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This paper deals with the nonmonotone projection algorithm for constrained nonlinear equations. For some starting points, the
previous projection algorithms for the problem may encounter slow convergence which is related to the monotone behavior of the
iterative sequence as well as the iterative direction. To circumvent this situation, we adopt the nonmonotone technique introduced
by Dang to develop a nonmonotone projection algorithm. After constructing the nonmonotone projection algorithm, we show its
convergence under some suitable condition. Preliminary numerical experiment is reported at the end of this paper, from which we
can see that the algorithm we propose converges more quickly than that of the usual projection algorithm for some starting points.

1. Introduction

Recall that𝐺 : 𝑅𝑛 → 𝑅𝑛 is a nonlinearmappingwith continu-
ity and 𝐶 is a nonempty closed set in 𝑅𝑛 with convexity; then
the constrained nonlinear equations are defined as seeking a
point 𝑥∗ ∈ 𝐶 so that the following equation is established:

𝐺 (𝑥∗) = 0. (1)

Many iteration methods and algorithms for solving such
problem have been proposed in [1–11]. For instance, there
are some variants of the Levenberg-Marquardt type methods
[1–3] which have strong convergence property. In addition,
Wang et al. presented a projection algorithm [5] for solving
problem (1) in 2007 and a superlinearly convergent projection
method [12] in 2009. From the numerical performances
given in [12], we can see that the algorithm in [12] is more
efficient than the method in [5] for solving such problem.
Recently, a hybrid conjugate gradient projection algorithm
has been established which is on the basis of the Dai-Yuan
and Hestenes-Stiefel conjugate gradient method, seen in [11].

However, the projection algorithms may encounter “tun-
neling effect” [13] which will result in slow convergence.That
is to say, during the iteration, the projection onto two ormore
convex sets may encounter a narrow channel, and the pro-
jection iterative sequences will become very slow. Applying

the nonmonotone technique to the projection algorithm is an
effective way to avoid this effect, which is based on the idea
of taking a big step to interrupt the monotone behavior. The
“tunneling effect” is associated with the monotone iterative
sequence. Inspired by the work of Dang and Gao [14]
for convex feasibility problem, we propose a nonmonotone
projection algorithm, which has already been confirmed to
converge faster than average in the “tunneling.” From the
numerical experiment, it can be verified that, comparingwith
the projection method in [12], this method is more effective.

The remaining part of this article is distributed as follows.
In the next section, some fundamental properties will been
given which is useful in the following demonstration. In
Section 3, the nonmonotonic projection method will be
shown and the algorithm convergence is proved theoretically.
At the end of this article, an example will be given which
elucidates the algorithm we propose, which converges more
quickly than the existing algorithms. Based on the above
understanding, we come to the conclusion.

2. Preliminaries

Let 𝐺 : 𝑅𝑛 → 𝑅𝑛 be a nonlinear continuous mapping; then 𝐺
is said to be monotone if, for ∀𝑥, 𝑦 ∈ 𝑅𝑛, it holds that

⟨𝐺 (𝑥) − 𝐺 (𝑦) , 𝑦 − 𝑥⟩ ≤ 0. (2)
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In addition, 𝑆 fl {𝑥 ∈ 𝑅𝑛 | 𝐺(𝑥) = 0} is convex if 𝐺 is
monotone.

Let 𝐶 be a convex set where 𝐶 ∈ 𝑅𝑛 and 𝐶 ∉ 0. Define𝑃𝐶[∗]: 𝑅𝑛 → 𝐶 as a projection; it can be expressed as

𝑃𝐶 [𝑥] = argmin {𝑦 − 𝑥} where 𝑦 ∈ 𝐶, 𝑥 ∈ 𝑅𝑛. (3)

It is well known that the projection 𝑃𝐶 has some funda-
mental properties. It holds that

𝑃𝐶 [𝑥] − 𝑃𝐶 [𝑦] ≤ 𝑥 − 𝑦 , (4)

𝑃𝐶 [𝑥] − 𝑃𝐶 [𝑦]2 ≤ 𝑥 − 𝑦2
− 𝑃𝐶 [𝑥] − 𝑥 + 𝑦 − 𝑃𝐶 [𝑦]2 .

(5)

According to (4) we know that 𝑃𝐶[∗] is nonexpansive. In this
paper, we mainly use formula (5).

3. The Algorithm and Its Convergence Analysis

The basic idea of our algorithm is as follows. Taking a well-
determined big step at each of the a priori fixed moments,
we try to interrupt the monotone behavior of the iteration
sequence by introducing an appropriate parameter at suitable
steps so as to ensure that both of the nonmonotone sequence
and the iteration within the interval are monotonically
decreasing. In this way, the whole sequence may converge to
a point in the solution set.

Algorithm 1 (the nonmonotone projection algorithm).

Step 0. Choose𝑀 > 2 and𝑁 > 𝑀 which are positive integer
numbers. Take 𝜑 ∈ (0, 1). 𝐵 is an arithmetic number which is
as large as possible.

Step 1. Pick an initial point 𝑥0 ∈ 𝐶; set the parameters such
that 𝛾1 > 0, 𝛾2 > 0, 0 ≤ 𝜅0 < 1, 0 < 𝛼 < 1, and 0 < 𝛽 < 1.
Step 2. If 𝐺(𝑥𝑘) = 0, stop. Or else let 𝜎𝑘 = min{𝜅0,𝛾2‖𝐺(𝑥𝑘)‖1/2}; solve the linear equation below:

𝛾1 𝐺 (𝑥𝑘)1/2 𝐼 (𝑥 − 𝑥𝑘) + 𝐺 (𝑥𝑘) = 0. (6)

Find the solution 𝑥𝑘 ∈ 𝑅𝑛 to (6) so that 𝑟𝑘 can satisfy

𝑟𝑘 ≤ 𝜎𝑘𝛾1 𝑥𝑘 − 𝑥𝑘 ⋅ 𝐺 (𝑥𝑘)1/2 . (7)

Step 3. Get 𝑦𝑘 by 𝑦𝑘 = 𝑥𝑘 − 𝛽𝑚𝑘(𝑥𝑘 − 𝑥𝑘) such that

⟨𝐺 (𝑦𝑘) , 𝑥𝑘 − 𝑥𝑘⟩
≥ 𝛼𝛾1 (1 − 𝜎𝑘) 𝐺 (𝑥𝑘)1/2 𝑥𝑘 − 𝑥𝑘2 ,

(8)

where𝑚𝑘 is the smallest nonnegative integer that satisfies (8).

Step 4. Set𝐻𝑘 = {⟨𝐺(𝑦𝑘), 𝑥 − 𝑦𝑘⟩ = 0 | 𝑥 ∈ 𝑅𝑛}.
(1)When 𝑘 ∉ {𝑁+𝑝𝑀}+∞𝑝=0 (𝑝 is nonnegative integer), put

𝛼1𝑘 = ⟨𝐺 (𝑦𝑘) , 𝑥𝑘 − 𝑦𝑘⟩𝐺 (𝑦𝑘)2 . (9)

Construct 𝑥𝑘+1 by
𝑥𝑘+1 = 𝑃𝐶∩𝐻𝐾 [𝑥𝑘 − 𝛼1𝑘𝐺(𝑦𝑘)] . (10)

(2) When 𝑘 ∈ {𝑁 + 𝑝𝑀}+∞𝑝=0, determine 𝛼1𝑘 as in (1). Put

𝜔𝑘+1 = 𝑃𝐶∩𝐻𝐾 [𝑥𝑘 − 𝛼1𝑘𝐺(𝑦𝑘)] . (11)

Construct 𝑥𝑘+1 by
𝑥𝑘+1 = 𝜒𝑘+1𝐺(𝑦𝑘) + 𝜔𝑘+1, (12)

where

𝜒𝑘+1 = min(𝐵,√ 𝜑𝑀𝑘+1𝐺 (𝑦𝑘)2) , (13)

𝑀𝑘+1 = ⟨𝐺 (𝑦𝑘+1−𝑀) , 𝑥𝑘+1−𝑀 − 𝑦𝑘+1−𝑀⟩2𝐺 (𝑦𝑘+1−𝑀)2 + ⋅ ⋅ ⋅

+ ⟨𝐺 (𝑦𝑘) , 𝑥𝑘 − 𝑦𝑘⟩2𝐺 (𝑦𝑘)2 .
(14)

Then replace 𝑘 by 𝑘 + 1 and turn to Step 2.
Compared with the existing algorithms, we attempt to

interrupt the monotone behavior of the iterative sequence{𝑥𝑘}∞𝑘=0 by taking a big step at different moments and
introducing 𝜒𝑘+1 at every appropriate step. Therefore, for
some starting points, the nonmonotone technique may avoid
the tunneling effect and improve the algorithms convergence.

Next, we analyse the convergence of our algorithm. To
this end, we need the assumptions below:

(𝐴1) 𝐹 is a monotone mapping.
(𝐴2) 𝑆 = {𝑥 ∈ 𝑅𝑛 | 𝐺(𝑥) = 0} is nonempty and convex.
(𝐴3) Algorithm 1 always generates an infinite sequence.

Lemma 2 (see [15, Lemma 3.2]). Suppose that the underlying
mapping 𝐹 is monotone. Then

𝑃𝐶 [𝑥𝑘 − 𝛼2𝑘𝐹 (𝑦𝑘)] = 𝑃𝐶∩𝐻𝐾 [𝑥𝑘 − 𝛼1𝑘𝐹 (𝑦𝑘)] . (15)

Lemma 3 (see [12, Theorem 3.1]). When 𝑘 ∉ {𝑁 + 𝑝𝑀}+∞𝑝=0,
take 𝛼1𝑘 in (9) and use iteration (10). Then

𝑥𝑘+1 − 𝑥∗2 ≤ 𝑥𝑘 − 𝑥∗2 − ⟨𝐺 (𝑦𝑘) , 𝑥𝑘 − 𝑦𝑘⟩2𝐺 (𝑦𝑘)2 . (16)

From the inequality above we have the conclusion that‖𝑥𝑘−𝑥∗‖ ismonotonically decreasing and converges. Namely,{𝑥𝑘} is bounded.
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Theorem 4. Suppose 𝑥∗ ∈ 𝐶, when 𝑘 ∉ {𝑁 + 𝑝𝑀}+∞𝑝=0, where𝑀 > 2 and𝑁 > 𝑀, under Assumptions (𝐴1) and (𝐴2), for the
sequence produced by Algorithm 1; then

lim
𝑘+1→∞,𝑘+1∉{𝑁+1+𝑝𝑀}+∞𝑝=0

𝑥𝑘 − 𝑥𝑘+1
= lim
𝑘+1→∞,𝑘+1∈{𝑁+1+𝑝𝑀}+∞𝑝=0

𝑥𝑘 − 𝑤𝑘+1 = 0.
(17)

Proof. First, we claim that {𝑦𝑘}+∞𝑘=0 is bounded.
From the demonstration in [12], we have

⟨𝐺 (𝑥𝑘) , 𝑥𝑘 − 𝑦𝑘⟩
≥ 𝛼𝛾1 (1 − 𝜎𝑘) 𝐺 (𝑥𝑘)1/2 𝑥𝑘 − 𝑦𝑘2 .

(18)

Substituting it into the Cauchy-Schwartz inequality with 𝜎𝑘,
we obtain 𝐺 (𝑥𝑘)1/2 ≥ 𝛼 (1 − 𝜅0) 𝛾1 𝑥𝑘 − 𝑦𝑘 . (19)

Due to the boundedness of {𝑥𝑘} and the continuity of 𝐺, {𝑦𝑘}
is bounded.

Second, we show that lim𝑘→∞,𝑘∉{𝑁+𝑝𝑀}+∞𝑝=0‖𝑥𝑘 − 𝑦𝑘‖ = 0.
For one thing, when 𝑘 → ∞, 𝑘 ∉ {𝑁 + 𝑝𝑀}+∞𝑝=0,

according to (16), we can see that ‖𝑥𝑘+1 − 𝑥∗‖ and ‖𝑥𝑘 − 𝑥∗‖
are limited to the same number. So we can draw a conclusion
that

lim
𝑘→∞,𝑘∉{𝑁+𝑝𝑀}+∞𝑝=0

⟨𝐺 (𝑥𝑘) , 𝑥𝑘 − 𝑦𝑘⟩ = 0. (20)

For another,

⟨𝐺 (𝑦𝑘) , 𝑥𝑘 − 𝑦𝑘⟩
≥ 𝛽𝑚𝑘𝛼𝛾1 (1 − 𝜎𝑘) 𝐺 (𝑥𝑘)1/2 𝑥𝑘 − 𝑥𝑘2 ,

(21)

and by the substitution of 𝛼 and 𝜎𝑘, we get
lim

𝑘→∞,𝑘∉{𝑁+𝑝𝑀}+∞𝑝=0

𝑥𝑘 − 𝑥𝑘 = 0, (22)

and, combined with the equality of 𝑦𝑘, it leads to
lim

𝑘→∞,𝑘∉{𝑁+𝑝𝑀}+∞𝑝=0

𝑥𝑘 − 𝑦𝑘 = 0. (23)

Finally, we show that 𝑥𝑘 ∈ 𝐶, and𝑥𝑘 − 𝑥𝑘+1 = 𝑥𝑘 − 𝑃𝐶∩𝐻𝐾 [𝑥𝑘 − 𝛼1𝑘𝐺(𝑦𝑘)]
≤ 𝛼1𝑘𝐺(𝑦𝑘) = 𝑥𝑘 − 𝑦𝑘 .

(24)

In association with Step 2, we obtain the desired conclusion.

Theorem 5. Suppose 𝑥∗ ∈ 𝐶, when 𝑘 ∈ {𝑁 + 𝑝𝑀}+∞𝑝=0, where𝑀 > 2 and𝑁 > 𝑀, for the sequence produced by Algorithm 1;
then

lim
𝑘+1→∞,𝑘+1∈{𝑁+1+𝑝𝑀}+∞𝑝=0

𝑥𝑘 − 𝑥𝑘+1 = 0. (25)

Proof. First, according to (12), the following equality exists,
for any 𝑥∗ ∈ 𝐶:
𝑥𝑘+1 − 𝑥∗2
= 𝑃𝐶∩𝐻𝐾 [𝑥𝑘 − 𝛼2𝑘𝐺(𝑦𝑘)] + 𝜒𝑘+1𝐺(𝑦𝑘) − 𝑥∗2 .

(26)

Combining this with (4), we obtain

𝑥𝑘+1 − 𝑥∗2 ≤ 𝑥𝑘 − 𝑥∗ − 𝛼2𝑘𝐺(𝑦𝑘) + 𝜒𝑘+1𝐺(𝑦𝑘)2
− 𝑥𝑘+1 − 𝑥𝑘 + 𝛼2𝑘𝐺(𝑦𝑘) − 𝜒𝑘+1𝐺(𝑦𝑘)2
≤ 𝑥𝑘 − 𝑥∗2
− 2 ⟨𝛼1𝑘𝐺(𝑦𝑘) − 𝜒𝑘+1𝐺(𝑦𝑘) , 𝑥𝑘 − 𝑥∗⟩
+ 𝛼1𝑘𝐺(𝑦𝑘) − 𝜒𝑘+1𝐺(𝑦𝑘)2 = 𝑥𝑘 − 𝑥∗2

− ⟨𝐺 (𝑦𝑘) , 𝑥𝑘 − 𝑦𝑘⟩2𝐺 (𝑦𝑘)2 + (𝜒𝑘+1)2 𝐺 (𝑦𝑘)2

≤ 𝑥𝑘−1 − 𝑥∗2 − ⟨𝐺 (𝑦𝑘−1) , 𝑥𝑘−1 − 𝑦𝑘−1⟩2𝐺 (𝑦𝑘−1)2

− ⟨𝐺 (𝑦𝑘) , 𝑥𝑘 − 𝑦𝑘⟩2𝐺 (𝑦𝑘)2 + (𝜒𝑘+1)2 𝐺 (𝑦𝑘)2

...
≤ 𝑥𝑘+1−𝑀 − 𝑥∗2 − (1 − 𝜑)𝑀𝑘+1.

(27)

So
𝑥𝑘+1 − 𝑥∗2 ≤ 𝑥𝑘+1−𝑀 − 𝑥∗2 . (28)

Second, when 𝑥𝑘+1 was chosen as in (12), hence

𝑥𝑘+1 − 𝑥𝑘 = 𝜔𝑘+1 − 𝑥𝑘 + 2√𝜂𝑀𝑘+1


≤ 𝑥𝑘 − 𝜔𝑘+1 +  2√𝜂𝑀𝑘+1
 .

(29)

From (28), ‖𝑥𝑘+1−𝑀 − 𝑥∗‖ is not incremental; thus ‖𝑥𝑘+1−𝑀 −𝑥∗‖ and ‖𝑥𝑘+1 − 𝑥∗‖ tend to the same number. It leads to

lim
𝑘+1→∞,𝑘+1∈{𝑁+1+𝑝𝑀}+∞𝑝=0

𝑀𝑘+1 = 0. (30)

Thus, lim𝑘+1→∞,𝑘+1∈{𝑁+1+𝑝𝑀}+∞𝑝=0
2√𝜂𝑀𝑘+1 exists and is equal to

zero. Combined with Theorem 4, the conclusion above is
proved.

Remark 6. Weknow that the value of𝑀𝑘+1 generated by algo-
rithm in [12] may be very small if the algorithm encounters
“tunneling effect” during the process of iteration from the
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(𝑘 + 1 −𝑀)th step to the (𝑘 + 1)th step. In order to make the
current iterate point 𝑥𝑘 as close as possible to the optimum
point,𝑀𝑘+1 needs to be more maximized. In Algorithm 1, we
use the nonmonotone technique so that 𝑀𝑘+1 may be very
large which is the superior place of the Algorithm 1.

Theorem 7. Under Assumptions (𝐴1)–(𝐴3), combined with
Theorems 4 and 5, we have the conclusion that {𝑥𝑘}+∞𝑘=0
constructed by our method globally converges to 𝑆.
Proof. In our algorithm, {𝑥𝑘}+∞𝑘=0 contains the subsequence{𝑥𝑁+𝑝𝑀}+∞𝑝=0 which was generated by the nonmonotone tech-
nique. For brevity, we denote {𝑥𝑁+𝑝𝑀}+∞𝑝=0 as {𝑥𝑘𝑗}+∞𝑗=0 .

Next, we accomplish the demonstration in the following
three steps.

Firstly, there is a subsequence in {𝑥𝑘𝑗}+∞𝑗=0 converging
to a point 𝑥∗. For one thing, from Theorem 5, {𝑥𝑘𝑗}+∞𝑗=0 is
convergent; thus there is a subsequence converging to a point𝑥∗ ∈ 𝑅𝑛. For another, we denote the last subsequence as {𝑥𝑘𝑧}.
It also converges to 𝑥∗. The following iterative yields

𝑥𝑘𝑧+1 = 𝑃𝐶∩𝐻𝐾 [𝑥𝑘𝑧 − 𝛼1𝑘𝐺(𝑦𝑘𝑧)] . (31)

From (11), we have
𝑥𝑘𝑧+1 − 𝑥∗2 ≤ 𝑥𝑘𝑧 − 𝑥∗2

− ⟨𝐺 (𝑦𝑘𝑧) , 𝑥𝑘𝑧 − 𝑦𝑘𝑧⟩2𝐺 (𝑦𝑘𝑧)2 . (32)

By {𝑥𝑘𝑧} converging to 𝑥∗, {𝑥𝑘𝑧+1} also converges to 𝑥∗.
Secondly, each convergent sequence in {𝑥𝑘𝑗}+∞𝑗=0 converges

to the same point 𝑥∗. FromTheorem 5, we know that ‖𝑥𝑘+1 −𝑥∗‖2 ≤ ‖𝑥𝑘+1−1 − 𝑥∗‖2 ≤ ⋅ ⋅ ⋅ ≤ ‖𝑥𝑘+1−𝑀 − 𝑥∗‖2 = ‖𝑥𝑘𝑧 − 𝑥∗‖2;
from the above, ‖𝑥𝑘𝑧 − 𝑥∗‖ → 0 when 𝑘 → ∞. Hence, we get
the above proposition.

Last but not least, {𝑥𝑘}+∞𝑘=0 converges to𝑥∗. From the above
analysis, we see that the sequence {𝑥𝑁+𝑝𝑀}+∞𝑝=0 converges to𝑥∗. Let 𝑖 be an arbitrary index. Then there are successive
indices 𝑘𝑗 and 𝑘𝑡 of {𝑥𝑁+𝑝𝑀}+∞𝑝=0, where 𝑘𝑗 = 𝑁+1+(𝑝−1)𝑀
and 𝑘𝑡 = 𝑁 + 1 + 𝑝𝑀. When 𝑘𝑗 < 𝑖 < 𝑘𝑡, ‖𝑥𝑖 − 𝑥∗‖ ≤ ‖𝑥𝑖−1 −𝑥∗‖ ≤ ⋅ ⋅ ⋅ ≤ ‖𝑥𝑘𝑗+1 − 𝑥∗‖ ≤ ‖𝑥𝑘𝑗 − 𝑥∗‖, and ‖𝑥𝑘𝑗 − 𝑥∗‖ → 0
when 𝑘𝑗 → ∞. Thus 𝑥𝑖 → 𝑥∗ when 𝑘𝑖 → ∞. When 𝑖 = 𝑘𝑡,
the results were significant.

4. Numerical Examples

Here we utilize our algorithm to solve a constrained system
of nonlinear equations. To test the algorithm, we compare
the results with the ones of the projection algorithm in [12].
For convenience, we denote our algorithm as NMPA and the
projection algorithm in [12] as PA. We take the example in
[12]. Set the parameters used in this example as 𝜅 (𝑖.𝑒., 𝜅0 ≈0),𝛼 = 0.95,𝛽 = 0.6, and 𝛾1 = 𝛾2 = 1.We put𝑀 = 6, 𝑁 = 12,
and 𝜑 = 0.9. The stop criterion is ‖𝐹(𝑥𝑘)‖ ≤ 10−6.

Table 1: Results of Alg-PA and Alg-NMPA for Example 1.

𝜌 Case Alg-PA Alg-NMPA

𝜌 = 100 Case 1 260 43
Case 2 424 65

𝜌 = 200 Case 1 890 101
Case 2 1497 156

Example 1. Let the domain set 𝐶 be taken as 𝐶 = 𝐶1 ∩ 𝐶2,
where 𝐶1 = {𝑥 ∈ 𝑅120 | ∑120𝑖=1 𝑥𝑖 ≤ 10} and 𝐶2 = {𝑥 ∈ 𝑅120 |∑120𝑖=1 𝑥2𝑖 ≤ 10}. Let the nonlinear equations 𝐺(𝑥) be taken as𝐺(𝑥) = 𝜌𝐷(𝑥)+𝑀(𝑥)𝑥+𝑞+𝑞0, among which 𝜌 is a constant;𝐷𝑖(𝑥) = arctan (𝑥𝑖 − 2), where 𝑖 is an integer from 1 to 120;
M is a 120 ∗ 120 asymmetrical positive definite matrix; 𝑞 is
the vector and 𝑞0 is a constant vector. In addition, elements
of𝑀 are produced in (−5, 5) randomly and 𝑞 is produced by
an interval range from −10 to 10.

There are two cases below to consider:

Case 1: 𝑥0 = (−0.01, −0.01, . . . , −0.01) ∈ 𝑅120
Case 2: 𝑥0 = (0.03, 0.03, . . . , 0.03) ∈ 𝑅120

Table 1 gives the numbers of iterations that are required,
in order to get the approximate solutions for the above two
cases with 𝜌 = 100 and 𝜌 = 200 of Example 1 by Alg-PA and
Alg-NMPA, respectively.

From Table 1, by choosing the proper initial point, we
show that the sequences are generated by the nonmonotone
convergent projection algorithm.Comparingwith the PA, the
most prominent advantage is that our algorithm can avoid the
“tunnel effect.”

5. Conclusion

This paper presented a nonmonotone projection method for
constrained nonlinear equations. With the introduction of
monotone technology, themonotone behavior of the iterative
sequence has been disorganized. Based on some assumption,
algorithm global convergence is guaranteed. In comparison
with the extant projection methods, the most prominent
characteristics in this paper are that, for some starting points,
the nonmonotone projection algorithm can circumvent the
“tunneling effect,” which leads to slow convergence.
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