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It is vital for make-to-order manufacturers to shorten the lead time to meet the customers’ requirements. Holding work-in-process
(WIP) inventory at more stations can reduce the lead time, but it also brings about higher inventory holding cost. Therefore, it is
important to seek out the optimal set of stations to holdWIP inventory to minimize the total inventory holding cost, while meeting
the required due date for the final product at the same time. Since the problem with deterministic processing times at the stations
has been addressed, as a natural extension, in this study, we address the problem with stochastic processing times, which is more
realistic in themanufacturing environment. Assuming that the processing times follow normal distributions, we propose a solution
procedure using genetic algorithm.

1. Introduction

Nowadays, the manufacturing environment has shifted from
traditional mass production to small order production,
because the development of information technology has
resulted in an explosion of product types, shorter product life
cycles, a wider variety of customer requirements, and faster
changes, which make demand forecasts more difficult.

In 1964, the material requirements planning (MRP) was
developed by Joesph Orlicky, and in the following two
decades various investigations on MRP had been conducted.
However, due to the lower demand forecast accuracy, the
performance of traditional MRP became barely satisfactory.
Therefore, a new type of MRP called Demand Driven MRP
(DDMRP) was introduced in 2011 by Ptak and Smith [1],
which enables a manufacturer to respond more closely to
the actual market requirements and promotes better and
quicker decision and actions in the planning and execution
stage. In traditionalMRP inventory planning,most efforts are
focused on solving two questions: how to hold inventory and
when to reorder goods. However, in DDMRP, the focus is on
where to position the inventory, because “how” question is
meaningless until we can answer the “where” question appro-
priately. DDMRP has its own logical and effective approach

to answer the “how to hold” question. Determining the
best inventory locations can solve the problems of satisfying
inventory performance and delivery performance.

One of the most important competitive factors in make-
to-order manufacturing is to deliver the product to the
customer within the due time that the customer requires.
In order to shorten the delivery lead time, WIP inventories
need to be held at major processes. Meanwhile, the total
inventory holding cost should be minimized to decrease the
financial burden in today’s cost-competitive manufacturing
environment. It is noteworthy that, for some stations, holding
inventory does not contribute to reducing the lead time of
final product at all due to the BOM structure and processing
times. Hence, determining the optimal set of stations to hold
WIP inventory is a complicated and interesting problem.

This problem, namely, the strategic inventory positioning
(SIP) problem, has been studied by many researchers. Why-
bark and Yang [2] proposed a controlled simulation experi-
ment to decide where to place inventory to achieve the best
service level. Simpson Jr. [3] used the “all or nothing” policy
to decidewhether to place the inventory or not in some points
in serial line system. Graves and Willems [4–6] extended
Simpson Jr. [3]model to assembly, distribution, and spanning
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tree network structures. Lesnaia [7] considered the service
time as a stochastic model instead of a deterministic model
assumedbyGraves andWillems [5].Magnanti et al. [8] solved
the inventory positioning problem at production/assembly
stages of components in an acyclic supply chain network
structure which is not a spanning tree network structure.
Many other researchers studied the inventory positioning
problem using different methods such as Kaminsky and
Kaya [9], Inderfurth [10], Alderson [11], and Georage et
al. [12]. We also have studied SIP problem for simple and
general BOM using actively synchronized replenishment
(ASR) lead time proposed in the DDMRP [13, 14], in which
we present mathematical models and genetic algorithm to
solve SIP problems, assuming that the processing times are
all deterministic. However, it will be more realistic in most
cases to consider the processing times to be stochastic due to
various factors such as defectives, reprocessing, equipment
setup, and/or calibration time variations. In this paper we
address this stochastic SIP problem and present a solution
procedure for simple BOM case.

This paper is organized as follows: Section 2 describes
the SIP problem and introduces the ASRLT, buffer profiles,
and notations; Section 3 presents a genetic algorithm-based
solution procedure and numerical examples; finally, the
conclusion and potential future research issues are addressed
in Section 4.

2. The Strategic Inventory
Positioning Problem

In the authors’ earlier works [13, 14], the concept of a new
lead time has been introduced, namely, actively synchronized
replenishment lead time (ASRLT), which was proposed by
Ptak and Smith [1], in which ASRLT is defined as “the
longest unprotected or unbuffered sequence in the BOM
for a particular parent.” The strategic inventory positioning
(SIP) problem is to determine the locations which hold
WIP inventory in order to meet the lead time the customer
requires for the final product, while minimizing the total
inventory holding cost. The stochastic SIP problem is the
SIP problem where processing times at the nodes follow a
certain probability distribution. In this paper, we assume the
processing times follow normal distributions.

2.1. Notations. For consistency, we will use in this paper the
same BOM and notations as used in the previous papers [13,
14] as follows:

part𝑖,𝑗: 𝑗th part counted from the left in the 𝑖th level
of the BOM
𝑝𝑖,𝑗: the number counted from the left in the BOM of
the parent part of part𝑖,𝑗 (e.g., in Figure 1, 𝑝3,2 = 2, 𝑝3,4
= 3)
𝑟𝑖,𝑗: required quantity to make unit immediate parent
of part𝑖,𝑗
𝑎𝑖,𝑗: ASRLT of part𝑖,𝑗
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Figure 1: An example of simple bill of materials.

pr𝑖,𝑗: processing time distribution of part𝑖,𝑗 that fol-
lows a normal distribution with mean 𝜇𝑖,𝑗 and vari-
ance 𝜎𝑖,𝑗2
𝑛𝑖,𝑗: required quantity of part𝑖,𝑗 to make unit end
product
𝑠𝑖,𝑗: set of numbers counted from the left in the BOM
of the subcomponents of part𝑖,𝑗 (e.g., in Figure 1, 𝑠2,2
= {2, 3}; 𝑠3,2 = {3, 4})
adu𝑖,𝑗: average daily usage of part𝑖,𝑗
𝑐𝑖,𝑗: annual inventory cost of part𝑖,𝑗
ai𝑖,𝑗: average inventory quantity of part𝑖,𝑗
V𝑖,𝑗: unit price of part𝑖,𝑗
ltp𝑖,𝑗: percentage usage of part𝑖,𝑗 over ASR lead time
vp𝑖,𝑗: percentage of red zone base of part𝑖,𝑗 that red
zone safety accounts for
h: annual inventory holding cost rate
u: average daily usage of the end product
Q: lead time for the end product required by the
customer (i.e., service time)
𝑦𝑖,𝑗: yellow zone quantity of part𝑖,𝑗
𝑔𝑖,𝑗: green zone quantity of part𝑖,𝑗
rb𝑖,𝑗: red zone base quantity of part𝑖,𝑗
rs𝑖,𝑗: red zone safety quantity of part𝑖,𝑗.

Decision variables:

𝑥𝑖,𝑗 =
{
{
{

1 if part𝑖,𝑗 has inventory

0 if part𝑖,𝑗 has no inventory.
(1)

In our earlier papers [13, 14], all the processing times are
assumed to be deterministic, so theminimum total inventory
holding cost is also a deterministic value. In this paper,
however, the processing times are assumed to follow normal
distributions. So we generate 𝑀 sets of random processing
times to obtain 𝑀 different ASRLTs of the end product and
corresponding minimum total inventory holding costs. Then
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the final minimum total inventory holding cost is the average
of 𝑀 different minimum total inventory holding costs. We
define that a solution X = {𝑥𝑖𝑗} is feasible if the probability 𝛼
that ASR lead time of end product for 𝑋 is not greater than
𝑄 is not smaller than 𝛼0, where 0 < 𝛼0 < 1, but close to 1; for
example, 𝛼0 = 0.95. Equation (2) is the total inventory holding
cost once the inventory location is determined as X = {𝑥𝑖𝑗}.
Equation (3) is the annual inventory holding cost of part𝑖,𝑗.

TC = ∑
∀𝑖

∑
∀𝑗

𝑐𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 (2)

𝑐𝑖,𝑗 = V𝑖,𝑗 ⋅ ai𝑖,𝑗 ⋅ ℎ. (3)

2.2. Inventory Control Scheme in DDMRP. In their book [1],
Ptak and Smith proposed an inventory control scheme as
follows: there are five color zones that comprise the total
buffer: green zone represents an inventory position that
requires no actions; yellow zone represents an inventory
position that requires replenishment; both red zone base and
red zone safety represent an inventory position that requires
special attention. The average inventory quantity can be
calculated as the total quantity of red zone plus half of green
zone, as (4). The magnitude of yellow zone is determined as
the average usagemultiplied by ASR lead time of part𝑖,𝑗 as (5).

ai𝑖,𝑗 = 0.5 ⋅ 𝑔𝑖,𝑗 + rb𝑖,𝑗 + rs𝑖,𝑗 (4)

𝑦𝑖,𝑗 = adu𝑖,𝑗 ⋅ 𝑎𝑖,𝑗. (5)

The magnitudes of red zone base and green zone are
determined as the percentage usage of part𝑖,𝑗 over ASR lead
time multiplied by yellow zone quantity, as (6) and (7). The
magnitude of red zone safety is determined as percentage
of red zone base of part𝑖,𝑗 that red zone safety accounts
for, multiplied by red zone base, as (8). Table 1 shows the
recommended ranges of impact factor for the green and red
zone bases, according to the relative length of lead time of the
part. Table 2 shows how red zone safety is sized according to
the demand variability. Note that minimum order quantity
(MOQ) is not considered in this paper.

rb𝑖,𝑗 = ltp𝑖,𝑗 ⋅ 𝑦𝑖,𝑗 (6)

𝑔𝑖,𝑗 = ltp𝑖,𝑗 ⋅ 𝑦𝑖,𝑗 (7)

rs𝑖,𝑗 = vp𝑖,𝑗 ⋅ rb𝑖,𝑗. (8)

2.3. Mathematical Modeling. Using the above notations and
inventory control scheme, we model the SIP problemmathe-
matically as follows:

𝑛𝑖,𝑗 = 𝑟𝑖,𝑗 ⋅ 𝑛𝑖−1,𝑝𝑖,𝑗
adu𝑖,𝑗 = 𝜇 ⋅ 𝑛𝑖,𝑗
𝑎𝑖,𝑗

=
{
{
{

max
𝑚∈𝑠𝑖,𝑗

[(1 − 𝑥𝑖+1,𝑚) 𝑎𝑖+1,𝑚 + 𝑡𝑖,𝑗] , if 𝑠𝑖,𝑗 ̸= 0
𝑎𝑖,𝑗 = 𝑡𝑖,𝑗, if 𝑠𝑖,𝑗 = 0 : end node.

(9)

Table 1: Recommended impact ranges for green and red zone base.

Long lead time 20–40% usage over LT
Medium lead time 41–60% usage over LT
Short lead time 61–100% usage over LT

Table 2: Recommended impact ranges for red zone safety.

High variability 60–100% of red zone base
Medium variability 41–60% of red zone base
Low variability 20–40% of red zone base

We want to find a set X = {𝑥𝑖𝑗} to minimize the average
total inventory holding cost, while the ASRLT of the end
product is no longer than the customer’s requirement𝑄 with
probability 𝛼 ≥ 𝛼0, where 0 < 𝛼0 < 1, but close to 1; for
example, 𝛼0 = 0.95. From (2) to (9), the optimal solution to
the SIP problem can be obtained by solving the following
mathematical model:

Minimize average total cost:
∑∑∀𝑖∑∀𝑗 V𝑖,𝑗 ⋅ ℎ ⋅ ai𝑖,𝑗 ⋅ 𝑥𝑖,𝑗

𝑀
st. ai𝑖,𝑗 = (1.5 + vp𝑖,𝑗) ⋅ ltp𝑖,𝑗 ⋅ adu𝑖,𝑗 ⋅ 𝑎𝑖,𝑗

adu𝑖,𝑗 = 𝑢 ⋅ 𝑛𝑖,𝑗
𝑛𝑖,𝑗 = 𝑟𝑖,𝑗 ⋅ 𝑛𝑖−1,𝑝𝑖,𝑗

𝑎𝑖,𝑗 =
{
{
{

max
𝑚∈𝑠𝑖,𝑗

[(1 − 𝑥𝑖+1,𝑚) 𝑎𝑖+1,𝑚 + 𝑡𝑖,𝑗] , if 𝑠𝑖,𝑗 ̸= 0
𝑎𝑖,𝑗 = 𝑡𝑖,𝑗, if 𝑠𝑖,𝑗 = 0 : end node

𝑎1,1 ≤ 𝑄
𝛼 ≥ 𝛼0,

(10)

where𝑀 is the number of replications.
The above model is not easy to solve because it is not a

LP problem. In the next section, we will present the genetic
algorithm-based solution procedure for the problem.

3. Solution Procedure and Numerical Example

In the deterministic SIP problem addressed in our earlier
papers [13, 14], the ASR lead time of the end product (W) can
be determined as a value, depending on the binary solution
X = {𝑥𝑖𝑗}, since all processing times are deterministic. So a
solutionX = {𝑥𝑖𝑗} is feasible if𝑊 is not greater thanQ, the lead
time the customer requires. However, in the stochastic SIP
problem we address in this paper, since different processing
times will be generated every time for each node,W will also
be different even for a particular solution X = {𝑥𝑖𝑗}. So for the
stochastic SIP we define that a solution X = {𝑥𝑖𝑗} is feasible
if 𝑊 is not greater than 𝑄 with probability 𝛼 ≥ 𝛼0, where
0 < 𝛼0 < 1, but close to 1; for example, 𝛼0 = 0.95.

To implement this in the solution procedure, for a
particular solutionX = {𝑥𝑖𝑗} and parameters 𝜇𝑖,𝑗 and𝜎𝑖,𝑗2, rep-
resenting the mean and variance of the normally distributed
processing time of part𝑖,𝑗, respectively, we generate a set of
random processing times {𝑡𝑖,𝑗} for all parts and compute 𝑊
by the genetic algorithm that we used in the earlier paper
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Figure 2: The flow chart of GA-based solution procedure.

for deterministic SIP problem. Repeat this for 100 times to
compute the probability (𝛼) that the ASRLT is not greater
than 𝑄. If 𝛼 is greater than or equal to a given value 𝛼0, then
the solution X = {𝑥𝑖𝑗} is regarded as a valid solution.Then the
total inventory holding cost of X = {𝑥𝑖𝑗} is computed as the
average of 100 inventory holding costs.

As shown in Figure 2, the solution procedure is that we
generate𝑁 valid chromosomes, evaluate all chromosomes by
calculating the average total inventory holding cost, and keep
the best one. We select chromosomes by roulette wheel rule.
Once two chromosomes are selected, they undergo crossover
andmutate.Then new population including𝑁 chromosomes
is created. We test the validity of each chromosome, discard
invalid chromosomes, and generate new valid chromosomes
to be put to the population so as to keep the number of
chromosomes in the populations unchanged to be 𝑁. Then
we evaluate all chromosomes and choose the best one in this
new population. If this best one is better than the current best,
then replace the current best with the new best one (called
elitism rule). We set the termination condition as running
several generations, usually depending on the number of
parts in the BOM. The more the parts in the BOM are, the
more the generation run is required. In order to evaluate
the performance of the proposed genetic algorithm-based
solution procedure, two numerical examples are given as
follows.

3.1. Small BOM Case. Consider a small BOM comprising
13 parts, as shown in Figure 1. The parameters are given in
Table 3. We set the same variability percentage (vp) as 50%
for all parts. The lead time percentage (ltp) is 30%, 50%, and
80% for long, medium, and short lead time, respectively. 𝛼0 is
set as 95%.We set the crossover rate𝑃𝑐 as 0.8 and themutation
rate 𝑃𝑚 as 0.1. For small instances, we set the population size
𝑁 as 80. The iteration will stop after 100 generations.

In order to evaluate the performance of the proposedGA-
based procedure, the result is compared with that obtained
from enumeration. For each X = {𝑥𝑖𝑗}, we generate M = 100
sets of processing times. Among the valid solutions out of
213 possible solutions, we choose the twenty smallest average
total inventory holding costs using enumeration, as shown in
Table 4.

Table 5 shows the optimal total inventory holding cost
of 10 replications of the proposed solution procedure. In the
previous problemwith deterministic processing time for each
node, the optimal total inventory holding cost obtained using
GA can be matched with the ranking using enumeration.
However, in the stochastic SIP problem, it is impossible to
match the optimal total inventory holding cost from the
proposed procedure with the ranking list obtained from
enumeration. Therefore, we run the proposed procedure for
10 replications and list the result, as shown in Table 5, so that
we can compare the result with the ranking list obtained from
enumeration. Note that the largest total cost (1,671.78) out of
the 10 replications in Table 5 is approximately same as the 5th
smallest total cost from enumeration, which indicates that the
performance of the proposed procedure is satisfactory. Each
replication takes about 30 seconds in the McIntosh PC.

3.2. Large BOM Case. In this example, we consider a BOM
comprising 50 parts, which means that there are 250 possible
solutions. Table 6 lists the parameters in which vp, lvp, h, 𝑃𝑐,
and 𝑃𝑚 assume the same values as those in small BOM case,
but𝑄 is set as 16. For the problems of same size, computation
time depends on the population size (N) and the number of
iterations that we set as the termination condition. We set
the program to stop after 200 iterations. We can certainly
increase the number of iterations, but due to the increasing
computation time, we think that 200 iterations for each
replicationwill be enough to show how the objective function
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Table 3: Parameters for small BOM case.

Part 1 2 3 4 5 6 7 8 9 10 11 12 13
𝜇 2 5 7 6 4 4 3 3 3 4 3 7 11
𝜎 0.4 0.9 1.1 0.8 0.6 0.5 0.9 0.7 0.8 0.9 0.4 1.3 2.0
p 0 1 1 1 1 2 2 3 1 1 2 2 2
v 700 120 250 100 65 80 110 40 24 16 21 27 9
Q 10
h 0.25
vp 0.5
ltp Long lead time (26+ days) 30%

Medium lead time (11–25 days) 50%
Short lead time (1–10 days) 80%

𝛼0 95%

Table 4: Twenty smallest average total costs obtained from enumer-
ation.

Rank Total cost
1 1492.95
2 1584.6
3 1607.17
4 1659.8
5 1687.71
6 1696.45
7 1702.6
8 1707.46
9 1722.15
10 1763.8
11 1773.07
12 1782.1
13 1785.3
14 1785.87
15 1796.09
16 1812.1
17 1816.09
18 1828.61
19 1831.39
20 1838.2

Table 5: The results of 10 replications obtained from the proposed
procedure.

Number Total cost
1 1671.78
2 1665.13
3 1529.41
4 1457.4
5 1611.37
6 1551.59
7 1489.03
8 1601.44
9 1493.87
10 1597.08
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Figure 3: Decrease of objective function values for 5 replications for
large BOM case.

values decrease as the iteration progresses.N is set as 300.We
run 5 replications, each of which takes about 13minutes in the
same PC.We chose the number of replications as 5 arbitrarily.
We can certainly increase the number of replications, but
displaying too many lines in a figure will make the figure
messy, without adding any implication.

Note that we cannot explicitly demonstrate the perfor-
mance of the proposed solution procedure for a problemwith
large BOM of 50 nodes since we cannot enumerate the 250
possible solutions. Instead we show the decrease of objective
function values of five replications in Figure 3. Recall that the
best result obtained from GA when it terminates does not
guarantee being optimal.

4. Conclusion

In this paper, we address the problem of determining the
stations to hold work-in-process inventory in order to reduce
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Table 6: Parameters for large BOM case.

Part 𝜇 𝜎 𝑟 𝑝 V
1 2 0.2 1 0 1200
2 5 0.3 1 1 900
3 7 2 1 1 890
4 6 1.2 1 1 910
5 4 0.8 2 1 860
6 4 0.7 3 1 880
7 3 0.4 2 1 800
8 3 0.3 1 1 780
9 3 0.3 2 2 790
10 4 0.4 3 2 750
11 3 0.4 2 3 690
12 5 0.4 3 3 660
13 5 0.4 4 4 600
14 4 0.3 3 4 640
15 2 0.2 1 4 700
16 4 0.3 3 1 660
17 6 0.9 2 1 580
18 3 0.5 1 2 550
19 3 0.4 1 3 570
20 5 0.8 2 3 600
21 7 1.1 3 4 540
22 6 1.0 2 4 510
23 3 0.5 2 4 590
24 4 0.5 1 5 400
25 3 0.5 1 6 490
26 3 0.4 1 7 480
27 5 0.7 2 7 520
28 4 0.4 2 8 400
29 3 0.5 1 9 480
30 2 0.2 3 9 490
31 5 0.6 1 1 460
32 4 0.6 1 1 500
33 3 0.3 3 3 470
34 3 0.3 2 3 300
35 5 0.6 2 5 380
36 4 0.4 2 8 330
37 3 0.4 3 8 340
38 4 0.3 1 12 350
39 6 0.6 1 12 360
40 4 0.4 3 15 310
41 4 0.5 2 2 330
42 4 0.5 2 3 290
43 3 0.3 2 3 270
44 3 0.4 2 5 260
45 2 0.2 1 7 270
46 5 0.5 1 7 270
47 3 0.4 3 9 100
48 2 0.4 2 9 110
49 3 0.6 4 5 50
50 5 0.9 2 7 30

the production lead time of the end product to the one
the customer requires, while minimizing the total average
inventory cost inmake-to-ordermanufacturing. As an exten-
sion of the earlier work of the authors, where processing
times are assumed to be constant at each station, in this
paper we consider the stochastic version of the problem
in which processing times follow certain probability dis-
tribution, namely, stochastic strategic inventory positioning
(SIP) problem. This will be more realistic than assuming
deterministic processing times. We formulate the stochastic
SIP problemmathematically and present a genetic algorithm-
based solution procedure. Numerical examples show the
validity of the proposed solution procedure.

In most MTO manufacturing sites, it is not unusual to
find that almost all stations maintain WIP inventory, mainly
due to natural human behavior of protection. However,
having WIP inventory at some stations does not contribute
at all to reducing the total manufacturing lead time of end
product because of the BOM structure and lead time of other
parts in the BOM. Tominimize theWIP inventory cost, such
stations should not have WIP inventory. The result of this
paper will help determine strategically where to have and
where not to have WIP inventory. We use inventory control
scheme of DDMRP to compute the average inventory at a
station. For further research, one may study the case where
some parts are used more than once in the BOM.
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