following results can be con-
cluded. (1) The control results of the DoAMPC method in
three different situations follow the reference curves dyna-
mically, which means the DoAMPC is effective. (2) Com-
pared with the PID method, the control accuracy of the pro-
posedmethod is higher in all different datasets. From subplot
(d), we can find out that the control errors of the proposed
method are less than 1%, and the average error is below 1.5%.

Similar to the predictive results, the control errors are
bigger in the load change point than in a stable situation.
This may be caused by the lag of model reconstruction.
That is, the predictive model needs several sample times to
reconstruct themodel.However, the good performance of the
reconstructed model demonstrates the effectiveness of the
model correction strategy.

All the results demonstrate that the DoAMPC can handle
nonlinear and dynamic problems with good performance.
The generalization ability of the proposed method is out-
standing.With the update of the sample data, thismethod can
be utilized in other boilers in other thermal power plants.

5. Conclusion

A dual-optimized adaptive model predictive control method
based on black-box model and DE algorithm is proposed in
this paper in order to control the boiler furnace temperature
accurately. One major feature of the proposed DoAMPC
method is that it uses a black-box model based on LSSVM
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Figure 4: The experimental results of the proposed modeling method.

and DE. The DE optimizes the parameters of the LSSVM
to maintain the high predictive accuracy. Another main
feature is that it contains a minimization problem with
nonlinear model and bound constraint conditions for the
boiler furnace temperature control problem. To solve this

nonlinear problem, DE is employed to obtain the optimized
control variables. The practical data are assessed to test the
performance of the proposed methods. And the results show
that the proposed strategies in bothmodeling and controlling
are effective.Theproposedmethod is comparative or superior
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Figure 5: The control results of the proposed DoAMPC.

to some commonly used algorithms. In the future, we will
make more effort in improving the prediction accuracy and
trying to utilize other data-mining methods in this structure.
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