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CEP is an important accuracy index in the test evaluation for guidance weapon systems. As for the samples origin from diverse
populations, which is a general case in the practice, traditional method with one population is inaccurate to give estimate directly.
A weighted method considering the credibility of the prior information is proposed for Bayesian estimation algorithm and the
weighted estimation of normal distribution parameters is provided. And the statistical diversity between the weighted and classical
methods is quantified, and upper bound of the calculation errors caused by prior distortion is deduced for mixture of finite normal
distributions. Taking the estimation of the dispersion of the guided weapon impact points as an example, the conclusion is drawn
that our method is credible.

1. Introduction

Circular Error Probable (CEP) is a common measure used
in the evaluation test of guidance weapon systems, which
can integrate precision with dispersion to assess the hit
accuracy of projectiles [1]. In traditional CEP assessment
process, the impact point deviation is assumed to follow
bivariate normal distribution, and based on the formula
simplified by decorrelation coordinate transformation, the
MLE (maximum likelihood estimator) of normal distribution
parameters are calculated by specific samples, which are
employed in the forthcoming point estimation, confidence
bounds computation, and hypothesis testing of CEP [2].

There are two restrictions for above CEP evaluation
procedure. One is the concrete computational difficulty. It
is hard to solve the complex CEP equation precisely, so
some approximative expressions are adopted in practical
applications with different assumptions [2]. In [3] 12methods
of calculating CEP are summarized and classified into three
categories: univariate parameterization, binary computation,
and numerical integration.

Another limitation is adaptability of the estimate process.
The basis of bivariate normal distribution assumption is the
central-limit theorem and engineering experience accumu-
lated for ages [4]. Compatibility and normality test are called
for the hypothesis based on a certain confidence level. But

the assumption is not suitable for complicated data, which
demands expanding the ranges of CEP application to obtain
more adaptable and reasonable results of hit accuracy [1, 2,
5, 6]. A bias-corrected estimator of CEP is provided based
on Cornish-Fisher expansion in [2]. And in [5, 6], CEP
is extended to ACEP (Area Circular Error Probability) to
overcome the disadvantage thatCEP is not combinedwith the
self-characteristics of surface targets. Reference [7] considers
the case that missile impact samples is not i.i.d. and provides
a Bayesian procedure for estimating CEP.

For INS (Inertial Navigation System)/SAR (Synthetic
Aperture Radar) integrated system, the system biases of
impact point errors are quite distinct in diverse experi-
ment conditions or scene features. Under the circumstances
classical CEP evaluation is not applicable because it is
tough to treat various samples as generated by the same
normal population. In addition, the stochastic quality of
scene matching also increases computational difficulty. In
order to use the samples following diverse populations to
assess accuracy of projectiles, this paper provides the CEP
evaluation procedure under the circumstance that impact
samples are not i.i.d. data. In Section 2, classical CEP is
generalized to the CEP of multiconditional probability based
on nonparametric mixture model. Then specific computa-
tional method for mixed CEPmodel is designed in Section 3,
which includes simplification of general equation, point, and
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interval estimation. The algorithms of mixed and classical
CEP are compared and analyzed in Section 4. In Section 5
some simulation experiments are implemented, the results
of which indicate that the mixed CEP algorithm is more
reasonable than traditional one under the circumstances that
diversity of accuracy samples is obvious.

2. Modeling of Bayes Model of Scene Matching
of Multiconditional Probability

2.1. Classical CEPDefinition. Thedefinition of CEP is distinct
in kinds of literature, and a common one is adopted in this
paper. CEP is the radius of a circle, where center is target
and the probability of an impact point inside is 50% [1].
The corresponding mathematical description is as follows.
Establish a rectangular coordinate system centered on target
with (0, 0), and assume the deviation of downrange and cross-
range noted as 𝑋 and 𝑍, respectively, both follows normal
distribution; then the probability density function of 𝜂 =(𝑋, 𝑍)𝑇 is

𝑓 (𝑥, 𝑧) = 1
2𝜋𝜎𝑥𝜎𝑧√1 − 𝜌2

⋅ exp{− 12 (1 − 𝜌2) [(𝑥 − 𝜇𝑥)
2

𝜎2𝑥
− 2𝜌 (𝑥 − 𝜇𝑥) (𝑧 − 𝜇𝑧)𝜎𝑥𝜎𝑧 + (𝑧 − 𝜇𝑧)2𝜎2𝑧 ]} ,

(1)

where 𝜎𝑥, 𝜎𝑧 are standard deviations of𝑋,𝑍; 𝜇𝑥, 𝜇𝑧 aremeans
of𝑋, 𝑍; 𝜌 is correlation coefficient of 𝑋 and 𝑍, such that 0 ≤|𝜌| < 1. Then 𝑅 in the following formula is the CEP of 𝜂 =(𝑋, 𝑍)𝑇

∬
𝑥2+𝑧2⩽𝑅2

𝑓 (𝑥, 𝑧) 𝑑𝑥 𝑑𝑧 = 0.5, (2)

where 𝑓(𝑥, 𝑧) is the same as (1). And (2) is called the general
form of CEP equation.

Suppose {u𝑖 | u𝑖 = (𝑥𝑖, 𝑧𝑖)𝑇}𝑆𝑖=1 are the impact deviation
samples to be used. In previous CEP algorithms they are
utilized to calculate𝜎𝑥,𝜎𝑧,𝜇𝑥,𝜇𝑧,𝜌 in (1), which are employed
to estimate 𝑅 by numerical integration or approximate
approaches in (2). But samples collected in different test
environments and influenced by complicate factors such as
scene features are distinct, which is against the assumption of
same population, and make the traditional CEP evaluation
invalid. Under this condition we propose the mixed CEP
model and algorithm of multiconditional probability.

2.2. Bayes Nonparametric Mixture Model. The Bayes mixture
model combined with random density function is as follows:

𝑓 (𝑦) = ∫𝐾 (𝑦; 𝜃) 𝑑𝑃 (𝜃) , (3)

where𝐾(𝑦; 𝜃) is density function with different parameters 𝜃.
And𝑃(𝜃) is randomdensity function as the following discrete
form usually:

𝑃 (𝑑𝜃) = ∞∑
𝑙=1

𝜔𝑙𝛿𝜃𝑙 (𝑑𝜃) , (4)

where (𝜔𝑙, 𝜃𝑙)∞𝑙=1 is prior information and 𝛿𝜃𝑙 is characteristic
function with various 𝜃.
2.3. Mixed CEP Model for Scene Matching of Multiconditional
Probability. Define mixed CEP as the radius of a circle
centered on the target, such that the probability of an
impact point inside the circle is 50%, while impact deviation
does not follow the same bivariate normal population. For
INS/SAR integrated navigation system, the impact biases are
influenced by scene matching, of which the error sources
such as scene features, types, and matching number are quite
distinct and follow diverse populations [8]. In order to assess
hit accuracy of the system by mixed CEP, modeling for
scene matching is essential beforehand. Since the types and
occurring probability of scene in one test are unknown before
the experiment implement, they can be regarded as random
variables while modeling based on Bayes nonparametric
model frame.

Suppose synthetical test conditions of scene matching are
classified into 𝑁 types denoted as ℎ1, ℎ2, . . . , ℎ𝑁 of which
occurring probability is 𝑝(ℎ1), 𝑝(ℎ2), . . . , 𝑝(ℎ𝑁); 𝑝(ℎ𝑖)(𝑖 =1, 2, . . . , 𝑁) are random variables in [0, 1], such that

𝑁∑
𝑘=1

𝑝 (ℎ𝑘) = 1. (5)

Consider the conditional probability density function of
impact errors on ℎ𝑘 is normal as follows:

𝑓𝑘 (𝑥, 𝑧 | ℎ𝑘) = 1
2𝜋𝜎𝑥𝑘𝜎𝑧𝑘√1 − 𝜌𝑘2

⋅ exp{{{−
12 (1 − 𝜌𝑘2) [[

(𝑥 − 𝜇𝑥𝑘)2𝜎2𝑥𝑘
− 2𝜌𝑘 (𝑥 − 𝜇𝑥𝑘) (𝑧 − 𝜇𝑧𝑘)𝜎𝑥𝑘𝜎𝑧𝑘 + (𝑧 − 𝜇𝑧𝑘)2𝜎2𝑧𝑘 ]]

}}} ,
(6)

where 𝜎𝑥𝑘 , 𝜎𝑧𝑘 are standard deviations of 𝑋, 𝑍 on conditionℎ𝑘;𝜇𝑥𝑘 ,𝜇𝑧𝑘 aremeans of𝑋,𝑍 on conditionℎ𝑘;𝜌𝑘 is correlation
coefficient of 𝑋, 𝑍 on condition ℎ𝑘, such that 0 ≤ |𝜌𝑘| < 1.
Then the joint probability density function of impact errors
is

𝑓 (𝑥, 𝑧) = ∫𝑓𝑘 (𝑥, 𝑧 | ℎ𝑘) 𝑝 (ℎ𝑘) 𝑑ℎ𝑘. (7)

The discrete form is

𝑓 (𝑥, 𝑧) = 𝑁∑
𝑘=1

𝑝 (ℎ𝑘) 𝑓𝑘 (𝑥, 𝑧 | ℎ𝑘) . (8)
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Substitute (8) for 𝑓(𝑥, 𝑧) in (2), and 𝑅 in the following
equation is the mixed CEP of multiconditional probability

∬
𝑥2+𝑧2⩽𝑅2

𝑁∑
𝑘=1

𝑝 (ℎ𝑘) 𝑓𝑘 (𝑥, 𝑧 | ℎ𝑘) 𝑑𝑥 𝑑𝑧 = 0.5. (9)

3. Mixed CEP Algorithm of Multiconditional
Probability

3.1. Simplification of General CEP Equation. For condition ℎ𝑘,
take orthogonal transformation for (6) as follows:

(𝑢
V
) = ( cos 𝜉𝑘 sin 𝜉𝑘− sin 𝜉𝑘 cos 𝜉𝑘)(

𝑥𝑧) , (10)

where

𝜉𝑘 = 12𝑡𝑔−1 2𝜌𝑘𝜎𝑥𝑘𝜎𝑧𝑘𝜎𝑥𝑘2 − 𝜎𝑧𝑘2 . (11)

Then (𝑋, 𝑍) is transformed to (𝑈, 𝑉), of which 𝑈 and 𝑉
are independent of condition ℎ𝑘. And probability density
function of (𝑈, 𝑉) on condition ℎ𝑘 is

𝑓𝑘 (𝑢, V | ℎ𝑘) = 12𝜋𝜎𝑢𝑘𝜎V𝑘
⋅ exp{{{−

12 [[
(𝑢 − 𝜇𝑢𝑘)2𝜎2𝑢𝑘 + (V − 𝜇V𝑘)2𝜎2V𝑘 ]]

}}} ,
(12)

where 𝜎𝑢𝑘 , 𝜎V𝑘 are standard deviations of (𝑈, 𝑉) on conditionℎ𝑘; 𝜇𝑢𝑘 , 𝜇V𝑘 are means of (𝑈, 𝑉) on condition ℎ𝑘. Then (9) is
turned into

∬
𝑢2+V2⩽𝑅2

𝑁∑
𝑘=1

𝑝 (ℎ𝑘) 𝑓𝑘 (𝑢, V | ℎ𝑘) 𝑑𝑢 𝑑V = 0.5. (13)

Take polar coordinate transformation as follows:𝑢 = 𝑟 cos𝜑
V = 𝑟 sin𝜑, (14)

and then (13) is simplified from the form of double integral to
the following quadratic integral:

12𝜋 ∫
𝑅

0
∫2𝜋
0
𝑟 𝑁∑
𝑘=1

𝑝 (ℎ𝑘) ⋅ 𝑐𝑘
⋅ exp[−𝑏𝑘𝑟2 + 𝑎𝑘𝑟2 cos 2𝜑 + 𝑟(𝜇𝑢𝑘𝜎2𝑢𝑘 cos𝜑 +

𝜇V𝑘𝜎2V𝑘 sin𝜑)]𝑑𝜑𝑑𝑟= 0.5,
(15)

where

𝑎𝑘 = 14 ( 1𝜎2V𝑘 −
1𝜎2𝑢𝑘 )

𝑏𝑘 = 14 ( 1𝜎2V𝑘 +
1𝜎2𝑢𝑘 )

𝑐𝑘 = 1𝜎𝑢𝑘𝜎V𝑘 exp{−
12 [(𝜇𝑢𝑘𝜎𝑢𝑘 )

2 + (𝜇V𝑘𝜎V𝑘 )
2]} .

(16)

3.2. Mixed CEP Point Estimates of Multiconditional Probabil-
ity. Suppose there are𝑁 types of impact error samples {u(𝑘)𝑖 |
u(𝑘)𝑖 = (𝑥(𝑘)𝑖 , 𝑧(𝑘)𝑖 )𝑇}𝑛𝑘𝑖=1, (𝑘 = 1, 2, . . . , 𝑁) such that ∑𝑁𝑖=1 𝑛𝑘 =𝑆. Assume {u(𝑘)𝑖 }𝑛𝑘𝑖=1 follow normal populations 𝑁(𝜇𝑘, Σ𝑘),
respectively, then the estimates of normal parameters are as
follows:

�̂�𝑢𝑘 = �̂�𝑥𝑘 cos �̂�𝑘 + �̂�𝑧𝑘 sin �̂�𝑘
�̂�V𝑘 = �̂�𝑧𝑘 cos �̂�𝑘 − �̂�𝑥𝑘 sin �̂�𝑘�̂�𝑢𝑘
= √�̂�2𝑥𝑘cos2 �̂�𝑘 + �̂�2𝑧𝑘sin2 �̂�𝑘 + 2�̂�𝑘�̂�𝑥𝑘 �̂�𝑧𝑘 cos �̂�𝑘 sin �̂�𝑘
�̂�V𝑘
= √�̂�2𝑧𝑘cos2 �̂�𝑘 + �̂�2𝑥𝑘sin2 �̂�𝑘 − 2�̂�𝑘�̂�𝑥𝑘 �̂�𝑧𝑘 cos �̂�𝑘 sin �̂�𝑘,

(17)

where

�̂�𝑥𝑘 = 1𝑛𝑘
𝑛𝑘∑
𝑖=1

𝑥(𝑘)𝑖
�̂�𝑧𝑘 = 1𝑛𝑘

𝑛𝑘∑
𝑖=1

𝑧(𝑘)𝑖
�̂�𝑥𝑘 = √ 1𝑛𝑘 − 1

𝑛𝑘∑
𝑖=1

(𝑥(𝑘)𝑖 − �̂�𝑥𝑘)2

�̂�𝑧𝑘 = √ 1𝑛𝑘 − 1
𝑛𝑘∑
𝑖=1

(𝑧(𝑘)𝑖 − �̂�𝑧𝑘)2,
�̂�𝑘 = ∑𝑛𝑘𝑖=1 [(𝑥(𝑘)𝑖 − �̂�𝑥𝑘) (𝑧(𝑘)𝑖 − �̂�𝑧𝑘)]

√[∑𝑛𝑘𝑖=1 (𝑥(𝑘)𝑖 − �̂�𝑥𝑘)2] [∑𝑛𝑘𝑖=1 (𝑧(𝑘)𝑖 − �̂�𝑧𝑘)2]
,

�̂�𝑘 = 12𝑡𝑔−1 2�̂�𝑘�̂�𝑥𝑘 �̂�𝑧𝑘�̂�2𝑥𝑘 − �̂�2𝑧𝑘 .

(18)

Suppose prior information of text conditions is explicit; that
is,

𝐸 [𝑝 (ℎ𝑘)] = 𝑝𝑘, (19)

where 𝑝𝑘 are all constants, such that

𝑁∑
𝑘=1

𝑝𝑘 = 1. (20)

Substitute �̂�𝑢𝑘 , �̂�V𝑘 , �̂�𝑢𝑘 , �̂�V𝑘 , 𝑝𝑘 for 𝜇𝑢𝑘 , 𝜇V𝑘 , 𝜎𝑢𝑘 , 𝜎V𝑘 , [𝑝(ℎ𝑘)] in
(15); then mixed CEP can be calculated approximately with
numerical integration and bisection algorithm.

3.3. Mixed CEP Interval Estimation of Multiconditional Prob-
ability. Bootstrap method [9, 10] is called for calculating
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mixed CEP confidence interval estimation of multicon-
ditional probability here. Suppose �̂� is the plug-in point
estimator of𝑅.𝐶𝛼 denote𝛼 quantile of𝑅; that is,𝑃(𝑅 ≤ 𝐶𝛼) =𝛼, and corresponding estimator is �̂�𝛼. Then the calculation
formulas of confidence interval [𝑅𝑏𝑢, 𝑅𝑏𝑙] and confidence
upper bound are given as follows:

𝑅𝑏𝑢 = �̂�1−𝛼/2,
𝑅𝑏𝑙 = �̂�𝛼/2,
𝑅𝑏 = �̂�1−𝛼,

(21)

where �̂�1−𝛼/2, �̂�𝛼/2, �̂�𝛼 are approximately computed by the
following steps.

(1) Calculate �̂�𝑢𝑘 , �̂�V𝑘 , �̂�𝑢𝑘 , �̂�V𝑘 by samples {(𝑥(𝑘)𝑖 , 𝑧(𝑘)𝑖 )}𝑛𝑘𝑖=1
in (17) (𝑘 = 1, 2, . . . , 𝑁).

(2) Resample𝑀 times frombivariate normal distribution𝑁((�̂�𝑢𝑘 , �̂�V𝑘)𝑇, diag(�̂�2𝑢𝑘 , �̂�2V𝑘))with size 𝑛𝑘, respectively(𝑘 = 1, 2, . . . , 𝑁). Then compute𝑀 point estimators
of 𝑅 by Section 3.2, and sort them from lowest as �̂�(1),�̂�(2), . . . , �̂�(𝑀), where 1000 ⩽ 𝑀 ⩽ 3000.

(3) The INT[(1 − 𝛼/2)𝑀]th, INT[(𝛼/2)𝑀]th, and
INT[𝛼𝑀]th one of the sequences �̂�(1), �̂�(2), . . . , �̂�(𝑀)
are �̂�1−𝛼/2, �̂�𝛼/2, �̂�𝛼, where INT[⋅] is rounding
operator.

4. Performance Analysis of the Algorithm

4.1. Comparison of Statistical Properties. The statistical prop-
erties ofmixedCEP algorithmare comparedwith the classical
one for the bivariate mixed population of two normal dis-
tributions as an example. According to Section 3.1, the rela-
tionship between the downrange and cross-range error can
be decorrelated by coordinate transformation. Therefore the
following discussion focuses only on the independent case.

Suppose there are𝑁 types of impact error samples {u(𝑘)𝑖 |
u(𝑘)𝑖 = (𝑥(𝑘)𝑖 , 𝑧(𝑘)𝑖 )𝑇}𝑛𝑘𝑖=1 (𝑘 = 1, 2, . . . 𝑁) such that ∑𝑁𝑖=1 𝑛𝑘 =𝑆. Assume {u(𝑘)𝑖 }𝑛𝑘𝑖=1 follow the normal population 𝑁(𝜇𝑘, Σ𝑘),
which are under the conditionsℎ𝑘, respectively.Then the joint
probability density function of impact errors is as (8), where𝑓𝑘(𝑥, 𝑧 | ℎ𝑘) is probability density function of𝑁(𝜇𝑘, Σ𝑘) (𝑘 =1, 2, . . . , 𝑁). And the estimates of normal parameters are as
follows:

�̂�𝑘 = (�̂�𝑥𝑘�̂�𝑧𝑘) ,
Σ̂𝑘 = (�̂�2𝑥𝑘 0

0 �̂�2𝑧𝑘) .
(22)

If the prior probabilities of test experiments are fixed as𝐸[𝑝(ℎ𝑘)] = 𝑝𝑘 (0 ⩽ 𝑝𝑘 ⩽ 1) and populations 𝑁(𝜇𝑘, Σ𝑘) are
independent, then the mean and variance estimates of mixed

population 𝑓(𝑥, 𝑧) will be
�̂� [𝜂] = 𝑁∑

𝑘=1

𝑝𝑘�̂�𝑘,
V̂ar [𝜂] = 𝑁∑

𝑘=1

𝑝2𝑘Σ̂𝑘.
(23)

If the impact error samples {u(𝑘)𝑖 | u(𝑘)𝑖 = (𝑥(𝑘)𝑖 , 𝑧(𝑘)𝑖 )𝑇}𝑛𝑘𝑖=1(𝑘 = 1, 2, . . . , 𝑁) are following the same normal population𝑁(𝜇𝑠, Σ𝑠) the estimates of normal parameters are

�̂�𝑠 = (�̂�𝑥𝑠�̂�𝑧𝑠) =
1𝑆
𝑁∑
𝑘=1

𝑛𝑘�̂�𝑘,
Σ̂𝑠 = 1𝑆 − 1

𝑁∑
𝑘=1

𝑛𝑘∑
𝑖=1

(𝑥(𝑘)𝑖 − �̂�𝑥𝑠 0
0 𝑧(𝑘)𝑖 − �̂�𝑧𝑠)

2 .
(24)

Thus the errors of single normal population approximated to
the bivariate mixed population of two normal distributions
are

Δ𝐸 = �̂�𝑠 − �̂� [𝜂] = 𝑁∑
𝑘=1

(𝑛𝑘𝑆 − 𝑝𝑘) �̂�𝑘, (25)

Δ𝐷 = Σ̂𝑠 − V̂ar [𝜂] = 𝑁∑
𝑘=1

(𝑛𝑘 − 1𝑆 − 1 − 𝑝2𝑘) Σ̂𝑘 + 𝜀, (26)

where

𝜀 = 2𝑆 − 1
⋅ 𝑁∑
𝑘=1

𝑛𝑘∑
𝑖=1

((𝑥(𝑘)𝑖 − �̂�𝑥𝑘) (�̂�𝑥𝑘 − �̂�𝑥𝑠) 0
0 (𝑧(𝑘)𝑖 − �̂�𝑧𝑘) (�̂�𝑧𝑘 − �̂�𝑧𝑠))= 0.

(27)

By (25), it indicates that the means of two algorithms are
the same when �̂�𝑘 = 0 or 𝑝𝑘 = 𝑛𝑘/𝑆, ∀𝑘 = 1, 2, . . . , 𝑁. But
as is shown in (26), variances of two algorithms are distinct
under these circumstances.

4.2. Influence of Prior Distortion to Mixed CEP Errors. The
selection of prior information is very influential to Bayesian
posterior estimate. If the prior is not accurate, the error of
assessment results may be very large. Here the influence of
prior distortion to mixed CEP calculation is discussed for
finite mixture model as sensitivity analysis.

Let

∬
𝑥2+𝑧2⩽𝑅2

𝑓𝑘 (𝑥, 𝑧 | ℎ𝑘) 𝑑𝑥 𝑑𝑧 = 0.5, (28)

and note the solutions of (9) and (28) are 𝑅 and 𝑅𝑘 (𝑘 =1, 2, . . . , 𝑁). Suppose 𝑅𝑖 ⩽ 𝑅𝑗 (𝑖 < 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 𝑁) with-
out loss of generality; then we have the following equation:

𝑅1 ⩽ 𝑅 ⩽ 𝑅𝑁. (29)
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Figure 1: Probability density function of two normal mixture populations.

In the equation above 𝑅1 and 𝑅𝑁 are the lower and upper
bound of two normal mixture population, of which the
corresponding values of the prior weights 𝑃𝑤 = (𝑝(ℎ1),𝑝(ℎ2), . . . , 𝑝(ℎ𝑁))𝑇 are (1, 0, . . . , 0)𝑇 and (0, 0, . . . , 1)𝑇, respec-
tively. It indicates that the CEP response reaches extremums
at the interval boundaries of prior weights. Thus we have the
proposition as follows.

Proposition 1. Suppose random vector follows the mixture
distribution of which probability density function is the same as
(8). Prior weights 𝑃𝑤 = (𝑝(ℎ1), 𝑝(ℎ2), . . . , 𝑝(ℎ𝑁))𝑇 is assumed
as a random vector in [0, 1]𝑁, such that 𝐸[𝑝(ℎ𝑘)] = 𝑝𝑘 (𝑘 =1, 2, . . . , 𝑁), and ∑𝑁1 𝑝(ℎ𝑘) = ∑𝑁1 𝑝𝑘 = 1. Note �̂�𝑤 is the
estimate of𝑃𝑤, andΔ𝑅 is the error of mixed CEPwith �̂�𝑤.Then

sup
�̂�𝑤∈[0,1]

𝑁,‖�̂�𝑤‖=1

Δ𝑅 (�̂�𝑤) ⩽  max
𝑘=1,2,...,𝑁

{𝑅𝑘} − 𝑅0 , (30)

where 𝑅0 is the solution of (9) with 𝑝(ℎ𝑘) = 𝑝𝑘 (𝑘 =1, 2, . . . , 𝑁) and 𝑅𝑘 denotes the solution of (9) with 𝑝(ℎ𝑘) = 1
and 𝑝(ℎ𝑗) = 0 (𝑘 = 1, 2, . . . , 𝑁, 𝑗 ̸= 𝑘).
5. Numerical Experiments

5.1. Example 1. Suppose synthetical test conditions of scene
matching are ℎ1 and ℎ2 with 𝐸[𝑝(ℎ1)] = 0.4 and 𝐸[𝑝(ℎ2)] =0.6. And assume the impact errors (𝑋, 𝑍) follow normal
distributions𝑁(( 00 ) , ( 1 0.010.01 1 )) and𝑁(( 11 ) , ( 1 0.50.5 1 )) under
the conditions ℎ1 and ℎ2, respectively. Then the probability
density function of two normal mixture population is shown
in Figure 1.

As displayed in Figure 1, the mixed population is still
unimodal, of which the theoretical, classical, and mixed CEP
are 1.414m, 1.215m, and 1.420m. Take sample from normal
populations 1 and 2with sizes 20 and 30, respectively, ofwhich
the dispersion is shown in Figure 2. In Figure 2 only 8 samples

Theoritical CEP
Mixture CEP
Classical CEP

Sample by population 1
Sample by population 2

10.50 1.5 2−1−1.5−2 −0.5−2.5
X (m)

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Z
 (m

)

Figure 2: Sample dispersion and comparison of CEP by different
algorithms.

(16%) impact in the circle of classical CEP, which does not
accord with the definition of CEP. Meanwhile there are 28
samples (56%) in the circle of mixed CEP, which illustrates
that the mixed CEP calculation algorithm in this paper is
more adaptable and accurate contrasted with theoretical and
classical CEP under the circumstance.

In order to reduce the influence of random factors to
CEP calculation result, resample 10 and 100 times under
the circumstance that weights, sample size, and parameters
of two normal populations are fixed, and the averages of
corresponding computing results are shown in Table 1.

In Table 1, it indicates that the average precision of mixed
CEP algorithm is larger than classical one on the condition
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Table 1: Contrast average CEP mixed with classical algorithms by resampling.

Sampling times CEP algorithms Samples in CEP circle Percentage of more accurate mixed CEP
Mixed Classical Mixed Classical

1 1.420 1.215 56% 16% 100%
10 1.357 1.176 47% 24% 100%
100 1.355 1.159 44% 21% 77%

Table 2: CEP and corresponding errors with different prior information.

�̂�1 Δ�̂�1 �̂� Δ�̂�
0 0.4 1.633 0.219
0.1 0.3 1.573 0.160
0.2 0.2 1.517 0.104
0.3 0.1 1.464 0.050
0.4 0 1.414 0
0.5 0.1 1.367 −0.047
0.6 0.2 1.323 −0.090
0.7 0.3 1.283 −0.131
0.8 0.4 1.245 −0.169
0.9 0.5 1.210 −0.204
1 0.6 1.177 −0.236

Table 3: Value of impact errors.

Test condition Direction Test data (m)
1 2 3 4 5 6 7 8 9

1 𝑋 0.538 1.834 −2.259 0.862 0.319 −1.308 −0.434 0.343 3.578𝑍 2.769 −1.350 3.035 0.725 −0.063 0.715 −0.205 −0.124 1.490

2 𝑋 0.641 0.642 0.567 0.379 0.572 0.663 0.549 0.604 0.573𝑍 0.470 0.529 0.421 0.589 0.385 0.393 0.419 0.206 0.644

3 𝑋 1.033 0.925 1.137 0.829 0.990 0.976 1.032 1.031 0.914𝑍 0.997 0.984 1.063 1.109 1.111 0.914 1.008 0.879 0.889

Table 4: Actual and prior mean of probability of test conditions.

Test
condition

Mean of real
probability

Prior mean of
probability

1 1/3 3/10
2 1/3 3/10
3 1/3 2/5

of resampling, and the probability when mixed CEP is more
precise than typical one is large (about 77% in resampling
100 times) under the circumstance that samples are fixed.
In addition, viewed from the perspective of containing
samples, the proportion of samples in the circle of mixed
CEP much more comply with the CEP definition, of which
the average is about 44% in resampling times. Meanwhile the
corresponding value of classical CEP circle is far from the
ideal 50%, of which the average is about 21%.

5.2. Example 2. The influence of prior distortion to mixed
CEP errors for two normalmixture population is discussed in
this subsection, of which the related parameters are the same
as Section 5.1. In this case the input of prior parameter is only�̂�1 ∈ [0, 1], while �̂�2 can be replaced by �̂�2 = 1 − �̂�1. So the
relationship between �̂�1 and mixed CEP can be expressed as
the following equation:

∫
𝑥2+𝑧2≤𝑅2

[𝑓2 + �̂�1 (𝑓1 − 𝑓2)] 𝑑𝑥 𝑑𝑧 = 0.5, (31)

where 𝑓1 and 𝑓2 denote density functions of normal dis-
tribution 1 and 2. Suppose �̂�1 = 0.4 is the real prior
information, and the exact mixed CEP is 1.414m. Then CEP
and corresponding errors are calculated on the conditions of�̂�1 = 0.1𝑘 (𝑘 = 0, 1, . . . , 10), which are shown in Table 2.

As is shown in Table 2, the CEP error Δ�̂� increases as
the prior error Δ�̂�1 increases. And we can see the maximum
of CEP under prior distortion is achieved by the boundary
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Table 5: CEP under different assumptions of the population.

Assumptions of the population CEP point estimate CEP confidence upper bound CEP confidence interval
Level 0.9 Level 0.8 Level 0.9 Level 0.8

Single 1.416 1.595 1.527 [1.220, 1.665] [1.261, 1.595]
Mixture with prior distortion 1.356 1.404 1.383 [1.299, 1.421] [1.314, 1.404]
Mixture without prior distortion 1.340 1.390 1.369 [1.281, 1.410] [1.293, 1.390]

point �̂�1 = 0.4, which is in accordance with Proposition 1.
In addition, we can conclude that prior distortion can
deviate the mixed CEP from theoretic value indeed, but the
upper bound of errors is estimable, which is quantified in
Proposition 1.

5.3. Example 3. The assessment of CEP in the case of small
samples is discussed in this subsection. Assume 9 impact
error samples are obtained after a group of flight tests and
divided into 3 classes under corresponding conditions, which
is shown in Table 3. In addition, real and prior mean of
probability of test conditions are given in Table 4. Then
the CEP point estimators and confidence intervals can be
calculated after resampling 1000 times under the different
assumptions, which is shown in Table 5.

The CEP confidence upper bounds under different
assumptions are compared and analyzed here. As is shown
in Table 5, the assessment results by mixed CEP method
are closer to the mixed CEP of accurate prior information
compared with classical single algorithm, even with the
distorted prior. It illustrates that the adaptive ability of mixed
CEP algorithm is promising in the case of small samples.

6. Conclusions

We have investigated the problem that classical CEP method
may be unreasonable and may give inaccurate results for
the impact samples following different populations. For
purpose of addressing it, the mixed CEP is modeled in the
context that the errors caused by scene matching follows
diverse populations, and corresponding algorithms of point
estimator and confidence interval estimation are designed.
Taking mixed population of two normal distributions as an
example, the statistical properties of traditional and mixed
CEP algorithm are compared, and it concludes that prior
distortion can deviate the mixed CEP from theoretic value
indeed, but the upper bound of errors is estimable.

In numerical experiments, CEP calculated by mixed
algorithm is close to theoretical value in the case of the pop-
ulation mixing two normal distributions, while traditional
CEPmethod is unreasonable and unprecise, which illustrates
that the mixed CEP algorithm designed in this paper is
adaptable under the circumstance. In addition, the response
relationship of prior parameters and CEP is analyzed in the
case, which verifies Proposition 1 from the perspective of
statistical simulation. And on the condition of small samples
with mixture population of three normal distributions, the
confidence upper bounds of mixed CEP with real and biased

prior parameters are calculated, which indicates that the
mixed CEP algorithm is credible for small samples.

In the case of impact samples following the mixed
population of finite normal distributions, the mixed CEP
algorithm proposed in this paper is credible. However, the
effect of the method to other types of mixture models is not
explicit, which is what we aim to investigate furthermore.
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