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This paper concerns the problem of fixed/finite-time synchronization of hybrid coupled dynamical networks. The considered
dynamical networks withmultilinks contain only one transmittal time-varying delay for each subnetwork, whichmakes us get hold
of more interesting and practical points. Two kinds of delay-dependent feedback controllers with multilinks as well as appropriate
Lyapunov functions are defined to achieve the goal of fixed-time synchronization and finite-time synchronization for the networks.
Some novel and effective criteria of hybrid coupled networks are derived based on fixed-time and finite-time stability analysis.
Finally, two numerical simulation examples are given to show the effectiveness of the results proposed in our paper.

1. Introduction

Thephenomenonof synchronization exists everywhere in the
realistic living world. People’s applause begins with random
rhythm, but it turns to the same rhythm at the end of a
splendid drama. Every router of Internet periodically releases
routingmessages, respectively. However, the researchers have
found that different router would eventually send routing
messages in synchronousway, which led to the network traffic
jam. Synchronization is common in every field and plays an
important role. In fact, in physics, mathematics, and other
fields, synchronous phenomenon of the coupled dynamical
system has been studied widely in the past decade.

We are involved in a variety of complex dynamical net-
works, such as communication networks, Internet, transpor-
tation networks, and electricity networks. And synchronous
phenomenon of dynamical networks is common. Some-
times synchronization is good for people’s lives; sometimes
synchronization may be harmful to people’s lives and may
even cause huge losses or serious consequences. Therefore,
researches on synchronization of complex networks are of

great value and significance. In a recent decade, researches
on synchronization control of complex dynamical networks
attract many researchers’ attention [1, 2]. Meanwhile, lots
of relevant achievements have been obtained. Researches
on synchronization mainly concentrate on the following:
complete synchronization [3, 4], projective synchronization
[5–7], delay synchronization [8–10], finite-time synchro-
nization [11–13], and so forth. Synchronization methods
mainly contain the following: linear feedback method [14,
15], nonlinear feedback method [16], adaptive method [17],
and so forth. According to the continuity of control law,
synchronization techniques can be divided into continuous
and noncontinuous synchronization control methods [18–
20]. Compared with continuous control law, noncontinuous
control law can reduce some control cost.

Also, synchronization techniques can be divided into
finite-time synchronization and infinite-time synchroniza-
tion. Comparedwith the asymptotic stability and exponential
stability, finite-time stability has relatively lower time com-
plexity. Therefore, in the real world, obtaining synchroniza-
tion in a setting time has more practical value. In secure
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communication, sending and receiving the information in
a setting time can not only ensure the security of com-
munication but also improve the efficiency and safety of
communications [21]. However, achieving synchronization
in finite time depends on the initial synchronization error
value of the drive-response systems. The finite time for the
unknown initial conditions of drive-response systems (the
initial conditions of most of practical systems are hard to be
achieved) is not fixed. Therefore, Polyakov defined the fixed-
time stability theory.The time to obtain fixed synchronization
is irrelevant to the initial synchronization error conditions of
drive-response systems and only affected and controlled by
the controller [22].

In this paper, we study the hybrid coupled dynamical
networks containing coupling delay and internal delay that
are indeed common in real world, which makes the research
work more meaningful. In previous studies, coupling delay
is defined as 𝐷(𝑥𝑗(𝑡 − 𝜏(𝑡)) − 𝑥𝑖(𝑡 − 𝜏(𝑡))) [23–25]. In fact,
as for the synchronization study of a pair of given drive-
response systems, the time delay influences the variables that
are transmitted from one system to another system being
studied. Therefore, considering the coupling term of time
delay as𝐷(𝑥𝑗(𝑡 − 𝜏(𝑡)) − 𝑥𝑖(𝑡)) is more reasonable [26].

The concept of multilinks means that the edge number
linking two nodes in complex networks is greater than one.
Multilinked complex networks are ubiquitous in the real
world, such as communication networks and transportation
networks. Communication links of communication networks
can be mail, telephone, QQ, letters, and so forth [27–29].
Compared with researches of single link networks [30–33],
those of networks with multilinks are more practical and
significant. There have been a lot of research achievements
in this field so far [34–36]. However, to my best knowledge,
few put their attention to the hybrid coupled networks with
both one single time-varying delay coupling and multilinks.
Few people study fixed-time synchronization and finite-time
synchronization with the conditions of dynamical networks
mentioned above. It is interesting to complete such study even
to fill the gaps in this field.

Motivated by the foregoing analysis, this paper studies
fixed-time synchronization and finite-time synchronization
for hybrid coupled dynamical networks with multilinks
and one single time-varying delay coupling. Furthermore,
we propose new model of multilinked complex dynamical
networks with one single time-varying delay coupling term
and design two suitable feedback controllers to ensure the
synchronization. With the constructed Lyapunov functions,
several novel criteria are derived to achieve fixed-time/finite-
time synchronization of the complex dynamical networks
described in this paper. Finally, we give two numerical simu-
lation examples to verify the effectiveness and correctness of
our proposed theoretical results.

The rest of this paper is organized as follows. In Section 2,
some preliminaries are introduced, such as notations, some
assumptions, and lemmas. In Sections 3 and 4, the main
results proposed in this paper are introduced. In Section 5,
two numerical simulation examples are provided to verify
the effectiveness and correctness of our obtained theoretical
results. Finally, we draw the conclusion.

2. Preliminaries

Throughout this paper, we always have the functions 𝑓(⋅)
and 𝑔(⋅) to satisfy the Lipschitz condition, which mean the
following assumptions [37].

Assumption 1. For any 𝑥, 𝑦 ∈ 𝑅𝑛, there exists a constant𝑝 (𝑝 ≥ 0) such that󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑦)󵄩󵄩󵄩󵄩 ≤ 𝑝 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 . (1)

Assumption 2. For any 𝑥, 𝑦 ∈ 𝑅𝑛, there exists a constant𝑞 (𝑞 ≥ 0) such that󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)󵄩󵄩󵄩󵄩 ≤ 𝑞 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩 . (2)

In order to prove the correctness of the results proposed
in this paper, we need the following lemmas.

Lemma3 (see [38]). For 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁 ≥ 0 and𝑝 > 1, 0 <𝑞 ≤ 1, two inequalities hold as follows:
𝑁∑
𝑖=1

𝑥𝑝𝑖 ≥ 𝑁1−𝑝( 𝑁∑
𝑖=1

𝑥𝑖)
𝑝

,
𝑁∑
𝑖=1

𝑥𝑞𝑖 ≥ ( 𝑁∑
𝑖=1

𝑥𝑖)
𝑞

.
(3)

Lemma 4 (see [39], (chain rule)). If 𝑉(𝑡) : 𝑅𝑛 → 𝑅 and 𝑥(𝑡)
satisfy the following conditions,

(1) 𝑉(𝑡) is C-regular,
(2) 𝑥(𝑡) is absolutely continuous when it is on any compact

subinterval of [0, +∞), then, the following holds:
𝑥(𝑡) and 𝑉(𝑥(𝑡)) : [0, +∞) → 𝑅 are differentiable for𝑎.𝑒.𝑡 ∈ [0, +∞);
𝑉 (𝑥 (𝑡)) = 𝜐 (𝑡) 𝑥̇ (𝑡) , ∀𝜐 (𝑡) ∈ 𝜕𝑉 (𝑥 (𝑡)) , (4)

where 𝜕𝑉(𝑥(𝑡)) is the Clarke generalized gradient of 𝑉
at the point 𝑥(𝑡).

Lemma 5 (see [40]). Let the function 𝑉(𝑡) be continuous and
positive-definite, and 𝑉(𝑡) makes the differential inequalities
hold as follows:

𝑉̇ (𝑡) ≤ −𝜅𝑉𝜂 (𝑡) ; ∀𝑡 ≥ 𝑡0, 𝑉 (𝑡0) ≥ 0, (5)

where 𝜂 ∈ (0, 1) and 𝜅 is positive constant.
Then, for ∀𝑡0, 𝑉(𝑡) can always satisfy the inequality as

follows:

𝑉1−𝜂 (𝑡) ≤ 𝑉1−𝜂 (𝑡0) − 𝜅 (1 − 𝜂) (𝑡 − 𝑡0) , 𝑡0 ≤ 𝑡 ≤ 𝑡1. (6)

Also, 𝑉(𝑡) ≡ 0, ∀𝑡 ≥ 𝑡1. The settling time 𝑡1 is given as follows:

𝑡1 = 𝑡0 + 𝑉1−𝜂 (𝑡0)𝜅 (1 − 𝜂) . (7)

Lemma 6 (see [41]). Let the function 𝑉(𝑡) be continuous and
positive-definite, and 𝑉(𝑡) makes the differential inequalities
hold as follows:

𝑉̇ (𝑡) ≤ 𝐼𝑉 (𝑡) − 𝜅𝑉𝜂 (𝑡) , ∀𝑡 ≥ 𝑡0, 𝑉1−𝜂 (𝑡0) ≤ 𝜅𝐼 , (8)

where 𝜂 ∈ (0, 1) and 𝜅 and 𝐼 are positive constant.
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Then, 𝑉(𝑡) ≡ 0, ∀𝑡 ≥ 𝑡1, where the settling time 𝑡1 is given
as follows:

𝑡1 = 𝑡0 + ln (1 − (𝐼/𝜅)𝑉1−𝜂 (𝑡0))𝐼 (𝜂 − 1) . (9)

Lemma 7 (see [22]). Suppose that there exists a function 𝑉 :𝑅𝑛𝑁 → 𝑅+ ∪ 0 which is continuous radically unbounded such
that the following hold:

(1) If 𝑥 ̸= (0, . . . , 0)𝑇, then 𝑉(𝑥) > 0; 𝑉(𝑥) = 0 ⇒ 𝑥 =(0, . . . , 0)𝑇.
(2) Let 𝑒(𝑡) = (𝑒𝑇1 (𝑡), . . . , 𝑒𝑇𝑁(𝑡))𝑇 be any solution of error

dynamical system. For some constants 𝑎, 𝑏 > 0, 𝑝 >1, 0 < 𝑞 < 1, 𝑒(𝑡) satisfies 𝑉̇(𝑒(𝑡)) ≤ −𝑎𝑉𝑝(𝑒(𝑡)) −𝑏𝑉𝑞(𝑒(𝑡)). Then, the following results hold:

𝑉 (𝑒 (𝑡)) ≡ 0, ∀𝑡 ≥ 𝑡0,
𝑇0 = 1𝑎 (𝑝 − 1) + 1𝑏 (1 − 𝑞) ,

(10)

where 𝑇0 is the fixed settling time.

3. Finite-Time Synchronization for Hybrid
Coupled Networks with Multilinks

In this section, we study finite-time synchronization for
the multilinked complex dynamical networks with hybrid
coupled terms and time-varying delays. By constructing
Lyapunov function and designing appropriate controller,
some useful criteria are derived to ensure that themultilinked
complex dynamical networks proposed in this paper are
synchronized.

3.1. Networks Model. The networks model is given as follows:

𝑥̇𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))
+ 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐺0𝑖𝑗𝐷(𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡))

+ 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐺1𝑖𝑗𝐷𝜏1 (𝑥𝑗 (𝑡 − 𝜏1 (𝑡)) − 𝑥𝑖 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐺𝑚𝑖𝑗𝐷𝜏𝑚 (𝑥𝑗 (𝑡 − 𝜏𝑚 (𝑡)) − 𝑥𝑖 (𝑡)) ,

(11)

where 𝑖 = 1, 2, . . . , 𝑁 is the number of nodes and 𝑥𝑖(𝑡) =(𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . , 𝑥𝑖𝑛(𝑡))𝑇 ∈ 𝑅𝑛 is the state vector of the 𝑖th
node of the network; vector functions 𝑓, 𝑔 : 𝑅𝑛 → 𝑅𝑛
are continuous differentiable; 𝜏(𝑡) is internal delay; 𝜏(𝑡) ≤𝜏, 𝜏 is a positive constant; 𝜏𝑘(𝑡) (𝑘 = 1, 2, 3, . . . , 𝑚) denotes
the delay of the 𝑘th subnetwork correspondingly, and 0 ≤𝜏𝑘(𝑡) ≤ 𝜏; 𝐷 = (𝐷𝑖𝑗)𝑛×𝑛 denotes the inner coupling matrix
of the 0th subnetwork between node 𝑖 and node 𝑗 at the
moment 𝑡; correspondingly, 𝐷𝜏𝑘 (𝑘 = 1, 2, 3, . . . , 𝑚) denotes

the inner coupling matrix of the 𝑘th subnetwork between
node 𝑖 and node 𝑗 at the moment 𝑡 − 𝜏𝑘(𝑡); 𝐺𝑘 = (𝐺𝑘𝑖𝑗)𝑛×𝑛
(𝑘 = 0, 1, 2, . . . , 𝑚) denotes the configuration matrix of the𝑘th subnetwork and satisfies the conditions as follows:

𝐺𝑘𝑖𝑖 = − 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐺𝑘𝑖𝑗, 𝐺𝑘𝑖𝑗 = 𝐺𝑘𝑗𝑖 ≥ 0, 𝑖 ̸= 𝑗, (12)

where 𝑘 = 0, 1, 2, . . . , 𝑚; 𝐺𝑘𝑖𝑗 > 0 means there exists a
connection between nodes 𝑖 and 𝑗; otherwise, 𝐺𝑘𝑖𝑗 = 0.
Note 1. We propose a new multilinked complex dynamical
networksmodel with hybrid coupled terms and time-varying
delays. Bringing in inner coupling matrices 𝐷&𝐷𝜏𝑘 , our
study of the finite/fixed-time synchronization for the hybrid
coupled dynamical networks with both one single time-
varying delay coupling and multilinks is more practical for
the real world. To the best of our knowledge, this study is the
first exploration in such a field.

Consider system (11) as the drive system; correspondingly,
the response system is described as follows:

𝑦̇𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) + 𝑔 (𝑦𝑖 (𝑡 − 𝜏 (𝑡)))
+ 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐺0𝑖𝑗𝐷(𝑦𝑗 (𝑡) − 𝑦𝑖 (𝑡))

+ 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐺1𝑖𝑗𝐷𝜏1 (𝑦𝑗 (𝑡 − 𝜏1 (𝑡)) − 𝑦𝑖 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝐺𝑚𝑖𝑗𝐷𝜏𝑚 (𝑦𝑗 (𝑡 − 𝜏𝑚 (𝑡)) − 𝑦𝑖 (𝑡))
+ 𝑢𝑖 (𝑡) ,

(13)

where 𝑦𝑖(𝑡) = (𝑦𝑖1(𝑡), 𝑦𝑖2(𝑡), . . . , 𝑦𝑖𝑛(𝑡))𝑇 ∈ 𝑅𝑛 is the
response state vector of the 𝑖th node for the response system;𝑢𝑖(𝑡) (𝑖 = 1, 2, . . . , 𝑁) is the designed controller to achieve
synchronization.

Assume that 𝐶([−𝜏, 0], 𝑅𝑛) is a Banach space which con-
sists of continuous functionsmapping the interval [−𝜏, 0] into𝑅𝑛with the norm ‖𝜙‖ = sup−𝜏≤𝜃≤0‖𝜙(𝜃)‖. For the drive system
(11) and the response system (13), their initial conditions are,
respectively, given by 𝑥𝑖(𝑡) = 𝜙𝑖(𝑡) ∈ 𝐶([−𝜏, 0], 𝑅𝑛) and𝑦𝑖(𝑡) = 𝜑𝑖(𝑡) ∈ 𝐶([−𝜏, 0], 𝑅𝑛). Assume that in each of model
equation (11) andmodel equation (13) a unique solution exists
in regard to the initial conditions mentioned.

In order to use networks model equations conveniently,
we rewrite equation (11) and equation (13) with the compre-
hensive consideration of condition (12). The results are given
as follows:

𝑥̇𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑁∑
𝑗=1

𝐺0𝑖𝑗𝐷𝑥𝑗 (𝑡)

+ 𝑁∑
𝑗=1

𝐺1𝑖𝑗𝐷𝜏1𝑥𝑗 (𝑡 − 𝜏1 (𝑡)) + ⋅ ⋅ ⋅
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+ 𝑁∑
𝑗=1

𝐺𝑚𝑖𝑗𝐷𝜏𝑚𝑥𝑗 (𝑡 − 𝜏𝑚 (𝑡))
− 𝐺1𝑖𝑖𝐷𝜏1 (𝑥𝑖 (𝑡 − 𝜏1 (𝑡)) − 𝑥𝑖 (𝑡)) − ⋅ ⋅ ⋅
− 𝐺𝑚𝑖𝑖𝐷𝜏𝑚 (𝑥𝑖 (𝑡 − 𝜏𝑚 (𝑡)) − 𝑥𝑖 (𝑡)) ,

𝑦̇𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) + 𝑔 (𝑦𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑁∑
𝑗=1

𝐺0𝑖𝑗𝐷𝑦𝑗 (𝑡)

+ 𝑁∑
𝑗=1

𝐺1𝑖𝑗𝐷𝜏1𝑦𝑗 (𝑡 − 𝜏1 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1

𝐺𝑚𝑖𝑗𝐷𝜏𝑚𝑦𝑗 (𝑡 − 𝜏𝑚 (𝑡))
− 𝐺1𝑖𝑖𝐷𝜏1 (𝑦𝑖 (𝑡 − 𝜏1 (𝑡)) − 𝑦𝑖 (𝑡)) − ⋅ ⋅ ⋅
− 𝐺𝑚𝑖𝑖𝐷𝜏𝑚 (𝑦𝑖 (𝑡 − 𝜏𝑚 (𝑡)) − 𝑦𝑖 (𝑡)) + 𝑢𝑖 (𝑡) .

(14)

Let the synchronization errors 𝑒𝑖(𝑡) = 𝑦𝑖(𝑡) − 𝑥𝑖(𝑡), 𝑖 =1, 2, . . . , 𝑁. Then we have
̇𝑒𝑖 (𝑡) = 𝑦̇𝑖 (𝑡) − 𝑥̇𝑖 (𝑡)

= 𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡)) + 𝑔 (𝑦𝑖 (𝑡 − 𝜏 (𝑡)))
− 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑁∑

𝑗=1

𝐺0𝑖𝑗𝐷𝑒𝑗 (𝑡)

+ 𝑁∑
𝑗=1

𝐺1𝑖𝑗𝐷𝜏1𝑒𝑗 (𝑡 − 𝜏1 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1

𝐺𝑚𝑖𝑗𝐷𝜏𝑚𝑒𝑗 (𝑡 − 𝜏𝑚 (𝑡))
− 𝐺1𝑖𝑖𝐷𝜏1 (𝑒𝑖 (𝑡 − 𝜏1 (𝑡)) − 𝑒𝑖 (𝑡)) − ⋅ ⋅ ⋅
− 𝐺𝑚𝑖𝑖𝐷𝜏𝑚 (𝑒𝑖 (𝑡 − 𝜏𝑚 (𝑡)) − 𝑒𝑖 (𝑡)) + 𝑢𝑖 (𝑡) .

(15)

3.2. Finite-Time Synchronization between the Drive System
and the Response System. Combining with the given lemmas,
assumptions, and conditions, we study finite-time stability of
the origin of the given error dynamical system, which denotes
the finite-time synchronization for the multilinked complex
dynamical networks (11) and (13).

Definition 8 (the finite-time stability). Through controlling of
the designed controller, there always exists a positive constant𝑡1, and the value of 𝑡1 depends on the value of the initial state
vector 𝑒𝑖(𝑡) = Φ𝑖(𝑡) ∈ 𝐶([−𝜏, 0], 𝑅𝑛) for 𝑡 ∈ [−𝜏, 0]. If the
following expressions hold

lim
𝑡→𝑡1

𝑒𝑖 (𝑡) = (0, 0, . . . , 0)𝑇 ,
𝑒𝑖 (𝑡) = (0, 0, . . . , 0)𝑇 , 𝑡 > 𝑡1, 𝑖 = 1, 2, . . . , 𝑁, (16)

then, the error dynamical system (15) is said to be finite-time
stable, and this state of the error dynamical system is named
as the finite-time stability. And 𝑡1 is called the settling time.

In order to obtain the target of finite-time synchro-
nization for systems (11) and (13), we design the following
controller as the control law of complex dynamical networks
(13). The control law is given as follows:

𝑢𝑖 (𝑡) = −√𝑛 ⋅ sign (𝑒𝑖 (𝑡)) [𝑝𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1
+ 𝑞𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +

𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑘0𝑛(𝜂/2) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝜂1] ,

(17)

where 𝑘0 > 0, 0 < 𝜂 < 1, and 𝑘 = 1, 2, . . . , 𝑚; the parameters
of 𝑝𝑖, 𝑞𝑖, 𝜉𝑘𝑖 will be determined as follows.

The following theorem can be derived for the drive-
response systems of models (11) and (13) with the given
controller (17).

Theorem 9. Let Assumptions 1 and 2 hold. If there exist the
positive parameters𝑝𝑖, 𝑞𝑖, 𝜉𝑘𝑖 such that the following inequalities
hold

𝑝𝑖 ≥ 𝛼 + 2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑘󸀠𝑖𝑖 󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩 ,
𝑞𝑖 ≥ 𝛽,
𝜉𝑘𝑖 ≥ 3 󵄨󵄨󵄨󵄨󵄨𝐺𝑘𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩 , 𝑘 = 1, 2, . . . , 𝑚,

(18)

then, the drive system (11) and response system (13) can realize
the synchronization in finite time. And the settling time 𝑡1 can
be determined as 𝑡1 = 𝑡0 + 𝑉1−𝜂(𝑡0)/𝑘0(1 − 𝜂), where 𝑉(𝑡0) =∑𝑁𝑖=1(‖𝑒𝑖(𝑡0)‖1/√𝑛).
Proof. In this paper, the Lyapunov function is constructed as
follows:

𝑉 (𝑡, 𝑒 (𝑡)) = 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1√𝑛 = 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)√𝑛 . (19)

Applying Lemma 4 and the error system to the process of
the proof, we calculate the derivative of 𝑉(𝑡) step by step as
follows:

𝑉̇ (𝑡) = 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡)) ̇𝑒𝑖 (𝑡)√𝑛
= 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 [
[
𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡))
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+ 𝑔 (𝑦𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))
+ 𝑁∑
𝑗=1

𝐺0𝑖𝑗𝐷𝑒𝑗 (𝑡) + 𝑁∑
𝑗=1

𝐺1𝑖𝑗𝐷𝜏1𝑒𝑗 (𝑡 − 𝜏1 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1

𝐺𝑚𝑖𝑗𝐷𝜏𝑚𝑒𝑗 (𝑡 − 𝜏𝑚 (𝑡))

− 𝐺1𝑖𝑖𝐷𝜏1 (𝑒𝑖 (𝑡 − 𝜏1 (𝑡)) − 𝑒𝑖 (𝑡)) − ⋅ ⋅ ⋅

− 𝐺𝑚𝑖𝑖𝐷𝜏𝑚 (𝑒𝑖 (𝑡 − 𝜏𝑚 (𝑡)) − 𝑒𝑖 (𝑡)) + 𝑢𝑖 (𝑡)]]
≤ 𝑁∑
𝑖=1

1√𝑛 [
[
󵄩󵄩󵄩󵄩󵄩sign𝑇 (𝑒𝑖 (𝑡))󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑓 (𝑦𝑖 (𝑡)) − 𝑓 (𝑥𝑖 (𝑡))󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩sign𝑇 (𝑒𝑖 (𝑡))󵄩󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑔 (𝑦𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩sign𝑇 (𝑒𝑖 (𝑡))󵄩󵄩󵄩󵄩󵄩

𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩󵄩sign𝑇 (𝑒𝑖 (𝑡))󵄩󵄩󵄩󵄩󵄩
𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐺1𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏1󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏1 (𝑡))󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅ + 󵄩󵄩󵄩󵄩󵄩sign𝑇 (𝑒𝑖 (𝑡))󵄩󵄩󵄩󵄩󵄩
⋅ 𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐺𝑚𝑖𝑗 󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑚󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏𝑚 (𝑡))󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩sign𝑇 (𝑒𝑖 (𝑡))󵄩󵄩󵄩󵄩󵄩
⋅ 󵄨󵄨󵄨󵄨󵄨𝐺1𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏1󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏1 (𝑡))󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩) + ⋅ ⋅ ⋅
+ 󵄩󵄩󵄩󵄩󵄩sign𝑇 (𝑒𝑖 (𝑡))󵄩󵄩󵄩󵄩󵄩 󵄨󵄨󵄨󵄨𝐺𝑚𝑖𝑖 󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑚󵄩󵄩󵄩󵄩󵄩
⋅ (󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑚 (𝑡))󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩)
+ sign𝑇 (𝑒𝑖 (𝑡)) 𝑢𝑖 (𝑡)]]

≤ 𝑁∑
𝑖=1

𝛼 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩

+ 𝑁∑
𝑖=1

𝛽 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩 +
𝑁∑
𝑖=1

𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩
+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐺1𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏1󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏1 (𝑡))󵄩󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅

+ 𝑁∑
𝑖=1

𝑁∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝐺𝑚𝑖𝑗 󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑚󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝑒𝑗 (𝑡 − 𝜏𝑚 (𝑡))󵄩󵄩󵄩󵄩󵄩 +
𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝐺1𝑖𝑖󵄨󵄨󵄨󵄨󵄨

⋅ 󵄩󵄩󵄩󵄩󵄩𝐷𝜏1󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏1 (𝑡))󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩) + ⋅ ⋅ ⋅ + 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝐺𝑚𝑖𝑖 󵄨󵄨󵄨󵄨
⋅ 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑚󵄩󵄩󵄩󵄩󵄩 (󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑚 (𝑡))󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩)
+ 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 𝑢𝑖 (𝑡) = 𝑁∑
𝑖=1

𝛼 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩

+ 𝑁∑
𝑖=1

𝛽 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩 +
𝑁∑
𝑖=1

2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩

+ 𝑁∑
𝑖=1

2 󵄨󵄨󵄨󵄨󵄨𝐺1𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏1󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏1 (𝑡))󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅ + 𝑁∑
𝑖=1

2 󵄨󵄨󵄨󵄨𝐺𝑚𝑖𝑖 󵄨󵄨󵄨󵄨

⋅ 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑚󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑚 (𝑡))󵄩󵄩󵄩󵄩 +
𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝐺1𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏1󵄩󵄩󵄩󵄩󵄩

⋅ 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏1 (𝑡))󵄩󵄩󵄩󵄩 +
𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝐺1𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏1󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩 + ⋅ ⋅ ⋅

+ 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝐺𝑚𝑖𝑖 󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑚󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑚 (𝑡))󵄩󵄩󵄩󵄩 +
𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝐺𝑚𝑖𝑖 󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑚󵄩󵄩󵄩󵄩󵄩

⋅ 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩 +
𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 𝑢𝑖 (𝑡) = 𝑁∑
𝑖=1

(𝛼 + 2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨

⋅ ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑘󸀠𝑖𝑖 󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩

+ 𝑁∑
𝑖=1

𝛽 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩 +
𝑁∑
𝑖=1

𝑚∑
𝑘=1

3 󵄨󵄨󵄨󵄨󵄨𝐺𝑘𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩 +

𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 𝑢𝑖 (𝑡) ≤ 𝑁∑
𝑖=1

(𝛼

+ 2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑘󸀠𝑖𝑖 󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1
+ 𝑁∑
𝑖=1

𝛽 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +
𝑁∑
𝑖=1

𝑚∑
𝑘=1

3 󵄨󵄨󵄨󵄨󵄨𝐺𝑘𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1 +

𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 𝑢𝑖 (𝑡) .
(20)

The calculating result (20) contains many details. Firstly,
in order to calculate conveniently later, we deal with the func-
tion ∑𝑁𝑖=1((sign𝑇(𝑒𝑖(𝑡))/√𝑛)𝑢𝑖(𝑡)) in (20). Then, we substitute
the partial processing result into the previous result (20). We
get
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𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 𝑢𝑖 (𝑡)

= 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 {−√𝑛 ⋅ sign (𝑒𝑖 (𝑡)) [𝑝𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1 + 𝑞𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +
𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1 + 𝑘0𝑛(𝜂/2) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝜂1]}

≤ −[ 𝑁∑
𝑖=1

𝑝𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1 +
𝑁∑
𝑖=1

𝑞𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +
𝑁∑
𝑖=1

𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1 +
𝑁∑
𝑖=1

𝑘0𝑛(𝜂/2) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝜂1] .

(21)

Secondly, we substitute result (21) into result (20). We get
the following result:

𝑉̇ (𝑡) ≤ 𝑁∑
𝑖=1

(𝛼 + 2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑘󸀠𝑖𝑖 󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩 − 𝑝𝑖)

⋅ 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1 +
𝑁∑
𝑖=1

(𝛽 − 𝑞𝑖) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑁∑
𝑖=1

𝑚∑
𝑘=1

(3 󵄨󵄨󵄨󵄨󵄨𝐺𝑘𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩 − 𝜉𝑘𝑖 ) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1
− 𝑁∑
𝑖=1

𝑘0𝑛(𝜂/2) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝜂1 ≤ − 𝑁∑
𝑖=1

𝑘0𝑛(𝜂/2) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝜂1
≤ −𝑘0( 𝑁∑

𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1√𝑛 )
𝜂

= −𝑘0𝑉𝜂 (𝑡) .

(22)

According to Lemma 5, the error dynamical system
(15) can be stable in finite time. And the settling time is
determined by 𝑡1 = 𝑡0 + 𝑉1−𝜂(𝑡0)/𝑘0(1 − 𝜂).

This completes the proof.

Remark 10. Lemma 5 plays the role of an important theoret-
ical basis for the previous proof, which supports the analysis
of finite-time synchronization for hybrid coupled complex
networks with multilinks and internal/coupling delay terms
with single time-varying delays. Lemma 5 can be traced from
[40].

According to Lemma 6, the following corollary can be
obtained.

Corollary 11. Let both Assumptions 1 and 2 hold.The designed
controller is described as follows:

𝑢𝑖 (𝑡) = −√𝑛 ⋅ sign (𝑒𝑖 (𝑡)) (𝑝𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1
+ 𝑞𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +

𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑘0𝑛(𝜂/2) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝜂1) ,

(23)

where 𝑘0 > 0 and 0 < 𝜂 < 1.

And let the parameters 𝑝𝑖, 𝑞𝑖, 𝜉𝑘𝑖 satisfy the following ine-
qualities:

𝑝𝑖 < 𝛼 + 2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑘󸀠𝑖𝑖 󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩 ,
𝑞𝑖 ≥ 𝛽,
𝜉𝑘𝑖 ≥ 3 󵄨󵄨󵄨󵄨󵄨𝐺𝑘𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩 , 𝑘 = 1, 2, . . . , 𝑚,

(24)

where 𝑝𝑖 > 0, 𝑞𝑖 > 0, and 𝜉𝑘𝑖 > 0. Besides, 𝑉1−𝜂 ≤ 𝑘0/[√𝑛(𝛼 +
2|𝐺0𝑖𝑖|‖𝐷‖ + ∑𝑚𝑘󸀠=1 |𝐺𝑘󸀠𝑖𝑖 |‖𝐷𝜏

𝑘
󸀠
‖ − 𝑝𝑖)].

Then, we can obtain the conclusion that the complex system
(11) and complex system (13) will realize synchronization in
finite time.

Remark 12. According to Theorem 9 and Corollary 11, some
sufficient finite-time synchronization criteria of the multi-
linked hybrid coupled networks are derived for the drive-
response systems of models (11) and (13) with the designed
controller in this paper. The parameters 𝑝𝑖 > 0, 𝑞𝑖 > 0,
and 𝜉𝑘𝑖 > 0 (𝑘 = 1, 2, . . . , 𝑚) are critical to the finite-time
synchronization of networks (11) and (13). Compared with
the previous researches, the models of complex dynamical
networks proposed in our paper are more general.

3.3. Finite-Time Synchronization between Hybrid Coupled
Dynamical Network and an Isolated Node. Suppose that
we need multilinked hybrid coupled complex networks to
synchronize to an isolated node in finite time. Then we will
design the following complex networksmodel (25) as follows:

𝑥̇𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡))) + 𝑁∑
𝑗=1

𝐺0𝑖𝑗𝐷𝑥𝑗 (𝑡)

+ 𝑁∑
𝑗=1

𝐺1𝑖𝑗𝐷𝜏1𝑥𝑗 (𝑡 − 𝜏1 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1

𝐺𝑚𝑖𝑗𝐷𝜏𝑚𝑥𝑗 (𝑡 − 𝜏𝑚 (𝑡))
− 𝐺1𝑖𝑖𝐷𝜏1 (𝑥𝑖 (𝑡 − 𝜏1 (𝑡)) − 𝑥𝑖 (𝑡)) − ⋅ ⋅ ⋅
− 𝐺𝑚𝑖𝑖𝐷𝜏𝑚 (𝑥𝑖 (𝑡 − 𝜏𝑚 (𝑡)) − 𝑥𝑖 (𝑡)) + 𝑢𝑖 (𝑡) ,

(25)

where 𝑖 = 1, 2, . . . , 𝑁.
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If the finite-time synchronization is obtained, that is,𝑥1(𝑡) = 𝑥2(𝑡) = ⋅ ⋅ ⋅ = 𝑥𝑁(𝑡), the synchronized state model
can be determined as follows:

̇𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) + 𝑔 (𝑠 (𝑡 − 𝜏 (𝑡)))
− 𝐺1𝑖𝑖𝐷𝜏1 (𝑠 (𝑡 − 𝜏1 (𝑡)) − 𝑠 (𝑡)) − ⋅ ⋅ ⋅
− 𝐺𝑚𝑖𝑖𝐷𝜏𝑚 (𝑠 (𝑡 − 𝜏𝑚 (𝑡)) − 𝑠 (𝑡)) ,

(26)

where 𝑖 = 1, 2, . . . , 𝑁. Apparently, all of 𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑁(𝑡)
must not only satisfy 𝑥1(𝑡) = 𝑥2(𝑡) = . . . = 𝑥𝑁(𝑡) but also be
invariant for different 𝑖 while the finite-time synchronization
is realized. But equation (26) does not meet the requirement.
Therefore, we need the following assumption to be satisfied
in order to complete the proof of this proposed supposition.

Assumption 13. For the configuration matrices 𝐺𝑘 (𝑘 =1, 2, . . . , 𝑚) of multilinked hybrid coupled complex network,𝐺𝑘𝑖𝑖 = 𝐺𝑘𝑗𝑗 = −𝑎𝑘, where 𝑘 = 0, 1, 2, . . . , 𝑚; 𝑖 = 1, 2, . . . , 𝑁;𝑗 = 1, 2, . . . , 𝑁; and all of 𝑎1, 𝑎2, . . . , 𝑎𝑚 are positive constants.
Use 𝜔𝑖(𝑡) to denote the synchronization errors, where𝜔𝑖(𝑡) = 𝑥𝑖(𝑡)−𝑠(𝑡), 𝑖 = 1, 2, . . . , 𝑁. Combining with the given

condition (12), 𝜔𝑖(𝑡) can be described as follows:

𝜔̇𝑖 (𝑡) = 𝑥̇𝑖 (𝑡) − ̇𝑠 (𝑡)
= 𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑠 (𝑡)) + 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

− 𝑔 (𝑠 (𝑡 − 𝜏 (𝑡))) + 𝑁∑
𝑗=1

𝐺0𝑖𝑗𝐷𝜔𝑗 (𝑡)

+ 𝑁∑
𝑗=1

𝐺1𝑖𝑗𝐷𝜏1𝜔𝑗 (𝑡 − 𝜏1 (𝑡)) + ⋅ ⋅ ⋅

+ 𝑁∑
𝑗=1

𝐺𝑚𝑖𝑗𝐷𝜏𝑚𝜔𝑗 (𝑡 − 𝜏𝑚 (𝑡))
− 𝐺1𝑖𝑖𝐷𝜏1 (𝜔𝑖 (𝑡 − 𝜏1 (𝑡)) − 𝜔𝑖 (𝑡)) − ⋅ ⋅ ⋅
− 𝐺𝑚𝑖𝑖𝐷𝜏𝑚 (𝜔𝑖 (𝑡 − 𝜏𝑚 (𝑡)) − 𝜔𝑖 (𝑡)) + 𝑢𝑖 (𝑡) .

(27)

The process of the proof for system (25) and isolated node
(26) to obtain finite-time synchronization is the same as that
for Theorem 9. Hence, we omit it.

Then, the following corollary can easily be obtained.

Corollary 14. Let all of Assumptions 1, 2, and 13 hold. Suppose
that there exist constants 𝑝𝑖, 𝑞𝑖, 𝜉𝑘𝑖 satisfying the following
inequalities:

𝑝𝑖 ≥ 𝛼 + 2𝑎0 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

𝑎𝑘󸀠 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩 ,
𝑞𝑖 ≥ 𝛽,
𝜉𝑘𝑖 ≥ 3𝑎𝑘 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩 , 𝑘 = 1, 2, . . . , 𝑚,

(28)

where 𝑝𝑖 > 0, 𝑞𝑖 > 0, and 𝜉𝑘𝑖 > 0.

The controller designed to obtain the finite-time synchro-
nization is described as follows:

𝑢𝑖 (𝑡) = −√𝑛 ⋅ sign (𝜔𝑖 (𝑡)) (𝑝𝑖 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡)󵄩󵄩󵄩󵄩1
+ 𝑞𝑖 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +

𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑘0𝑛(𝜂/2) 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡)󵄩󵄩󵄩󵄩𝜂1) ,

(29)

where 𝑘0 > 0 and 0 < 𝜂 < 1.
Then, the multilinked hybrid coupled complex networks

(25) with control law (29) can realize the finite-time synchro-
nization.

4. Fixed-Time Synchronization for Hybrid
Coupled Networks with Multilinks

In this section, combining with the given lemmas, assump-
tions, conditions, and so on, we study the fixed-time stability
of the origin for the given error dynamical system (15), which
denotes the fixed-time synchronization for the multilinked
complex dynamical networks (11) and (13).

So, we need to define what the fixed-time stability is, and
its definition is described as follows.

Definition 15 (the fixed-time stability). Through controlling
of the designed controller, there always exists a positive and
fixed constant𝑇0, and the value of𝑇0 is irrelevant to the initial
conditions. If the following expressions hold

lim
𝑡→𝑇0

𝑒𝑖 (𝑡) = (0, 0, . . . , 0)𝑇 ,
𝑒𝑖 (𝑡) ≡ (0, 0, . . . , 0)𝑇 , 𝑡 > 𝑇0, 𝑖 = 1, 2, . . . , 𝑁, (30)

then, the error dynamical system (15) is said to be fixed-time
stable; the state of the error dynamical system is called the
fixed-time stability. And𝑇0 is named as the fixed settling time.

Note 2. Through analyzing finite-time stability and fixed-
time stability, we can easily find that finite-time synchro-
nization depends on the initial conditions of the complex
networks; on the contrary, fixed-time synchronization is
irrelevant to the initial conditions of the complex networks.
Therefore, it is meaningful to study fixed-time synchroniza-
tion, especially when the initial conditions are hard to be
achieved.

The control law designed to obtain the fixed-time syn-
chronization is given as follows:

𝑢𝑖 (𝑡) = −√𝑛 ⋅ sign (𝑒𝑖 (𝑡)) (𝑝𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1
+ 𝑞𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +

𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑎 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑝1𝑛(𝑝/2) + 𝑏 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑞1𝑛(𝑞/2) ) ,

(31)
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where 𝑎, 𝑏 > 0, 𝑝 > 1, 0 < 𝑞 < 1, 𝑘 = 1, 2, . . . , 𝑚, and the
parameters 𝑝𝑖, 𝑞𝑖, and 𝜉𝑘𝑖 will be determined later on.

Theorem 16. Let Assumptions 1 and 2 hold. If there exist the
positive parameters 𝑝𝑖, 𝑞𝑖, 𝜉𝑘𝑖 (𝑘 = 1, 2, . . . , 𝑚) such that the
following inequalities hold

𝑝𝑖 ≥ 𝛼 + 2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑘󸀠𝑖𝑖 󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩 ,
𝑞𝑖 ≥ 𝛽,
𝜉𝑘𝑖 ≥ 3 󵄨󵄨󵄨󵄨󵄨𝐺𝑘𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩 , 𝑘 = 1, 2, . . . , 𝑚,

(32)

then, according to Lemma 7, the drive system (11) and response
system (13) can realize synchronization in fixed-time 𝑇0.
And the fixed settling time 𝑇0 can be determined as 𝑇0 =1/𝑎𝑁1−𝑝(𝑝 − 1) + 1/𝑏(1 − 𝑞).

The following is the process of the proof.

Proof. The designed Lyapunov function is given as follows:

𝑉 (𝑡, 𝑒 (𝑡)) = 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1√𝑛
= 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡)) 𝑒𝑖 (𝑡)√𝑛 ,
(33)

where 𝑒(𝑡) = (𝑒𝑇1 (𝑡), 𝑒𝑇2 (𝑡), . . . , 𝑒𝑇𝑛 (𝑡))𝑇.

Applying Lemma 4 and the error system to the process of
the proof, we calculate the derivative of 𝑉(𝑡) step by step as
follows:

𝑉̇ (𝑡) = 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡)) ̇𝑒𝑖 (𝑡)√𝑛
...

≤ 𝑁∑
𝑖=1

(𝛼 + 2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑘󸀠𝑖𝑖 󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1
+ 𝑁∑
𝑖=1

𝛽 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑁∑
𝑖=1

𝑚∑
𝑘=1

3 󵄨󵄨󵄨󵄨󵄨𝐺𝑘𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 𝑢𝑖 (𝑡) .

(34)

The front part of the proof here is the same as that
of Theorem 9. Hence, we omit the front part of proof
and step to the calculating result (34) directly. The calcu-
lating result (34) contains many details. Firstly, in order
to calculate conveniently later, we deal with the function∑N
𝑖=1((sign𝑇(𝑒𝑖(𝑡))/√𝑛)𝑢𝑖(𝑡)) in (34). Then substitute the par-

tial processing result into the previous result (34). We get

𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 𝑢𝑖 (𝑡) = 𝑁∑
𝑖=1

sign𝑇 (𝑒𝑖 (𝑡))√𝑛 [−√𝑛

⋅ sign (𝑒𝑖 (𝑡)) (𝑝𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1 + 𝑞𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +
𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1 + 𝑎 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑝1𝑛(𝑝/2) + 𝑏 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑞1𝑛(𝑞/2) )]

≤ −( 𝑁∑
𝑖=1

𝑝𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1 +
𝑁∑
𝑖=1

𝑞𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +
𝑁∑
𝑖=1

𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1 + 𝑎 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑝1𝑛(𝑝/2) + 𝑏 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑞1𝑛(𝑞/2) ) .

(35)

Substituting the calculating result (35) into (34), continue
to calculate as follows:

𝑉̇ (𝑡) ≤ 𝑁∑
𝑖=1

(𝛼 + 2 󵄨󵄨󵄨󵄨󵄨𝐺0𝑖𝑖󵄨󵄨󵄨󵄨󵄨 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

󵄨󵄨󵄨󵄨󵄨󵄨𝐺𝑘󸀠𝑖𝑖 󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩 − 𝑝𝑖)

⋅ 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1 +
𝑁∑
𝑖=1

(𝛽 − 𝑞𝑖) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑁∑
𝑖=1

𝑚∑
𝑘=1

(3 󵄨󵄨󵄨󵄨󵄨𝐺𝑘𝑖𝑖󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩 − 𝜉𝑘𝑖 ) 󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1
− 𝑎 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑝1𝑛(𝑝/2) − 𝑏 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑞1𝑛(𝑞/2) .

(36)

Taking expressions (32) and Lemma 3 into consideration,
we can get the following calculating result step by step:

𝑉̇ (𝑡) ≤ −𝑎 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑝1𝑛(𝑝/2) − 𝑏 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑞1𝑛(𝑞/2)
𝑉̇ (𝑡) ≤ −𝑎𝑁1−𝑝( 𝑁∑

𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1√𝑛 )
𝑝

− 𝑏( 𝑁∑
𝑖=1

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)󵄩󵄩󵄩󵄩1√𝑛 )
𝑞

≤ −𝑎𝑁1−𝑝𝑉𝑝 (𝑡) − 𝑏𝑉𝑞 (𝑡) .

(37)

Through comprehensive consideration, the given error
dynamical system (15) is fixed-time stable. According to
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Lemma 7, the fixed settling time can be calculated as
follows:

𝑇0 = 1𝑎𝑁1−𝑝 (𝑝 − 1) + 1𝑏 (1 − 𝑞) . (38)

The proof is completed here.

Remark 17. So far, lots of achievements for finite-time syn-
chronization of complex networks have been obtained, while,
to the best of our knowledge, there is little attention drawn
to the fixed-time synchronization of the multilinked hybrid
coupled complex networks with time-varying delays or few
published papers in this field.That is why this study can draw
our attention so much.

Corollary 18. Let all of Assumptions 1, 2, and 13 hold. Suppose
that there exist positive constants 𝑝𝑖, 𝑞𝑖, and 𝜉𝑘𝑖 satisfying the
following inequalities:

𝑝𝑖 ≥ 𝛼 + 2𝑎0 ‖𝐷‖ + 𝑚∑
𝑘󸀠=1

𝑎𝑘󸀠 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󸀠 󵄩󵄩󵄩󵄩󵄩 ,
𝑞𝑖 ≥ 𝛽,
𝜉𝑘𝑖 ≥ 3𝑎𝑘 󵄩󵄩󵄩󵄩󵄩𝐷𝜏𝑘󵄩󵄩󵄩󵄩󵄩 , 𝑘 = 1, 2, . . . , 𝑚,

(39)

where 𝑝𝑖 > 0, 𝑞𝑖 > 0, and 𝜉𝑘𝑖 > 0.
The controller designed to obtain the fixed-time synchro-

nization is given as follows:

𝑢𝑖 (𝑡) = −√𝑛 ⋅ sign (𝜔𝑖 (𝑡)) (𝑝𝑖 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡)󵄩󵄩󵄩󵄩1
+ 𝑞𝑖 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡 − 𝜏 (𝑡))󵄩󵄩󵄩󵄩1 +

𝑚∑
𝑘=1

𝜉𝑘𝑖 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡 − 𝜏𝑘 (𝑡))󵄩󵄩󵄩󵄩1
+ 𝑎 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑝1𝑛(𝑝/2) + 𝑏 󵄩󵄩󵄩󵄩𝜔𝑖 (𝑡)󵄩󵄩󵄩󵄩𝑞1𝑛(𝑞/2) ) ,

(40)

where 𝑎, 𝑏 > 0, 𝑝 > 1, and 0 < 𝑞 < 1.
Then, the multilinked hybrid coupled complex networks

(25) with control law (40) can realize fixed-time synchro-
nization. The fixed settling time can be calculated by 𝑇0 =1/𝑎𝑁1−𝑝(𝑝 − 1) + 1/𝑏(1 − 𝑞).
Proof. The process of the proof for system (25) to obtain
fixed-time synchronization is the same as that forTheorem 16.
Hence, we omit it.

5. Numerical Simulations

We provide two simulation examples to illustrate the correct-
ness and effectiveness of the results obtained by our paper in
this section.

Example 1. This example considers the drive system (41)
which is the 3-linked hybrid coupled complex networks and
consists of 3 nodes. Each of the nodes is 2-dimensional.

𝑥̇𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))
+ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺0𝑖𝑗𝐷(𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡))

+ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺1𝑖𝑗𝐷𝜏1 (𝑥𝑗 (𝑡 − 𝜏1 (𝑡)) − 𝑥𝑖 (𝑡))

⋅ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺2𝑖𝑗𝐷𝜏2 (𝑥𝑗 (𝑡 − 𝜏2 (𝑡)) − 𝑥𝑖 (𝑡)) ,
𝑖 = 1, 2, 3,

(41)

where

𝑓 (𝑥𝑖 (𝑡))
= − [1 0

0 1] [
𝑥𝑖1 (𝑡)𝑥𝑖2 (𝑡)]

+ [
[
1 + 𝜋8 1
0.2 1 + 𝜋8

]
]
[𝑓1 (𝑥𝑖1 (𝑡))𝑓2 (𝑥𝑖2 (𝑡))] ,

𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))
= [
[
√2𝜋8 1.3 0.1

0.1 √2𝜋8 1.3
]
]
[𝑓1 (𝑥𝑖1 (𝑡 − 𝜏 (𝑡)))
𝑓2 (𝑥𝑖2 (𝑡 − 𝜏 (𝑡)))] .

(42)

And 𝑓𝑖(𝑥) = (|𝑥 + 1| − |𝑥 − 1|)/2, 𝑖 = 1, 2.
The time delays are chosen as follows:

𝜏 (𝑡) = 𝑒𝑡1 + 𝑒𝑡 ,
𝜏1 (𝑡) = 1.5 (1 − cos (2𝑡)) ,
𝜏2 (𝑡) = 1 + sin (𝑡) .

(43)

The configuration matrices are chosen as follows:

𝐺0 = [[
[
−0.3 0.2 0.1
0.2 −0.6 0.4
0.1 0.4 −0.5

]]
]
,

𝐺1 = [[
[
−0.8 0.5 0.3
0.5 −0.7 0.2
0.3 0.2 −0.5

]]
]
,

𝐺2 = [[
[
−0.6 0.4 0.2
0.4 −0.9 0.5
0.2 0.5 −0.7

]]
]
.

(44)
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The inner coupling matrices are chosen as follows:

𝐷 = [1 0
2 1] ,

𝐷𝜏1 = [3 1.2
2 1 ] ,

𝐷𝜏2 = [1.1 4
1 2.5] .

(45)

Correspondingly, the response system is given as follows:

𝑦̇𝑖 (𝑡) = 𝑓 (𝑦𝑖 (𝑡)) + 𝑔 (𝑦𝑖 (𝑡 − 𝜏 (𝑡)))
+ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺0𝑖𝑗𝐷(𝑦𝑗 (𝑡) − 𝑦𝑖 (𝑡))

+ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺1𝑖𝑗𝐷𝜏1 (𝑦𝑗 (𝑡 − 𝜏1 (𝑡)) − 𝑦𝑖 (𝑡))

+ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺2𝑖𝑗𝐷𝜏2 (𝑦𝑗 (𝑡 − 𝜏2 (𝑡)) − 𝑦𝑖 (𝑡))
+ 𝑢𝑖 (𝑡) , 𝑖 = 1, 2, 3.

(46)

The initial conditions for simulation are given as follows:

𝑥1 (𝑡) = (7 − 𝑡
−1 ) ,

𝑥2 (𝑡) = ( 3
−5 + 𝑡) ,

𝑥3 (𝑡) = (2 + 2𝑡
−3 ) ,

𝑦1 (𝑡) = (𝑡 + 1
−8 ) ,

𝑦2 (𝑡) = (52) ,

𝑦3 (𝑡) = (−1−6) ,
𝑡 ∈ [−5, 0] .

(47)

We define the convergence errors as ‖𝑒𝑖(𝑡)‖1 = |𝑦𝑖1−𝑥𝑖1|+|𝑦𝑖2 − 𝑥𝑖2|, 𝑖 = 1, 2, 3.
We divide simulation Example 1 into three cases to

illustrate our obtained results in more detail and in more
normalized manner. Let 𝛼 = 3.9 and 𝛽 = 1.
Case 1. We study the state trajectories of 𝑥𝑖𝑗(𝑡) and 𝑦𝑖𝑗(𝑡) (𝑖 =1, 2, 3; 𝑗 = 1, 2) when the drive-response systems are without
control inputs, which are showed in Figure 1. Moreover, the
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Figure 1: The state trajectories of system (41) and system (46)
without control inputs.

0

2

4

6

8

10

12

14

5 10 15 200
t

‖e1(t)‖1
‖e2(t)‖1
‖e3(t)‖1

Figure 2: The convergence errors between system (41) and system
(46) without control inputs.

trajectories of ‖𝑒𝑖(𝑡)‖1, 𝑖 = 1, 2, 3 without control inputs can
be seen in Figure 2.

Case 2. We simulate the result of Theorem 9 when inequal-
ities in (18) are satisfied. We choose the values of the
parameters as follows: 𝑝1 = 12, 𝑞1 = 1, 𝜉11 = 10, and 𝜉21 = 9;𝑝2 = 14, 𝑞2 = 1, 𝜉12 = 9, and 𝜉22 = 14; 𝑝3 = 12, 𝑞3 = 1,𝜉13 = 6, and 𝜉23 = 11; 𝑘0 = 2; 𝜂 = 1/2. Let 𝑡0 = 0. According to



Mathematical Problems in Engineering 11

0

2

4

6

8

10

12

14

0.2 0.4 0.6 0.8 10
t

‖e1(t)‖1
‖e2(t)‖1
‖e3(t)‖1

Figure 3: The convergence errors between system (41) and system
(46) under controller (17).

Theorem 9, we can calculate that the value of the settling time𝑡1 is 4.4496.The simulation of finite-time synchronization for
the drive-response systems (41) and (46) in settling time 𝑡1
with control inputs (17) is showed in Figure 3.

Case 3. We simulate the result of Theorem 16 when inequal-
ities in (32) are satisfied. We choose the values of the
parameters as follows: 𝑝1 = 12, 𝑞1 = 1, 𝜉11 = 10, and 𝜉21 = 9;𝑝2 = 14, 𝑞2 = 1, 𝜉12 = 9, and 𝜉22 = 14; 𝑝3 = 12, 𝑞3 = 1,𝜉13 = 6, and 𝜉23 = 11; 𝑎 = 1, 𝑏 = 1, 𝑝 = 2, and 𝑞 = 1/2.
According to Theorem 16, we can calculate that the value of
the fixed settling time 𝑇0 is 5. The simulation of fixed-time
synchronization for the drive-response systems (41) and (46)
in fixed settling time 𝑇0 with control inputs (31) is showed in
Figure 4.

Example 2. This example considers the drive system (48)
which is the 3-linked hybrid coupled complex network and
consists of 3 nodes. Each of the nodes is 2-dimensional. The
system which is similar to (41) is given as follows:

𝑥̇𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑔 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))
+ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺0𝑖𝑗𝐷(𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡))

+ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺1𝑖𝑗𝐷𝜏1 (𝑥𝑗 (𝑡 − 𝜏1 (𝑡)) − 𝑥𝑖 (𝑡))

⋅ 3∑
𝑗=1,𝑗 ̸=𝑖

𝐺2𝑖𝑗𝐷𝜏2 (𝑥𝑗 (𝑡 − 𝜏2 (𝑡)) − 𝑥𝑖 (𝑡))
+ 𝑢𝑖 (𝑡) , 𝑖 = 1, 2, 3,

(48)

where 𝑢𝑖(𝑡) denotes suitable control inputs.
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Figure 4: The convergence errors between system (41) and system
(46) under controller (31).

And we will use the same 𝑓(⋅), 𝑔(⋅), 𝑓𝑖(𝑥), 𝐷, 𝐷𝜏1 , 𝐷𝜏2 ,𝜏(𝑡), 𝜏1(𝑡), and 𝜏2(𝑡) given in Example 1.
The configuration matrices are chosen as follows:

𝐺0 = [[
[
−0.3 0.15 0.15
0.15 −0.3 0.15
0.15 0.15 −0.3

]]
]
,

𝐺1 = [[
[
−0.4 0.2 0.2
0.2 −0.4 0.2
0.2 0.2 −0.4

]]
]
,

𝐺2 = [[
[
−0.5 0.25 0.25
0.25 −0.5 0.25
0.25 0.25 −0.5

]]
]
.

(49)

According to (26), the synchronized state model is given
as follows:

̇𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) + 𝑔 (𝑠 (𝑡 − 𝜏 (𝑡)))
− (−0.4)𝐷𝜏1 (𝑠 (𝑡 − 𝜏1 (𝑡)) − 𝑠 (𝑡))
− (−0.5)𝐷𝜏2 (𝑠 (𝑡 − 𝜏2 (𝑡)) − 𝑠 (𝑡)) .

(50)

The initial conditions for simulation are given as follows:

𝑠 (𝑡) = (8 − 𝑡
−1 ) ,

𝑥1 (𝑡) = ( 3
−5 + 𝑡) ,
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Figure 5: The state trajectories of systems (48) and (50) without
control inputs.

𝑥2 (𝑡) = (2 + 2𝑡
−3 ) ,

𝑥3 (𝑡) = (𝑡 + 1
−8 ) ,

𝑡 ∈ [−5, 0] .
(51)

In Example 2, we define the convergence errors as‖𝜔𝑖(𝑡)‖1 = |𝑥𝑖1 − 𝑠1| + |𝑥𝑖2 − 𝑠2|, 𝑖 = 1, 2, 3. And we
divide simulation Example 2 into three cases to illustrate
our obtained results in more detail and in more normalized
manner.

Case 1. We study the state trajectories of 𝑥𝑖𝑗(𝑡) and 𝑠𝑗(𝑡) (𝑖 =1, 2, 3; 𝑗 = 1, 2) when systems (48) and (50) are without
control inputs, which are showed in Figure 5. Moreover, the
trajectories of ‖𝜔𝑖(𝑡)‖1, 𝑖 = 1, 2, 3, without control inputs can
be seen in Figure 6.

Case 2. We simulate the result of Corollary 14. We choose
the values of the parameters as follows: 𝑝1 = 10, 𝑞1 = 1,𝜉11 = 5, and 𝜉21 = 8; 𝑝2 = 10 and 𝑞2 = 1, 𝜉12 = 5, and𝜉22 = 8; 𝑝3 = 10, 𝑞3 = 1, 𝜉13 = 5, and 𝜉23 = 8; 𝑘0 = 2 and𝜂 = 1/2. The simulation of finite-time synchronization for
systems (48) and (50) in settling time 𝑡1 (through calculating,𝑡1 = 4.6819) with control inputs (29) is showed in Figure 7.

Case 3. We simulate the result of Corollary 18 when inequal-
ities in (39) are satisfied. We choose the values of the
parameters as follows: 𝑝1 = 10, 𝑞1 = 1, 𝜉11 = 5, and 𝜉21 = 8;𝑝2 = 10, 𝑞2 = 1, 𝜉12 = 5, and 𝜉22 = 8; 𝑝3 = 10, 𝑞3 = 1,
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Figure 6: The convergence errors between system (48) and system
(50) without control inputs.
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Figure 7: The convergence errors of systems (48) and (50) under
controller (29).

𝜉13 = 5, and 𝜉23 = 8; 𝑎 = 1, 𝑏 = 1, 𝑝 = 2, and 𝑞 = 1/2.
According to Corollary 18, we can calculate that the value of
the fixed settling time 𝑇0 is 5. The simulation of fixed-time
synchronization for the drive-response systems (48) and (50)
in fixed settling time 𝑇0 with control inputs (40) is showed in
Figure 8.

6. Conclusions

In this paper, we study the finite-time synchronization of new
multilinked hybrid coupled complex dynamical networks
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Figure 8: The convergence errors between systems (48) and (50)
under controller (40).

with one single time-varying delay coupling for the first time.
Furthermore, we study the fixed-time synchronization of new
multilinked hybrid coupled complex dynamical networks
with one single time-varying delay coupling for the first
time. Two suitable feedback controllers are designed in order
to obtain the finite/fixed-time synchronization. Several syn-
chronization criteria are proposed through strict calculating
and theorem derivation. Finally, we use two appropriate
numerical examples to illustrate the correctness and effec-
tiveness of the results proposed in this paper. The problem of
fixed-time synchronization and finite-time synchronization
for the hybrid coupled dynamical networks whose coupling
terms contain only one transmittal time-varying delay comes
naturally for multilinked systems which simulate the real
world in closer and more realistic way. It is the first time to
study this exact problem and the significance of solving the
problem that make our work interesting and meaningful.
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