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The exponential stability of themonotubular heat exchanger equation with boundary observation possessing a time delay and inner
control was investigated. Firstly, the close-loop system was translated into an abstract Cauchy problem in the suitable state space. A
uniformly bounded 𝐶0-semigroup generated by the close-loop system, which implies that the unique solution of the system exists,
was shown. Secondly, the spectrum configuration of the closed-loop system was analyzed and the eventual differentiability and
the eventual compactness of the semigroup were shown by the resolvent estimates on some resolvent sets. This implies that the
spectrum-determined growth assumption holds. Finally, a sufficient condition, which is related to the physical parameters in the
system and is independent of the time delay, of the exponential stability of the closed-loop system was given.

1. Introduction

In the past decades, the monotubular heat exchanger system
has been analyzed by several researchers from the viewpoint
of system theory. For example, Xu et al. [1] have treated
the heat exchanger equation with zero boundary conditions
and proved the exponential stability for each set of physical
parameters with the finest estimate of the decay rate by
using Huang’s result [2] on the spectrum-determined growth
assumption (see also [3]). In [4], Kanoh has introduced a con-
troller with two kinds of feedback loops for the monotubular
heat exchanger equation. However, he does not discuss the
exponential stability of the closed-loop system, which is one
of the important properties in the field of dynamical system
theory. In [5], Sano analyzes the exponential stability of
the monotubular heat exchanger system with static output
feedback. In [6], Guo and Liang show that the 𝐶0-semigroup
associated with the closed-loop system of the monotubular
heat exchanger equation is differentiable after some finite
time period. Moreover, they verify that the system is not a
Riesz spectral system although the root subspace is complete
in the energy Hilbert space. Meanwhile, Yu and Liu give the

differentiability of the system with static output feedback by
the different method in [7].

However, in a practical control system, there is often
a time delay between the controller to be implemented
and the information via the observation of the system.
These hereditary effects are sometimes unavoidable because
they might turn a well-behaved system into a wild one. A
simple example can be found in the work of Gumowski
and Mira [8], where they demonstrated that the occurrence
of delays could destroy the stability and cause periodic
oscillations in a system governed by differential equation.
Another example from Datko [9] illustrated that an arbitrary
small time delay in the control could destabilize a boundary
feedback hyperbolic control system. On the other side, the
inclusion of an appropriate time delay effect can sometimes
improve the performance of the system (e.g., see [10, 11]).
The stabilization with time delay in observation or control
represents difficult mathematical challenges in the control of
distributed parameter systems. However, this does not mean
that there is no stabilizing controller in the presence of time
delay. You can refer to [12–18] for some successful examples.
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Motivated by these works, we shall introduce time delay
to the monotubular heat exchanger system and we then
investigate the effect of the time delay on exponential stability
of the system. More precisely, we assume that a time delay
occurs in the boundary observation. We want to pose a
question. Is the stabilization robust to the time delay for
the proportional feedback controller? The present paper is
devoted to answering this question.

The content of this paper is organized as follows. In
Section 2, we shall introduce themonotubular heat exchanger
system mentioned above and formulate our problem in a
suitable Hilbert space. We show that the closed-loop system
generates a 𝐶0-semigroup of bounded linear operators and
obtain the well-posedness of the system. In Section 3, we
carry out detailed spectral analysis and obtain the spectrum
configuration of the closed-loop system. Furthermore, we
present that𝐶0-semigroup is differentiable and compact after
some finite time period based on the spectral analysis. This
means that the spectrum-determined growth assumption
holds. In Section 4, the stable regions of the closed-loop
system are given by verifying that the spectral bound is
less than or greater than zero. In the last section, a concise
conclusion is given.

2. System Description and Well-Posedness
of the System

We shall consider the following type of monotubular heat
exchanger equation in which the time delay occurs in bound-
ary observation:

𝜕𝑧𝜕𝑡 (𝑡, 𝑥) = −𝜕𝑧𝜕𝑥 (𝑡, 𝑥) − 𝑎𝑧 (𝑡, 𝑥) + 𝛾𝑒−𝑏𝑥𝑢 (𝑡) ,
(𝑡, 𝑥) ∈ (0,∞) × (0, 1) ,𝑧 (𝑡, 0) = 0,𝑧 (0, 𝑥) = 𝑧0 (𝑥) ,𝑦 (𝑡) = 𝑧 (𝑡 − 𝜏, 1) ,

(1)

where 𝑧(𝑡, 𝑥) ∈ R is the temperature variation at the time𝑡 and at the point 𝑥 ∈ [0, 1] with respect to an equilibrium
point, 𝑢(𝑡) ∈ R is the control input, 𝑦(𝑡) ∈ R is the measured
output, 𝑎 is a positive physical parameter, and 𝛾𝑒−𝑏𝑥 denotes
the spatial distribution of an actuator, with 𝑏 and 𝛾 being
positive constants, and 𝜏 > 0 is the length of time delay.

As usual, we adopt the simple feedback control law 𝑢(𝑡) =−𝑘𝑦(𝑡) in system (1) which results in the following closed-
loop system:

𝜕𝑧𝜕𝑡 (𝑡, 𝑥) = −𝜕𝑧𝜕𝑥 (𝑡, 𝑥) − 𝑎𝑧 (𝑡, 𝑥) − 𝑘𝛾𝑒−𝑏𝑥𝑧 (𝑡 − 𝜏, 1) ,
(𝑡, 𝑥) ∈ (0,∞) × (0, 1) ,𝑧 (𝑡, 0) = 0,𝑧 (0, 𝑥) = 𝑧0 (𝑥) .

(2)

Setting 𝑤(𝑡, 𝑥) = 𝑧(𝑡 − 𝑥𝜏, 1), system (2) is equivalent to𝜕𝑧𝜕𝑡 (𝑡, 𝑥) = −𝜕𝑧𝜕𝑥 (𝑡, 𝑥) − 𝑎𝑧 (𝑡, 𝑥) − 𝑘𝛾𝑒−𝑏𝑥𝑤 (𝑡, 1) ,
(𝑡, 𝑥) ∈ (0,∞) × (0, 1) ,

𝜏𝜕𝑤𝜕𝑡 (𝑡, 𝑥) = −𝜕𝑤𝜕𝑥 (𝑡, 𝑥) ,
𝑧 (𝑡, 0) = 0,𝑧 (𝑡, 1) = 𝑤 (𝑡, 0) , 𝑡 ∈ (0,∞) ,𝑧 (0, 𝑥) = 𝑧0 (𝑥) ,𝑤 (0, 𝑥) = 𝑓 (−𝜏𝑥) , 𝑥 ∈ (0, 1) ,

(3)

in which the function 𝑓(⋅) denotes the history of the system
at the boundary 𝑥 = 1 at the time period (−𝜏, 0).

We take the state Hilbert space H = 𝐿2[0, 1] × 𝐿2[0, 1]
equipped with natural inner product ⟨⋅, ⋅⟩ and the induced
norm ‖ ⋅ ‖. Define the operator 𝐴 : 𝐷(𝐴) ⊂ H → H as

𝐴(𝑧𝑤) = (−𝑧 (𝑥) − 𝑎𝑧 (𝑥) − 𝑘𝛾𝑒−𝑏𝑥𝑤 (1)−1𝜏 𝑤 (𝑥) ) ,
(𝑧, 𝑤)⊤ ∈ 𝐷 (𝐴) ,

𝐷 (𝐴) = {(𝑧, 𝑤) ∈ 𝐻1 (0, 1) × 𝐻1 (0, 1) | 𝑧 (0)
= 0, 𝑧 (1) = 𝑤 (0)} .

(4)

Thus, system (3) can be written as𝑑𝑑𝑡𝑋 (𝑡) = 𝐴𝑋 (𝑡) ,
𝑋 (𝑡) = (𝑧 (𝑡, 𝑥)𝑤 (𝑡, 𝑥)) ∈ H ∀𝑡 ≥ 0, 𝑋 (0) = (𝑧0𝑓) . (5)

If the operator 𝐴 generates a 𝐶0-semigroup 𝑇(𝑡) on H,
then (5) has a unique solution, which is equivalent to the
unique solution to (2) or (3) exists. More precisely, we have
the following theorem.

Theorem 1. For any 𝑘 ∈ R, the operator 𝐴 defined by (4)
generates a 𝐶0-semigroup onH.

Proof. Firstly, in order to prove that 𝐴 generates a 𝐶0-
semigroup, we introduce a new equivalent inner product in
H:

⟨𝑋1, 𝑋2⟩𝜏 = ∫1
0
𝑧1 (𝑥) 𝑧2 (𝑥)𝑑𝑥

+ 𝜏∫1
0
𝑤1 (𝑥)𝑤2 (𝑥)𝑑𝑥,

𝑋𝑖 = (𝑧𝑖, 𝑤𝑖)⊤ ∈ H (𝑖 = 1, 2) .
(6)
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From the definition of the operator 𝐴 in (4), it follows that
the identities

2Re⟨𝐴( 𝑧𝑤 ) ,( 𝑧𝑤 )⟩
𝜏

= − |𝑤 (1)|2 − 2𝑎∫1
0
|𝑧 (𝑥)|2 𝑑𝑥

− ∫1
0
2𝑘𝛾𝑒−𝑏𝑥Re [𝑤 (1) 𝑧 (𝑥)] 𝑑𝑥

≤ − |𝑤 (1)|2 − 2𝑎∫1
0
|𝑧 (𝑥)|2 𝑑𝑥

− ∫1
0
2𝑘𝛾𝑒−𝑏𝑥Re [𝑤 (1) 𝑧 (𝑥)] 𝑑𝑥

≤ − |𝑤 (1)|2 − 2𝑎∫1
0
|𝑧 (𝑥)|2 𝑑𝑥

+ ∫1
0
|𝑤 (1)|2 + 𝑘2𝛾2 |𝑧 (𝑥)|2 𝑑𝑥

= (𝑘2𝛾2 − 2𝑎)∫1
0
|𝑧 (𝑥)|2 𝑑𝑥

(7)

hold. These identities imply that

Re⟨𝐴(𝑧𝑤) ,(𝑧𝑤)⟩
𝜏

≤ (𝑘2𝛾22 − 𝑎) (
𝑧𝑤)𝜏 , (8)

in which ‖⋅‖𝜏 denotes the norm induced by the inner product
of ⟨⋅, ⋅⟩𝜏 inH.

Secondly, it is easy to verify that the operator𝐴 is densely
defined and closed and its adjoint with respect to the new
inner product is given as follows:

𝐴∗ (𝑧𝑤) = (𝑧 (𝑥) − 𝑎𝑧 (𝑥)1𝜏𝑤 (𝑥) ) , (𝑧, 𝑤)⊤ ∈ 𝐷 (𝐴∗) ,
𝐷 (𝐴∗) = {(𝑧, 𝑤) ∈ 𝐻1 (0, 1) × 𝐻1 (0, 1) | 𝑤 (0)

= 𝑧 (1) , 𝑤 (1) = −𝑘𝛾∫1
0
𝑒−𝑏𝑥𝑧 (𝑥) 𝑑𝑥} .

(9)

By the same method as above, we have that, for all (𝑧, 𝑤)⊤ ∈𝐷(𝐴∗),
Re⟨𝐴∗ (𝑧𝑤) ,(𝑧𝑤)⟩

𝜏

= −(12) |𝑧 (0)|2 − 𝑎∫1
0
|𝑧 (𝑥)|2 𝑑𝑥

+ 12 𝑘𝛾∫1
0
𝑒−𝑏𝑥𝑧 (𝑥) 𝑑𝑥

2

≤ (𝑘2𝛾22 − 𝑎) (
𝑧𝑤 )𝜏 .

(10)

Finally, together with (8) and (10), it follows that the
operator 𝐴 generates a 𝐶0-semigroup 𝑇(𝑡) on (H, ‖ ⋅ ‖𝜏)
satisfying ‖𝑇(𝑡)‖𝜏 ≤ 𝑒(𝑘2𝛾2/2−𝑎)𝑡 by using Corollary 2.2.3 of
[19].The equivalence of two norms ‖⋅‖𝜏 and ‖⋅‖ onH implies
that there exists a positive constant 𝑀 such that ‖𝑇(𝑡)‖ ≤𝑀𝑒(𝑘2𝛾2/2−𝑎)𝑡.Thus, the proof of the theorem is complete.

3. Spectral Analysis and
Regularity of Semigroup

In order to show the exponential stability of system (5), we
shall analyze the spectral configuration of the operator 𝐴. To
this end, we show that the operator𝐴 is of compact resolvent
(in other words, 𝐴 is a discrete operator).

Theorem 2. We have the following statements:

(1) 𝜆 ∈ 𝜌(𝐴) if and only if 𝜆 satisfies

−𝑘𝛾𝑒−𝜆𝜏𝑒−(𝜆+𝑎) ∫1
0
𝑒(𝜆+𝑎−𝑏)𝑠𝑑𝑠 ̸= 1. (11)

(2) If 𝜆 ∈ 𝜌(𝐴), then 𝑅(𝜆, 𝐴) is compact.

Proof. (1) For arbitrary (ℎ, 𝑔)⊤ ∈ H, let us consider the
resolvent equation

(𝜆𝐼 − 𝐴)(𝑧𝑤) = (ℎ𝑔) . (12)

It is equivalent to

𝑧 (𝑥) = − (𝜆 + 𝑎) 𝑧 (𝑥) − 𝑘𝛾𝑒−𝑏𝑥𝑤 (1) + ℎ (𝑥) , (13)

𝑤 (𝑥) = −𝜆𝜏𝑤 (𝑥) + 𝜏𝑔 (𝑥) , (14)

𝑧 (0) = 0,𝑧 (1) = 𝑤 (0) . (15)

Solving the equations of (13) and (14) with the help of 𝑧(0) =0, we have
𝑧 (𝑥) = ∫𝑥

0
𝑒−(𝜆+𝑎)(𝑥−𝑠) [−𝑘𝛾𝑒−𝑏𝑠𝑤 (1) + ℎ (𝑠)] 𝑑𝑠,

𝑤 (𝑥) = 𝑤 (0) 𝑒−𝜆𝜏𝑥 + 𝜏∫𝑥
0
𝑒−𝜆𝜏(𝑥−𝑠)𝑔 (𝑠) 𝑑𝑠. (16)

It follows from 𝑧(1) = 𝑤(0) that
𝑤 (0) + 𝑘𝛾𝑒−(𝜆+𝑎) ∫1

0
𝑒(𝜆+𝑎−𝑏)𝑠𝑑𝑠𝑤 (1)

= ∫1
0
𝑒−(𝜆+𝑎)(1−𝑠)ℎ (𝑠) 𝑑𝑠,

− 𝑤 (0) 𝑒−𝜆𝜏 + 𝑤 (1) = 𝜏∫1
0
𝑒−𝜆𝜏(1−𝑠)𝑔 (𝑠) 𝑑𝑠.

(17)

It is easy to see from (16) that 𝑧(𝑥) and 𝑤(𝑥) are uniquely
determined by 𝑤(0) and 𝑤(1). However, (17) on 𝑤(0) and
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𝑤(1) has unique solution if and only if its coefficient deter-
minant is not zero. That is,

Δ (𝜆) fl 
1 𝑘𝛾𝑒−(𝜆+𝑎) ∫1

0
𝑒(𝜆+𝑎−𝑏)𝑠𝑑𝑠−𝑒−𝜆𝜏 1

 ̸= 0. (18)

A simple computation shows that statement (1) is right.
(2) If we let 𝑟(𝜆) = −𝑘𝛾𝑒−(𝜆+𝑎) ∫1

0
𝑒(𝜆+𝑎−𝑏)𝑠𝑑𝑠 and 𝜆 ∈ 𝜌(𝐴),

then we have

𝑤 (0) = 1Δ (𝜆) [∫10 𝑒−(𝜆+𝑎)(1−𝑠)ℎ (𝑠) 𝑑𝑠
+ 𝜏𝑟 (𝜆) ∫1

0
𝑒−𝜆𝜏(1−𝑠)𝑔 (𝑠) 𝑑𝑠] ,

𝑤 (1) = 1Δ (𝜆) [𝜏∫10 𝑒−𝜆𝜏(1−𝑠)𝑔 (𝑠) 𝑑𝑠
+ 𝑒𝜆𝜏 ∫1

0
𝑒−(𝜆+𝑎)(1−𝑠)ℎ (𝑠) 𝑑𝑠] .

(19)

It follows from (16) that

𝑅 (𝜆, 𝐴)(ℎ (𝑥)𝑔 (𝑥))
= (𝑘𝛾𝑤 (1) ∫𝑥

0
𝑒−(𝜆+𝑎)(𝑥−𝑠)𝑒−𝑏𝑠𝑑𝑠 + ∫𝑥

0
𝑒−(𝜆+𝑎)(𝑥−𝑠)ℎ (𝑠) 𝑑𝑠

𝑤 (0) 𝑒−𝜆𝜏𝑥 + 𝜏∫𝑥
0
𝑒−𝜆𝜏(𝑥−𝑠)𝑔 (𝑠) 𝑑𝑠 ) . (20)

Set

𝑇1 (ℎ (𝑥)𝑔 (𝑥)) = (𝑘𝛾𝑤 (1) ∫𝑥
0
𝑒−(𝜆+𝑎)(𝑥−𝑠)𝑒−𝑏𝑠𝑑𝑠𝑤 (0) 𝑒−𝜆𝜏𝑥 ) ,

𝑇2 (ℎ (𝑥)𝑔 (𝑥)) = (∫𝑥
0
𝑒−(𝜆+𝑎)(𝑥−𝑠)ℎ (𝑠) 𝑑𝑠

𝜏∫𝑥
0
𝑒−𝜆𝜏(𝑥−𝑠)𝑔 (𝑠) 𝑑𝑠) .

(21)

Obviously, 𝑅(𝜆, 𝐴) = 𝑇1 + 𝑇2 and 𝑇1 and 𝑇2 are compact
operators on H. These facts imply that 𝑅(𝜆, 𝐴) is compact.
Thus, the second statement holds and the proof ofTheorem 2
is completed.

Similarly, we have the following spectral distribution and
omit its proof since it involves only simple calculations.

Lemma 3. 𝜆 = 0 is an eigenvalue of the operator𝐴 if and only
if 𝑘𝛾(𝑒−𝑎 − 𝑒−𝑏) = 𝑎 − 𝑏. 𝜆 = −𝑎 + 𝑏 is an eigenvalue of the
operator 𝐴 if and only if 𝑘𝛾𝑒𝜏(𝑎−𝑏)𝑒−𝑏 = 1.

In the rest of the paper, we shall assume that 𝑘𝛾(𝑒−𝑎 −𝑒−𝑏) ̸= 𝑎 − 𝑏 and 𝑘𝛾𝑒𝜏(𝑎−𝑏)𝑒−𝑏 ̸= 1. According to Theorem 2
and Lemma 3, we have the following result.

Theorem 4. If 𝑘𝛾𝑒𝜏(𝑎−𝑏)𝑒−𝑏 ̸= 1, then 𝜎(𝐴) consists of
eigenvalues with finite multiplicity and 𝜎(𝐴) = {𝜆 ∈ C :Δ(𝜆) = 𝑘𝛾𝑒−𝜆𝜏((𝑒−𝜆−𝑎 − 𝑒−𝑏)/(𝜆 + 𝑎 − 𝑏)) − 1 = 0}.

In the sequel, we will further study the spectral properties
of 𝐴.
Lemma 5. Let 𝑘 ̸= 0 and 𝜎 = 𝑘2𝛾2/2 − 𝑎. There exists𝑀1 > 0
such thatΣ = {𝜆 ∈ C | Re 𝜆 ≤ 𝜎, Im 𝜆 ≥ 𝑀1𝑒−2(1+𝜏)Re𝜆}⊆ 𝜌 (𝐴) . (22)

Moreover, for 𝜆 ∈ Σ,𝑘𝛾𝑒−𝜆𝜏 𝑒
−𝑏 − 𝑒−𝜆−𝑎𝜆 + 𝑎 − 𝑏  ≤ 12 . (23)

Proof. Let 𝜆 = 𝑥 + 𝑖𝑦 and let 𝑥 and 𝑦 be real numbers.
Straightforward calculations show that𝑘𝛾𝑒−𝜆𝜏 𝑒

−𝑏 − 𝑒−𝜆−𝑎𝜆 + 𝑎 − 𝑏  = |𝑘| 𝛾𝑒−𝜏𝑥  𝑒
−𝑏 − 𝑒−𝑥−𝑎𝑒𝑖𝑦𝑥 + 𝑎 − 𝑏 + 𝑖𝑦 

= |𝑘| 𝛾𝑒−𝜏𝑥  𝑒
−2𝑏 + 𝑒−2(𝑥+𝑎) − 2𝑒−(𝑥+𝑎+𝑏) cos𝑦(𝑥 + 𝑎 − 𝑏)2 + 𝑦2


1/2

= |𝑘| 𝛾  𝑒2𝑥−2𝑏 + 𝑒−2𝑎 − 2𝑒(𝑥−𝑎−𝑏) cos𝑦𝑒2(𝜏+1)𝑥 (𝑥 + 𝑎 − 𝑏)2 + 𝑒2(𝜏+1)𝑥𝑦2

1/2 .

(24)

If |𝑦| > 𝑒−2(𝜏+1)𝑥, we have
|𝑘| 𝛾  𝑒2𝑥−2𝑏 + 𝑒−2𝑎 − 2𝑒(𝑥−𝑎−𝑏) cos𝑦𝑒2(𝜏+1)𝑥 (𝑥 + 𝑎 − 𝑏)2 + 𝑒2(𝜏+1)𝑥𝑦2


1/2

≤ |𝑘| 𝛾  𝑒2𝑥−2𝑏 + 𝑒−2𝑎 + 2𝑒(𝑥−𝑎−𝑏)𝑒2(𝜏+1)𝑥 (𝑥 + 𝑎 − 𝑏)2 + 𝑒−2(𝜏+1)𝑥

1/2 → 0

(25)

as 𝑥 → −∞. This means that there exists a constant 𝐾1 > 0
such that𝑘𝛾𝑒−𝜆𝜏 𝑒

−𝑏 − 𝑒−𝜆−𝑎𝜆 + 𝑎 − 𝑏  ≤ 12 ,
if Re 𝜆 < −𝐾1, Im 𝜆 ≥ 𝑒−2(𝜏+1)Re 𝜆. (26)

Meanwhile, it follows from𝑘𝛾𝑒−𝜆𝜏 𝑒
−𝑏 − 𝑒−𝜆−𝑎𝜆 + 𝑎 − 𝑏  ≤ |𝑘| 𝛾𝑒−𝜏𝑥 𝑒−𝑏 + 𝑒−𝑥−𝑎𝑦 (27)

that |𝑘𝛾𝑒−𝜆𝜏((𝑒−𝑏−𝑒−𝜆−𝑎)/(𝜆+𝑎−𝑏))| converges to 0 uniformly
with respect to −𝐾1 ≤ 𝑥 ≤ 𝜎 as |𝑦| → ∞. Thus, there exists a
constant 𝐾2 > 0 such that𝑘𝛾𝑒−𝜆𝜏 𝑒

−𝑏 − 𝑒−𝜆−𝑎𝜆 + 𝑎 − 𝑏  ≤ 12 ,
if |Im 𝜆| > 𝐾2, −𝐾1 ≤ Re 𝜆 ≤ 𝜎. (28)

Take 𝑀1 > max{1, 𝐾2𝑒2(1+𝜏)𝜎}. It follows from (26) and (28)
that 𝑘𝛾𝑒−𝜆𝜏 𝑒

−𝑏 − 𝑒−𝜆−𝑎𝜆 + 𝑎 − 𝑏  ≤ 12 , for 𝜆 ∈ Σ. (29)
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Moreover, by Theorem 4, we have that Σ ⊂ 𝜌(𝐴). Thus the
proof of the Lemma 5 is complete.

Now, we give the eventual regularity of the𝐶0-semigroup(𝑇(𝑡))𝑡≥0 generated by the operator 𝐴.
Theorem 6. For any 𝑘 ̸= 0, there exists 𝑡0 > 0 such
that 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 generated by the operator 𝐴 is
differentiable for 𝑡 > 𝑡0.
Proof. It follows from (23) that |Δ(𝜆)| ≤ 1/2 for 𝜆 ∈ Σ. Here,Δ(𝜆) is defined in the proof of Theorem 4. Set

Σ1 = {𝜆 ∈ C | Re 𝜆 ≤ −𝑎, Im 𝜆 ≥ 𝑀1𝑒−2(1+𝜏)Re𝜆} ,Σ2= {𝜆 ∈ C | −𝑎 ≤ Re 𝜆 ≤ 𝜎, Im 𝜆 ≥ 𝑀1𝑒−2(1+𝜏)Re𝜆} .
(30)

It is easy to see that Σ = Σ1 ∪ Σ2. Moreover, it follows from
(20) that

𝑅 (𝜆, 𝐴)(ℎ (𝑥)𝑔 (𝑥))
= (𝑘𝛾𝑤 (1) ∫𝑥

0
𝑒−(𝜆+𝑎)(𝑥−𝑠)𝑒−𝑏𝑠𝑑𝑠 + ∫𝑥

0
𝑒−(𝜆+𝑎)(𝑥−𝑠)ℎ (𝑠) 𝑑𝑠

𝑤 (0) 𝑒−𝜆𝜏𝑥 + 𝜏∫𝑥
0
𝑒−𝜆𝜏(𝑥−𝑠)𝑔 (𝑠) 𝑑𝑠 ) , (31)

in which

𝑤 (0) = 1Δ (𝜆) [∫10 𝑒−(𝜆+𝑎)(1−𝑠)ℎ (𝑠) 𝑑𝑠
+ 𝜏𝑟 (𝜆) ∫1

0
𝑒−𝜆𝜏(1−𝑠)𝑔 (𝑠) 𝑑𝑠] ,

𝑤 (1) = 1Δ (𝜆) [𝜏∫10 𝑒−𝜆𝜏(1−𝑠)𝑔 (𝑠) 𝑑𝑠
+ 𝑒𝜆𝜏 ∫1

0
𝑒−(𝜆+𝑎)(1−𝑠)ℎ (𝑠) 𝑑𝑠]

(32)

are given in (19) and 𝑟(𝜆) = −𝑘𝛾𝑒−(𝜆+𝑎) ∫1
0
𝑒(𝜆+𝑎−𝑏)𝑠𝑑𝑠. If we let‖ ⋅ ‖2 be the usual norm of 𝐿2(0, 1), then we have

|𝑟 (𝜆)| ≤ {{{{{
|𝑘| 𝛾𝑒−Re𝜆, 𝜆 ∈ Σ1;
|𝑘| 𝛾 ∫1

0
𝑒(𝜔0+𝑎−𝑏)𝑠𝑑𝑠, 𝜆 ∈ Σ2, (33)

∫𝑥0 𝑒−(𝜆+𝑎)(𝑥−𝑠)𝑒−𝑏𝑠𝑑𝑠 ≤ {{{
𝑒−Re𝜆, 𝜆 ∈ Σ1;1, 𝜆 ∈ Σ2, (34)

∫𝑥0 𝑒−(𝜆+𝑎)(𝑥−𝑠)ℎ (𝑠) 𝑑𝑠 ≤ {{{
𝑒−Re𝜆 ‖ℎ‖2 , 𝜆 ∈ Σ1;‖ℎ‖2 , 𝜆 ∈ Σ2;

∀𝑥 ∈ [0, 1] , ℎ (𝑥) ∈ 𝐿2 (0, 1) ,
(35)

∫𝑥0 𝑒−𝜆𝜏(𝑥−𝑠)𝑔 (𝑠) 𝑑𝑠 ≤ {{{
𝑒−𝜏Re𝜆 𝑔2 , 𝜆 ∈ Σ1;𝑒𝑎𝜏 𝑔2 , 𝜆 ∈ Σ2;

∀𝑥 ∈ [0, 1] , 𝑔 (𝑥) ∈ 𝐿2 (0, 1) .
(36)

It follows from (33)–(36) that

|𝑤 (0)| ≤ {{{
𝐿1𝑒−(𝜏+1)Re𝜆 (ℎ, 𝑔)⊤ , 𝜆 ∈ Σ1;𝐿2 (ℎ, 𝑔)⊤ , 𝜆 ∈ Σ2; (37)

|𝑤 (1)| ≤ {{{
𝐿1𝑒−(𝜏+1)Re𝜆 (ℎ, 𝑔)⊤ , 𝜆 ∈ Σ1;𝐿2 (ℎ, 𝑔)⊤ , 𝜆 ∈ Σ2, (38)

in which

𝐿1 = 2√2max {𝜏, 1, 𝜏 |𝑘| 𝛾} ,
𝐿2 = 2√2max{1, 𝜏𝑒𝑎𝜏, 𝑒𝜎𝜏, 𝜏 |𝑘| 𝛾 ∫1

0
𝑒(𝜎+𝑎−𝑏)𝑠𝑑𝑠} . (39)

In light of estimates (35)–(38), we have𝑅 (𝜆, 𝐴)(ℎ (𝑥)𝑔 (𝑥))


≤ {{{
𝐿3𝑒−2(𝜏+1)Re𝜆 (ℎ, 𝑔)⊤ , 𝜆 ∈ Σ1;𝐿4 (ℎ, 𝑔)⊤ , 𝜆 ∈ Σ2,

(40)

in which

𝐿3 = 2√(𝑘𝛾𝐿1)2 + 1 + 𝐿21 + 𝜏2,
𝐿4 = 2√(𝑘𝛾𝐿2)2 + 1 + 𝐿22𝑒2𝑎𝜏 + 𝜏2𝑒2𝑎𝜏. (41)

Taking 𝐿 = max{𝐿3, 𝐿4𝑒2(1+𝜏)𝜎}, we have𝑅 (𝜆, 𝐴)(ℎ (𝑥)𝑔 (𝑥))
 ≤ 𝐿𝑒−2(𝜏+1)Re𝜆 (ℎ, 𝑔)⊤ ,

∀(ℎ (𝑥)𝑔 (𝑥)) ∈ H, 𝜆 ∈ Σ. (42)

Finally, by the definition of Σ and (42), we have

‖𝑅 (𝜆, 𝐴)‖ ≤ 𝐿𝑀1𝑀1𝑒−2(𝜏+1)Re𝜆 ≤ 𝐿𝑀1 Im 𝜆, 𝜆 ∈ Σ. (43)

It follows fromTheorem 2.4.7 of [20] that there exists 𝑡0 > 0
such that the 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 is differentiable for 𝑡 >𝑡0. The proof of Theorem 6 is complete.

Corollary 7. For any 𝑘 ̸= 0, there exists 𝑡0 > 0 such that the𝐶0-semigroup (𝑇(𝑡))𝑡≥0 is compact for 𝑡 > 𝑡0. Moreover, the𝐶0-
semigroup (𝑇(𝑡))𝑡≥0 satisfies the spectrum-determined growth
condition.
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Proof. By Theorem 6, there exists 𝑡0 > 0 such that the 𝐶0-
semigroup (𝑇(𝑡))𝑡≥0 is differentiable for 𝑡 > 𝑡0. Thus the𝐶0-semigroup (𝑇(𝑡))𝑡≥0 is norm continuous for 𝑡 > 𝑡0. In
addition, we see from Theorem 2 that the operator 𝐴 has
compact resolvent. Therefore, by Corollary 2.3.4 of [20], the𝐶0-semigroup (𝑇(𝑡))𝑡≥0 is compact for 𝑡 > 𝑡0.
4. Exponential Stability Region of System (2)

For convenience, we first state a feasible result of Ruan and
Wei as follows (see [21, 22]).

Theorem 8. Consider the exponential polynomial𝑃 (𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚)
= 𝜆𝑛 + 𝑝(0)1 𝜆𝑛−1 + ⋅ ⋅ ⋅ + 𝑝(0)𝑛−1𝜆 + 𝑝(0)𝑛+ [𝑝(1)1 𝜆𝑛−1 + ⋅ ⋅ ⋅ + 𝑝(1)𝑛−1𝜆 + 𝑝(1)𝑛 ] 𝑒−𝜆𝜏1 + ⋅ ⋅ ⋅

+ [𝑝(𝑚)1 𝜆𝑛−1 + ⋅ ⋅ ⋅ + 𝑝(𝑚)𝑛−1𝜆 + 𝑝(𝑚)𝑛 ] 𝑒−𝜆𝜏𝑚 ,
(44)

where 𝜏𝑖 ≥ 0 (𝑖 = 1, 2, . . . , 𝑚) and 𝑝(𝑖)𝑗 (𝑖 = 0, 1, . . . , 𝑚−1, 𝑗 =1, 2, . . . , 𝑛) are constants. As (𝜏1, 𝜏2, . . . , 𝜏𝑚) vary, the sumof the
orders of the zeros of 𝑃(𝜆, 𝑒−𝜆𝜏1 , . . . , 𝑒−𝜆𝜏𝑚) on the open right
half-plane can change only if a zero appears on or crosses the
imaginary axis.

In order to apply Theorem 8 to discuss the exponential
stability region of system (2), we introduce the following
result.

Theorem9. When 𝜏 = 0 in (2), if 1−𝑎+ln(𝑘𝛾)−ln(3𝜋/2) < 0,
then system (2) is exponentially stable.

Proof. According toTheorem 3.2 of [5], we know that system
(2) with 𝜏 = 0 is exponentially stable if and only if the spectral
bound of the system operator is less than zero. However,
Lemma 2.1 of [6] shows that the asymptotic expansions of
the eigenvalues of the system operator are as follows:

𝜆𝑛 = −𝑎 + ln (𝑘𝛾) − ln (𝜔𝑛) + 𝑖 (𝜔𝑛 − ln (𝜔𝑛)𝜔𝑛 )
+ 𝑂(𝑛−1) , 𝜔𝑛 = (2𝑛 − 12)𝜋, 𝑛 ≥ 1. (45)

It is easy to see that Re(𝜆𝑛) ≤ Re(𝜆𝑛−1) and the spectral bound
of the system operator is less than 1 − 𝑎 + ln(𝑘𝛾) − ln(3𝜋/2).
Thus, if 1 − 𝑎 + ln(𝑘𝛾) − ln(3𝜋/2) is less than zero, then
system (2) with 𝜏 = 0 is exponentially stable. The proof of
the Theorem is complete.

For further research, we introduce the following nota-
tions: 𝛼 = 𝑘𝛾𝑒−𝑎, 𝛽 = 𝑘𝛾𝑒−𝑏, and 𝜂 = 𝑎−𝑏. Thus, 𝜆 is a root of
the characteristic equation Δ(𝜆) = 0 of the system operator
(2) if and only if 𝜆 is a root of the equation𝜆 − 𝛼𝑒−𝜆(𝜏+1) − 𝛽𝑒−𝜆𝜏 + 𝜂 = 0, (46)

since 𝜆 = −𝑎 + 𝑏 is not the eigenvalue of the operator 𝐴 (see
Lemma 3). Moreover, we have the following theorem.

Theorem 10. If 𝛼+𝛽 < 𝜂 holds, then all roots ofΔ(𝜆) = 0 have
negative real parts.

Proof. Based on the observation above, it is sufficient to verify
that all roots of (46) have negative real parts.

Firstly, it follows from Lemma 3 that 𝜆 = 0 is not a root
of (46). Moreover, it follows fromTheorem 9 that all roots of
(46) have negative real parts when 𝜏 = 0.

Now, we prove that (46) does not have root on imaginary
axes. In fact, if 𝑖𝜔 is a root of (46), then we have

𝑖𝜔 − 𝛼 [cos ((𝜏 + 1) 𝜔) − 𝑖 sin ((𝜏 + 1) 𝜔)]− 𝛽 [cos (𝜏𝜔) − 𝑖 sin (𝜏𝜔)] + 𝜂 = 0. (47)

Separating real and imaginary parts, we obtain

𝜂 = 𝛼 cos ((𝜏 + 1) 𝜔) + 𝛽 cos (𝜏𝜔) ,𝜔 = −𝛼 sin ((𝜏 + 1) 𝜔) − 𝛽 sin (𝜏𝜔) . (48)

This implies that

𝜂2 + 𝜔2 − 𝛼2 − 𝛽2 = 2𝛼𝛽 cos𝜔, (49)

which is equivalent to

𝜔2 + 𝜂2 − 𝛼2 − 𝛽22𝛼𝛽 = cos𝜔, (50)

since 2𝛼𝛽 is obviously not zero. The assumption 𝛼 + 𝛽 <𝜂 implies that (𝜂2 − 𝛼2 − 𝛽2)/2𝛼𝛽 > 1. Hence, (50) is
meaningless. This shows that (46) does not have imaginary
root.

Finally, applyingTheorem 8, we have that all roots of (46)
have negative real parts for all 𝜏 > 0. The proof is completed.

Theorem 11. If 𝛼 + 𝛽 > 𝜂 holds, then the equation Δ(𝜆) = 0
has at least one root with positive real parts for all 𝜏 > 0.
Proof. It is sufficient to verify that (46) has at least one root
with positive real parts for all 𝜏 > 0.

Denote

𝑔 (𝜆) = 𝜆 − 𝛼𝑒−𝜆(𝜏+1) − 𝛽𝑒−𝜆𝜏 + 𝜂. (51)

Then 𝑔(0) = −𝛼 − 𝛽 + 𝜂 < 0. Obviously, lim𝜆→+∞𝑔(𝜆) =+∞ and hence there exists 𝜆0 > 0 such that 𝑔(𝜆0) = 0. This
implies that 𝜆0 is a root of (46).This completes the proof.

In conclusion, we give the main result of the paper.

Theorem 12. If 𝑘𝛾𝑒𝜏(𝑎−𝑏)𝑒−𝑏 ̸= 1, 1−𝑎+ ln(𝑘𝛾)− ln(3𝜋/2) < 0,
and 𝛼+𝛽 < 𝜂 hold, then system (2) or (3) is exponentially stable
for all 𝜏 > 0. However, if 𝑘𝛾𝑒𝜏(𝑎−𝑏)𝑒−𝑏 ̸= 1 and 𝛼 + 𝛽 > 𝜂 hold,
then system (2) or (3) is not stable.

Proof. According to Theorem 11, the second statement is
obvious.Moreover, it follows fromTheorems 4 and 10 that the
spectral bound 𝑠(𝐴) of the operator 𝐴 is less than or equal to
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zero for all 𝜏 > 0. However, it is easy to see that the imaginary
axis is not the asymptote of the zeros of the characteristic
function Δ(𝜆) for all 𝜏 > 0. This means that the spectral
bound 𝑠(𝐴) of the operator 𝐴 is less than zero for all 𝜏 > 0.
Hence, Corollary 7 implies that the first statement holds. The
proof is completed.

Remark 13. If we let 𝑘𝛾 = 1, then 1−𝑎+ ln(𝑘𝛾)− ln(3𝜋/2) < 0
is equivalent to 𝑎 > 0 and 𝛼 + 𝛽 < 𝜂 is equivalent to 𝑒−𝑎 −𝑒−𝑏 < 𝑎 − 𝑏. However, the mean value theorem implies that
there exists 𝜉 ∈ (𝑎, 𝑏) such that 𝑒−𝑎 − 𝑒−𝑏 = −𝑒−𝜉(𝑎 − 𝑏) and𝑒−𝑎 − 𝑒−𝑏 < 𝑎 − 𝑏 obviously holds if 𝑎 > 𝑏. This means that
if 𝑎 > 𝑏 > 0, 𝑘𝛾 = 1, and 𝑒𝜏(𝑎−𝑏)𝑒−𝑏 ̸= 1, system (2) or (3) is
exponentially stable.

Remark 14. The above theorem gives a sufficient condition of
the exponential stability of the monotubular heat exchanger
equation with delay. This condition is applicable for all
positive time delay 𝜏.This means that we answer the question
in Section 1. We want to point out especially that the
characteristic function Δ(𝜆) is the product of 𝑒−𝜆𝜏 and the
characteristic function of the system without delay in the
boundary observation.Moreover,The characteristic functionΔ(𝜆) = 0, which is associated with one-order (both time and
space) PDE with one delay, has the same type as that of the
ODE with two delays. Thus, we can apply the result of [21] to
discuss the distribution of roots of the characteristic equationΔ(𝜆) = 0, which is an important part of the paper.

5. Conclusions and Further Research

In this note, we give the stable regions of the monotubular
heat exchanger equation with delay in boundary observation
in light of the distribution of roots of the characteristic
equation Δ(𝜆) = 0. More precisely, a sufficient condition of
the exponential stability of the monotubular heat exchanger
equation with delay is presented. In the further research, it is
more realistic to discuss the effect of the external disturbance
on the performance of the monotubular heat exchanger
equation.
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