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As there is a gap in literature about out-of-plane vibrations of curved and variable cross-sectioned beams, the aim of this study
is to analyze the free out-of-plane vibrations of curved beams which are symmetrically and nonsymmetrically tapered. Out-of-
plane free vibration of curved uniform and tapered beams with additional mass is also investigated. Finite element method is
used for all analyses. Curvature type is assumed to be circular. For the different boundary conditions, natural frequencies of both
symmetrical and unsymmetrical tapered beams are given together with that of uniform tapered beam. Bending, torsional, and
rotary inertia effects are considered with respect to no-shear effect. Variations of natural frequencies with additional mass and the
mass location are examined. Results are given in tabular form. It is concluded that (i) for the uniform tapered beam there is a good
agreement between the results of this study and that of literature and (ii) for the symmetrical curved tapered beam there is also a
good agreement between the results of this study and that of a finite element model by using MSC.Marc. Results of out-of-plane

free vibration of symmetrically tapered beams for specified boundary conditions are addressed.

1. Introduction

Due to their importance and wide using areas in engineering,
dynamics of curved beams have been prevalently investigated
by many researchers. Particularly, vibration analysis of curved
beams has been a remarkable research area in mechanics due
to its various applications. For the complicated problems of
many architectural and structural implementations, curved
beams with variable cross-sections are generally main parts,
such that beams can be used not only in the design of
rib, curved continuous bridge, and ship, but also in gear,
pump, turbine and so on. Kawakami et al. [1] present
an approximate method to study the analysis for the in-
plane and out-of-plane free vibration of horizontally curved
beams with arbitrary shapes and variable cross-sections. It
is stated that the characteristic equation for free vibration
can be derived by applying the Green function, which is
obtained as a discrete type solution of differential equations
governing the flexural behavior of the curved beam under
the action of a concentrated load. Krishnan and Suresh [2]
investigate the effect of shear deformation and rotary inertia

on natural and cross over frequencies of both curved uniform
and nonuniform (varied cross-section) beams by using a
simple cubic linear beam element. Results of free and forced
in-plane vibrations of circular arches with variable cross-
sections are given by Tong et al. [3] using the Kirchhoft
assumptions for thin beams and taking the neutral axis as
inextensible. Huang et al. [4] take into consideration out-of-
plane dynamics of beams with arbitrarily varying curvature
and cross-section by dynamic stiffness matrix method. Viola
et al. [5, 6] investigate the in-plane linear free vibrations
of nonuniform circular arches with damaged configurations
by using analytical and generalized differential quadrature
(GDQ) methods. Tornabene et al. [7] apply GDQ to solve
linear dynamics of the arch with different geometrical and
boundary conditions. Viola et al. [8, 9] present a solution of
free harmonic vibration problem of multistepped and multi-
damaged arches by using analytical and GDQ with domain
decomposition technique (GDQE) methods. In-plane free
vibration of circular arches is worked by Liu and Wu [10]
using the generalized differential quadrature rule (GDQR).
Arches with uniform, continuously varying, and stepped
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cross-sections are presented to illustrate the validity and
accuracy of the GDQR. Karami and Malekzadeh [11] analyze
in-plane free vibration of circular arches with varying cross-
sections by developing a differential quadrature method. A
boundary element method is developed by Sapountzakis [12]
for the nonuniform torsional vibration problem of doubly
symmetric composite bars of arbitrary variable cross-section.
Chen [13] uses the differential quadrature element method
(DQEM) for in-plane vibration analysis models of arbitrarily
curved beam structures. Tufekci and Dogruer [14] analyze
free out-of-plane vibrations of a circular arch with uniform
cross-section with respect to effects of transverse shear
and rotary inertia due to the both flexural and torsional
vibrations. Yang et al. [15] investigate free in-plane vibration
of uniform and nonuniform curved beams with variable
curvatures, including the effects of the axis extensibility, shear
deformation, and rotary inertia by using extended-Hamilton
principle. Shin et al. [16] solve the problem of vibration of
a circular arch with variable cross-section using differential
transformation and generalized differential quadrature. Sim-
ilarly, on one hand, Malekzadeh et al. [17-19] present in-
plane free vibration of laminated/functionally graded circular
arches according to the differential quadrature method. On
the other hand, Malekzadeh et al. [20] investigate out-of-
plane free vibration of functionally graded circular curved
beams in thermal environment. Another work about func-
tionally graded circular curved beams is held by Piovan et
al. [21]. In order to obtain natural frequencies for “bare”
and “loaded” curved beams for different end conditions, Wu
et al. [22] present an effective approach for free in-plane
vibration analysis of a curved beam with various arbitrary
concentrated elements. Ozyigit and Isik [23] investigate
in-plane vibration of curved beams with variable cross-
sections carrying additional mass to compute frequencies
of symmetrical and nonsymmetrical tapered beams with
different mass locations. Ni et al. [24] pay attention to
in-plane and out-of-plane free vibration and stability of a
curved rod in flow. Vibration suppression of curved beams
is regarded by Rostam et al. [25]. The performance of two
curved beam element models based on coupled polynomial
displacement fields is taken into account by Ishaquddin et
al. [26] for out-of-plane vibration of arches. The coupled
polynomial interpolation fields are derived independently
for Timoshenko and Euler-Bernoulli beam elements using
the force-moment equilibrium equations. Lee and Jeong [27]
consider flexural and torsional free vibrations of horizontally
curved beams on Pasternak foundations.

Since out-of-plane vibrations of curved and variable
cross-sectioned beams are not widely studied, the purpose
of this work is to analyze the free out-of-plane vibrations
of curved beams which are symmetrically and nonsymmet-
rically tapered. In this analysis, the linear free out-of-plane
vibrations of uniform and variable cross-section beams are
considered by finite element method (FEM). The curvature
of beams is circular and the cross-sections are taken circular
and rectangular. The natural frequency is computed for
different boundary conditions. An additional mass on beam
is also considered and its effects on natural frequencies are
investigated.
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FIGURE 1: Curved beam element.

2. Modeling and Governing Equations

In applying finite element method to the approximate solu-
tion of curved beam problems, the following procedure
can be considered [28-30]: Curved beam is modeled as a
finite element as shown in Figure 1. X, Y, and Z are global
coordinates, and u,, v,, and w, are the tangential, radial, and
out-of-plane displacements for the curved beam, respectively.
Curved beam lies in X — Y plane, s is tangential coordinate,
and 0, is the arch angle of one finite element. The out-of-plane
elastic and kinetic energy equations of the curved beam can
be expressed as follows:

1
U, =

1 2964+ 1 J 2
—ZEILKCds+2G] S(pcds
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T, = lpAJ- wds + lpIJ ¥2ds + lp]J- d2ds,
2 S 2 S 2 S

where A is the cross-sectional area, E is modulus of elasticity,
G is modulus of rigidity, and I and J are mass moment and
polar moment of inertia, respectively. Due to the fact that the
beam is assumed to be of Bernoulli-Euler type, shear effect on
the beam is neglected. In (1), (-) denotes differentiation with
respect to time t. Out-of-plane curvature change, torsion, and
slope terms are

o, o*w,
R 0s%’
o) 1 ow
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where @, is the torsional displacement of the curved element.
Out-of-plane displacement vector for one finite element is

T
V], = [(Dci wy Yy Oy Wiy \Pci+1]- 3)

Three degrees of freedom are taken for each node of elements.
By following the finite element procedure, the stiffness and
inertia matrices are obtained for out-of-plane vibrations.
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TaBLE 1: Convergence analysis for the out-of-plane natural frequencies of the beam with midpoint mass location (see midpoint position as
Position 1 in Table 11) under C-C end condition.

# of elements

Mode

10 20 30 40 50 60 70 80 90 100
1 0.798 0.789 0.787 0.786 0.786 0.786 0.786 0.786 0.786 0.786
2 6.076 6.015 6.003 6.000 5.997 5.996 5.995 5.995 5.995 5.994
3 9.556 9.447 9.425 9.417 9.413 9.411 9.410 9.409 9.409 9.408
4 21.190 20.977 20.937 20.923 20.917 20.913 20.911 20.910 20.909 20.908

TaBLE 2: Convergence analysis for the out-of-plane natural frequencies of the beam with bare position (see bare position as Position 6 in

Table 11) under C-C end condition.

# of elements

Mode

10 20 30 40 50 60 70 80 90 100
1 2.220 2.197 2.193 2.191 2.190 2.190 2.190 2.190 2.189 2.189
2 6.076 6.015 6.003 5.999 5.997 5.996 5.995 5.995 5.995 5.994
3 12.436 12.307 12.282 12.273 12.269 12.267 12.266 12.265 12.264 12.264
4 21.198 20.979 20.938 20.924 20.917 20.913 20.911 20.910 20.909 20.908

TaBLE 3: The out-of-plane nondimensional natural frequency parameters of uniform and circularly curved beams with circular cross-sections

under C-C end condition.

0 Mode Present study Viola et al. [8] Malekzadeh and Setoodeh [17] Piovan et al. [21] Ni et al. [24]
1 19.610 19.40190 19.398 19.442
60° 2 55.070 54.02958 54.014 54.093
3 108.947 105.64828 105.61 105.707
4 180.868 172.77355
1 4.490 4.451450 4.4515 4.471
120° 2 12.970 12.82629 12.825 12.885
3 26.300 25.98937 25.984 26.064
4 44.205 43.57053
1 1.8256 1.804340 1.8048 1.817 1.8108
180° 2 5.2687 5.197995 5.1984 5.239 5.2359
3 11.0489 10.91819 10.918 10.984 11.0046
4 18.9317 18.72548 18.8837

3. Free Vibration Analysis:
Results and Discussion

Matrix equation for the free vibrations of the curved beam
starts with an equation of the form

2
[Mﬂ@ﬂMﬂ%%}ﬂm, ()

where {V} is a global displacement vector and [K] and [M]
are global stiffness and inertia matrices, respectively. The
solution of (4) is assumed to be

v} ={v}e, ®)

where j = +/-1, w, is natural frequency, and {V} is
displacement amplitude vector of all nodes. Then, one can
obtain the eigenvalue equation giving the natural frequencies
for both in-plane and out-of-plane vibrations

|(K] - wj, [M]| = 0. (6)

3.1. Convergence Study. A convergence study against the
number of used elements is also put into consideration to
see appropriate error reduction properties of the out-of-plane
natural frequencies of the beam with or without mass under
clamped end condition (C-C). Results of the convergence
study are given in Tables 1 and 2. It can be noted that the
experimental convergence starts with 10 elements and ends
up with 100 elements. The number of elements for optimal
convergence is in the range of 90 and 100.

3.2. Uniform Beams. According to the finite element model
proposed, vibration of uniform circularly curved beams is
compared with that of the literature. Results of the out-
of-plane dimensionless frequencies of curved beams for
clamped end condition (C-C) are given in Table 3. It can be
noted that the results of the present study coincide with the
results of the literature.

3.3. Curved Tapered Beams. Actually, many studies about in-
plane vibrations of curved tapered beams can be found in
literature (2, 3, 5-11,16-20]. However, out-of-plane vibrations
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TaBLE 4: Comparison of out-of-plane nondimensional fundamental natural frequency parameters of symmetrical tapered curved beams
under C-C end condition.

Mode a=0 a=0.1 a=0.2 a=03 a=04
FEM Marc FEM Marc FEM Marc FEM Marc FEM Marc
1 1.82656 1.71268 1.99231 1.95735 2.16707 2.06221 2.37049 2.23698 2.55085 2.35337
2 5.2687 4.96329 5.62739 5.29291 5.97692 5.94196 6.35269 6.15867 6.70673 6.5816
3 11.0489 10.90525 11.63925 11.25478 12.23346 11.99578 12.85946 12.82765 13.44632 13.31699
4 18.9317 18.73466 19.8881 19.60848 20.90173 20.62211 21.87971 21.42602 22.83602 22.57947
a hy
he = (hy + hy)/2 .
\(\/
(a) C-C
hy > hy => a = (hy — heo)/he
hy < hy => a = (hy — he)/he N L7
. \/\//
(b) C-F

a = (hy - he)/he

hy hy

FIGURE 3: Symmetrical tapered beam.

of curved and variable cross-sectioned beams are not widely
studied. The aim of this study is to analyze the free out-of-
plane vibrations of curved beams which are symmetrically
and nonsymmetrically tapered (see Figures 2 and 3).

It is assumed that (i) each beam possesses a constant
width with R as radius of the curvature, 0 as arc angle, and « as
cross-section change parameter and (ii) the beam is circularly
curved and its cross-section is rectangular with height of the
cross-section as /i at the beginning, /. at the crown, and /1, at
the end for an unsymmetrical tapered beam and as h;, at both
ends and A, at the crown for a symmetrical tapered beam.

For the comparison of out-of-plane nondimensional fun-
damental natural frequency parameters, symmetrical tapered
curved beam analysis under C-C end condition (see Figure 3)
is assumed to be under plane strain condition and the

FIGURE 4: Unsymmetrically tapered beams with additional mass.

general-purpose finite element code MSC.Marc (v2014, MSC
Software, Santa Ana, CA, USA) is used. Four-node linear
plane strain element (full integration 11) is considered for
all five finite element beam models with constant 14400
elements, respectively. Results for the symmetrical curved
tapered beam are given in Table 4. It is obvious that there is a
good agreement between the results of this study and that of
finite element model by MSC.Marc.

3.3.1. Unsymmetrical Tapered Beams. In the first part of
this section, analysis of an unsymmetrical tapered beam
or beam with varying cross-section, change of arc angle at
different end conditions is considered. Cross-section change
parameter is taken as 0.2 and 0.4 while A, is same for both
(hy > hy). First natural frequency parameters for clamped (C-
C), clamped-hinged (C-H), and hinged (H-H) end conditions
are shown in Table 5. It is noted that (i) frequencies decrease
with increasing of arc angle, (ii) as expected, the frequencies
decrease from C-C to H-H end conditions, and (iii) increase
of « causes an increase for frequencies at C-H and mostly a
decrease at the other two end conditions.

In the second part of this section, an additional mass is
considered on some points of tapered beams. Corresponding
to C-Cboundary conditions and 90° arc angle, a curved beam
with a concentrated mass (10 kg) at the midpoint is given in
Figure 4(a). In Figure 4(b), the same beam is under free right
end (C-F) and mass location at the free end. Dimensionless
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TaBLE 5: Nondimensional fundamental natural frequency parameters of unsymmetrical tapered curved beams.
9 C-C C-H H-H
a =02 a =04 a =02 a=04 a =02 a=04

30° 80.43 78.28 58.19 59.81 34.51 33.12
60° 19.69 19.20 14.04 14.56 7.82 7.51
90° 8.47 8.29 5.90 6.21 2.896 2.782
120° 4.58 4.50 3.09 3.32 1.186 1.139
150° 2.811 2.779 1.826 2.017 0.409 0.393
180° 1.888 1.877 1.190 1.350 0.020 0.021
270° 0.873 0.876 0.593 0.668 0.446 0.402
360° 0.635 0.629 0.477 0.513 0.041 0.041

TaBLE 6: Nondimensional natural frequencies of unsymmetrical tapered curved beams with C-C end conditions.
Mode a=0.1 a=02 a=0.3 a=04

Bare Loaded” Bare Loaded” Bare Loaded” Bare Loaded”

1 8.51 4.76 8.47 4.75 8.40 4.74 8.29 4.72
2 24.16 24.08 24.00 23.73 23.73 23.13 23.33 22.32
3 48.04 38.59 47.73 38.78 4717 39.05 46.34 39.34
4 79.94 79.44 79.42 77.59 78.48 74.85 77.09 71.48
*Loaded with additional mass (10 kg) at midpoint of the beam (6 = 90°).

TaBLE 7: Nondimensional natural frequencies of unsymmetrical tapered curved beams with C-F end conditions.
Mode a=0.1 a=02 a=0.3 a =04

Bare Loaded” Bare Loaded” Bare Loaded” Bare Loaded”

1 1.84 0.87 2.04 0.92 2.25 0.97 2.48 1.00
2 8.43 5.97 8.80 6.16 9.14 6.32 9.46 6.44
3 24.28 19.77 24.56 19.85 24.74 19.82 24.81 19.69
4 48.13 41.66 48.25 41.57 48.15 41.29 47.81 40.77

*Loaded with additional mass (10 kg) at free end of the beam (6 = 90°).

natural frequency parameters of unsymmetrically tapered
curved beams at C-C boundary conditions are presented in
Table 6. The results represent both bare and mass loaded cases
with the range of « as 0.1-0.4 and constant k.

In the third part of this section, similar computation
for C-F beam with the additional mass at the free end
is completed with respect to bare and loaded beam cases.
Results of first four frequency parameters are shown in
Table 7.

In the last part of this section, vibration for unsymmet-
rically tapered beams is considered for different arc angles.
Again, according to bare and loaded beam cases, first natural
frequencies are obtained for cross-section parameters 0.2 and
0.4, respectively, as given in Table 8.

3.3.2. Symmetrical Tapered Beams. Although there are num-
ber of studies about in-plane vibration of curved and sym-
metrically tapered beams in literature [4, 5, 15], there is not
any about out-of-plane vibration of that kind of structures.
In this section, out-of-plane free vibration of symmetrically
tapered beams at only C-C end conditions is put into
consideration in such a way that (i) the beam is separated into
100 finite elements and (ii) a concentrated mass is located at

TaBLE 8: Nondimensional fundamental natural frequencies of
unsymmetrical tapered curved beams with C-F end condition (10 kg
additional mass at the free end).

9 a=0.2 a =04
Bare Loaded Bare Loaded

30° 16.41 7.167 20.21 7.529
60° 4.28 1.897 5.25 1.985
90° 2.04 0.925 2.48 0.961
120° 1.261 0.588 1.514 0.605
150° 0.906 0.435 1.071 0.442
180° 0.717 0.351 0.833 0.353
270° 0.481 0.226 0.533 0.226
360° 0.382 0.176 0.419 0.178

the midpoint. The beam, namely, a half circled curved beam
(0 = 180°), is shown in Figure 5.

In the first part of this section, the fundamental natural
frequencies for different arc angles’ « values are obtained
regarding bare and loaded cases. Results are presented in
Table 9. One can clearly say that while increasing arc angle
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TaBLE 9: Fundamental frequencies of symmetrical tapered beams under C-C end condition.

9 a=0.1 a=0.2 a=0.3 a=04

Bare Loaded” Bare Loaded” Bare Loaded” Bare Loaded”
20° 196.753 94.883 210.796 101.640 224.883 108.433 239.017 115.266
40° 48.603 23.436 52.149 25.144 55.701 26.858 59.261 28.580
60° 21.205 10.222 22.801 10.992 35.411 11.764 25.997 12.538
80° 11.651 5.613 12.562 6.053 13.471 6.493 14.380 6.934
100° 7.261 3.495 7.851 3.780 8.439 4.065 9.025 4.350
120° 4.903 2.357 5.315 2.557 5.726 2.756 6.136 2.955
140° 3.501 1.680 3.805 1.826 4,108 1.974 4.409 2.121
160° 2.608 1.249 2.840 1.361 3.071 1.473 3.301 1.585
180° 2.008 0.959 2.189 1.047 2.370 1.135 2.551 1.222

*Loaded with additional mass (50 kg) at midpoint of the beam.

TaBLE 10: Nondimensional out-of-plane natural frequencies of half circled uniform and symmetrical tapered beams (6 = 180°).

Amount of the additional mass

Type Mode Bare 25kg 50kg 75kg 100 kg
1 1.825 1.112 0.870 0.739 0.653
Uniform 2 5.265 5.265 5.265 5.265 5.265
3 11.038 9.082 8.758 8.626 8.554
4 18.910 18.910 18.910 18.910 18.910
1 2.370 1.449 1.135 0.963 0.851
Tapered 2 6.353 6.353 6.353 6.353 6.353
a=03 3 12.860 10.457 10.066 9.908 9.822
4 21.880 21.880 21.880 21.880 21.880
TaBLE 11: The out-of-plane natural frequencies of the beam with different mass locations under C-C end condition.
Position 1 Position 2 Position 3 Position 4 Position 5 Position 6
ode Midpoint (crown) 4044 s0th node 30th-70th node 20th-80th node 10th-90th node /BS
1 0.786 0.868 1123 1.620 2.127 2.189
2 5.994 2.921 2.342 2.870 4.948 5.994
3 9.408 11.534 9.621 6.209 7.725 12.264
4 20.908 14.013 20.491 14.923 11.729 20.908
Additional mass: 100 kg, o = 0.2.
beams with the range of additional mass of 25-100kg. As
seen in Table 10, results indicate that the significant point is
50 about the even modes (2-4). On one hand, these two modes
keep their constancy independently of the amount of the
additional mass. On the other hand, odd modes show regular
decreasing behavior due to the increasing of load.
In the last part of this section, a change of location of
0 100 concentrated mass is taken into account under bare beam

FIGURE 5: Symmetrically curved beam with additional mass is at the
top (crown).

with additional mass decreases the frequencies, increasing of
« with additional mass increases the frequencies.

In the second part of this section, again, the first five
frequencies are computed for uniform and tapered (« = 0.3)

case. As represented in Table 11, the following conditions are
considered: (i) mass is considered at midpoint as Position 1
(100 kg) and (ii) the mass is separated into two equal pieces
(50 kg each) and these pieces are located at two sides sym-
metrically as Positions 2-5, respectively. For the first natural
frequency point of view, it is said that increasing position
number from 1 to 6 increases fundamental frequency. For
the rest of the modes, there is an up-and-down behavior due
to the locations of additional masses. Also, when comparing
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Positions 5 with 6, first and second natural frequencies
become close to each other.

4. Conclusions

Due to the fact that there is a gap in literature about out-
of-plane vibrations of curved and variable cross-sectioned
beams, this study is presented to analyze the free out-of-
plane vibrations of curved beams which are symmetrically
and nonsymmetrically tapered. Results conclude that the
finite element solution proposed here is suitable for vibration
analyses of curved and tapered beams with or without
additional mass.
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