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Based on a scalar chaotic drive-response system, an efficient big data transmission scheme has been presented in this paper. In
our method, the sender can modulate a great quantity of messages in the drive system using Walsh function, and the receiver
can recover the original data using our proposed efficient reconstruction algorithm. To explore the feasibility and effectiveness, a
series of simulations are performed and the results show that our proposed scheme outperforms some traditional approaches.This
scheme has some potential applications in chaotic laser communication.

1. Introduction

Big data brings people much convenience as well as many
problems. In the area of big data, data is the carrier of
information, and the exchange of information cannot be
separated from the transmission of data. Therefore, the
problemof big data secure transmission becomes very serious
and cannot be avoided [1, 2]. In recent years, chaotic secure
communication has been one of the research focuses in the
field of communication [3, 4]. Because of the remarkable
contribution of Pecora and Carroll who addressed the syn-
chronization of chaotic systems using a drive-response con-
ception [5], the research on chaotic secure communication
based on chaotic synchronization attracted wide attention
and gradually infiltrated to many other subjects [6–11]. In
fact, the dynamic behavior of chaotic system has some
properties, such as initial sensitivity and unpredictability.
These excellent properties have led to some applications
of chaotic synchronization, such as chaos masking [12–14],
chaos shift keying [15, 16], and chaotic modulation [17–20].
In recent years, a large number of improved chaotic commu-
nication models have emerged, such as the combination of
chaos communication and multiplexing technology [21, 22],
wireless chaotic communication [23], ultrawideband chaotic
communication [24], chaotic laser communication [25, 26],

and chaotic communication scheme based on wave recorder
and time delay [27]. Recently, one significant topic of chaotic
communication mainly focuses on the time series analysis
[28–30]. But how many messages can be transmitted by one
scalar chaotic signal? In our previous work [31], we have
already achieved multiple information transmission only
using one scalar chaotic time series; however, in that scheme,
the original data is modulated into the system parameters
directly which limits the maximum quantity of transmitted
information data.

The contribution of this paper lies in the following
aspects. First, a novel multiple time-delay chaotic commu-
nication scheme for big data transmission is designed based
on Walsh function by which a huge amount of information
can be modulated into a chaotic system. Specifically, the
sender integrates multiple original information into single
information by using Walsh function and then modulates
such integrated information into the parameters of the drive
system. Next, we design an adaptive parameter estimation
scheme to recover the integrated information. That is to say,
the receiver can use the inverse mapping of Walsh function
to recover the original information. At last we investigate the
maximum amount of information carried by a scalar chaotic
drive-response system. Based on Shannon’s channel capacity
theorem, because of the channel bandwidth and noise, there
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exists a boundary of the maximum information in a real
communication channel [32, 33]. To explore the boundary of
maximum transmittable information, we perform extensive
simulations and find that our scheme is much more effective
than the traditional technologies.

The remainder of this paper is structured in the follow-
ing manner. We introduce the mathematical proof of the
chaotic synchronization and the parameter adaptive estima-
tion criterion in Section 2. Section 3 describes the design
of chaotic communication scheme based on Walsh function
and demonstrates the information recovery algorithm. In
Section 4, the experimental results are showed to find out
themaximumnumber of information carried by our scheme.
Section 5 analyzes the application of our scheme. Finally, we
draw our conclusions in Section 6.

Some symbols are used in this paper which are presented
in Notations.

2. The Adaptive Synchronization Scheme

In this paper, we study the efficient data transmission using
a scalar chaotic signal. For this purpose, we design a system
model to carry asmuch information as possible. Based on the
Mackey-Glass system [34], we consider a scalar time-delay
chaotic system as follows:

�̇� (𝑡) = −𝛼𝑥 (𝑡) + 𝛽𝑥 (𝑡 − 𝜏)
1 + 𝑥𝛾 (𝑡 − 𝜏) +

𝑚∑
𝑖=1
𝑎𝑖𝑥 (𝑡 − 𝜏𝑖) , (1)

where 𝑥(𝑡) denotes the state variable of the system, 𝛼, 𝛽, and𝛾 are constants, and 𝜏, 𝜏𝑖 are the time delays. 𝑎1, 𝑎2, . . . , 𝑎𝑚 are
system parameters which represent the original messages in
this paper. Therefore, the bigger 𝑚 is, the more information
the system can carry. In this model, we can adjust the amount
of information carried by the system by changing the time
delays 𝜏, 𝜏𝑖.

Based on the system in (1), a communication scheme is
proposed. As the information is modulated in the system
parameters, wemake use of the parameter estimationmethod
to get the recovered information. Based on synchronization
principle, we design the following response system and the
adaptive criterion:

�̇� (𝑡) = −𝛼𝑦 (𝑡) + 𝛽𝑥 (𝑡 − 𝜏)
1 + 𝑥𝛾 (𝑡 − 𝜏) +

𝑚∑
𝑖=1
�̂�𝑖𝑥 (𝑡 − 𝜏𝑖)

+ 𝑢 (𝑡) ,
𝑢 (𝑡) = − (𝜂 + 𝛼) 𝑒 (𝑡) ,

̇̂𝑎𝑖 = −𝑒 (𝑡) 𝑥 (𝑡 − 𝜏𝑖) ,

(2)

where �̂� is the estimated parameter, 𝑢(𝑡) is the controller, and𝜂 is a positive constant. 𝑒(𝑡) denotes the error term, which can
be defined as 𝑒(𝑡) = 𝑦(𝑡)−𝑥(𝑡). According to the drive system
and the response system, the error system can be written as

̇𝑒 (𝑡) = −𝜂𝑒 (𝑡) + 𝑚∑
𝑖=1

(�̂�𝑖 − 𝑎𝑖) 𝑥 (𝑡 − 𝜏𝑖) . (3)

To verify that the estimated parameter �̂�𝑖 converges to the
original system’s parameters, we present the proof as follows.

The Lyapunov function 𝑉(𝑡) is constructed as

𝑉 (𝑡) = 1
2𝑒2 (𝑡) +

1
2
𝑚∑
𝑖=1

(�̂�𝑖 − 𝑎𝑖)2 . (4)

The time derivative of 𝑉(𝑡) along the trajectories of (4) is
described as follows:

�̇� (𝑡) = 𝑒 (𝑡) ̇𝑒 (𝑡) + 𝑚∑
𝑖=1

(�̂�𝑖 − 𝑎𝑖) ( ̇̂𝑎𝑖 − �̇�𝑖)

= −𝜂𝑒2 (𝑡) + 𝑒 (𝑡) 𝑚∑
𝑖=1

(�̂�𝑖 − 𝑎𝑖) 𝑥 (𝑡 − 𝜏𝑖)

+ 𝑚∑
𝑖=1

(�̂�𝑖 − 𝑎𝑖) ̇̂𝑎𝑖

= −𝜂𝑒2 (𝑡) + 𝑒 (𝑡) 𝑚∑
𝑖=1

(�̂�𝑖 − 𝑎𝑖) 𝑥 (𝑡 − 𝜏𝑖)

+ 𝑚∑
𝑖=1

(�̂�𝑖 − 𝑎𝑖) (−𝑒𝑥 (𝑡 − 𝜏𝑖)) = −𝜂𝑒2 (𝑡) ≤ 0.

(5)

Obviously, �̇� = 0 if and only if 𝑒 = 0. From Barbalat’s
lemma, we can easily get 𝑒 → 0 and ( ̇̂𝑎𝑖 − �̇�𝑖) → 0 as 𝑡 →∞. Thus, we can acquire the largest invariant set𝑀 which is
defined as𝑀 = {𝑒 ∈ 𝑅𝑛, (�̂�𝑖 − 𝑎) ∈ 𝑅𝑚|𝑒 = 0, −𝑒 + ∑𝑚𝑖=1(�̂�𝑖 −𝑎𝑖)𝑥(𝑡 − 𝜏𝑖) = 0}. In this case, the following equation can be
satisfied:

𝑚∑
𝑖=1

(�̂�𝑖 − 𝑎𝑖) 𝑥 (𝑡 − 𝜏𝑖) = 0. (6)

Let 𝐷(𝑥) = {𝑥(𝑡 − 𝜏1), 𝑥(𝑡 − 𝜏2), . . . , 𝑥(𝑡 − 𝜏𝑚)}, �̂� =(�̂�1, �̂�2, . . . , �̂�𝑚)𝑇, and 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑚). Then, (6) can be
written as follows:

𝐷(𝑥) (�̂� − 𝐴) = 0. (7)

Then both sides of (7) are multiplied by 𝐷(𝑥)𝑇 and
integrated for any period of time 𝜎, and we get the following:

∫𝑠+𝜎
𝑠

𝐷 (𝑥)𝑇𝐷 (𝑥) (�̂� − 𝐴) 𝑑𝑡 = 0. (8)

Let 𝐺 = ∫𝑠+𝜎𝑠 𝐷𝑇(𝑥(𝑡))𝐷(𝑥(𝑡))𝑑𝑡. 𝐺 is called the Gram
matrix of 𝐷(𝑥). Then we get 𝐺(�̂� − 𝐴) = 0. If 𝐺 has full
rank, (8) has a unique zero solution [35, 36]. That is to say;�̂� − 𝐴 = 0, that is, �̂�𝑖 = 𝑎𝑖. The proof of the synchronization
and estimation criterion for the chaotic system is completed.

3. The Walsh-Based Transmission Scheme

In this section, we design a transmission scheme based on
Walsh function which can further increase the maximum
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Figure 1: The 4-order Walsh Function.

quantity of transmitted information. TheWalsh function is a
kind of nonsinusoidal orthogonal complete function set [37].
A 4-order Walsh function is depicted in Figure 1.

It is easy to find that the elements of Walsh function set
fully satisfy the orthogonality with each other. Note that as
the number of available sequences is very large, it satisfies the
demand of multiple information transmission.

Based on the properties of Walsh function, we consider a
system based on the Mackey-Glass system; the drive system
(1) can be redesigned as follows:

�̇� (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑚∑
𝑖=1

𝑘∑
𝑗=1

(𝑎𝑖𝑗𝑊𝑗 (𝑡)) 𝑥 (𝑡 − 𝜏𝑖) , (9)

where 𝑓(𝑥(𝑡)) = −𝛼𝑥(𝑡) + 𝛽𝑥(𝑡 − 𝜏)/(1 + 𝑥𝛾(𝑡 − 𝜏)), 𝑎𝑖𝑗 is
the transmitted original message, and𝑊𝑗(𝑡) is the 𝑗th Walsh
function among 𝑘-orders Walsh function. In this way, there
are 𝑘 original messages in each system parameter. Therefore,
the number of message increases from𝑚 to𝑚 × 𝑘.

We introduce the following formula to measure the total
number of messages carried by this scheme:

𝑄 = 𝐻
𝑙𝑏 (𝑚 × 𝑘) , (10)

where 𝑄 denotes the quantity of total information (bits)
carried by the system,𝐻 is the effective length of the carrier,𝑙𝑏 represents the length of one bit of information, and 𝑚 and𝑘 are the number of the system parameters and the orders of
Walsh function, respectively.

The corresponding response system and the adaptive
criterion can be designed as follows:

�̇� (𝑡) = 𝑓 (𝑦 (𝑡)) + 𝑚∑
𝑖=1
�̂�𝑖𝑥 (𝑡 − 𝜏𝑖) + 𝑢 (𝑡) ,

𝑢 (𝑡) = − (𝜂 + 𝛼) 𝑒 (𝑡) ,
̇̂𝑏𝑖 = −𝑒 (𝑡) 𝑥 (𝑡 − 𝜏𝑖) ,

(11)

where 𝑓(𝑦(𝑡)) = −𝛼𝑦(𝑡) + 𝛽𝑥(𝑡 − 𝜏)/(1 + 𝑥𝛾(𝑡 − 𝜏)) and 𝑏𝑖
is the estimated information of the system parameters. As we
already proved the synchronization of the system, similarly,

the system presented in (9) can also be synchronized by
following the same procedure.

Theoretically, the estimated parameters converge to the
true value when 𝑡 → ∞. However, in practical scenarios,
it requires a very short time. More precisely, the estimated
parameters take a transient time to approach the true values
and after that they remain unchanged. Thus, if we set up
a sampling point at each unchanged period and then design
a threshold mechanism to distinguish the estimated parame-
ters, we get the estimated system parameters precisely. Based
on (11), as 𝑎𝑖𝑗 is binary, thus 𝑎𝑖𝑗𝑊𝑗(𝑡) must be integral; the
threshold mechanism can be designed as follows:

output = 𝑛, if 2𝑛 − 12 ≤ �̂�𝑖𝑡𝑗 < 2𝑛 + 1
2 ;

output = 0, if − 0.5 ≤ �̂�𝑖𝑡𝑗 < 0.5;
output = −𝑛, if −2𝑛 − 12 ≤ 𝑏𝑖𝑡𝑗 < −2𝑛 + 1

2 ,
(12)

where 𝑛 = 1, 2, 3, . . . , 𝑘, 𝑡𝑗 = 𝑗𝑙𝑤 is the sample time and𝑙𝑤 = 𝑙𝑏/𝑘 denotes the length of 𝑘-orders Walsh function’s
symbol. Until the convergent time remains short enough for
the threshold mechanism, we get �̂�𝑖 = ∑𝑘𝑗=1 𝑎𝑖𝑗𝑊𝑗(𝑡).

Next, we present the recovering algorithm of the Walsh
function to recover the original information. We multiply �̂�𝑖
by the correspondingWalsh function then integrate them for
each period 𝑇 and thereby the original message is recovered.
For example, if the information to be recovered is 𝑎𝑝𝑞 (1 ≤
𝑝 ≤ 𝑚, 1 ≤ 𝑞 ≤ 𝑘), then the estimated information is �̂�𝑝.
As we proved before, �̂�𝑝 = ∑𝑘𝑗=1 𝑎𝑝𝑞𝑊𝑗(𝑡). The process of
calculation is presented as follows:

∫𝜃𝑇
(𝜃−1)𝑇

𝑏𝑝𝑊𝑞 (𝑡) 𝑑𝑡 = ∫𝜃𝑇
(𝜃−1)𝑇

[
[
𝑘∑
𝑗=1
𝑎𝑝𝑞𝑊𝑗 (𝑡)]]

𝑊𝑞 (𝑡) 𝑑𝑡

= 𝑎𝑝𝑞 ∫𝜃𝑇
(𝜃−1)𝑇

𝑊𝑞 (𝑡)2 𝑑𝑡

+ 𝑎𝑝𝑞
𝑘∑
𝑗=1, 𝑗 ̸=𝑞

∫𝜃𝑇
(𝜃−1)𝑇

𝑊𝑗 (𝑡)𝑊𝑞 (𝑡) 𝑑𝑡 = 𝑎𝑝𝑞,
(𝜃 = 0, 1, 2, 3, . . .) .

(13)

Remark 1. Step 2 and step 3 of (13) are using the property of
Walsh function that

∫𝑇
0
𝑊𝑖 (𝑡)𝑊𝑗 (𝑡) 𝑑𝑡 = {{{

0, 𝑖 ̸= 𝑗,
1, 𝑖 = 𝑗, (𝑖, 𝑗 ∈ 𝑘) . (14)

As a result ∫𝜃𝑇(𝜃−1)𝑇𝑊𝑞(𝑡)2 = 1 and ∫𝜃𝑇(𝜃−1)𝑇𝑊𝑗(𝑡)𝑊𝑞(𝑡) = 0.
Thus, a chaotic communication model that combines the

Walsh function and the adaptive parameter identification
technique is finally obtained.Thus far, theWalsh-based trans-
mission scheme has been established. The main process is
presented in Figure 2.
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Figure 2: The flowchart of a procedure of communication.

Remark 2. We present some comparisons between different
communication schemes on the total amount of messages.
First, in our scheme, plenty of messages can be made into
onemixedmessage, furthermore,many suchmixedmessages
be can modulated into a multiple time-delay system; thus in
our scheme the quantity of messages carried by the system
is very huge (𝑚 × 𝑘 = 960). In the chaos masking scheme,
only one carrier of message is carried by the chaotic system,
that is, 𝑚 = 1. In the chaotic modulation scheme, the value
of𝑚 depends on the system’s dimensions as the messages are
modulated into the system; thus the chaotic system will be
very complex. In the chaotic shift keying scheme,𝑚 equals the
number of the system parameters which steal less than ours.
Compared with these communication schemes, our scheme
strongly increases the total amount ofmessages carried by the
chaotic system. In addition, our scheme uses a scalar chaotic
signal which makes it easier to produce and transmit.

4. Experiment and Simulation

In this section, we will explore the maximum quantity of
transmitted information by our scheme. At first, we consider
a system based on the Mackey-Glass model as presented
below:

�̇� = 𝑓 (𝑥 (𝑡)) + 𝑚∑
𝑖=1

𝑘∑
𝑗=1

(𝑎𝑖𝑗𝑊𝑗 (𝑡)) 𝑥 (𝑡 − 𝜏𝑖) ,

�̇� = 𝑓 (𝑦 (𝑡)) + 𝑚∑
𝑖=1
�̂�𝑖𝑥 (𝑡 − 𝜏𝑖) ,

(15)

where 𝑓(𝑥(𝑡)) = −1100𝑥(𝑡) + 50000𝑥(𝑡 − 𝜏)/(1 + 𝑥20(𝑡 − 𝜏)),𝑓(𝑦(𝑡)) = −1100𝑦(𝑡) + 50000𝑥(𝑡 − 𝜏)/(1 + 𝑥20(𝑡 − 𝜏)), and𝛼 = −1100, 𝛽 = 50000, 𝛾 = 20, 𝜏 = 0.5, 𝜏𝑖 = 1+0.1𝑖. 𝑎𝑖𝑗 is the
original information represented as random binary sequence
with arbitrary length. In the simulation, we set up the relative
tolerance to 1 × 𝑒−4.
Remark 3. To ensure the chaotic property of the system, we
attempt to adjust the values of 𝛼, 𝛽, and 𝛾 appropriately. We

have set different values of 𝛼, 𝛽, and 𝛾 to start simulation, and
at last we find the system has an excellent chaotic property
when 𝛼 = −1100, 𝛽 = 50000, 𝛾 = 20, and 𝜏 = 0.5.

4.1. Simulation with Different 𝑚. As the quantity of the
transmitted information is determined by 𝑚 × 𝑘, we first
choose 𝑘 = 32; that is, we use the 32-order Walsh function.
Subsequently, we increase 𝑚 as required. For 𝑚 = 20,
the corresponding results are shown in Figures 3(a)–3(f).
Figure 3(a) displays the information combined by Walsh
function. It forms an integral wave. The length of each bit is
set to 0.2; that is, 𝑙𝑤 = 0.2. For making the original binary
information to satisfy the orthogonal relation, the bit width
of the original information is set to 6.4; that is, 𝑙𝑏 = 6.4.
Since there is a block time 𝑡bl = 20 for the running system
from the initial state to the stable state, we cannot recover
the information until 𝑡 ≥ 20; the effective length of the
scalar series is taken as 𝐻 = 180. As mentioned before,
the number of the system parameters is selected as 𝑚 = 20
and the order of Walsh function as 𝑘 = 32; thus, based
on (10), the quantity of information loaded in the system is𝑄 = 18000.

Figure 3(b) shows that a scalar chaotic signal 𝑥(𝑡) is
sent by the sender. Based on chaotic synchronization, we
get the error signal as depicted in Figure 3(c). We observe
that the synchronization error will converge to 0 for each
sampling time (𝑡𝑗 = 0.2) from the details of 𝑒(𝑡). Hence, the
estimated values converge to the value integrated by Walsh
function in each sampling time as presented in Figure 3(d).
We set up a sampling point at 𝑡 = 0.2𝑗. In this way,
we can accurately estimate the accurate Walsh integrated
information. After that, based on (13), we let the estimated
value �̂�𝑖 bemultiplied with the correspondingWalsh function
and then integrate them in one period of Walsh function. If
the obtained original binary information is 1, the result of
the integral will be positive; otherwise, the result of integral
will remain unchanged. Thus, we get a ladder-like waveform
as presented in Figure 3(e). From that ladder-like waveform,
we can recover the original binary information by using the
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Figure 3: The simulation results when 𝑘 = 32 and𝑚 = 20.

method that each rising edge equals “1” and others equal
“0.” The comparisons of the recovered value and the original
value are shown in Figure 3(f). We set a threshold 𝑎th (𝑎th =0.5); we can easily distinguish 0 and 1. Thus, the transmitted
information is precisely restored.

In the next step, we raise the value of 𝑚 to 30. The
results are depicted in Figures 4(a)–4(c). The error signal
in Figure 4(a) is compared with Figure 3(c). It is obvious
that the rate of convergence when 𝑚 = 30 is slower than
that of when 𝑚 = 20. Thus, it points out to some minor
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Figure 4: The simulation results of 𝑘 = 32 and𝑚 = 30.

mistake in Figure 4(b). This minor mistake lies within the
permitted sphere of estimation when 𝑚 = 30, so we can still
recover the original information accurately. While compared
with Figure 3(f), we find that the recovered information
is far away from original value even almost beyond the
threshold as presented in Figure 4(c). On the other hand,
the recovered information lies near to the original value
when 𝑚 = 20. With the increment of 𝑚, more and more
errors appear in 𝑏𝑖 which becomes the hurdle to recover the
original information. Under the premise of the accuracy, as
a result, the experimental maximum of 𝑚 is 30. Thus, based
on (10), the maximum quantity of information carried by
the system is 𝑄 = 27000. This quantity of information is
much larger than that of traditional chaotic communication
schemes.

4.2. Simulation with Different 𝑘. Next, we change the order
of the Walsh function while fixing the width of original
information to 𝑙𝑏 = 6.4 which is the same as 𝑘 = 32.

Table 1: The total information for different 𝑘.
𝑘 8 16 32 64
𝑙𝑤 0.8 0.4 0.2 0.1
𝑙𝑏 6.4 6.4 6.4 6.4
𝑚max 115 58 30 14
𝐻 180 180 180 180
𝑄 (bit) 25875 26100 27000 25200

Under the premise that the system can accurately recover the
original information, we let 𝑘 = 8, 16, 64 and simulate the
experiments for each case separately.The results are presented
in Table 1.

We expect the system can carry information as much as
possible, but we observe from Notations that 𝑚 decreased
as 𝑘 increases. Thus, we cannot increase 𝑚 and 𝑘 at the
same time. Meanwhile, the total information presents a small
uptrend when 𝑙𝑤 ≥ 0.2 and then goes down. Thus we get the
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Figure 5: The bit error rate (BER) in different 𝑙𝑤 and𝑚.

maximum information when 𝑘 = 32, and the total number of
information is 27000. That is the reason to set 𝑘 = 32 for the
simulation at the beginning of this section.

Remark 4. Why choose 𝑙𝑤 = 0.2? To explain this question,
we perform a series of simulations with different 𝑙𝑤 under 32-
order Walsh function. The result is depicted in Figure 5. We
observe from here that the BER decreases with the increment
of 𝑙𝑤.Thus, the smaller 𝑙𝑤 is, themore information the system
could carry. We expect 𝑙𝑤 to be as small as possible, but
it should be long enough so that the estimated value can
converge to the true value.Thus, under the condition of non-
BER, the minimum of 𝑙𝑤 is set to 0.2.
4.3. Simulation with Gaussian White Noise. Next, the effect
of noise is under consideration in our system. We add an
Gaussianwhite noise in the drive systemwhich can bewritten
as follows:

�̇� (𝑡) = 𝑓 (𝑥 (𝑡)) + 𝑚∑
𝑖=1

𝑘∑
𝑗=1

(𝑎𝑖𝑗𝑊𝑗 (𝑡)) 𝑥 (𝑡 − 𝜏𝑖) + 𝐺 (𝑡) , (16)

where𝐺(𝑡) denotes Gaussian white noise with its expectation
and variance set to (0, 25). The result is shown in Figure 6.
Despite such noise, the simulation still recover the original
information. That is to say, our system has a good ability to
resist system noise. As the variance of the Gaussian white
noise increases, the recovery accuracy tends to decrease. In
the case when the variance exceeds 29, the nonerror recovery
cannot be achieved.

5. Application Analysis

In the following section, considering the Shannon-Hartley
theorem [32, 33], we analyze the relationship between the

signal transmission rate and the signal power in the real
channel. First, we present the formula of calculating the
average power of signal 𝑆 as follows:

𝑆 = lim
𝑇→∞

1
𝑇 ∫∞
−∞

𝑥 (𝑡)2 𝑑𝑡. (17)

By using the formula, we can calculate the average power
of 𝑥(𝑡), when 𝑘 = 32, and 𝑚 is set to 𝑚 = 1, 10, 20, 30.
Then we let 𝛿 = 𝑚 ∗ 𝑘; the relation after calculations is
presented as follows: 𝑆𝛿=32 < 𝑆𝛿=320 < 𝑆𝛿=640 < 𝑆𝛿=960. The
Shannon-Hartley theoremdescribes the relationship between
the upper bound for the rate of transmission of information
in a real channel and the channel signal-to-noise ratio and
bandwidth; thus, it indicates that different bandwidths of
modern wireless systems cause different maximum through-
put of single carrier.The formula to characterize the theorem
is presented as follows:

𝐶 = 𝐵 log(1 + 𝑆
𝑁0𝐵) , (18)

where 𝐶 denotes the information transmission rate, 𝐵 is
the bandwidth of the channel, and 𝑁0 is the noise power.
Given 𝐵 and 𝑁0, the rate of transmission increases with
the growth of the average power of signal; that is, 𝐶𝛿=32 <𝐶𝛿=320 < 𝐶𝛿=640 < 𝐶𝛿=960. In the era of big data,
chaotic laser communication has great potential for mass
quantity data transmission. Based on the aforementioned
analysis, we conclude that if our proposed model is applied
to the real chaotic laser communication, as the number
of transmission information in our scheme is much larger
than the traditional chaotic technology under the same
setup, the efficiency of chaotic laser communication can
be improved. In recent years, the long-haul and low-cost
chaotic optical secure communications with 1.25Gbits/s-
message and 2.5Gbits/s-message are experimentally realized
using discrete optical components.The transmission distance
reaches 143 km and 25 km [38], which is based on chaotic
masking. Since the transmission rate 𝐶𝛿=32 < 𝐶𝛿=960 under
the same position, if our technology is applied in the above
real system, the overall rate can be further increased to
some extent; we will discuss the related issues in future
research.

6. Conclusion

In summary, for the purpose of big data transmission, an
efficient chaotic communication scheme based on Walsh
function is designed. Experimental simulations are per-
formed to explore the maximum value of information car-
ried by one-dimensional scalar chaotic signal and illus-
trate the feasibility of this scheme. Finally, the application
is discussed and will be further studied in our future
works.
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Figure 6: The simulation results of simulation with Gaussian white noise. (a) The noise 𝐺(𝑡) with its expectation and variance are set to(0, 25). (b) The system error 𝑒(𝑡) with noise when𝑚 = 30 and 𝑘 = 32. (c) The comparison of estimated value and the accurate value of the 30
Walsh integrated messages with noise. (d) The comparisons of recovered value and original value in the 960 messages with noise.

Notations

𝑥(𝑡): The state variable of the drive system𝑦(𝑡): The state variable of the response system𝑒(𝑡): The state variable of the response system𝜏, 𝜏𝑖: The time delays𝑎𝑖: System parameters�̂�𝑖: The estimated value of 𝑎𝑖𝑚: The number of system parameters𝛼, 𝛽, 𝛾, 𝜂: Constants𝑘: The order of Walsh function𝑊𝑗(𝑡): The 𝑗th Walsh sequence of 𝑘-orders Walsh
function

𝑏𝑖: The estimated value of ∑𝑘𝑗=1 𝑎𝑖𝑗𝑊𝑗(𝑡)𝑙𝑏: The length of one bit of information𝑙𝑤: The length of each 𝑘-orders Walsh
function’s code element (𝑙𝑤 = 𝑙𝑏/𝑘)𝑡𝑗: The sample time (𝑡𝑗 = 𝑗𝑙𝑤)𝐻: The effective length of the carrier𝑄: The quantity of total information (bits)
carried by the system.
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