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To reduce the amount of data to be stored and software/hardware complexity and suppress range ambiguity, a novel MIMO
SAR imaging based on compressed sensing is proposed under the condition of wide-swath imaging. Random phase orthogonal
waveform (RPOW) is designed for MIMO SAR based on compressed sensing (CS). Echo model of sparse array in range and
compressive sampling is reconstructed with CS theory. Resolution in range imaging is improved by using the techniques of digital
beamforming (DBF) in transmit. Zero-point technique based on CS is proposed with DBF in receive and the range ambiguity is
suppressed effectively. Comprehensive numerical simulation examples are performed. Its validity and practicality are validated by
simulations.

1. Introduction

Synthetic aperture radar (SAR) has been widely used in
remote sensing imaging technology. However, current single-
antenna SAR systems have become more sophisticated and
cannot fulfill the increasing demands of future remote sens-
ing in high-resolution and wide-swath (HRWS) imaging
performance [1]. On one hand, a small antenna length in
azimuth is needed to achieve a fine azimuth resolution. On
the other hand, the imaging of large swaths requires low pulse
repetition frequencies (PRFs) to avoid range ambiguities, and
azimuth ambiguities will appear if the PRF is too low for the
chosen azimuth antenna length. In order to suppress range
ambiguity, LCMV [2] and MUSIC [3] algorithms of DBF
are introduced. So current single-antenna SAR systems can-
not provide simultaneously high-resolution and wide-swath
imaging. One solution is the displaced phase center antenna
(DPCA) technique whose receive antennas are located in
along-track direction [4], but the potential drawback is that
sampling is nonuniform in azimuth constantly. Another
solution is to usemultiaperture in receive to gather additional
information [5]. The digital beamforming (DBF) on receive
techniques is employed.

In recent years, the multiple-input and multiple-output
(MIMO) technique is applied to the SAR system of multiple

antennas in range [1, 6]. Orthogonal waveforms are simul-
taneously transmitted by antennas in range and echoes
are isolated from different transmit signals with different
weighting coefficients. Using DBF technology resolution in
range is improved. The challenge of large amount of data
is the common character of the above methods. To solve
this problem, compressed sensing technology is used in
SAR imaging [7–9]. The effect of sampling rate and the
channel capacity on imaging system are analyzed in a given
measurement matrix and SNR in [10]. In literature [11],
a new CS-SAR imaging method is proposed that can be
applied to high-quality and high-resolution imaging under
sub-Nyquist rate sampling, while saving the computational
cost substantially both in time and in memory.

In addition to solving the problem of large amount of
data, waveform design is the key technology to achieve
MIMO SAR imaging [1, 12, 13]. Signal waveform should
have enough time-bandwidth products and less peak power.
According to the requirement of signal waveform, a modified
genetic algorithm (GA) is proposed to numerically search
optimal frequency firing order for discrete frequency-coding
waveform (DFCW) in [14], and linear frequency modulation
hybrid coding (LFMHC) waveform is proposed to enable
MIMO SAR to operate efficiently in practical applications
[15], but the methods can increase the bandwidth of RF
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system. A random OFDM-LFM waveform is proposed in [1]
and has good performance in MIMO SAR imaging.

In this paper we proposed a random phase OFDM-LFM
waveform whose orthogonality is used to separate the echo
signals and beamforming. The proposed waveform has only
changed the initial frequency and phase of the LFM signal,
so the complexity of the transmitted signal is reduced to
meet the requirements of MIMO SAR imaging. Using this
waveform, a new MIMO SAR imaging for sparse receive
array in range based on CS is proposed. The quantity of
receive antennas is reduced whose spacing between the array
does not have to satisfy a limit of less than 𝜆/2 where 𝜆
is the transmit wavelength. According to the CS theory,
the received echo signals can be directly sampled randomly,
and the sampling frequency does not need to meet the
Nyquist sampling frequency, which can reduce the sampling
data. Zero-point technique based on CS is proposed with
DBF in receive to suppress range ambiguity. The rest of
this paper is organized as follows. In Section 2, a random
phase orthogonal waveform for MIMO SAR is designed.
Then compressed sensing theory is introduced in Section 3.
In Section 4, illustration and implementation of the signal
model of MIMO SAR in range based on CS are proposed.
In Section 5, the numerical simulation results are presented.
Finally, conclusions are reported in Section 6.

2. Random Phase Orthogonal
Waveform Design

Waveform design is considered in this section. Waveform
design is the key technology toMIMO SAR imaging. Because
the linear frequency modulation (LFM) signal has a large
time-bandwidth product and it is also the main waveform
used by the conventional SAR system, the main research in
this paper is based on the LFM signal.

Consider that transmit signals of MIMO SAR are 𝑠(𝑡) =[𝑠1(𝑡), 𝑠2(𝑡), . . . , 𝑠𝑚(𝑡), . . . , 𝑠𝑀(𝑡)]𝑇, and the mth transmit sig-
nal can be expressed by

𝑠𝑚 (𝑡) = rect (𝑡) 𝐶𝑚𝑈𝑚 (𝑡) , (1)

where

rect (𝑡) = {{{
1√𝑇𝑃 , 0 ≤ 𝑡 ≤ 𝑇𝑃

0, others
(2)

is a rectangular pulse signal, and 𝐶𝑚 = exp(𝑗𝜑𝑚) shows the
mth phase encoding signal where 𝜑𝑚 = (2𝜋/𝐿)𝑎𝑚 is random
phase, L is the number of available phases for phase encoding,
and 𝑎𝑚 is an element in sequence of {0, 1, . . . , 𝐿 − 1}. 𝑈𝑚(𝑡) =
exp[𝑗2𝜋(𝑓𝑚𝑡 + (1/2)𝐾𝑚𝑡2)] is mth LFM signal of random
encoding waveform, where 𝑓𝑚 is the initial frequency of the
LFM signal,𝐾𝑚 = 𝑏𝑚𝐵/𝑇𝑃 is the modulation slope, 𝐵 is pulse
signal bandwidth, and 𝑏𝑚 is a pseudorandom number.

As an example, Figure 1 is a schematic diagram of eight
waveforms whose color represents different random phases.
Figure 1(a) expresses that the phase and modulation slope
are random, and Figures 1(b) and 1(c) are the simplified

waveforms whose modulation slope is consistent, where
modulation slope is up in Figure 1(b) and down in Figure 1(c).
In practical applications, the waveforms shown in Figure 1(a)
are commonly used in signal processing to matched filter
(MF), and the waveforms shown in Figures 1(b) and 1(c)
are used for the Stretch processing system. Compared with
the matched filter processing, the Stretch processing system
only requires one reference signal which uses the waveforms
shown in Figure 1(b) or Figure 1(c). The analysis of signal
model and simulation mainly uses the waveform shown in
Figure 1(b).

Figure 2 is a frequency domain result of eight signals after
Stretch processing in one receive channel. The parameters
are 𝐵 = 10MHz, 𝑇𝑝 = 10 𝜇s, the starting frequencies𝑓𝑚 = [50, 70, 0, 20, 40, 10, 60, 30] × 106Hz, and phase 𝜑𝑚 =2𝜋/8 × [5, 1, 4, 0, 2, 3, 7, 6]. It can be seen that the echoes are
separated after Stretch processing using the random phase
orthogonal waveforms. Analyzed by ambiguity function [1,
15], this waveform has a satisfactory ambiguity function
performance in range resolution and Doppler frequency
resolution.

3. Compressed Sensing Theory

Compressed sensing theory is mainly used for sparse signal
restoration. As sparse signal representation has greater flex-
ibility in matching structure in the signal, it can be used in
SAR imaging. Assume that vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑁]T and
transform basedmatrixΨ = [𝜓1,𝜓2, . . . ,𝜓𝑁], the signal x on
transform based matrixΨ can be expressed by

x = 𝑁∑
𝑛=1

𝑠𝑛Ψ𝑛 = As, (3)

where s = [𝑠1, 𝑠2, . . . , 𝑠𝑁]T is weight coefficient vector of𝑁×1
dimensions. The signal x is a 𝐾-sparse signal if there are 𝐾
significant coefficients in S where 𝐾 is the sparse level, while
others are nearly zeros.

Linear measurements of sparse signal x can be expressed
as

y = Φx, (4)

whereΦ = [𝜑1 𝜑2 ⋅ ⋅ ⋅ 𝜑𝑀] is measurement matrix.
Put (3) into (4) and we can get

y = Φx = ΦΨs, (5)

y = Ψs, (6)

whereD = ΦΨ is recovery matrix.
In the above transformation process, it is possible to

reconstruct the original signal x from the observation signal y
by the reconstruction algorithmwhen the restricted isometry
property (RIP) is met [16]. Therefore, the design of the
measurement matrix Φ is very important. There are many
measurement matrixes that have been used, such as the
Hadamard matrix, Gaussian random matrix, sparse random
matrix, and part of the Fourier matrix.



Mathematical Problems in Engineering 3

0 T0 T0 T0 T0 T0 T0 T0 T

Time

Fr
eq

ue
nc

y

(a)

0 T0 T0 T0 T0 T0 T0 T0 T

Time

Fr
eq

ue
nc

y

(b)

0 T0 T0 T0 T0 T0 T0 T0 T

Time

Fr
eq

ue
nc

y

(c)

Figure 1: Schematic diagram of random phase orthogonal waveform.

4. The Signal Model of MIMO SAR in
Range Based on CS

The range ambiguity is existing because MIMO SAR antenna
patterns are wider than swath, and the external signals can
be received with useful echoes. The echoes of MIMO SAR
in range can be used by DBF that the antenna main lobe is
pointed to the direction of the desired swath and nulls in the
direction of interferers by null steering techniques. Thereby
range ambiguity can be suppressed while desired targets can
be imaged. Figure 3 is schematic diagram of range ambiguity
suppression using null steering techniques.

4.1. Echo Model in One Receive Channel. Echo in one receive
channel is the superposition of all reflected signals. Using
RPOW signals as shown in Figure 1(b), the mth transmit
signal in 𝑛th receive channel in the receiving array is assumed
as

𝑠𝑟 = 𝑒𝑗2𝜋𝑓𝑐(𝑡−𝜏)𝑒𝑗𝜑𝑚𝑒𝑗2𝜋[𝑓𝑠𝑚(𝑡−𝜏)+1/2𝐾𝑟(𝑡−𝜏)2], (7)

where 𝑓𝑠𝑚 is starting frequency of random phase orthogonal
waveform and 𝜏 is delay time.The expression of the reference
signal is

𝑠ref = 𝑒𝑗2𝜋𝑓𝑐𝑡𝑒−𝑗𝜑𝑚𝑒𝑗𝜋𝐾𝑟𝑡2 . (8)

The signal of difference frequencymixing after Stretch can be
written as

𝑠𝑖𝑓 = 𝑠𝑟 (𝑡) ⋅ 𝑠∗ref (𝑡)
= 𝑒𝑗2𝜋(−𝑓𝑐𝜏+(1/2)𝐾𝑟𝜏2)𝑒𝑗2𝜋𝑓𝑠𝑚(𝑡−𝜏)𝑒−𝑗2𝜋𝐾𝑟𝜏𝑡. (9)

Radar echo signal is sparse in Fourier transform domain
from (5). Therefore, it can be processed and recovered by
compressed sensing theory. Diagram of sparse receive array
and signal sampling is shown in Figure 4, where𝑁𝑟 indicates
the sampling point in range and 𝑁𝑎 denotes the sampling
point in azimuth.
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Figure 2: Output of eight signals in frequency domain after Stretch processing in one receive channel.
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Figure 3: Schematic diagram of range ambiguity suppression using
null steering techniques.

When the sample number 𝑛𝑐 is large enough, after
discretization, a band limited analog signal can be recovered
by

𝑥𝑟 (𝑡) = 𝑁𝑐/2−1∑
𝑛𝑐=−𝑁𝑐/2

𝑥 [𝑛𝑐] sin [𝜋 (𝑡 − 𝑛𝑐𝑇) /𝑇]
𝜋 (𝑡 − 𝑛𝑐𝑇) /𝑇 , (10)

where 𝑥[𝑛𝑐] is sample sequence of original signal 𝑥𝑠 which
meets the Nyquist frequency and 𝑇 is sampling period.
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Figure 5: Resolution comparison of single LFM signal with RPOW signal.

The original signal is restored from 𝑀𝑐 random samples of𝑁𝑐 samples. Sampled sequence 𝑠(Δ𝑡𝑚) can be expressed by

𝑠 (Δ𝑡𝑚) = 𝑁𝑐∑
𝑛𝑐=1

𝑥 (𝑛𝑐𝑇𝑒) sin [𝜋 (Δ𝑡𝑚 − 𝑛𝑐𝑇𝑒) /𝑇𝑒]𝜋 (Δ𝑡𝑚 − 𝑛𝑐𝑇𝑒) /𝑇𝑒 , (11)

where Δ𝑡𝑚 is relative time interval of mth random sample,1 ≤ 𝑚 ≤ 𝑀𝑐, and 𝑇𝑒 is random sampling interval which can
be considered the same as 𝑇.

The relationship between the random sample values and
sample values satisfying the Nyquist sampling rate can be
expressed as [17]

[[[[[[
[

𝑠 (Δ𝑡1)𝑠 (Δ𝑡2)...
𝑠 (Δ𝑡𝑀)

]]]]]]
]

=
[[[[[[[
[

𝜙11 𝜙12 ⋅ ⋅ ⋅ 𝜙1𝑁𝑐𝜙21 𝜙22 ⋅ ⋅ ⋅ 𝜙2𝑁𝑐... ... d
...

𝜙𝑀1 𝜙𝑀2 ⋅ ⋅ ⋅ 𝜙𝑀𝑐𝑁𝑐

]]]]]]]
]

[[[[[[
[

𝑠 (𝑇𝑒)𝑠 (2𝑇𝑒)...
𝑠 (𝑁𝑐𝑇𝑒)

]]]]]]
]

. (12)

Using vector representation we have

s = Φx, (13)

where Φ is measure matrix and 𝜙𝑚𝑐𝑛𝑐 = sin[𝜋(Δ𝑡𝑚 − 𝑛𝑐𝑇𝑒)/𝑇𝑒]/(𝜋(Δ𝑡𝑚 − 𝑛𝑐𝑇𝑒)/𝑇𝑒).
Transformation matrix is

Ψ =
[[[[[[[
[

1 𝑒−𝑖Δ𝜙𝐵1 𝑒−𝑖2Δ𝜙𝐵1 𝑒−𝑖(𝑁−1)Δ𝜙𝐵1
1 𝑒−𝑖Δ𝜙𝐵2 𝑒−𝑖2Δ𝜙𝐵2 𝑒−𝑖(𝑁−1)Δ𝜙𝐵2
... ... d

...
1 𝑒−𝑖Δ𝜙𝐵𝑀 ⋅ ⋅ ⋅ 𝑒−𝑖(𝑁−1)Δ𝜙𝐵𝑀

]]]]]]]
]

. (14)

Multibeam can also be restored by this transformation
matrix in DBF.

To solve the problem of sparse signal representation,
various methods have been proposed, such as basis pursuit
[18, 19] and orthogonal matching pursuit [20, 21]. This
paper takes orthogonal matching pursuit (OMP) algorithm
to recover the original signal.
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Figure 6: Schematic diagram of sparse array in receive.

4.2. DBF in Transmit. Suppose that the transmit array is a
uniform linear array, the transmit signals can be expressed
by

s𝑡 (𝑡) = kT𝑡 (𝜃𝑡) [𝑠1 (𝑡) , 𝑠2 (𝑡) , . . . , 𝑠𝑀 (𝑡)]T , (15)

where kT𝑡 (𝜃𝑡) = [1, 𝑒−𝑗(2𝜋/𝜆)𝑑0sin𝜃𝑡 , . . . , 𝑒−𝑗(2𝜋/𝜆)(𝑀−1)𝑑0sin𝜃𝑡]T is
transmit array response vector and 𝜃𝑡 is the incidence angle
in the transmit array response vector. The receive signals can
be written as

x𝑟 (𝑡) = k𝑟 (𝜃𝑟) s𝑡 (𝑡 − 𝜏𝑑) = k𝑟 (𝜃𝑟) kT𝑡 (𝜃𝑡)
⋅ [𝑠1 (𝑡 − 𝜏𝑑) , 𝑠2 (𝑡 − 𝜏𝑑) , . . . , 𝑠𝑀 (𝑡 − 𝜏𝑑)]T , (16)

where k𝑟(𝜃𝑟) = [1, 𝑒−𝑗(2𝜋/𝜆)𝑑0sin𝜃𝑟 , . . . , 𝑒−𝑗(2𝜋/𝜆)(𝑁−1)𝑑0sin𝜃𝑟]T is
the receive array response vector and 𝜏𝑑 represents the time
which the signal takes to travel the transmitter-target-receiver
distance.

With Stretch process and band pass filter, the echo
expressed in (9) can be performed with DBF. With DBF in𝑛th receive channel, the output can be expressed by

𝐹𝐵 (𝑏) = 𝑀−1∑
𝑚=0

𝑒𝑗(2𝜋𝑑0/𝜆)(𝑚−1) sin(𝜙𝑏)𝑒−𝑗(2𝜋𝑑0/𝜆)(𝑚−1) sin(𝜃𝑡)
⋅ 𝑒𝑗2𝜋[𝑓𝑠𝑚(𝑡−𝜏)−𝑓𝑐𝜏]𝑒−𝑗2𝜋𝐾𝑟𝜏𝑡𝑒−𝑗(2𝜋/𝜆)(𝑛−1)𝑑0sin𝜃𝑟 ,

(17)

where 𝜙𝑏 is beam direction. When 𝜙𝑏 = 𝜃𝑡, the output can be
expressed as

𝐹𝐵𝜃𝑡 (𝑏)
= 𝑀−1∑
𝑚=0

𝑒−𝑗2𝜋𝑓𝑐𝜏𝑒𝑗2𝜋𝑓𝑠𝑚(𝑡−𝜏)𝑒−𝑗2𝜋𝐾𝑟𝜏𝑡𝑒−𝑗(2𝜋/𝜆)(𝑛−1)𝑑0sin𝜃𝑟

= 𝑒−𝑗2𝜋𝑓𝑐𝜏𝑒−𝑗2𝜋𝐾𝑟𝜏𝑡𝑒−𝑗(2𝜋/𝜆)(𝑛−1)𝑑0sin𝜃𝑟𝑀−1∑
𝑚=0

𝑒𝑗2𝜋𝑓𝑠𝑚(𝑡−𝜏).
(18)

Now we consider the expression (9). Each received signal
is processed by demodulation. The expression in frequency
domain is

𝑆𝑖𝑓𝑠𝑛𝑐𝑟𝑛 (𝑓)
= 𝑒−𝑗(2𝜋𝑑0/𝜆)(𝑚−1) sin(𝜃𝑡)

⋅ sin 𝑐 [𝑇𝑝2𝜋 (𝑓 + 𝐾𝑟𝜏)] 𝑒−𝑗2𝜋𝑓𝑐𝜏𝑒−𝑗2𝜋𝑓𝑠𝑚𝜏.
(19)

Because of the correspondence between the frequency and
time, the expression (19) can be written as

𝑠𝑖𝑓𝑠𝑛𝑐𝑟𝑛 (𝑡) =
𝑆𝑖𝑓𝑠𝑛𝑐𝑟𝑛 (

𝑓𝐾𝑟)


= sin 𝑐 [𝑇𝑝2𝜋 (𝑓 + 𝐾𝑟𝜏)𝐾𝑟 ]
= sin 𝑐 [𝑇𝑝2𝜋 (𝑡 + 𝜏)] .

(20)

After symmetric processing of 𝑦-axis, we can get

flip𝑙𝑟 (𝑠𝑖𝑓𝑠𝑛𝑐𝑟𝑛 (𝑡)) = sin 𝑐 [𝑇𝑝2𝜋 (𝑡 − 𝜏)] . (21)

Multiplying the formulae (18) and (21), the new expression is

𝐻𝐹𝐵𝜃𝑡 (𝑏) = 𝐹𝐵𝜃𝑡 (𝑏) ⋅ flip𝑙𝑟 (𝑠𝑖𝑓𝑠𝑛𝑐𝑟𝑛 (𝑡))
= 𝑒−𝑗2𝜋𝑓𝑐𝜏𝑒−𝑗2𝜋𝐾𝑟𝜏𝑡𝑒𝑗((𝑀−1)/2)𝑓𝑠(𝑡−𝜏)𝑒−𝑗(2𝜋/𝜆)(𝑛−1)𝑑0sin𝜃𝑟
⋅ sin ((𝑀/2) 𝑓𝑠 (𝑡 − 𝜏))
sin ((1/2) 𝑓𝑠 (𝑡 − 𝜏)) ⋅ sin 𝑐 [𝑇𝑝2𝜋 (𝑡 − 𝜏)] ,

(22)

where

𝜏 = 2𝑅 (𝑡slow, 𝑅0)𝐶 ≈ 2𝐶 [𝑅0 + (𝑉𝑡slow)22𝑅0 ] (23)

and 𝑅0 is the closest slant range to the target.
Considering the envelope, the second addend in (23) can

be ignored; that is, 𝜏 ≈ 2𝑅0/𝐶, and the expression (22) is
written as

𝐻𝐹𝐵𝜙𝑡 (𝑏)
= 𝑒−𝑗(2𝜋/𝜆)(𝑛−1)𝑑0sin𝜃𝑟𝑒−𝑗2𝜋(𝑓𝑐𝜏+𝐾𝑟𝜏𝑡)𝑒𝑗((𝑀−1)/2)𝑓𝑠(𝑡−𝜏)
⋅ sin ((𝑁/2) 𝑓𝑠 (𝑡 − 2𝑅0/𝐶))
sin ((1/2) 𝑓𝑠 (𝑡 − 2𝑅0/𝐶))

⋅ sin 𝑐 [𝑇𝑝2𝜋 (𝑡 − 2𝑅0𝐶 )] .

(24)

Taking the absolute value of (24), the expression is

𝐻𝐹𝐵𝜙𝑡 (𝑏) =

sin ((𝑀/2) 𝑓𝑠 (𝑡 − 2𝑅0/𝐶))
sin ((1/2) 𝑓𝑠 (𝑡 − 2𝑅0/𝐶))


⋅ sin 𝑐 [𝑇𝑝2𝜋 (𝑡 − 2𝑅0𝐶 )] .

(25)
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Figure 7: MIMO SAR imaging process based on CS.

Envelope of the first factor in right side of (25) is sin 𝑐
function shape, and the −4 dB width is Δ𝑅1 = 𝐶/(2𝑀𝑓𝑠).
The total resolution after the product is Δ𝑅total ≈ Δ𝑅1 =𝐶/(2𝑀𝐵). Thus, resolution of random phase orthogonal
waveform is 𝑀 times resolution of single LFM signal where𝑀 is the number of transmit waveforms.

Figure 5 is a schematic diagram of output with RPOW
signal. The number of transmit channels is eight, and the
target range is set to 10000m. Figure 5(a) shows the resolution
of single LFM signal with Stretch processing. Figure 5(b)
is output of RPOW signal in one receiving channel after
the digital beamforming which is expressed in (18), and
Figure 5(c) is waveform processed by multiplying which
is expressed in (25). So resolution is improved by eight
times which is equal to the number of transmit signals.
Figure 5(d) represents output comparison of single LFM
signal with random phase orthogonal waveform. Two targets
are set to 9999m and 10001m. As shown in Figure 5(d),
the two targets are distinguished easily with random phase
orthogonal waveform.

4.3. Echo Model of Random Sparse Array. Figure 6 shows
the uniform linear array where the number of receive array
elements is𝑁 = 8. The array space arrangements satisfy 𝑑0 ≤

𝜆/2. In the figure below shown in Figure 6, the red elements
indicate the randomly selected 3 elements, whose numbers
are 1, 3, and 6, respectively.The incident angle of target signal𝑢(𝑡) is 𝜃. The phase difference in space is Δ𝜙 = (2𝜋/𝜆)𝑑0sin 𝜃
and the phase difference in array is Δ𝜙𝐵 = (2𝜋/𝜆)𝑑0sin𝜙𝐵.
The kth beam-pointing is 𝜙𝐵𝑘, and the phase compensation
value provided by the digital beamforming processor shall
be Δ𝜙𝐵𝑘 = (2𝜋/𝜆)𝑑0sin𝜙𝐵𝑘. The antenna pattern function of
uniform linear array can be expressed as

𝐹 (𝑘) = 𝑁−1∑
𝑖=0

𝑒𝑗𝑖(Δ𝜙−Δ𝜙𝐵𝑘). (26)

For receiving DBF, assume that the direction of arrival
of the desired signal is 𝜃1, and the arrival directions of the
interferences are 𝜃2, . . . , 𝜃𝑘, . . . , 𝜃𝐾. The steering vector of the
receive signals can be expressed as

a (sin 𝜃𝑘) = (1, 𝑒𝑗2𝜋𝑑 sin 𝜃𝑘/𝜆, . . . , 𝑒𝑗2𝜋(𝑁−1)𝑑 sin 𝜃𝑘/𝜆)T . (27)

The echo signal of receive array can be represented as amatrix
by

s (𝑡) = 𝐾∑
𝑘=1

𝑢𝑘 (𝑡) a (sin 𝜃𝑘) . (28)
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Figure 8: Simulation results of image in range based onCS. (a) shows the original echo of four targets and the echowith compressive sampling
of one transmit signal. (b) shows the spectrum of original echo and the echo with compressive sampling, and (c) shows the spectrum of
reconstruction with CS method.

In the real scene, echoes can be from multiple directions
in receiving window because of range ambiguity. In order to
estimate direction of arrival, we decompose the entire space
from −90∘to 90∘ into Γ parts; then we obtain transformation
matrix:

A = [a (sin 𝜃1) , a (sin 𝜃2) , . . . , a (sin 𝜃D)] . (29)

The echo signal of the receiving array can be expressed as

S (𝑡) = AU (𝑡) , (30)

where U(𝑡) = [0, 0, . . . , 𝑢1(𝑡), 0, . . . , 0, . . . , 𝑢𝐾(𝑡), 0, . . . , 0]T. It
is clear that U(𝑡) is sparse and has a few nonzero elements.
Therefore, according to CS theory, the received signal S(𝑡)
can be recovered accurately by using a CS reconstruction
algorithm.

The compressed vector Y(𝑡) can be expressed with mea-
surement matrixΦ as

Y (𝑡) = ΦS (𝑡) = ΦAU (𝑡) = ΨU (𝑡) . (31)

Therefore, the reconstruction of the received signal becomes
an optimal estimation of (32)

min U0
s.t. Y = ΨU. (32)

After the projection coefficient vector U is estimated from
the compressed vector Y(𝑡), the received signal S(𝑡) can be
reconstructed, as shown in the following equation:

S (𝑡) = AU (𝑡) . (33)

The signal can be reconstructed using orthogonal match-
ing pursuit algorithm in this paper.

After obtaining the reconstructed echoes using com-
pressed sensing reconstructionmethods, using LCMVbeam-
forming algorithm [2, 22], the adaptive digital beamforming
is implemented that the antenna main lobe is pointed to the
direction of the desired signal and nulls in the direction of
interferers.Thereby range ambiguity can be suppressed while
desired targets can be imaged.

4.4. MIMO SAR Imaging Process Based on CS. In order to
reduce the amount of data, the received signal of Stretch
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Figure 9: The spectrum of reconstruction in different SNR. (a) shows that the reconstruction in the case of SNR = 20 dB, (b) shows SNR =
15 dB, (c) shows SNR = 10 dB, and (d) shows SNR = 5 dB.

process is compressive sampled from the random equivalent
sampling method and is restored with CS. Then DBF is
implemented in transmit in receive channel. So the range
resolution can be improved by 𝑀 times. With DBF in
transmit of sparse array, the null steering techniques based on
CS is put forward to suppress echo outside of swath in order to
range ambiguity suppression. Under normal circumstances,
the impact of adjacent ambiguity region with imaging swath
is considered because the ambiguity echo power in adjacent
ambiguity region generally accounts for more than 80% of
all ambiguity echo power. For the far ambiguity region, the
antenna sidelobe gain is low and the echo power is less due to
the far distance. MIMO SAR imaging process based on CS is
shown in Figure 7.

5. Simulation Analysis

5.1. Signal Recovery from the Random Sampling Method
in Range Based on CS. In this subsection, some simula-
tion results under different situations are provided. Assume
that there are four targets, and the parameters of four
RPOW signals are as follows: the starting frequencies 𝑓𝑠𝑚=[0, 20, 10, 30] × 106Hz, 𝐵 = 10MHz, 𝑇𝑝 = 10 𝜇s, and
sparse ratio is 0.37. Figure 8 shows the simulation results.

It is shown that the amount of data is significantly reduced
with compressive sampling, and the frequency spectrum of
the targets can be displayed correctly after the restoration
compared with the original signal.

Secondly, the influence of SNR is evaluated with CS
method.The parameters are the same as in Figure 8. Figure 9
shows the spectrum of reconstruction compared with the
original signal. It is shown that the spectrum of reconstruc-
tion can display correctly the targets when SNR > 10 dB,
but when SNR < 10 dB, such as SNR = 5 dB, the spectrum
of reconstruction shows that the target will be lost or false
targets appear.

Now let us consider the influence of transmit number.
Figure 10 shows the reconstruction spectrum of the RPOW
signals from five to eight. The starting frequencies are
randomly chosen from [0, 10, 20, 30, 40, 50, 60, 70] × 106Hz.
Other parameters are as the same as in Figure 7. The
recovered signal can display the position of the spectrum
correctly, which shows that the increase of the number of
signals will not affect the recovery of the data.

Then we consider the Monte Carlo simulation. SNR and
sparse ratio are two important indexes in the data recovery
of MIMO SAR based on compressed sensing. When SNR
or sparse ratio is low, the original signal may not be able
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Figure 10: The reconstruction spectrum of different numbers of RPOW signals. (a) shows that the number is 5, (b) shows 6, (c) shows 7, and
(d) shows 8.

to recover correctly. In order to analyze the application of
MIMO SAR data recovery based on compressed sensing, we
give the following simulation analysis. The carrier frequency
is 1 GHz, 𝑓𝑠𝑚 = [0, 20, 10, 30] × 106Hz, 𝐵 = 10MHz, 𝑇𝑝 =10 𝜇s, SNR is from −5 dB to 20 dB, and sparse ratio is from
0.2 to 1. We do Monte Carlo analysis 200 times and give the
results of successful probability in Figure 11. It can be seen
that successful probability of reconstruction ismore than 95%
when the sparse ratio is 0.4 and SNR is greater than 10 dB. At
the same SNR, the higher the sparse ratio, themore successful
the probability. Under the condition of the same sparse ratio,
the higher the SNR, the more successful the probability. Due
to the fact that random sampling requires the signal above
the noise level, and in the case of small signal, the sparse
coefficient is submerged in the noise, so it cannot be well
estimated. Small signal will be lost and the probability of
success is reduced. Therefore, this method is not suitable for
small signal.

5.2. DBF Algorithm of Zero-Pointing Technology Based on
CS. To verify the correctness of the algorithm in the cases
of sparse array, we choose 30 elements sparsely from 100
elements. Set SNR 5 dB and 10 dB, INR 10 dB and 40 dB, and
the directions of range ambiguity are set to −10∘ and 10∘.

The angular space within the swath is discretized into 720
subspaces. Figure 12 shows the beam patterns with LCMV
algorithm in different SNR and INR. It is shown that when
SNR is lower than 10 dB, the interference can be suppressed,
and the greater the interference, the greater the depth. But the
precision is not ideal. When the SNR is greater than 10 dB,
and the number of array elements is reduced from 100 to
30, the data recovery after beamforming, the performance of
the proposed algorithm is almost the same as that of the full
array. The main reason is that, in the case of low SNR, the
signal is relatively low to noise level, and the signal cannot be
successfully restored.

5.3. MIMO SAR Imaging Simulation Based on CS. Imaging
simulations are also performed to evaluate the algorithm
based on CS. Figure 13 shows imaging of HRWS SAR and
MIMO SAR based on CS. The parameters are as follows:
carrier frequency 𝑓𝑐 = 10GHz, platform altitude is 600 km,
platform velocity is 7640m/s, pulse repeated frequency is
1908Hz, minimum slant range is 558 km, maximum slant
range is 727 km, and SNR = 10 dB, and we apply RPOW
waveform toMIMO SAR as shown in Figure 1(b). In order to
reduce the computational complexity, number of subswathes
is set to 2, and there are two point targets locating at the
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Figure 12: The beam patterns with different SNR and INR. (a) shows reconstruction in the case of SNR = 5 dB, INR = 10 dB, (b) shows SNR
= 5 dB, INR = 40 dB, (c) shows SNR = 10 dB, INR = 10 dB, and (d) shows SNR = 10 dB, INR = 40 dB.

positions of (600 km, 0) and (685 km, 0). Figure 13 shows the
comparative imaging results. In Figure 13(b), sparse ratio of
receive array is set to 0.375, and sampling rate is 0.4 which
means the data is 0.15 times of original sample points. As
shown in Figure 13, resolution is improved by 8 times in range
and the range ambiguity suppression is better.

6. Conclusion

A MIMO SAR imaging based on compressed sensing is
proposed in this paper to reduce the amount of data and
suppress the range ambiguity. Random phase orthogonal
waveform is designed for MIMO SAR based on compressed
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Figure 13: Imaging of HRWS SAR and MIMO SAR based on CS.

sensing. Using DBF technology in transmit and receive, the
echoes of RPOW enable range resolution improved and
the range ambiguity is suppressed by zero-point technology
based on CS. However, due to the characteristics of signal
recovery based CS, it is required that the signal be sparse
on a projection basis. In the case of small signal, the sparse
coefficient is submerged in the noise, and the recovery of
signal can be distorted. Therefore, this method has a certain
scope of application.
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