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The scheduling problem with controllable processing times (CPT) is one of the most important research topics in the scheduling
field due to its widespread application. Because of the complexity of this problem, a majority of research mainly addressed
single-objective small scale problems. However, most practical problems are multiobjective and large scale issues. Multiobjective
metaheuristics are very efficient in solving such problems. This paper studies a single machine scheduling problem with CPT for
minimizing total tardiness and compression cost simultaneously. We aim to develop a new multiobjective discrete backtracking
search algorithm (MODBSA) to solve this problem. To accommodate the characteristic of the problem, a solution representation is
constructed by a permutation vector and an amount vector of compression processing times. Furthermore, twomajor improvement
strategies named adaptive selection scheme and total cost reduction strategy are developed. The adaptive selection scheme is used
to select a suitable population to enhance the search efficiency of MODBSA, and the total cost reduction strategy is developed to
further improve the quality of solutions. For the assessment of MODBSA, MODBSA is compared with other algorithms including
NSGA-II, SPEA2, and PAES. Experimental results demonstrate that the proposed MODBSA is a promising algorithm for such
scheduling problem.

1. Introduction

The scheduling problem with controllable processing times
(CPT) has received increasing attention in manufacturing
fields. The CPT denotes that operation duration of a job
can be compressed or expanded by adjusting the available
resources like fuel, equipment, manpower, and so on [1–
4]. Most classical scheduling problems assume that the job
processing times are constant values. However, this assump-
tion sometimes violates practical production.We can observe
that job processing times are controllable in some cases.
For example, in the chemical industry, the processing times
of a chemical substance can be compressed by catalyzer or
expanded by inhibitor, which requires additional costs [5]. In
the CNC manufacturing industry, the job processing times
can be controlled by adjusting the cutting speed or the feed
rate, which also entails more costs [6, 7]. Therefore, the
consideration of CPT in scheduling problems may be more
applicable for some manufacturing systems.

This paper studies a single machine scheduling problem
with CPT (SSPWCPT) for the following reasons: it fills
the gap where a multiobjective evolutionary approach for
the large scale SSPWCPT with multiple criteria has been
rarely reported. Most existing methods to deal with single-
objective SSPWCPT can be classified into two categories,
namely, exact and approximate approaches. Exact approaches
like branch and bound algorithm have been successfully
applied to small scale SSPWCPT. Unfortunately, the exact
methods are incapable of solving large scale SSPWCPT. On
the contrary, the approximate approaches can solve large
scale SSPWCPT within an acceptable time. It is therefore
important to conduct a study on efficiency and effectiveness
of approximate algorithms for this studied problem.However,
purely single-objective SSPWCPT cannot fully reflect the
requirements of the real-world scheduling applications.Thus,
the problem considers two important criteria, namely, total
tardiness and total compression cost. The two objectives are
widely accepted in single machine with CPT because they
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can affect satisfaction of customer and profits of enterprise.
One straightforward strategy for addressing the multiobjec-
tive optimization problem (MOP) is to combine multiple
objectives into a scalar function by giving fixed weights to
each objective function [8]. Nevertheless, in most practical
scheduling problems, multiple criteria are usually in conflict
with each other [9–11]. In addition, the objective weight
is difficult to determine due to different objective scales.
Therefore, it is better to handle multiple objectives with
knowledge about Pareto dominance. Pareto-based multi-
objective evolutionary algorithm (MOEA) is suitable for
solving multiobjective scheduling problems since it can yield
nondominated solutions in a single run [4, 12, 13].

Recently, backtracking search algorithm (BSA) [14] is a
promising method for solving single-objective scheduling
problem due to its high convergence speed and ease of
implementation.The core idea of BSA is that dual population
is utilized to search for an optimal solution during search
process. Based on the effectiveness of BSA and characteristics
of the MOP, a novel multiobjective discrete backtracking
search algorithm (MODBSA) is proposed to solve this mul-
tiobjective SSPWCPT. Although multiobjective backtracking
search algorithm has been developed, it is mainly used to
address continuous optimization problems [15]. The main
reason for adopting this MODBSA is that the problem under
study is NP-hard [16] and BSA has been demonstrated to be
an effective approach for solving this category of problem
[17, 18]. Furthermore, dual population in BSA can be utilized
to store information of different population for keeping
diversity of population. In addition, to the best of the authors’
knowledge, there exists no research aboutmultiobjective BSA
in the field of scheduling problem in literature.These reasons
drive us to develop an efficient multiobjective algorithm
based on BSA for this discrete optimization problem.

To achieve good performance of the proposed algorithm
on SSPWCPT, several strategies of thismethod are developed.
According to the characteristic of the addressed problem,
the proposed MODBSA uses a two-part encoding scheme.
The first part represents the job permutation and the second
one denotes the amount of compression processing times of
job. Moreover, an adaptive scheme is proposed to select a
suitable population for enhancing search efficiency. Mean-
while, a total cost reduction strategy is proposed to improve
convergence toward the efficient solution.

The remainder of the paper is organized as follows. In
Section 2, some relevant work is described. In Section 3,
a definition of the studied problem is stated. In Section 4,
the proposed MODBSA for the SSPWCPT is elaborated. The
experimental results of the proposedMODBSA are presented
and analyzed in Section 5. Conclusions and future work are
given in Section 6.

2. Literature Review

The SSPWCPT has been extensively studied since Vickson
[19] initiated the CPT in a single machine scheduling prob-
lem. However, most single-objective methods or weighted
summethods have been used to solve SSPWCPT in previous

literature. For example, Janiak and Kovalyov [20] addressed
the SSPWCPT with deadlines and processing time which
was a linear decreasing function of the amount of com-
pression. They proposed an 𝑂(𝑛 log 𝑛) algorithm for small
scale cases with the objective to minimize the total resource
consumption. Shabtay and Kaspi [21] considered a single
machine scheduling problem for minimizing total weighted
completion time. They presented and analyzed some special
cases that were solvable by using polynomial time algorithms.
They also gave some heuristic algorithms and a dynamic
programming for the general case. Kayan and Akturk [6]
studied a bicriteria scheduling problem on a single CNC
machine.They proposed an exact algorithm and four heuris-
tic methods to find a set of discrete points to approximate the
continuous trade-off curve on small scale problem. Cheng
et al. [22] considered a single machine scheduling problem
where both job processing times and release dates were
controllable. They proposed an 𝑂(𝑛2) algorithm to solve this
problem for minimizing the sum of makespan and the total
compression cost. Yin andWang [23] presented a heuristic to
address a single machine scheduling problem with CPT and
learning effect. The objective of this problem is to minimize
a cost function including makespan, total completion, and
total absolute differences in completion times. Xu et al. [24]
proposed a polynomial time algorithm of𝑂(𝑛2) for this small
scale problem with the objective of minimizing the total
tardiness. Tseng et al. [25] proposed a net benefit compression
(NBC) heuristic tominimize total tardiness plus compression
cost on a SSPWCPT. Kayvanfar et al. [26, 27] extended
the work of Tseng et al. [25] by designing a net benefit
compression-net benefit expansion (NBC-NBE) algorithm.
Yedidsion et al. [28] proved the complexity of a single
machine scheduling problem with CPT for several related
criteria. Yin et al. [29] addressed a single machine batch
delivery scheduling problemwith an assignable common due
date and CPT. They provided an 𝑂(𝑛5) dynamic program-
ming algorithm and developed an 𝑂(𝑛 log 𝑛) algorithm to
find the optimal solution for minimizing a cost function
consisting of earliness, tardiness, job holding, and due date
assignment. Nearchou [8] considered this SSPWCPT and the
objective of this problem was to minimize total weighted
completion time plus the compression cost. Several single-
objective population-based metaheuristics were adopted to
solve this problem. Giglio [30] considered a class of single
machine family scheduling problems, characterized by unre-
liable behavior of the machine, CPT, sequence-dependent
setups, and due dates. The objective of this problem is to
minimize the sum of the total weighted tardiness, the total
weighted consumption cost, and the total setup cost. He
proposed a dynamic programming approach to solve this
problem. A survey on scheduling with CPT was provided
by Shabtay and Steiner [31]. In this paper, we only consider
the single machine scheduling problem with CPT; thus, the
scheduling problems in other environment are not reviewed.

As stated previously, the main criterion of most research
is a single-objective or combined objective with the weighted
sum approach. However, multiobjective scheduling problem
should be the trend for the real-life scheduling production in
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the future. The majority of the previous research is focused
on heuristics for addressing small scale problems. How-
ever, the research on addressing the studied problem using
metaheuristics is relatively scarce. In fact, metaheuristics are
very efficient in solving such type of large scale scheduling
problems. To the best of authors’ knowledge, efficientMOEAs
based on BSA have not yet been applied to SSPWCPT in the
previous literature. Thus, the motivation of this study from
a theoretical perspective is to develop an efficient MOEA for
minimizing both total tardiness and total compression cost
on SSPWCPT. Nevertheless, the no free lunch theory implies
that algorithm’s performance is sensitive to the problem
considered. Therefore, we should develop a more efficient
MOEA than other high-performing metaheuristics if some
characteristics of the problem as well as some techniques are
considered.

3. Problem Formulation

The scheduling problem under study can be described as
follows. A set of 𝑛 independent jobs is available at time zero
on a single machine. One machine can process at most one
job at a time and job preemption is not allowed. Each job has
a normal discrete processing time.The normal job processing
times can be compressed by allocating additional resources,
which entails compression cost. Assume that resources can
only be assigned in discrete quantities and the job with
normal processing time incurs no extra cost.

The parameters and decision variables used throughout
the paper are as shown in the Notations.

The problem is an extension of the scheduling problem
with the fixed processing time [32]. It can be defined as
a multiobjective mathematical model for minimizing total
tardiness and total compression cost simultaneously, which
is formulated as follows:

min 𝑓1 =
𝑛∑
𝑗=1

𝑇𝑗

min 𝑓2 =
𝑛∑
𝑗=1

𝑐𝑗 ⋅ 𝑥𝑗
(1)

Subject to 𝑀𝑦𝑗𝑘 + 𝑆𝑗 − (𝑝𝑘 − 𝑥𝑘) ≥ 𝑆𝑘;
𝑗, 𝑘 = 1, . . . , 𝑛, 𝑗 < 𝑘 (2)

𝑀(1 − 𝑦𝑗𝑘) + 𝑆𝑘 − (𝑝𝑗 − 𝑥𝑗) ≥ 𝑆𝑗;
𝑗, 𝑘 = 1, . . . , 𝑛, 𝑗 < 𝑘 (3)

𝑆𝑗 + 𝑝𝑗 − 𝑥𝑗 − 𝑑𝑗 ≤ 𝑇𝑗; 𝑗 = 1, . . . , 𝑛 (4)

𝑚𝑗 ≥ 𝑥𝑗; 𝑗 = 1, . . . , 𝑛 (5)

𝑇𝑗 ≥ 0, 𝑥𝑗 ≥ 0, 𝑆𝑗 ≥ 0, 𝑦𝑗𝑘 = 0 or 1,
𝑗, 𝑘 = 1, . . . , 𝑛, 𝑗 < 𝑘. (6)

Equations (1) define the objective to minimize the total
tardiness and the total compression cost. Constraints (2) and

(3) guarantee the precedence relationship anddefine that only
one job can be processed at any instance in time. Constraints
(4) impose the tardiness of each job in a sequence. Con-
straints (5) limit the amount of compression processing time
for all jobs. Constraints (6) show nonnegativity of variables.
This studied problem is NP-hard since the single machine
total tardiness problem is already NP-hard [16]. It is still
valuable for us to research and explore such a problem.

4. The Proposed MODBSA for SSPWCPT

In this section, firstly we give a basic background onmultiob-
jective optimization and then describe the original BSA and
present a framework of the proposed MODBSA. Finally, the
main improvement strategies of theMODBSA for optimizing
SSPWCPT are elaborated.

4.1. Background on Multiobjective Optimization. To better
understand the proposed MODBSA for solving the above
problem, we begin with a brief introduction of the basic
concept of MOEA. Without loss of generality, a multiobjec-
tive optimization problem (MOP) can be formally defined as
follows:

min 𝑓 (x) = min [𝑓1 (x) , 𝑓2 (x) , . . . , 𝑓𝑚 (x)]
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑅𝑛

s.t. 𝑔𝑖 (x) ≥ 0, 𝑖 = 1, . . . , 𝑘
ℎ𝑗 (x) = 0, 𝑗 = 1, . . . , 𝑝,

(7)

where 𝑓𝑚(x) indicates the 𝑚th subobjective function, x is
a vector of the solution, which should satisfy the above
constraints, 𝑅𝑛 is the decision variable space, and 𝑔𝑖(x)
and ℎ𝑗(x) are inequality constraint and equality constraint,
respectively. 𝑘 and 𝑝 denote the total number of inequality
constraints and equality constraints, respectively.

Let a and b ∈ 𝑅𝑛, and a vector a = [𝑎1, 𝑎2, . . . , 𝑎𝑛]𝑇
dominates another vector b = [𝑏1, 𝑏2, . . . , 𝑏𝑛]𝑇 (denoted by
a ≺ b) if a is not inferior to b for any of𝑚 objectives and a is
superior to b for at least one objective. A solution x∗ ∈ 𝑅𝑛
is a Pareto optimal vector if there is not any solution x ∈𝑅𝑛 that dominates x∗. The corresponding objective function
in the objective space forms the Pareto optimal front point𝑓(x∗). For a Pareto optimal solution, the improvement in
any objective will incur the deterioration of at least another
objective. A set of all the Pareto optimal solutions is called
Pareto optimal set (PS∗), while the set of all Pareto optimal
front vectors is called the Pareto optimal front (PF∗). The
main goal of multiobjective optimization is to find PF∗.
However, in general, a Pareto front consists of a large number
of points. Therefore, a good Pareto front contains a limited
number of points which should be as close as possible to the
PF∗ and uniformly spread as well.

4.2. Brief Introduction of Backtracking Search Algorithm
(BSA). The original BSA is described before presenting
the MODBSA, and its main steps include five processes:
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Input:Mutant,mixrate,𝑁 and𝐷.
Output: 𝑇: Trial population.
(1) map(1 : 𝑁, 1 : 𝐷) = 1
(2) if 𝑎 < 𝑏 | 𝑎, 𝑏∼𝑈(0, 1) then
(3) for 𝑖 from 1 to𝑁
(4) map𝑖,𝑢(1:⌈mixrate⋅rand(𝐷)⌉) = 0 | 𝑢 = permuting (⟨1, 2, . . . , 𝐷⟩)
(5) end
(6) else
(7) for 𝑖 from 1 to𝑁
(8) map𝑖,randi(𝐷) = 0
(9) end
(10) end
(11) 𝑇 fl Mutant
(12) for 𝑖 from 1 to𝑁
(13) for 𝑗 from 1 to𝐷
(14) if map𝑖,𝑗 = 1 then 𝑇𝑖,𝑗 fl 𝑃𝑖,𝑗
(15) end
(16) end

Algorithm 1: Crossover operation.

initialization, selection 1, mutation, crossover, and selection
II [14]. Note that the original BSA is proposed for solving
continuous problems; thus, the decision variables are real
numbers.

4.2.1. Initialization. Randomly initialize a population 𝑃,
which can be formulated as follows:

𝑃𝑖,𝑗 = 𝐿𝑗 + (𝑈𝑗 − 𝐿𝑗) × random

𝑖 = (1, 2, . . . , 𝑁) , 𝑗 = (1, 2, . . . , 𝐷) , (8)

where 𝑁 and 𝐷 are the population size and the number
of decision variables, respectively, random is a real number
value uniformly distributed in [0, 1], 𝐿𝑗 and 𝑈𝑗 denote the
lower and upper bound for the 𝑗th decision variable of the𝑖th solution.

4.2.2. Selection I. To obtain the search direction, the aim
of BSA’s Selection I stage is to determine the historical
population old𝑃. The initial historical population is defined
using the following formulation:

old𝑃𝑖,𝑗 = 𝐿𝑗 + (𝑈𝑗 − 𝐿𝑗) × random

𝑖 = (1, 2, . . . , 𝑁) , 𝑗 = (1, 2, . . . , 𝐷) . (9)

BSA has a choice to generate the old𝑃 at the beginning of
each generation through the following form:

if 𝑎 < 𝑏 then old𝑃 fl 𝑃 | 𝑎, 𝑏 ∈ [0, 1] , (10)

where fl is the initialization operation; 𝑎 and 𝑏 are real
number values in the range [0, 1].The above equation defines
that the BSA’s historical population (old𝑃) is from either
the previous population or the old𝑃 itself. Once old𝑃 is
generated, a permutation function is adopted to randomly
alter the position of the individuals in old𝑃.

4.2.3. Mutation. The form of a trial population 𝑇 (i.e.,
offspring pupation) by the mutation operation can be written
as follows:

𝑇 = 𝑃 + (old𝑃 − 𝑃) × 𝐹, (11)

where 𝐹 is a scale factor which controls the amplitude of the
search-directionmatrix (old𝑃−𝑃).The value𝐹 = 3⋅random,
where random is a real number uniformly distributed in[0, 1]. Since the historical population is employed in the
calculation of the search-direction matrix, BSA takes some
advantages of previous generations to obtain a trial popula-
tion.

4.2.4. Crossover. The final trial population 𝑇 is obtained by
crossover in BSA. The crossover of BSA works as follows.
First, compute a binary integer-valued matrix (map) whose
dimension is 𝑁 × 𝐷. It denotes that the individuals of 𝑇
are produced by using the relevant individuals of 𝑃. Then,
if map𝑖,𝑗 = 1, where 𝑖 ∈ {1, . . . , 𝑁} and 𝑗 ∈ {1, . . . , 𝐷}, 𝑇 is
updated with 𝑇𝑖,𝑗 fl 𝑃𝑖,𝑗. Algorithm 1 provides the crossover
operation of BSA.

In Algorithm 1, ⌈ ⌉ represents the ceiling function (in
line 4). The rand parameter indicates a random real number
in [0, 1]. The mixrate parameter controls the number of
elements of individuals that will mutate in a trial individual
by using ⌈mixrate ⋅ rand(𝐷)⌉. Two strategies are employed to
defineBSA’smap. In the first strategy,mixrate is used to define
map (in lines 3–5). In the second strategy, only one randomly
selected element is going to mutate (in lines 7–9).

4.2.5. Selection II. In the stage of BSA’s Selection II, 𝑇𝑖 is used
to update the 𝑃𝑖 if it is better than 𝑃𝑖 in terms of the fitness
value. If the best solution𝑃best outperforms the global optimal
solution found so far, the global optimal solution is replaced
by 𝑃best [14].
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Initialization

Selection I: select a population as a
historical population with a probability
value b

Update: PMX and dual
mutation

Selection II: if the new offspring
dominates parent individual, the
former replaces the latter one

Calculate probability
value b

Add offspring to
external archive
based on Pareto
relationship

Meet stop
condition?

Stop and output external
archive

No

Yes

Total cost reduction
strategy

External archive

Figure 1: Flowchart of the MODBSA.

4.3. Framework of MODBSA for SSPWCPT. The original
BSA is designed for addressing continuous single-objective
optimization problems. However, the problem under consid-
eration is a multiobjective combinatorial NP-hard issue. This
paper is aimed at developing a MODBSA to solve SSPWCPT.
A basic flowchart of MODBSA is shown in Figure 1.

The framework of the MODBSA consists of 6 steps
summarized below.

Input

(i) A stopping condition
(ii) 𝑁: the population size
(iii) Input other parameters

Output. Pareto front (PF) and Pareto solutions (PS) are stored
in an external archive.

Step 1 (initialization). Generate the initial and historical
population according to the proposed solution representation
stated in Section 4.4.2.

Step 2 (stopping condition). If stopping criterion is met, then
stop and output PS and PF. Otherwise, go to Step 3.

Step 3 (Selection I). Calculate the selection probability value
(denoted as 𝑏) of the population selected based on adaptive
selection mechanism. This adaptive mechanism can select a

suitable population as a historical population. Section 4.4.3
gives details of the adaptive selection mechanism.

Step 4 (update). Perform update operation on the popula-
tion. This update operator is described in Section 4.4.4.

Step 5 (total cost reduction strategy). The total cost reduction
strategy can improve exploitation of the algorithm. This
strategy is presented in Section 4.4.5.

Step 6 (Selection II). This stage of the MODBSA is different
from that of the basic BSA. The offspring solutions are eval-
uated with regard to both fitness values (i.e., total tardiness
and total compression cost). First, all the individuals in the
population are sorted according to a nondominated sorting
technique. This fast nondominated sorting method can be
described as follows. First, for each solution we compute two
entities: (1) domination count 𝑛𝑝, the number of solutions
that dominate the solution 𝑝, and (2) 𝑆𝑝, a set of solutions
that the solution 𝑝 dominates. The domination count of all
solutions in the first nondominated level is equal to zero.Now,
for each solution 𝑝 with 𝑛𝑝 = 0, we visit each individual𝑞 from its set 𝑆𝑝 and reduce its domination count by one.
When for any individual 𝑞 the domination count becomes
zero, it will be put into a separate set 𝑄 where the individuals
belong to the second nondominated level. This procedure
continues until all nondominated levels are identified. That
is, each individual has a rank equal to its nondominance level.
Then, within each front or rank a crowding distance strategy
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10 8 12 9 9

5 2 3 3 2

Normal processing time (p)
Maximum amount of
compression (m)

JobParameters

22 30 40 26 35
0.5 1.0 3.0 2.5 2.0

Due time (d)
Unit cost of compression (c)

J1 J2 J3 J4 J5

(a) Instance

Amount of compression

12 4 3 5

1 1 02 3

Job permutation

J2 J1 J4 J3 J5

J1 J2 J3 J4 J5

The first part: �휋

The second part: x

(b) Encoding

6 15 21 32 41

Total tardiness: 6
Total compression cost: 13

J1J2 J3J4 J5

(c) Decoding Gantt chart

Figure 2: An example of solution representation.

is used to define an ordering among individuals. To achieve
wide spread Pareto fronts (solutions differently balancing
total tardiness and total compression cost), individuals with
a large crowding distance are better than ones with a smaller
crowding distance when they are the same nondominated
level. The external archive is used to store nondominated
solutions found so far. This external archive has a maximum
size. To obtain PF with a uniform spread, the crowding
distance technique is also employed to remove solutions with
the worst crowding distance from the archive when this
archive is full.

4.4. The Main Improvements for the Proposed MODBSA on
SSPWCPT. In this subsection, a new solution representation
is stated and the main improvement strategies are elaborated.

4.4.1. Solution Representation. One of the important issues
when applying MOEA lies in its solution representation
where individuals include information associated with the
problem considered. Unlike the other scheduling problems
with fixed processing times, a SSPWCPT has to deal with
the job sequence and the amount of compression processing
time of jobs simultaneously.Thus,we propose a new encoding
scheme which contains two parts. The first part represents
the job permutation, that is, 𝜋. The second one denotes the
amount of compression processing times of jobs, that is, x.
Although Nearchou [8] presented a two-part encoding for

this problem, he adopted subrange keys based on random key
encoding scheme, which generates information redundancy.
We used this proposed scheme to effectively avoid informa-
tion redundancy.

To illustrate this solution representation, Figure 2 gives
an example of a solution representation for a 5-job instance.
This solution has two parts: (1) the first part: the job
permutation, namely, 𝜋 = (2, 1, 4, 3, 5); (2) the second one:
the amount of compression processing times of job, namely,
x = (1, 2, 1, 3, 0). There exists a corresponding relationship
between the two parts. Each job has a corresponding amount
of compression processing time. For the 𝜋(𝑖) job denoted by𝐽𝑘, its corresponding amount of compression processing time
is 𝑥𝑘. For example, the 1st job (i.e., 𝜋(1)) in the sequence is job𝐽2, the amount of compression of 𝐽2 is𝑥2 (i.e., 2). Similarly, the
2nd job (i.e.,𝜋(2)) in the sequence is 𝐽1 and the corresponding
amount of compression of 𝐽1 is 𝑥1 (i.e., 1). Therefore, the
corresponding amount vector of compression is (2, 1, 3, 1, 0)
for a sequence 𝜋. In this manner, a feasible schedule is
easily generated. In addition, this encoding scheme has two
advantages below:

(1) Solution structure is simple as it contains two parts,
namely, job sequence and amount of compression of
job processing times.

(2) In general, this discrete encoding scheme can reduce
information redundancy compared with previous
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random keys encoding scheme like subrange keys [8].
This view has been further certified in Section 5.4.

4.4.2. Initialization. TheMODBSA begins with a population
of 𝑁 initial individuals. As stated previously, each solution
is constructed by a permutation vector and a vector of
compression processing times. To ensure the high quality
and good diversity of solutions, the job permutation of one
individual is based on nondescending order of due time [33].
In detail, this solution is based on the property that if we have
job 𝑙 and job 𝑚 that satisfy 𝑝𝑙 < 𝑝𝑚 and 𝑑𝑙 < 𝑑𝑚 (𝑙, 𝑚 =1, 2, . . . , 𝑛) then there exists an optimal processing sequence
where job 𝑙 precedes job 𝑚. The amount of compression
processing times of another individual is set to zero in
order to minimize total compression cost. The other initial
individuals are randomly generated in the feasible range as
follows:

𝑃𝑖,𝑗 = (𝜋 (𝑖, 1) , 𝜋 (𝑖, 2) , . . . , 𝜋 (𝑖, 𝑛)
𝑥 (𝑖, 1) , 𝑥 (𝑖, 2) , . . . , 𝑥 (𝑖, 𝑛)) , (12)

where 𝜋(𝑖, 𝑛) denotes the 𝑛th job in the 𝑖th individual to be
processed on the machine and 𝑥(𝑖, 𝑛) presents the amount of
compression for job 𝑛 in the 𝑖th individual.

4.4.3. Selection I Based on the Adaptive Mechanism. The
dual population scheme is a core idea of the BSA. The
dual population is based on a random selection scheme,
which can assist algorithm to maintain population diversity.
However, this strategy cannot ensure a good convergence
toward the optimal solutions, since too much emphasis on
diversity would cause pure random search [15]. To improve
convergence performance, an adaptive selection scheme is
presented.This adaptive selection scheme can select a suitable
population as the current historical population. To simplify
the calculation of the selection probability of population 𝑃 as
the current historical population, we record the population𝑃 that is chosen to participate in update operation. After the
initial population and historical population are generated, a
population is selected as the current historical population
based on (10) so that each population has an equal selection
probability. Afterwards, the current historical population is
updated by an adaptive selection scheme during the search
process. Let 𝑏𝑠 (𝑏𝑠 is not a random number at this time)
represent the probability of updating the historical popula-
tion old𝑃 by replacing it with the current population 𝑃. The
adaptive selection scheme can be stated as follows.

Step 1. After population 𝑃 is updated, calculate the update
probability of historical population old𝑃; namely, 𝑏𝑠 =𝑛𝑝/|𝐴|, where 𝑛𝑝 is the number of nondominated solutions
and |𝐴| represents the total number of the nondominated
solutions in the external archive at the current iteration. The
updating of old𝑃 is executed by simply replacing the old𝑃
with the current population 𝑃.
Step 2. Use the roulette-wheel approach to select a population
from each population.

This selection strategy is simple yet efficient for improving
performance of MODBSA. It implies that the selection
probability is proportional to the number of nondominated
solutions from the population 𝑃. To avoid the situation
where all solutions are obtained from the same population
throughout the iterations, the population 𝑃 has a minimum
selection probability of 𝑏min. That is, after the calculation of
the selection probability of population, if 𝑏𝑠 < 𝑏𝑠min, then set𝑏𝑠 = 𝑏𝑠min. In this work, 𝑏𝑠min = 0.2.

Before updating population, select two parents in which
one is from the current old𝑃 (note that the current old𝑃
is either from old𝑃 or from 𝑃 according to the adap-
tive mechanism) and the other is from 𝑃. In addition,
the efficiency of this adaptive scheme has been proven in
Section 5.5.

4.4.4. Update Operator. It is evident that crossover andmuta-
tion operators of original BSA are not suitable for solving
the SSPWCPT. To overcome this problem, we change the
crossover and mutate operators to the traditional crossover
and mutation operators.

Crossover can explore unknown areas of solution search
space. For the first part (i.e., 𝜋), partially mapped crossover
(PMX) [34] is adopted to update the permutation part
and has been widely used in the scheduling field. For the
second part, two-point crossover is used to update amount
of compression processing times in this paper. The detailed
steps of the crossover are as follows.

For the first part (see Figure 3), consider the following.

Step 1. Select the substring: randomly generate two crossover
points and define the substring between two points as
matching area (i.e., yellow area).

Step 2. Exchange the substrings: generate temporary off-
spring by swapping the matching area of two parents. Note
that only the elements in the matching area (yellow area) are
exchanged.We can find that temporary offspring is unfeasible
when exchanging the substrings. For instance, job 5 appears
twice in temporary offspring 1. Similarly, job 1 appears twice
in temporary offspring 2.

Step 3. Mapped relationship: determinemapped relationship
of the elements in conflict. When the same job sequence
is assigned more than once, the mapped relationship of the
sequence in crossover segments is defined.

Step 4. Legalize the offspring: make the job permutation
part feasible by using the information from the mapped
relationship without any changes to the substring (keep the
substring unchanged).

For the second part (see Figure 4), consider the following.

Step 1. Select the substring: randomly generate two points
and define the substring between two points as exchange area.

Step 2. Exchange the substring: exchange the substrings
between the two points.
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Figure 3: PMX crossover in the first part.
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Figure 4: Two-point crossover in the second part.

Mutation operator assists the algorithm to escape from
local optima. In this research, the mutation operator is
composed of two mutation techniques with the probability
of 0.5, respectively. That is, when this mutation operation is
performed, one of the two techniques is executed. Therefore,
the algorithm performs either the first technique or the
second technique.

The first technique called swap mutation is only applied
in the permutation part (i.e., the first part). The second one
is only applied in the amount of resource compression part
(i.e., the second part). To explain this mutation operator,
an example is illustrated in Figure 5. For the first mutation
technique as presented in Figure 5(a), the original sequence
of jobs is 𝜋 = (2, 1, 4, 3, 5). When the two positions
are randomly selected (e.g., the 2nd and 4th positions),
their corresponding job 1 and job 3 are swapped while the
second part remains unchanged. That is, the sequence of
jobs becomes 𝜋 = (2, 3, 4, 1, 5) after performing the first
technique. For the second mutation technique as shown in
Figure 5(b), firstly two positions are randomly selected (e.g.,
the 2nd and 4th positions), and then the corresponding new
feasible integer numbers are generated to replace the original
values. That is, the amount value of compression of job 2 in
the 2nd position is updated to a new value 1, while the amount
value of job 4 in 4th position is replaced by new value 2.
These newvalues are randomly generated in their own ranges.
Therefore, the offspring after update operator is still feasible.

4.4.5. Total Cost Reduction Strategy. Metaheuristics are usu-
ally combined with local search approaches, which may
assist in searching for good solutions since they introduce
an idea “greediness” within the metaheuristic [35]. In this
paper, however, any local search strategies are not applied
in the proposed algorithm. Instead, a release cost procedure
is developed to further improve quality of solutions. This
procedure does not change the job processing sequence but
reduces the total compression cost while keeping the same
total tardiness. According to the characteristic of the problem,
it can be observed that by adjusting amount of compression
processing time of job the compression cost can be further
reducedwithout affecting total tardiness.Thus, it can improve
the quality of a solution for a given job sequence to some
extent. The computational complexity of this heuristic is𝑂(𝑛). Themain steps of the proposed total reduction strategy
are below.

Step 1. Let 𝑖 = 𝑛; 𝑆𝐶 = 0; 𝑆𝐸(𝑗) = 0, ∀𝑗 = 1, . . . , 𝑛 (0 is an
empty set). 𝑆𝐶 is a set of release cost. 𝑆𝐸(𝑖) is earliness set in
which jobs follow the 𝜋(𝑖) job.
Step 2. Compute 𝐶𝜋(𝑖) − 𝑑𝜋(𝑖). If 𝐶𝜋(𝑖) − 𝑑𝜋(𝑖) ≥ 0, go to Step 4.
Otherwise go to Step 3.

Step 3. While 𝐶𝜋(𝑖) − 𝑑𝜋(𝑖) < 0 then perform the following
loop until 𝐶𝜋(𝑖) − 𝑑𝜋(𝑖) ≥ 0 or 𝑖 < 1.
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Figure 5: Mutation operator.

Table 1: Data of Example 1.

𝜋 2 (𝐽2) 3 (𝐽3) 4 (𝐽4) 1 (𝐽1) 5 (𝐽5)𝑝𝜋(𝑖) 5 5 8 7 7
𝑥𝜋(𝑖) 1 1 1 4 0
𝑝𝑎𝜋(𝑖) 4 4 7 3 7
𝑑𝜋(𝑖) 5 10 13 20 26
𝐶𝜋(𝑖) 4 8 15 18 25
𝑐𝜋(𝑖) 0.2 0.3 0.1 0.5 0.4

Step 3.1. Compute earliness time of the 𝜋(𝑖) job, namely,𝐸𝜋(𝑖) = |𝐶𝜋(𝑖) − 𝑑𝜋(𝑖)|, and then update the set 𝑆𝐸(𝑖) =
⋃𝑛𝑗=𝑖 𝑆𝐸(𝑗)⋃{𝐸𝜋(𝑖)}.
Step 3.2. Obtain the current minimum earliness 𝑚𝐸𝜋(𝑖) =
min 𝑆𝐸(𝑖) and calculate release cost Cost𝜋(𝑖) = 𝑐𝜋(𝑖) ⋅
min{𝑚𝐸𝜋(𝑖), 𝑥𝜋(𝑖)}, and then put the value Cost𝜋(𝑖) into the set𝑆𝐶, 𝑖 = 𝑖 − 1.
Step 4. Find the job with the maximum value Cost from 𝑆𝐶
if 𝑆𝐶 is not an empty set. This job is denoted by 𝐽𝜋(𝑘). Update
its amount of compression processing time 𝑥𝜋(𝑘) = 𝑥𝜋(𝑘) −
min{𝑚𝐸𝜋(𝑘), 𝑥𝜋(𝑘)} and the completion time of jobs following
the 𝜋(𝑘) job.

To explain this total reduction strategy, an example is
given below.

Example 1. Consider a 5-job instance in Table 1 and Figure 6
with a given job sequence 𝜋 = (2, 3, 4, 1, 5) and amount
vector of compression processing time x = (4, 1, 1, 1, 0). The
corresponding total tardiness and total compression cost are

2 and 2.6, respectively. Perform the total reduction strategy in
the following steps.

Step 1. Let 𝑖 = 5; 𝑆𝐶 = 0; 𝑆𝐸(𝑗) = 0, ∀𝑗 = 1, . . . , 5.
Step 2. Compute 𝐶𝜋(5) − 𝑑𝜋(5) = 25 − 26 = −1 < 0 and go to
Step 3.

Step 3. Conduct the following operation.

Step 3.1. Compute earliness time 𝐸𝜋(5) = |𝐶𝜋(5) − 𝑑𝜋(5)| = 1
and 𝑆𝐸(5) = {1}.
Step 3.2. Obtain theminimum earliness found so far𝑚𝐸𝜋(5) =
min 𝑆𝐸(5) = 1; compute the release cost Cost𝜋(5) = 𝑐𝜋(5) ⋅
min{𝑚𝐸𝜋(5), 𝑥𝜋(5)} = 0.4 × 0 = 0; put the value Cost𝜋(𝑖) into
the set 𝑆𝑐 = {0}; 𝑖 = 𝑖 − 1.
Step 2. Compute 𝐶𝜋(4) − 𝑑𝜋(4) = −2 < 0 and go to Step 3.

Step 3. Conduct the following operation.
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Figure 6: Gantt chart of Example 1 before (a) and after (b) using the total cost reduction strategy.

Step 3.1. 𝐸𝜋(4) = |𝐶𝜋(4)−𝑑𝜋(4)| = 2 and 𝑆𝐸(4) = 𝑆𝐸(5)∪{𝐸𝜋(4)} ={1, 2}.
Step 3.2.𝑚𝐸𝜋(4) = min 𝑆𝐸(4) = 1; Cost𝜋(4) = 𝑐𝜋(4) ⋅min{1, 4} =0.5 × 1 = 0.5; 𝑖 = 𝑖 − 1; 𝑆𝑐 = {0, 0.5}.
Step 2. Compute 𝐶𝜋(3) − 𝑑𝜋(3) = 2 > 0 and go to Step 4.

Step 4. Select the job with the maximum cost value from𝑆𝑐, namely, the 𝜋(4) job. Update the amount of processing
time compressed: 𝑥𝜋(4) = 𝑥𝜋(4) − min{𝑚𝐸𝜋(4), 𝑥𝜋(4)} =4 − min{1, 4} = 3. Meanwhile, the corresponding total
tardiness and total compression cost are updated to 2 and 2.1,
respectively. Note that the total tardiness is fixed but the total
compression cost is reduced.

5. Experimental Study

This section is devoted to assessing the performance of the
proposed algorithm MODBSA on SSPWCPT. The experi-
mental studies include the following four aspects:

(1) Evaluate efficiency of the proposed solution represen-
tation.

(2) Evaluate efficiency of the adaptive selection scheme in
the MODBSA.

(3) Test performance on the total cost reduction strategy
of the MODBSA.

(4) Compare the MODBSA with other MOEAs on the
instances.

In the following subsections, performance metrics, test
function, and parameter setting are described at first, and

Table 2: Parameter setting of the instance.

Input variables Value
Number of jobs (𝑛) 5
Normal processing time (𝑝𝑖) [10, 12, 8, 7, 6]
Maximum amount of compression for job (𝑚𝑖) [3, 4, 3, 5, 4]
Due time (𝑑𝑖) [29, 10, 15, 9, 20]
Unit cost of compression (𝑐𝑖) [0.5, 2, 2.5, 1, 1.5]

then the experimental studies are further investigated step
by step.

5.1. Performance Metrics. As mentioned previously, the final
result is usually not a single optimal value rather than a set
of optimal solutions for MOPs. To explain this problem, the
parameters of a specific instance are provided in Table 2.

The PF obtained by MODBSA on this instance is shown
in Figure 7. Some nondominated solutions and the cor-
responding objective values are summarized in Table 3. It
can be observed that the obtained results consist of some
trade-off solutions. It is also an interesting observation that
there are two nondominated solutions that correspond to
the same front point (i.e., solution 2). Unlike single-objective
problem, the high quality results of MOP not only have
good convergence but also evenly distribution along PF∗.
Therefore, how to evaluate results found by MOEAs is
important for users.

To evaluate the results obtained byMOEAs, somemetrics
including the Spread [36], GD, and IGD [37] should be
adopted as follows.



Mathematical Problems in Engineering 11

Solution 1

Solution 3

Solution 4

Solution 5

Solution 2

0

5

10

15

20

25

f
2

5 10 15 20 25 30 400 35
f1

Figure 7: Pareto front obtained by MODBSA for this scheduling instance.

Table 3: The corresponding results for the instance in Figure 7.

Number Solution Detailed information 𝑓1 𝑓2
1 [4, 2, 3, 5, 1] Job sequence 𝜋 [𝐽4, 𝐽2, 𝐽3, 𝐽5, 𝐽1] 0 22.5[1, 4, 3, 5, 1] Amount of compression x𝜋 [5, 4, 3, 1, 1]
2 [4, 2, 3, 5, 1] Job sequence 𝜋 [𝐽4, 𝐽2, 𝐽3, 𝐽5, 𝐽1] 2.0 20.5[2, 4, 2, 5, 1] Amount of compression x𝜋 [5, 4, 2, 1, 2]
2 [4, 2, 3, 5, 1] Job sequence 𝜋 [𝐽4, 𝐽2, 𝐽3, 𝐽5, 𝐽1] 2.0 20.5[1, 4, 1, 5, 3] Amount of compression x𝜋 [5, 4, 1, 3, 1]
3 [4, 2, 3, 5, 1] Job sequence 𝜋 [𝐽4, 𝐽2, 𝐽3, 𝐽5, 𝐽1] 17.0 10.5[3, 2, 0, 5, 0] Amount of compression x𝜋 [5, 2, 0, 0, 3]
4 [4, 3, 5, 1, 2] Job sequence 𝜋 [𝐽4, 𝐽3, 𝐽5, 𝐽1, 𝐽2] 34.0 0.5[1, 0, 0, 0, 0] Amount of compression x𝜋 [0, 0, 0, 1, 0]
5 [4, 3, 5, 1, 2] Job sequence 𝜋 [𝐽4, 𝐽3, 𝐽5, 𝐽1, 𝐽2] 36.0 0.0[0, 0, 0, 0, 0] Amount of compression x𝜋 [0, 0, 0, 0, 0]

(1) Spread (Δ). It is a diversity performance index that assesses
the distribution of the obtained solutions in the front. This
metric can be formulated as follows:

Δ = ∑𝑚𝑗=1 𝑑𝑒𝑗 + ∑|PF|𝑖=1 𝑑𝑖 − 𝑑
∑𝑚𝑗=1 𝑑𝑒𝑗 + |PF| ⋅ 𝑑 , (13)

where 𝑑𝑖 is the Euclidean distance of each point in PF to its
closest point in PF, 𝑑 represents the mean value of all 𝑑𝑖, 𝑑𝑒𝑗
denotes the Euclideandistance between the extreme solutions
in the 𝑗th objective and the boundary solutions of the PF∗,|PF| is the number of PF, and 𝑚 is the number of objectives.
If the spread value is zero, then all the members of Pareto
optimal front are evenly spaced. Lower values indicate better
distribution and diversity.

(2) Generational Distance (GD). It is a convergence indicator,
which represents how far the obtained PF is from PF∗. It can
be formulated as follows:

GD = √∑|PF|𝑖=1 𝐷2𝑖
|PF| , (14)

where |PF| means the number of PF points and 𝐷𝑖 is the
Euclidean distance between the 𝑖th member of PF obtained
and the nearest member of PF∗. A low GD value represents a
good convergence performance. A normalization method is
used in this metric.

(3) Inverse Generational Distance (IGD). It is a variant of the
GD but represents a combined or comprehensive indicator.
It measures the average distance between each solution
consisting of the optimal Pareto front and obtained front.
IGD can be defined as follows:

IGD = ∑𝑥∈PF∗ dist (𝑥,PF)|PF∗| , (15)

where |PF∗| is the number of the optimal Pareto fronts;
dist(𝑥,PF) is the Euclidean distance between 𝑥 and the
nearest member of the approximation. Fronts with a lower
IGD value are desirable. This metric uses a normalization
method.

It should be mentioned that the true PF∗ of the studied
problem may be unknown; therefore, the nondominated
solutions obtained by different MOEAs on each instance in
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Table 4: Data set distribution.

Input variables Distribution
Number of jobs (𝑛) 10, 30, 50, 80, 100, 200
Normal processing time (𝑝𝑖) DU(20, 50)
Crash processing time (𝑝𝑐𝑖 ) DU(0.5 ∗ 𝑝𝑖, 𝑝𝑖)
Due time (𝑑𝑖) 𝑑𝑖 = 𝑃(1 − 𝑟) + (𝑃/1.1 + 𝑃(1 − 𝑟))/(𝑛 − 1)
Unit cost of compression (𝑐𝑖) 𝑈(0.5, 2.5)

Table 5: Mean and standard deviation value of all metrics between MODBSAsk and MODBSA.

Problem GD (mean/std) Spread (mean/std) IGD (mean/std)
MODBSAsk MODBSA MODBSAsk MODBSA MODBSAsk MODBSA

50_02 8.76𝑒−03/9.9𝑒−03 8.41e−03/1.1e−02 5.83𝑒−01/3.1𝑒−01 5.61e−01/3.3e−01 3.02𝑒−03/5.6𝑒−04 6.16e−04/1.5e−04
50_04 1.73e−02/1.6e−02 1.87𝑒−02/2.6𝑒−02 7.15e−01/4.1e−01 7.79𝑒−01/3.7𝑒−01 3.01𝑒−03/6.1𝑒−04 8.38e−04/3.6e−04
50_06 3.32𝑒−02/4.8𝑒−02 3.23e−02/5.5e−02 7.41𝑒−01/4.1𝑒−01 7.38e−01/4.7e−01 3.29𝑒−03/7.3𝑒−04 9.67e−04/4.2e−04
50_08 3.56e−02/4.8e−02 3.77𝑒−02/5.7𝑒−02 7.83e−01/4.0e−01 7.87𝑒−01/5.1𝑒−01 3.83𝑒−03/1.2𝑒−03 6.02e−04/2.0e−04
50_10 2.97e−02/5.0e−02 3.06𝑒−02/3.5𝑒−02 8.68𝑒−01/1.8𝑒−01 6.86e−01/4.7e−01 8.36𝑒−03/2.4𝑒−03 9.29e−04/4.1e−04
80_02 1.68𝑒−02/1.4𝑒−02 1.00e−02/1.3e−02 6.41e−01/3.2e−01 7.75𝑒−01/3.4𝑒−01 3.85𝑒−03/5.7𝑒−04 7.88e−04/4.2e−04
80_04 3.28𝑒−02/3.2𝑒−02 1.47e−02/1.7e−02 7.38e−01/3.2e−01 9.40𝑒−01/3.8𝑒−01 3.92𝑒−03/8.9𝑒−04 7.99e−04/3.3e−04
80_06 5.48𝑒−02/6.0𝑒−02 2.65e−02/4.3e−02 6.74e−01/3.6e−01 9.91𝑒−01/4.0𝑒−01 5.16𝑒−03/1.1𝑒−03 6.20e−04/2.1e−04
80_08 7.41𝑒−02/6.8𝑒−02 5.24e−02/6.3e−02 9.12e−01/3.5e−01 1.07𝑒+00/4.3𝑒−01 6.95𝑒−03/2.1𝑒−03 6.87e−04/2.4e−04
80_10 3.67e−02/5.1e−02 8.90𝑒−02/5.8𝑒−02 9.65𝑒−01/1.7𝑒−01 8.50e−01/4.5e−01 2.18𝑒−02/5.3𝑒−03 7.46e−04/3.6e−04
100_02 1.54𝑒−02/1.3𝑒−02 6.98e−03/6.5e−03 5.88e−01/2.4e−01 7.65𝑒−01/3.3𝑒−01 5.07𝑒−03/6.2𝑒−04 1.21e−03/4.3e−04
100_04 3.67𝑒−02/3.9𝑒−02 2.13e−02/2.2e−02 8.31e−01/3.5e−01 9.09𝑒−01/4.1𝑒−01 4.76𝑒−03/1.0𝑒−03 7.09e−04/2.6e−04
100_06 5.17𝑒−02/5.5𝑒−02 3.79e−02/4.3e−02 8.85e−01/3.3e−01 9.78𝑒−01/4.1𝑒−01 7.93𝑒−03/2.1𝑒−03 8.36e−04/3.7e−04
100_08 7.68𝑒−02/8.1𝑒−02 6.26e−02/8.1e−02 9.38e−01/3.0e−01 1.09𝑒+00/3.7𝑒−01 1.27𝑒−02/3.5𝑒−03 6.18e−04/2.8e−04
100_10 4.30e−02/4.9e−02 1.30𝑒−01/7.7𝑒−02 9.67𝑒−01/1.4𝑒−01 9.19e−01/4.2e−01 3.44𝑒−02/6.8𝑒−03 6.72e−04/2.6e−04
200_02 1.94𝑒−02/1.3𝑒−02 1.36e−02/6.5e−03 7.96e−01/2.4e−01 8.76𝑒−01/3.0𝑒−01 7.92𝑒−03/5.8𝑒−04 8.33e−04/3.0e−04
200_04 6.54𝑒−02/4.1𝑒−02 3.74e−02/2.7e−02 8.81e−01/2.9e−01 1.18𝑒+00/2.3𝑒−01 1.61𝑒−02/2.3𝑒−03 9.47e−04/3.2e−04
200_06 1.11𝑒−01/8.9𝑒−02 7.63e−02/6.2e−02 9.91e−01/2.4e−01 1.19𝑒+00/3.3𝑒−01 2.37𝑒−02/4.3𝑒−03 1.02e−03/3.3e−04
200_08 8.46e−02/6.5e−02 1.89𝑒−01/1.0𝑒−01 1.01e+00/1.7e−01 1.20𝑒+00/2.5𝑒−01 5.24𝑒−02/9.8𝑒−03 5.96e−04/2.5e−04
200_10 8.61e−02/9.3e−02 4.74𝑒−01/1.1𝑒−01 9.60e−01/7.2e−02 1.02𝑒+00/4.2𝑒−01 1.58𝑒−01/2.0𝑒−02 7.12e−04/2.2e−04
Hit rate 7/20 13/20 15/20 5/20 0/20 20/20

all the independent runs are regarded as PF∗ on that instance
[38].

5.2. Description of Test Function. The instances generated
are defined as shown in Table 4. There are six different
numbers of jobs (𝑛 = 10, 30, 50, 80, 100, 200), where the
normal processing times and the crash processing times are
drawn from the discrete uniform distributions DU(20, 100)
and DU(0.5 ⋅ 𝑝𝑖, 𝑝𝑖), respectively. In due date calculation,𝑃 = ∑𝑛𝑖=1 𝑝𝑖, and 𝑟 is the discrete value from 0.2 to 1.0 with the
step size of 0.2.Theunit cost of compression is generated from
a uniform distribution ranging between 0.5 and 2.5. Each
instance can be labelled in the form of “n_r”. For example,
“10_02” represents the fact that the problem is featured by 10
jobs and 𝑟 equal to 0.2.

5.3. Experimental Settings. All algorithms are coded in Java
on the platform jMetal [39]. Experimental tests are imple-
mented on a computer with Intel Core i5, 2.39GHz, 4GB
RAM, with a Windows 8 operating system.

Parameter settings can affect the performance of the
algorithm. The pilot experiments demonstrated that the
population size and archive size were sensitive to the problem
scale. Therefore, for various variants of MODBSA in Sec-
tions 5.4–5.6, the maximum number of function evaluations
(NFEs) is 25,000 for 10-job and 30-job instances, 35,000
for 50-job and 80-job instances, and 45,000 for 100-job
and 200-job instances. The population size and the external
archive size are set to 50 for 10-job and 30-job instances,
80 for 50-job and 80-job instances, and 100 for 100-job
and 200-job instances. The historical population size is
equal to the population size. In Section 5.7, the parameter
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Table 6: Wilcoxon signed rank test results based on the best metrics for each instance with 30 independent runs (a level of significant𝛼 = 0.05).

Number
GD Δ IGD

MODBSA versus MODBSAsk MODBSA versus MODBSAsk MODBSA versus MODBSAsk𝑅+ 𝑅− 𝑝 value/win 𝑅+ 𝑅− 𝑝 value/win 𝑅+ 𝑅− 𝑝 value/win
50_02 243 222 8.29𝑒 − 01/= 256 209 6.29𝑒 − 01/= 465 0 1.73𝑒 − 06/+
50_04 231 234 9.75𝑒 − 01/= 217 248 7.50𝑒 − 01/= 465 0 1.73𝑒 − 06/+
50_06 248 217 7.50𝑒 − 01/= 229 326 9.43𝑒 − 01/= 465 0 1.73𝑒 − 06/+
50_08 222 243 8.29𝑒 − 01/= 326 229 9.43𝑒 − 01/= 465 0 1.73𝑒 − 06/+
50_10 195 270 4.41𝑒 − 01/= 326 139 5.45𝑒 − 02/= 465 0 1.73𝑒 − 06/+
80_02 336 129 3.33𝑒 − 02/+ 155 310 1.11𝑒 − 01/= 465 0 1.73𝑒 − 06/+
80_04 369 96 5.00𝑒 − 03/+ 119 346 1.96𝑒 − 02/− 465 0 1.73𝑒 − 06/+
80_06 349 116 1.66𝑒 − 02/+ 98 367 5.70𝑒 − 02/− 465 0 1.73𝑒 − 06/+
80_08 446 19 1.13𝑒 − 05/+ 157 308 1.20𝑒 − 01/= 465 0 1.73𝑒 − 06/+
80_10 108 357 1.04𝑒 − 02/− 281 184 3.19𝑒 − 01/= 465 0 1.73𝑒 − 06/+
100_02 465 0 1.73𝑒 − 06/+ 117 348 1.75𝑒 − 02/− 465 0 1.73𝑒 − 06/+
100_04 396 69 7.71𝑒 − 04/+ 190 275 3.82𝑒 − 01/= 465 0 1.73𝑒 − 06/+
100_06 431 34 4.45𝑒 − 05/+ 175 325 5.71𝑒 − 02/= 465 0 1.73𝑒 − 06/+
100_08 432 33 4.07𝑒 − 05/+ 140 325 5.71𝑒 − 02/− 465 0 1.73𝑒 − 06/+
100_10 198 267 4.78𝑒 − 01/= 246 219 7.81𝑒 − 01/= 465 0 1.73𝑒 − 06/+
200_02 325 140 5.71𝑒 − 02/= 164 301 1.59𝑒 − 01/= 465 0 1.73𝑒 − 06/+
200_04 465 0 1.73𝑒 − 06/+ 73 392 1.01𝑒 − 03/− 465 0 1.73𝑒 − 06/+
200_06 389 76 1.29𝑒 − 03/+ 98 367 5.71𝑒 − 03/− 465 0 1.73𝑒 − 06/+
200_08 31 434 3.41𝑒 − 05/− 80 385 1.70𝑒 − 03/− 465 0 1.73𝑒 − 06/+
200_10 0 465 1.73𝑒 − 06/− 0 465 1.73𝑒 − 06/− 465 0 1.73𝑒 − 06/+
+/ = /− 10/7/3 0/12/8 20/0/0

settings of MODBSA and its compared MOEAs can be
found in related subsection. Each experiment was con-
ducted 30 independent times on each test problem for each
algorithm.

The optimal results are highlighted with bold in Tables
5, 7, 9, 12, 13, and 14. Due to the stochastic characteristic of
all candidate MOEAs, the statistical analysis is necessary to
provide confidential comparisons. AWilcoxon sign rank test
[38, 40] is used to test the significant difference between the
results obtained by different algorithms.The confidence level
for all tests is set to 95% (corresponding to 𝛼 = 0.05). The
sign “+” indicates that our proposed MODBSA algorithm
performs significantly better than the second best algorithm
on average. While “−” represents the fact that the MODBSA
algorithm is significantly worse than the best algorithm,
the “=” sign denotes that there is no significant difference
between MODBSA and the best or second best MOEA.𝑅+ represents the sum of ranks for the problem where the
MODBSAperforms better than its competitor.𝑅− denotes the
sum of ranks for the opposite.

5.4. Efficiency of Solution Representation. To test the effi-
ciency of the proposed solution representation, it is compared
with subrange keys for MODBSA on medium and large scale
problems. In this study, MODBSAsk represents MODBSA

based on subrange keys. More detailed information on
subrange keys can be found in Nearchou [8]. Since subrange
key is a real-coded scheme, the operators in MODBSAsk are
different from that in MODBSA. The update operators of
MODBSAsk are as follows: the simulated binary crossover
(SBX) and polynomial mutation are used. The distribution
indexes in both SBX and the polynomial mutation are set
to 20. The crossover rate is 0.9, and mutation rate is 0.2. In
addition, the proposed total cost reduction strategy is also
adopted in MODBSAsk, but MODBSAsk requires converting
real-coded scheme to discrete-coded scheme in this phase.
MODBSA includes the proposed solution representation.The
crossover rate is 0.9 and mutation rate is 0.2. Table 5 shows
themean and standard deviationmetrics on these algorithms
over 30 independent runs. Table 6 reports the significant test
results over 30 runs.

Table 5 reveals that MODBSA obtains the optimal results
on 13, 5, and 20 out of 20 test instances for GD, Spread, and
IGDmetrics, while MODBSAsk achieves the best values on 7,
15, and 0 problems, respectively. Table 6 records the 𝑝 values
of the Wilcoxon signed rank test. We can clearly observe
from Table 6 that MODBSA has higher “+” counts than
its compared algorithm in terms of GD and IGD. It means
MODBSA is significantly better than MODBSAsk for GD
and IGD metrics. This may be because the proposed discrete
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Table 7: Mean and standard deviation value of all metrics between MODBSArs and MODBSA.

Problem GD (mean/std) Spread (mean/std) IGD (mean/std)
MODBSArs MODBSA MODBSArs MODBSA MODBSArs MODBSA

50_02 7.58𝑒−03/7.1𝑒−03 1.61e − 03/2.2e −
03

2.79e − 01/1.5e −
01 5.76𝑒−01/2.9𝑒−01 6.41e − 04/1.7e −

04 7.36𝑒−04/2.2𝑒−04
50_04 1.68𝑒−02/2.8𝑒−02 1.82e − 03/2.0e −

03
3.05e − 01/1.3e −

01 6.61𝑒−01/3.9𝑒−01 1.11𝑒−03/4.8𝑒−04 9.85e − 04/4.8e −
04

50_06 2.91𝑒−02/4.3𝑒−02 2.22e − 03/1.3e −
03

2.92e − 01/6.9e −
02 7.44𝑒−01/4.7𝑒−01 1.35𝑒−03/5.2𝑒−04 8.20e − 04/3.3e −

04

50_08 4.67𝑒−02/5.7𝑒−02 4.55e − 03/6.3e −
03

3.51e − 01/2.1e −
01 7.62𝑒−01/5.4𝑒−01 1.29𝑒−03/4.4𝑒−04 5.44e − 04/2.1e −

04

50_10 3.75𝑒−02/4.7𝑒−02 1.60e − 02/9.8e −
03

6.12e − 01/1.5e −
01 8.24𝑒−01/4.7𝑒−01 4.42𝑒−03/1.5𝑒−03 9.21e − 04/4.0e −

04

80_02 1.16𝑒−02/1.1𝑒−02 3.31e − 03/3.1e −
03

3.68e − 01/2.0e −
01 6.82𝑒−01/3.6𝑒−01 1.03𝑒−03/3.4𝑒−04 6.31e − 04/1.8e −

04

80_04 3.04𝑒−02/2.9𝑒−02 4.97e − 03/5.9e −
03

4.40e − 01/2.2e −
01 9.35𝑒−01/3.4𝑒−01 2.64𝑒−03/9.9𝑒−04 1.03e − 03/4.7e −

04

80_06 4.88𝑒−02/5.3𝑒−02 6.37e − 03/6.5e −
03

4.54e − 01/2.1e −
01 9.86𝑒−01/4.2𝑒−01 4.01𝑒−03/1.7𝑒−03 7.12e − 04/3.1e −

04

80_08 7.84𝑒−02/7.2𝑒−02 1.17e − 02/1.2e −
02

5.86e − 01/2.4e −
01 1.05𝑒+00/4.5𝑒−01 5.32𝑒−03/1.8𝑒−03 7.04e − 04/2.9e −

04

80_10 5.42𝑒−02/5.5𝑒−02 3.34e − 02/9.3e −
03

7.75e − 01/1.0e −
01 9.82𝑒−01/4.4𝑒−01 1.26𝑒−02/3.0𝑒−03 7.21e − 04/3.7e −

04

100_02 1.74𝑒−02/1.2𝑒−02 7.22e − 03/1.0e −
02

5.00e − 01/2.7e −
01 8.37𝑒−01/3.4𝑒−01 2.25𝑒−03/8.6𝑒−04 7.75e − 04/4.1e −

04

100_04 3.00𝑒−02/3.2𝑒−02 4.99e − 03/3.6e −
03

5.04e − 01/1.7e −
01 9.00𝑒−01/4.1𝑒−01 3.58𝑒−03/1.0𝑒−03 9.49e − 04/3.0e −

04

100_06 4.97𝑒−02/5.7𝑒−02 9.95e − 03/8.7e −
03

6.18e − 01/2.5e −
01 9.75𝑒−01/3.9𝑒−01 5.34𝑒−03/1.5𝑒−03 8.68e − 04/3.4e −

04

100_08 6.28𝑒−02/5.9𝑒−02 1.42e − 02/7.6e −
03

6.93e − 01/1.8e −
01 1.06𝑒+00/3.8𝑒−01 8.61𝑒−03/2.1𝑒−03 6.33e − 04/2.5e −

04

100_10 5.95𝑒−02/6.8𝑒−02 5.51e − 02/1.5e −
02

8.81e − 01/9.2e −
02 1.03𝑒+00/3.6𝑒−01 2.05𝑒−02/3.1𝑒−03 7.15e − 04/2.8e −

04

200_02 2.13𝑒−02/1.7𝑒−02 9.63e − 03/5.7e −
03

7.52e − 01/2.1e −
01 8.70𝑒−01/3.1𝑒−01 9.41𝑒−03/1.7𝑒−03 7.14e − 04/2.9e −

04

200_04 6.01𝑒−02/3.9𝑒−02 1.27e − 02/3.5e −
03

7.83e − 01/1.5e −
01 1.14𝑒+00/2.5𝑒−01 1.55𝑒−02/3.2𝑒−03 7.55e − 04/3.3e −

04

200_06 5.90𝑒−02/4.0𝑒−02 1.38e − 02/4.7e −
03

8.51e − 01/1.2e −
01 1.20𝑒+00/2.0𝑒−01 1.84𝑒−02/2.9𝑒−03 7.90e − 04/2.3e −

04

200_08 6.74𝑒−02/5.7𝑒−02 5.91e − 02/1.9e −
02

9.38e − 01/9.7e −
02 1.09𝑒+00/3.5𝑒−01 3.97𝑒−02/6.3𝑒−03 6.31e − 04/2.2e −

04

200_10 9.75e − 02/7.8e −
02 2.59𝑒−01/4.4𝑒−02 9.64e − 01/5.4e −

02 1.17𝑒+00/3.1𝑒−01 1.09𝑒−01/1.1𝑒−02 8.00e − 04/3.0e −
04

Hit rate 1/20 19/20 20/20 0/20 1/20 19/20

encoding scheme can avoid information redundancy during
the search process comparedwith the encoding scheme based
on subrange keys. Meanwhile, MODBSA is significantly
worse than MODBSAsk in terms of Spread metric on most
instances. The reason behind it is that the encoding scheme
based on subrange keys may have a great choice to search for
different areas of the search space and thus improve search
diversity, although it can lead to information redundancy.

5.5. Efficiency of Adaptive Strategy. To test the efficiency
of the adaptive mechanism in MODBSA, we compare the

MODBSA with MODBSA based on random selection mech-
anism on the 20 medium and large scale problems. In
this experiment, MODBSArs denotes MODBSA with ran-
dom selection mechanism. Note that adaptive mechanism is
included in MODBSA. The other parameter settings of both
MOEAs are the same for a fair comparison. Table 7 reports
the statistical metrics on two strategies over 30 independent
runs. Table 8 summarizes the 𝑝 values of Wilcoxon signed
rank test.

From Tables 7 and 8, it can be observed that MODBSA
completely dominates MODBSArs in terms of IGD metric
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Table 8: Wilcoxon signed rank test results based on the best metrics for each instance with 30 independent runs (a level of significant𝛼 = 0.05).

Number
GD Δ IGD

MODBSA versus MODBSArs MODBSA versus MODBSArs MODBSA versus MODBSArs𝑅+ 𝑅− 𝑝 value/win 𝑅+ 𝑅− 𝑝 value/win 𝑅+ 𝑅− 𝑝 value/win
50_02 319 146 7.52𝑒 − 03/+ 33 432 4.07𝑒 − 05/− 160 305 1.36𝑒 − 01/ =
50_04 383 82 1.96𝑒 − 03/+ 63 402 4.90𝑒 − 04/− 465 0 1.73𝑒 − 06/+
50_06 370 95 4.68𝑒 − 03/+ 49 416 1.60𝑒 − 04/− 398 67 6.64𝑒 − 04/+
50_08 423 42 8.91𝑒 − 06/+ 105 360 8.70𝑒 − 03/− 464 1 1.92𝑒 − 06/+
50_10 337 128 3.16𝑒 − 02/+ 115 350 1.57𝑒 − 02/− 465 0 1.73𝑒 − 06/+
80_02 336 129 3.33𝑒 − 02/+ 69 396 7.71𝑒 − 04/− 436 29 2.84𝑒 − 05/+
80_04 369 96 5.00𝑒 − 03/+ 18 447 1.02𝑒 − 05/− 461 4 2.60𝑒 − 06/+
80_06 349 116 1.66𝑒 − 02/+ 43 422 9.71𝑒 − 05/− 465 0 1.73𝑒 − 06/+
80_08 433 32 3.72𝑒 − 05/+ 55 410 2.61𝑒 − 04/− 465 0 1.73𝑒 − 06/+
80_10 357 108 1.04𝑒 − 02/+ 130 335 3.50𝑒 − 02/− 465 0 1.73𝑒 − 06/+
100_02 438 27 2.37𝑒 − 05/+ 75 390 1.20𝑒 − 03/− 458 7 3.52𝑒 − 06/+
100_04 465 0 1.73𝑒 − 06/+ 54 411 2.41𝑒 − 04/− 465 0 1.73𝑒 − 06/+
100_06 431 34 4.45𝑒 − 05/+ 60 405 3.88𝑒 − 04/− 465 0 1.73𝑒 − 06/+
100_08 465 0 1.73𝑒 − 06/+ 54 411 2.41𝑒 − 04/− 465 0 1.73𝑒 − 06/+
100_10 198 267 4.78𝑒 − 01/ = 137 328 4.95𝑒 − 02/− 465 0 1.73𝑒 − 06/+
200_02 378 87 2.77𝑒 − 03/+ 157 308 1.20𝑒 − 01/ = 465 0 1.73𝑒 − 06/+
200_04 337 128 3.16𝑒 − 02/+ 43 422 9.71𝑒 − 05/− 465 0 1.73𝑒 − 06/+
200_06 389 76 1.29𝑒 − 03/+ 11 454 5.22𝑒 − 06/− 465 0 1.73𝑒 − 06/+
200_08 434 31 3.41𝑒 − 05/+ 109 356 1.11𝑒 − 02/− 465 0 1.73𝑒 − 06/+
200_10 44 421 1.06𝑒 − 04/− 77 388 1.40𝑒 − 03/− 465 0 1.73𝑒 − 06/+
+/ = /− 18/1/1 0/1/19 19/1/0

on most instances. However, such advantage will no longer
exist when only Spread metric is considered. The poor
distribution performance of MODBSA may be associated
with the characteristic of the problem. More specifically,
this type of scheduling problem may be a multimodal
optimization issue which contains several optimal solutions
corresponding to the same objective value (i.e., the second
nondominated solution on the case in Table 3).Therefore, the
distribution distance between Pareto fronts is very crowded.
MODBSA can obtain better results thanMODBSArs in terms
of GD metric. In summary, the proposed MODBSA based
on adaptive selection mechanism is superior to MODBSArs
on most instances. This means that adaptive selection can
enhance search efficiency. Besides, the results computed by
the proposedMODBSA are more stable, which indicates that
the adaptive selection strategy can strengthen the stability of
the MODBSA.

5.6. Efficiency of Total Cost Reduction in Proposed Algorithm.
To prove the efficiency of the MODBSA with the total cost
reduction strategy, it is compared with MODBSA without
the total cost reduction. In this experiment, MODBSAntcr
denotes the MODBSA without the total cost reduction
strategy. MODBSA itself includes the total cost reduc-
tion strategy. The parameter settings of both MOEAs are
the same as the above experiments. Table 9 records the

statistical metrics on different algorithms over 30 inde-
pendent runs. Table 10 shows the test results based on
the best metrics for each instance with 30 independent
runs.

Table 9 presents that the MODBSA is superior or com-
petitive to MODBSAntcr in terms of all metrics on most
instances. From Table 10, it can be clearly observed that
the MODBSA with the total cost reduction strategy has a
significant better performance than the one without this
strategy on most instances. It means that MODBSA using
the total cost reduction strategy has good convergence and
coverage performance compared with MODBSA without
total cost reduction. It also implies that the exploitation ability
can be improved by the adoption of the total cost reduction
technique in MODBSA for solving SSPWCPT.

5.7. ComparisonMODBSAwith Other Algorithms. To further
assess the performance of the MODBSA on these scheduling
problems, MODBSA is compared with well-known MOEAs:
NSGA-II [36], PAES [41], and SPEA2 [42]. To fit the charac-
teristic of the addressed problem andmake a fair comparison,
we modified these considered MOEAs. All MOEAs use the
same population size and the NFEs as stated in Section 5.3.
Moreover, the initial population is generated based on the
proposed encoding scheme and strategy for all MOEAs.
All MOEAs adopt the same operators including crossover,
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Table 9: Mean and standard deviation value of all metrics between MODBSAntcr and MODBSA.

Problem GD (mean/std) Spread (mean/std) IGD (mean/std)
MODBSAntcr MODBSA MODBSAntcr MODBSA MODBSAntcr MODBSA

50_02 9.70𝑒−03/1.3𝑒−02 9.32e − 03/1.2e −
02

5.81e − 01/3.3e −
01 6.17𝑒−01/2.9𝑒−01 1.68𝑒−03/4.4𝑒−04 1.57e −

03/3.3e − 04

50_04 1.91𝑒−02/2.9𝑒−02 1.18e − 02/1.9e −
02 6.88𝑒−01/4.4𝑒−01 5.67e − 01/3.8e −

01 8.85𝑒−04/4.8𝑒−04 7.82e −
04/2.6e − 04

50_06 1.81e − 02/2.5e −
02 3.50𝑒−02/4.2𝑒−02 7.37e − 01/4.1e −

01 8.31𝑒−01/4.7𝑒−01 1.63𝑒−03/5.3𝑒−04 1.60e −
03/5.8e − 04

50_08 3.12𝑒−02/3.5𝑒−02 2.58e − 02/3.5e −
02 7.97𝑒−01/4.8𝑒−01 7.01e − 01/4.9e −

01 7.59𝑒−04/3.9𝑒−04 7.07e −
04/1.9e − 04

50_10 2.13𝑒−02/2.7𝑒−02 1.86e − 02/2.7e −
02 7.14𝑒−01/4.5𝑒−01 6.82e − 01/4.3e −

01 1.31𝑒−03/4.2𝑒−04 1.26e −
03/4.5e − 04

80_02 1.72𝑒−02/1.2𝑒−02 1.23e − 02/1.3e −
02 8.35𝑒−01/3.1𝑒−01 6.59e − 01/3.7e −

01 6.85𝑒−04/2.5𝑒−04 6.60e −
04/2.8e − 04

80_04 4.33𝑒−02/3.7𝑒−02 3.84e − 02/3.7e −
02 1.00𝑒+00/3.9𝑒−01 9.13e − 01/4.4e −

01
6.50e − 04/2.5e −

04
7.60𝑒 −04/3.0𝑒 − 04

80_06 4.60𝑒−02/4.1𝑒−02 3.82e − 02/3.2e −
02

8.56e − 01/4.5e −
01 9.72𝑒−01/4.4𝑒−01 6.59𝑒−04/2.8𝑒−04 6.15e −

04/1.9e − 04

80_08 7.27𝑒−02/6.6𝑒−02 5.76e − 02/5.2e −
02 1.03𝑒+00/4.5𝑒−01 1.00e + 00/4.6e −

01 8.15𝑒−04/3.9𝑒−04 7.90e −
04/3.7e − 04

80_10 4.83𝑒−02/5.1𝑒−02 4.18e − 02/6.0e −
02 9.40𝑒−01/4.4𝑒−01 8.23e − 01/4.4e −

01
8.25e − 04/3.9e −

04
9.26𝑒 −04/4.5𝑒 − 04

100_02 1.91𝑒−02/1.8𝑒−02 1.84e − 02/1.5e −
02 8.37𝑒−01/3.2𝑒−01 8.30e − 01/3.3e −

01
9.26e − 04/3.5e −

04
9.49𝑒 −04/3.8𝑒 − 04

100_04 4.65e − 02/4.5e −
02 5.34𝑒−02/3.9𝑒−02 9.70e − 01/4.1e −

01 1.07𝑒+00/3.5𝑒−01 9.00e − 04/3.9e −
04

9.43𝑒 −04/3.7𝑒 − 04
100_06 3.39e − 02/4.4e −

02 5.19𝑒−02/5.4𝑒−02 7.79e − 01/4.8e −
01 1.03𝑒+00/3.8𝑒−01 7.12𝑒−04/2.7𝑒−04 6.59e −

04/2.5e − 04

100_08 6.17e − 02/6.1e −
02 8.69𝑒−02/7.6𝑒−02 1.02e + 00/4.2e −

01 1.10𝑒+00/4.0𝑒−01 7.50𝑒−04/3.0𝑒−04 7.31e −
04/3.6e − 04

100_10 4.67e − 02/4.9e −
02 5.57𝑒−02/5.8𝑒−02 9.74e − 01/4.1e −

01 9.81𝑒−01/4.3𝑒−01 9.08𝑒−04/3.3𝑒−04 7.50e −
04/2.5e − 04

200_02 2.08e − 02/1.5e −
02 2.26𝑒−02/1.5𝑒−02 8.70e − 01/3.1e −

01 9.20𝑒−01/2.6𝑒−01 7.73e − 04/2.7e −
04

7.91𝑒 −04/2.8𝑒 − 04
200_04 5.07𝑒−02/4.3𝑒−02 4.97e − 02/4.0e −

02
1.04e + 00/3.3e −

01 1.13𝑒+00/3.5𝑒−01 7.19𝑒−04/3.1𝑒−04 6.79e −
04/2.9e − 04

200_06 8.77e − 02/7.0e −
02 9.73𝑒−02/6.8𝑒−02 1.19e + 00/2.6e −

01 1.19𝑒+00/3.2𝑒−01 8.01e − 04/2.8e −
04

9.01𝑒 −04/3.4𝑒 − 04
200_08 9.08𝑒−02/6.7𝑒−02 8.21e − 02/1.3e −

01 1.21𝑒+00/2.7𝑒−01 1.11e + 00/4.1e −
01 8.52𝑒−04/3.5𝑒−04 8.20e −

04/3.6e − 04

200_10 7.32e − 02/5.9e −
02 8.68𝑒−02/7.6𝑒−02 1.14𝑒+00/2.9𝑒−01 1.13e + 00/3.1e −

01 9.57𝑒−04/4.2𝑒−04 9.49e −
04/3.7e − 04

Hit rate 8/20 12/20 10/20 10/20 6/20 14/20

mutation, and total cost reduction as mentioned in this
paper only if they exist corresponding operators. The other
parameters are summarized in Table 11. 30 independent runs
are implemented for each MOEA on each test instance.

Tables 12–14 show the statistical results ofGD, Spread, and
IGD. From these tables, we can observe that the proposed
MODBSA outperforms its counterparts for most instances.
Especially on the comprehensive metric IGD and conver-
gence metric GD, the outperformance of the MODBSA
is overwhelming except for several problems. MODBSA is
also competitive to NSGA-II with regard to Spread metric.

In addition, from Table 15, MODBSA shows a significant
improvement over the other MOEAs with a level of signifi-
cance 𝛼 = 0.05 in terms of IGD metric. The major reasons
for the good performance of the MODBSA can be explained
as follows. First, the adoption of the dual population strat-
egy can improve the diversity of population since different
population may have different search directions, and thus
the MODBSA can maintain a good diversity in search space.
Second, to boost convergence performance, the adaptive
selection mechanism can select an appropriate population
as parent population for generating new candidate solutions
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Table 10: Wilcoxon signed rank test results based on the best metrics for each instance with 30 independent runs (a level of significant𝛼 = 0.05).

Number
GD Δ IGD

MODBSA versus MODBSAntcr MODBSA versus MODBSAntcr MODBSA versus MODBSAntcr𝑅+ 𝑅− 𝑝 value/win 𝑅+ 𝑅− 𝑝 value/win 𝑅+ 𝑅− 𝑝 value/win
50_02 243 222 8.29𝑒 − 01/ = 33 432 4.07𝑒 − 05/− 305 160 1.36𝑒 − 01/ =
50_04 234 231 9.75𝑒 − 01/ = 402 63 4.90𝑒 − 04/+ 398 67 6.64𝑒 − 04/+
50_06 94 371 4.38𝑒 − 03/− 49 416 1.60𝑒 − 04/− 293 172 2.13𝑒 − 01/ =
50_08 464 1 1.92𝑒 − 06/+ 360 105 8.70𝑒 − 03/+ 464 1 1.92𝑒 − 06/+
50_10 434 31 3.41𝑒 − 05/+ 350 115 1.57𝑒 − 02/+ 465 0 1.73𝑒 − 06/+
80_02 336 129 3.33𝑒 − 02/+ 396 69 7.71𝑒 − 04/+ 436 29 2.84𝑒 − 05/+
80_04 369 96 5.00𝑒 − 03/+ 447 18 1.02𝑒 − 05/+ 4 461 2.60𝑒 − 06/−
80_06 349 116 1.66𝑒 − 02/+ 43 422 9.71𝑒 − 05/− 396 69 7.71𝑒 − 04/+
80_08 465 0 1.73𝑒 − 06/+ 269 196 4.53𝑒 − 01/ = 465 0 1.73𝑒 − 06/+
80_10 357 108 1.04𝑒 − 02/+ 335 130 3.50𝑒 − 02/+ 0 465 1.73𝑒 − 06/−
100_02 257 208 6.14𝑒 − 01/ = 257 208 6.14𝑒 − 01/ = 140 325 5.71𝑒 − 02/ =
100_04 176 289 2.45𝑒 − 01/ = 54 411 2.41𝑒 − 04/− 159 306 1.31𝑒 − 01/ =
100_06 34 431 4.45𝑒 − 05/− 60 405 3.88𝑒 − 04/− 465 0 1.73𝑒 − 06/+
100_08 57 408 3.07𝑒 − 04/− 54 411 2.41𝑒 − 04/− 458 7 3.52𝑒 − 06/+
100_10 198 267 4.78𝑒 − 01/ = 137 328 4.95𝑒 − 02/− 465 0 1.73𝑒 − 06/+
200_02 140 325 5.71𝑒 − 02/ = 157 308 1.20𝑒 − 01/ = 140 325 5.71𝑒 − 02/ =
200_04 300 165 1.65𝑒 − 01/+ 43 422 9.71𝑒 − 05/− 465 0 1.73𝑒 − 06/+
200_06 76 389 1.29𝑒 − 03/− 257 208 6.14𝑒 − 01/ = 0 465 1.73𝑒 − 06/+
200_08 434 31 3.41𝑒 − 05/+ 275 190 3.82𝑒 − 01/ = 465 0 1.73𝑒 − 06/+
200_10 0 465 1.73𝑒 − 06/− 279 186 3.39𝑒 − 01/ = 465 0 1.73𝑒 − 06/+
+/ = /− 9/6/5 6/6/8 13/5/2

Table 11: The other parameter settings of MODBSA, NSGA-II, SPEA2, and PAES.

MODBSA NSGA-II SPEA2 PAES
Population size and archive
size: 50 (10 and 30 jobs)

Population size: 50 (10 and
30 jobs)

Population size and archive
size: 50 (10 and 30 jobs)

Population size and archive
size: 50 (10 and 30 jobs)

Population size and archive
size: 80 (50 and 80 jobs)

Population size: 80 (50 and
80 jobs)

Population size and archive
size: 80 (50 and 80 jobs)

Population size and archive
size: 80 (50 and 80 jobs)

Population size and archive
size: 100 (100 and 200 jobs)

Population size: 100 (100
and 200 jobs)

Population size and archive
size: 100 (100 and 200 jobs)

Population size and archive
size: 100 (100 and 200 jobs)

Crossover rate: 0.9 Crossover rate: 0.9 Crossover rate: 0.9 Mutation rate: 0.2
Mutation rate: 0.2 Mutation rate: 0.2 Mutation rate: 0.2

according to different search environment and thus improve
search efficiency. Third, to further enhance convergence,
the total cost reduction strategy is proposed to improve
solution quality. Therefore, we can draw a conclusion that
these strategies have a positive effect on the behavior of the
algorithm.

Figure 8 presents the PF approximations found in the
run with the best IGD value of each MOEA for three
level instances with small, medium, and large scale. It is
evident from Figure 8(a) that although all MOEAs can find
some approximations with regard to convergence for the

small scale problem, MODBSA is capable of covering more
areas than other MOEAs. As is depicted in Figure 8(b),
MODBSA can show better convergence and coverage per-
formances for the medium scale problem, while the other
MOEAs tend to fall into local optima.The outperformance of
MODBSA can be attributed to the adaptive mechanism, by
which MODBSA can search preferable solutions in different
directions to enhance search diversity. We can also observe
from Figure 8(c) that the MODBSA has good convergence
performance compared with its MOEAs. The good perfor-
mance of MODBSA on medium and large scale problems
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Table 12: Mean and standard deviation of GD obtained by NSGA-II, SPEA2, PAES, and MODBSA.

Problem NSGA-II SPEA2 PAES MODBSA
Mean/std Mean/std Mean/std Mean/std

10_02 3.93𝑒 − 03/1.1𝑒 − 03 1.14𝑒 − 02/1.4𝑒 − 03 1.84𝑒 − 02/5.0𝑒 − 03 7.94e − 04/4.0e − 04
10_04 4.34𝑒 − 03/1.4𝑒 − 03 1.11𝑒 − 02/2.3𝑒 − 03 1.75𝑒 − 02/6.8𝑒 − 03 1.10e − 03/7.3e − 04
10_06 3.96𝑒 − 03/2.2𝑒 − 03 1.06𝑒 − 02/2.8𝑒 − 03 2.12𝑒 − 02/2.1𝑒 − 01 1.06e − 03/8.2e − 04
10_08 2.89𝑒 − 03/7.4𝑒 − 04 1.02𝑒 − 02/3.1𝑒 − 03 2.74𝑒 − 02/1.2𝑒 − 01 1.08e − 03/7.0e − 04
10_10 2.40𝑒 − 03/1.2𝑒 − 03 1.77𝑒 − 02/1.5𝑒 − 02 8.54𝑒 − 02/7.6𝑒 − 02 1.08e − 03/6.0e − 04
30_02 3.71𝑒 − 03/1.2𝑒 − 03 1.12𝑒 − 02/2.1𝑒 − 03 1.58𝑒 − 02/3.3𝑒 − 03 1.03e − 03/2.5e − 04
30_04 3.69𝑒 − 03/1.3𝑒 − 03 1.00𝑒 − 02/4.9𝑒 − 03 2.20𝑒 − 02/2.1𝑒 − 02 8.56e − 04/7.7e − 03
30_06 4.87𝑒 − 03/3.3𝑒 − 03 1.02𝑒 − 02/3.5𝑒 − 03 5.00𝑒 − 02/4.0𝑒 − 02 7.71e − 04/5.5e − 04
30_08 3.67𝑒 − 03/2.0𝑒 − 03 9.01𝑒 − 03/3.3𝑒 − 03 7.63𝑒 − 02/7.5𝑒 − 02 7.93e − 04/3.1e − 02
30_10 3.80𝑒 − 03/3.1𝑒 − 03 2.03𝑒 − 02/8.6𝑒 − 03 7.68𝑒 − 02/7.1𝑒 − 02 9.75e − 04/3.9e − 02
50_02 4.18e − 03/2.1e − 03 1.28𝑒 − 02/4.6𝑒 − 03 2.07𝑒 − 02/1.2𝑒 − 02 8.20𝑒 − 03/1.6𝑒 − 02
50_04 5.14e − 03/1.5e − 03 1.18𝑒 − 02/5.1𝑒 − 03 3.52𝑒 − 02/2.6𝑒 − 02 1.24𝑒 − 02/4.0𝑒 − 02
50_06 5.26e − 03/3.2e − 03 1.03𝑒 − 02/4.4𝑒 − 03 6.50𝑒 − 02/5.9𝑒 − 02 1.10𝑒 − 02/4.0𝑒 − 02
50_08 6.56e − 03/4.0e − 03 1.06𝑒 − 02/5.7𝑒 − 03 7.47𝑒 − 02/9.1𝑒 − 02 3.18𝑒 − 02/5.8𝑒 − 02
50_10 1.05𝑒 − 02/5.1𝑒 − 03 2.20𝑒 − 02/1.5𝑒 − 02 9.58𝑒 − 02/7.6𝑒 − 02 7.99e − 03/4.9e − 02
80_02 5.64e − 03/2.2e − 03 1.27𝑒 − 02/5.3𝑒 − 03 2.61𝑒 − 02/1.1𝑒 − 02 1.11𝑒 − 02/1.5𝑒 − 02
80_04 6.64e − 03/3.3e − 03 1.27𝑒 − 02/5.7𝑒 − 03 3.17𝑒 − 02/1.3𝑒 − 02 2.47𝑒 − 02/6.0𝑒 − 02
80_06 8.26e − 03/4.8e − 03 1.34𝑒 − 02/6.3𝑒 − 03 4.80𝑒 − 02/2.6𝑒 − 02 3.08𝑒 − 02/7.9𝑒 − 02
80_08 1.06e − 02/7.1e − 03 2.05𝑒 − 02/1.3𝑒 − 02 6.00𝑒 − 02/3.9𝑒 − 02 3.37𝑒 − 02/5.9𝑒 − 02
80_10 3.61𝑒 − 02/2.3𝑒 − 02 3.84𝑒 − 02/1.7𝑒 − 02 7.81𝑒 − 02/8.9𝑒 − 02 2.65e − 02/4.4e − 02
100_02 8.31𝑒 − 03/1.3𝑒 − 03 1.34𝑒 − 02/8.7𝑒 − 03 2.74𝑒 − 02/7.8𝑒 − 03 6.86e − 03/1.8e − 02
100_04 1.00e − 02/4.3e − 03 1.20𝑒 − 02/5.9𝑒 − 03 4.29𝑒 − 02/1.6𝑒 − 02 2.21𝑒 − 02/3.9𝑒 − 02
100_06 1.28e − 02/5.2e − 03 1.59𝑒 − 02/6.1𝑒 − 03 5.64𝑒 − 02/4.9𝑒 − 02 4.97𝑒 − 02/7.4𝑒 − 02
100_08 1.78e − 02/1.4e − 02 2.75𝑒 − 02/1.2𝑒 − 02 7.89𝑒 − 02/3.0𝑒 − 02 6.63𝑒 − 02/9.5𝑒 − 02
100_10 5.92𝑒 − 02/1.6𝑒 − 02 4.88𝑒 − 02/1.7𝑒 − 02 1.11𝑒 − 01/4.5𝑒 − 02 4.84e − 02/8.3e − 02
200_02 9.21e − 03/3.2e − 03 1.15𝑒 − 02/6.0𝑒 − 03 2.57𝑒 − 02/7.2𝑒 − 03 1.68𝑒 − 02/8.0𝑒 − 03
200_04 1.83𝑒 − 02/8.2𝑒 − 03 1.73e − 02/7.5e − 03 3.33𝑒 − 02/1.9𝑒 − 02 2.25𝑒 − 02/3.8𝑒 − 02
200_06 3.49e − 02/1.5e − 02 4.42𝑒 − 02/1.7𝑒 − 02 7.58𝑒 − 02/1.9𝑒 − 02 4.86𝑒 − 02/9.1𝑒 − 02
200_08 1.22e − 01/2.1e − 02 2.61𝑒 − 01/4.0𝑒 − 02 3.88𝑒 − 01/3.8𝑒 − 02 1.45𝑒 − 01/3.2𝑒 − 02
200_10 3.87𝑒 − 01/8.2𝑒 − 02 5.46𝑒 − 01/2.4𝑒 − 01 4.42𝑒 − 01/2.0𝑒 − 01 1.12e − 01/1.1e − 01
Hit rate 14/30 1/30 0/30 15/30

may be based on the fact that the dual population can help
to balance the exploitation and exploration of MODBSA.
Figure 8 not only presents good convergence of MODBSA
but also illustrates a widespread coverage of MODBSA. In
addition, MODBSA can find more nondominated solutions
than other MOEAs, which implies good exploration ability
of MODBSA. Therefore, we can conclude that MODBSA
is very suitable for addressing this type of scheduling
problem.

The statistical results are plotted as boxplots in Figure 9.
The vertical axis of each subfigure represents the IGD value
and the horizontal axis represents the different MOEAs. The
lower position of box denotes better performance. The nar-
rower the shape of the box is, themore stable the correspond-
ing algorithm is. Clearly, the MODBSA is overwhelming
without any exception in terms of IGD metric for three

above level instances. It is consistent with previous numerical
analysis and our view that the MODBSA outperforms other
MOEAs considered for the SSPWCPT. The reasons behind
the good performance of MODBSA are as follows. First,
dual population scheme makes MODBSA have a better
exploration ability as that it has a greater choice to search
for different unknown areas of the search space. Second,
total cost reduction strategy can improve the convergence of
MODBSA since the quality of solution can be improvedwhen
total cost criterion is reduced while the tardiness criterion
remains unchanged.

6. Conclusions and Future Work

In this paper, a multiobjective single machine scheduling
problem with CPT is studied. The objective of this study
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Table 13: Mean and standard deviation of Spread obtained by NSGA-II, SPEA2, PAES, and MODBSA.

Problem NSGA-II SPEA2 PAES MODBSA
Mean/std Mean/std Mean/std Mean/std

10_02 1.38𝑒 + 00/1.3𝑒 − 02 1.46𝑒 + 00/3.3𝑒 − 02 1.01e + 00/3.0e − 02 1.66𝑒 + 00/2.4𝑒 − 02
10_04 1.34𝑒 + 00/3.2𝑒 − 02 1.42𝑒 + 00/3.9𝑒 − 02 1.05e + 00/1.3e − 01 1.61𝑒 + 00/2.9𝑒 − 02
10_06 1.31𝑒 + 00/4.9𝑒 − 02 1.47𝑒 + 00/6.4𝑒 − 02 1.16e + 00/2.1e − 01 1.59𝑒 + 00/1.9𝑒 − 02
10_08 1.23𝑒 + 00/1.5𝑒 − 02 1.54𝑒 + 00/6.9𝑒 − 02 1.22e + 00/2.2e − 01 1.54𝑒 + 00/8.8𝑒 − 03
10_10 1.08e + 00/8.5e − 02 1.55𝑒 + 00/8.3𝑒 − 02 1.30𝑒 + 00/1.8𝑒 − 01 1.29𝑒 + 00/1.6𝑒 − 02
30_02 7.41𝑒 − 01/5.2𝑒 − 02 1.46𝑒 + 00/4.9𝑒 − 02 1.01𝑒 + 00/3.9𝑒 − 02 4.96e − 01/8.0e − 02
30_04 7.81𝑒 − 01/5.2𝑒 − 02 1.45𝑒 + 00/4.8𝑒 − 02 1.09𝑒 + 00/1.4𝑒 − 01 5.79e − 01/2.6e − 01
30_06 8.03𝑒 − 01/5.7𝑒 − 02 1.43𝑒 + 00/5.9𝑒 − 02 1.23𝑒 + 00/1.9𝑒 − 01 5.39e − 01/2.9e − 01
30_08 8.11𝑒 − 01/4.7𝑒 − 02 1.45𝑒 + 00/5.0𝑒 − 02 1.34𝑒 + 00/1.4𝑒 − 01 6.15e − 01/4.1e − 01
30_10 8.54𝑒 − 01/5.6𝑒 − 02 1.50𝑒 + 00/5.1𝑒 − 02 1.33𝑒 + 00/1.5𝑒 − 01 6.00e − 01/4.3e − 01
50_02 7.08𝑒 − 01/6.1𝑒 − 02 1.48𝑒 + 00/5.0𝑒 − 02 1.10𝑒 + 00/1.3𝑒 − 01 6.58e − 01/3.1e − 01
50_04 7.54𝑒 − 01/7.7𝑒 − 02 1.43𝑒 + 00/4.1𝑒 − 02 1.19𝑒 + 00/1.5𝑒 − 01 7.43e − 01/4.2e − 01
50_06 7.82𝑒 − 01/8.7𝑒 − 02 1.45𝑒 + 00/4.6𝑒 − 02 1.27𝑒 + 00/1.5𝑒 − 01 7.69e − 01/4.7e − 01
50_08 7.70e − 01/5.1e − 02 1.47𝑒 + 00/4.0𝑒 − 02 1.32𝑒 + 00/1.4𝑒 − 01 8.35𝑒 − 01/5.1𝑒 − 01
50_10 8.18𝑒 − 01/5.7𝑒 − 02 1.50𝑒 + 00/4.0𝑒 − 02 1.33𝑒 + 00/1.1𝑒 − 01 7.02e − 01/4.7e − 01
80_02 7.13e − 01/4.5e − 02 1.50𝑒 + 00/4.4𝑒 − 02 1.07𝑒 + 00/7.5𝑒 − 02 7.26𝑒 − 01/3.3𝑒 − 01
80_04 7.58e − 01/5.2e − 02 1.49𝑒 + 00/4.3𝑒 − 02 1.14𝑒 + 00/1.4𝑒 − 01 8.80𝑒 − 01/4.3𝑒 − 01
80_06 7.76e − 01/7.1e − 02 1.49𝑒 + 00/3.2𝑒 − 02 1.23𝑒 + 00/1.5𝑒 − 01 9.12𝑒 − 01/4.7𝑒 − 01
80_08 7.95e − 01/5.2e − 02 1.46𝑒 + 00/3.2𝑒 − 02 1.27𝑒 + 00/1.5𝑒 − 01 1.02𝑒 + 00/3.7𝑒 − 01
80_10 8.93e − 01/4.4e − 02 1.47𝑒 + 00/4.4𝑒 − 02 1.29𝑒 + 00/1.6𝑒 − 01 9.00𝑒 − 01/4.4𝑒 − 01
100_02 7.35𝑒 − 01/5.8𝑒 − 02 1.52𝑒 + 00/4.0𝑒 − 02 1.07𝑒 + 00/9.4𝑒 − 02 6.68e − 01/3.7e − 01
100_04 7.66e − 01/8.4e − 02 1.50𝑒 + 00/3.3𝑒 − 02 1.19𝑒 + 00/1.2𝑒 − 01 9.22𝑒 − 01/3.9𝑒 − 01
100_06 7.79e − 01/7.6e − 02 1.50𝑒 + 00/3.9𝑒 − 02 1.27𝑒 + 00/1.4𝑒 − 01 9.28𝑒 − 01/4.8𝑒 − 01
100_08 8.36e − 01/6.6e − 02 1.49𝑒 + 00/4.1𝑒 − 02 1.32𝑒 + 00/1.0𝑒 − 01 1.08𝑒 + 00/3.9𝑒 − 01
100_10 9.20e − 01/5.4e − 02 1.44𝑒 + 00/5.9𝑒 − 02 1.35𝑒 + 00/5.7𝑒 − 02 9.74𝑒 − 01/4.4𝑒 − 01
200_02 7.96𝑒 − 01/5.4𝑒 − 02 1.54𝑒 + 00/2.0𝑒 − 02 1.02𝑒 + 00/2.6𝑒 − 02 7.83e − 01/1.9e − 01
200_04 8.00e − 01/6.0e − 02 1.49𝑒 + 00/2.7𝑒 − 02 1.12𝑒 + 00/9.1𝑒 − 02 9.59𝑒 − 01/2.9𝑒 − 01
200_06 8.24e − 01/4.8e − 02 1.48𝑒 + 00/4.0𝑒 − 02 1.29𝑒 + 00/8.6𝑒 − 02 1.17𝑒 + 00/2.3𝑒 − 01
200_08 8.12e − 01/4.6e − 02 1.49𝑒 + 00/4.2𝑒 − 02 1.09𝑒 + 00/7.9𝑒 − 02 9.63𝑒 − 01/2.3𝑒 − 01
200_10 1.01e + 00/8.0e − 02 1.33𝑒 + 00/7.8𝑒 − 02 1.08𝑒 + 00/1.1𝑒 − 01 1.14𝑒 + 00/9.1𝑒 − 02
Hit rate 15/30 0/30 4/30 11/30

is to minimize the total tardiness and total compression
cost simultaneously. To solve this multiobjective problem, a
new multiobjective discrete backtracking search algorithm
(MODBSA) is proposed. In MODBSA, a new solution rep-
resentation is developed to adapt to the characteristic of
the problem. Experimental results show the validity of the
solution representation. To improve search diversity and
efficiency, we propose two improvement strategies into the
MODBSA. First, an adaptive selection scheme is designed to
select a suitable population for update operation. Second, a
total cost reduction strategy is embedded into the MODBSA

for enhancing exploitation ability. The efficiency of each
improvement strategy is separately validated by experimental
studies. The MODBSA is also compared with NSGA-II,
SPEA2, and PAES on 30 instances. The empirical results
demonstrate that the MODBSA outperforms its rivals on
most instances. In conclusion, the main contributions of this
work are at least threefold.

(1) A multiobjective mathematical model of scheduling
problem with CPT is constructed. A new multiob-
jective backtracking search algorithm is developed to
solve this scheduling problem.
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Table 14: Mean and standard deviation of IGD obtained by NSGA-II, SPEA2, PAES, and MODBSA.

Problem NSGA-II SPEA2 PAES MODBSA
Mean/std Mean/std Mean/std Mean/std

10_02 8.58𝑒 − 04/2.3𝑒 − 04 2.21𝑒 − 03/2.3𝑒 − 04 1.69𝑒 − 02/3.8𝑒 − 03 1.31e − 04/6.3e − 05
10_04 1.52𝑒 − 03/6.2𝑒 − 04 2.57𝑒 − 03/3.1𝑒 − 04 1.54𝑒 − 02/3.0𝑒 − 03 2.99e − 04/1.2e − 04
10_06 1.13𝑒 − 03/6.3𝑒 − 04 3.08𝑒 − 03/4.1𝑒 − 04 1.75𝑒 − 02/3.9𝑒 − 03 1.94e − 04/6.7e − 05
10_08 1.28𝑒 − 03/3.9𝑒 − 04 3.91𝑒 − 03/5.0𝑒 − 04 1.95𝑒 − 02/3.8𝑒 − 03 1.17e − 04/4.9e − 05
10_10 1.08𝑒 − 03/4.3𝑒 − 04 5.48𝑒 − 03/1.0𝑒 − 03 1.68𝑒 − 02/3.1𝑒 − 03 3.83e − 04/1.1e − 04
30_02 3.06𝑒 − 03/1.0𝑒 − 03 4.36𝑒 − 03/7.7𝑒 − 04 2.63𝑒 − 02/3.3𝑒 − 03 2.72e − 04/2.0e − 04
30_04 3.73𝑒 − 03/8.8𝑒 − 04 4.14𝑒 − 03/6.2𝑒 − 04 2.46𝑒 − 02/3.6𝑒 − 03 1.85e − 04/1.5e − 04
30_06 4.04𝑒 − 03/8.9𝑒 − 04 4.16𝑒 − 03/6.0𝑒 − 04 2.22𝑒 − 02/4.1𝑒 − 03 2.17e − 04/7.2e − 05
30_08 3.90𝑒 − 03/7.5𝑒 − 04 4.02𝑒 − 03/5.1𝑒 − 04 2.10𝑒 − 02/3.1𝑒 − 03 1.87e − 04/9.7e − 05
30_10 7.19𝑒 − 03/1.6𝑒 − 03 6.64𝑒 − 03/8.0𝑒 − 04 2.67𝑒 − 02/4.0𝑒 − 03 3.71e − 04/1.5e − 04
50_02 4.04𝑒 − 03/9.5𝑒 − 04 5.32𝑒 − 03/7.0𝑒 − 04 2.51𝑒 − 02/3.4𝑒 − 03 2.02e − 04/7.2e − 05
50_04 5.24𝑒 − 03/1.7𝑒 − 03 5.92𝑒 − 03/5.5𝑒 − 04 2.30𝑒 − 02/3.7𝑒 − 03 3.46e − 04/1.4e − 04
50_06 5.34𝑒 − 03/2.0𝑒 − 03 5.70𝑒 − 03/4.6𝑒 − 04 2.31𝑒 − 02/3.5𝑒 − 03 3.38e − 04/1.2e − 04
50_08 6.14𝑒 − 03/1.0𝑒 − 03 6.96𝑒 − 03/5.3𝑒 − 04 2.28𝑒 − 02/2.7𝑒 − 03 2.60e − 04/7.4e − 05
50_10 1.33𝑒 − 02/3.3𝑒 − 03 1.29𝑒 − 02/1.3𝑒 − 03 2.90𝑒 − 02/1.1𝑒 − 02 6.74e − 04/3.0e − 04
80_02 7.93𝑒 − 03/1.7𝑒 − 03 1.02𝑒 − 02/1.1𝑒 − 03 3.04𝑒 − 02/2.7𝑒 − 03 4.55e − 04/1.4e − 04
80_04 8.92𝑒 − 03/2.0𝑒 − 03 1.03𝑒 − 02/8.6𝑒 − 04 2.91𝑒 − 02/2.1𝑒 − 03 5.68e − 04/2.5e − 04
80_06 1.33𝑒 − 02/5.2𝑒 − 03 1.38𝑒 − 02/1.1𝑒 − 03 2.77𝑒 − 02/1.8𝑒 − 03 5.20e − 04/2.3e − 04
80_08 1.60𝑒 − 02/2.9𝑒 − 03 1.78𝑒 − 02/1.1𝑒 − 03 2.81𝑒 − 02/2.1𝑒 − 03 1.26e − 03/4.3e − 04
80_10 2.43𝑒 − 02/5.9𝑒 − 03 1.88𝑒 − 02/1.4𝑒 − 03 3.01𝑒 − 02/2.0𝑒 − 03 7.49e − 04/2.6e − 04
100_02 1.20𝑒 − 02/2.5𝑒 − 03 1.60𝑒 − 02/1.2𝑒 − 03 3.19𝑒 − 02/2.7𝑒 − 03 8.35e − 04/3.2e − 04
100_04 1.37𝑒 − 02/5.2𝑒 − 03 1.42𝑒 − 02/8.5𝑒 − 04 2.78𝑒 − 02/2.3𝑒 − 03 4.84e − 04/1.3e − 04
100_06 1.52𝑒 − 02/6.1𝑒 − 03 1.65𝑒 − 02/1.4𝑒 − 03 2.77𝑒 − 02/2.2𝑒 − 03 8.24e − 04/3.3e − 04
100_08 1.82𝑒 − 02/4.7𝑒 − 03 1.74𝑒 − 02/1.3𝑒 − 03 2.63𝑒 − 02/2.2𝑒 − 03 6.64e − 04/3.2e − 04
100_10 3.28𝑒 − 02/6.9𝑒 − 03 2.01𝑒 − 02/1.4𝑒 − 03 2.93𝑒 − 02/2.5𝑒 − 03 9.08e − 04/4.4e − 04
200_02 1.25𝑒 − 02/3.2𝑒 − 03 1.69𝑒 − 02/8.1𝑒 − 04 5.26𝑒 − 02/6.4𝑒 − 03 6.41e − 03/2.8e − 05
200_04 1.44𝑒 − 02/4.4𝑒 − 03 1.73𝑒 − 02/1.2𝑒 − 03 4.26𝑒 − 02/3.8𝑒 − 03 4.41e − 03/2.9e − 05
200_06 2.29𝑒 − 02/4.7𝑒 − 03 1.96𝑒 − 02/2.1𝑒 − 03 2.79𝑒 − 02/1.6𝑒 − 03 1.51e − 03/3.6e − 04
200_08 1.18𝑒 − 01/2.3𝑒 − 02 1.17𝑒 − 01/2.0𝑒 − 02 5.43𝑒 − 01/2.6𝑒 − 02 4.02e − 02/1.0e − 02
200_10 2.52𝑒 − 01/4.6𝑒 − 02 2.14𝑒 − 01/3.3𝑒 − 02 4.97𝑒 − 01/1.9𝑒 − 01 1.05e − 02/8.3e − 03
Hit rate 0/30 0/30 0/30 30/30

(2) A new solution representation is provided for the
scheduling problems with CPT. It also provides
a new encoding scheme in solving scheduling
problems.

(3) The adaptive selection strategy and the total cost
reduction strategy both can improve the performance
of the MODBSA on instances. The adaptive selection
mechanism can help to enhance exploration ability of
the MODBSA, while the total cost reduction strategy
can improve exploitation ability.

With respect to future work, an interesting issue worth
studying is extendingMODBSA tomore complex scheduling
problems with CPT such as the dynamic job shop scheduling

problem.Another research direction is to further improve the
search efficiency of the algorithm by incorporating heuristic
based on problem property.

Notations

Parameters

𝑛: Number of jobs𝐽𝑗: Job 𝑗𝐽[𝑖]: Job in the 𝑖th position in a sequence𝜋: Processing sequence of jobs, namely,𝜋 = [𝐽[1], . . . , 𝐽[𝑛]]𝑝𝑗: Normal processing time of job 𝑗
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Figure 8: Pareto approximations obtained by different MOEAs with the best IGD value.

𝑝𝑐𝑗: Crash (minimum allowable) processing
time of job 𝑗𝑚𝑗: Maximum amount of compression pro-
cessing time for job 𝑗, namely,𝑚𝑗 = 𝑝𝑗 −𝑝𝑐𝑗𝑝𝑎𝑗 : Actual processing time of job 𝑗

𝑐𝑗: Unit cost of compression processing time
of job 𝑗𝑑𝑗: Due date of job 𝑗𝑇𝑗: Tardiness of job 𝑗, namely,𝑇𝑗 = max(0, 𝐶𝑗−𝑑𝑗), where 𝐶𝑗 is the completion time of job𝑗𝑆𝑗: Start time of job 𝑗𝑀: An infinite positive number.

Decision Variables

𝑥𝑗: Amount of compression processing time of job 𝑗𝑦𝑗𝑘: It is set to 1 if 𝐽𝑗 precedes 𝐽𝑘; it is set to 0 otherwise.
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