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Thiswork aims tomake the crack growth prediction on 2024-T6 aluminumalloy by usingMarkov chainMonte Carlo (MCMC).The
fatigue crack growth test is conducted on the 2024-T62 aluminum alloy standard specimens, and the scatter of fatigue crack growth
behavior was analyzed by using experimental data based onmathematical statistics. An empirical analytical solution of Paris’ crack
growth model was introduced to describe the crack growth behavior of 2024-T62 aluminum alloy. The crack growth test results
were set as prior information, and prior distributions of model parameters were obtained byMCMC using OpenBUGS package. In
the additional crack growth test, the first test point data was regarded as experimental data and the posterior distribution of model
parameters was obtained based on prior distributions combined with experimental data by using the Bayesian updating. At last,
the veracity and superiority of the proposed method were verified by additional crack growth test.

1. Introduction

In aircraft structural engineering domain, the concept of
damage tolerance was introduced to design key components.
The prediction of fatigue crack propagation is a main work
for aircraft structure service/use life management.

Accurate prediction of fatigue crack growth determined
the safety of service and usage. Due to the scatter of material,
the fatigue crack growth behavior of some components still
creates scatter, though the components made by the same
material and served under the same loading and environmen-
tal conditions.

The residual crack propagation life of the aircraft com-
ponents is assessed based on the in-service observation and
the mathematical model which describes the crack growth
behavior of these components. The input data provided to
these mathematical models are generally uncertain. There
are uncertainties in the material performance, components
dimensions, the measurements, and the degradation model
[1]. Probability methodology is widely used to make decision
by modelling these uncertainties with suitable probability
distribution function. Scholars around the world have done

a lot of work on the scatter of fatigue crack growth [2–4]. In
addition, some stochastic fatigue crack growth models have
been proposed [5, 6].

The experimental results used to characterize the model
parameters can be regarded as the prior information, and
it has an associated prior probability distribution function.
The in-service inspection data can be used as experimental
observation, which conjuncts the prior distribution of the
model parameters to reduce the uncertainty in the prediction
of fatigue crack growth curve for one component [7]. The
posterior distribution can be used to make updated estimates
of model parameter for the crack growth behavior.

The combination of prior distribution of fatigue crack
growth model parameters with experimental observations
can be carried out by applying the concepts of Bayesian
updating. The results from updated distribution function
are also termed as posterior distribution. The Markov chain
Monte Carlo (MCMC) is one of the common probability
simulation methods through the Bayesian updating [8]. And
the Bayesian updating can be accomplished by OpenBUGS
package.
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Table 1: Chemical compositions of 2024-T62 (%).

Cu Mg Mn Si Fe Zn Ti Cr Other Al
4.64 1.49 0.68 <0.5 <0.5 <0.25 <0.15 <0.1 <0.15 Balance

Table 2: Mechanical performance of 2024-T62 (%).

E/GPa 𝜎𝑏/MPa 𝜎0.2/MPa 𝜁5/%
71 451 400 7.2

In this study, fatigue crack growth tests of 2024-T62
aluminum alloy were conducted under the constant ampli-
tude loading. The prior distribution of model parameters
was obtained based on experimental a-N data. Afterwards, a
new fatigue crack growth prediction approach was proposed
based on the prior distribution, in-service observation, and
Bayesian updating method. Finally, the proposed approach
is validated by the additional fatigue crack growth under the
same test conditions.

2. Fatigue Crack Propagation Test

The2024-T62 aluminum alloy is widely used as themain load
structure in Chinese aviation industry.

2.1. Material and Specimen. Chemical compositions and
mechanical performance of 2024-T62 aluminum alloy are
shown in Tables 1 and 2, respectively.

With a hole in the center throughout whole specimen,
it has been machined from the 2024-T62 aluminum alloy
pipematerial along the L-T direction.Thedimensional length
of specimen is shown in Figure 1, the thickness is 2.5mm,
and the diameter of center hole is 4mm. The specimen was
designed and conducted according to the ASTM standard
E647 requirements [9].

2.2. Experimental Procedure. All the tests were carried out
with the loading frequency of 20Hz using a servo hydraulic
universal dynamical test machine (MTS-810-500KN). All the
tests were conducted under the room temperature (20∘C). In
the test, themeasurements of the crack length use theQuestar
QM1 long working distancemicroscope (limit of resolution is
2.7 𝜇m).

When the crack approximately propagates to 0.5mm,
start to count the number of loading cycle. At the same time,
the crack length was measured by per 9000 loading cycles. It
is worth noting that 0.5mm is called initial crack length.

2.3. Experimental Results. The experimental fatigue crack
propagation length from number 1 to number 4 is listed in
Table 3. It is well known that the crack growth propagation
region can be divided to three regions: near-threshold (Δ𝐾th)
region, stable crack propagation region, and unstable (fast)
crack propagation region [10]. In order to obtain more stable
data, the stable crack propagation region was chosen (crack
length: 0.5mm∼6mm).
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Figure 1: Geometry length of specimen.
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Figure 2: Experimental fatigue crack growth a-N curve.

The experimental fatigue crack propagation a-N curves
for four specimens are shown in Figure 2.

As shown in Figure 2, at a given cycles, crack length
has a wide range of scatter even under the same loading
condition and test condition. The scatter of crack growth
may be mainly attributed to the inhomogeneous material
properties. Therefore, it is necessary to investigate the scatter
of fatigue crack growth behavior.

3. Statistical Analyses of Crack Growth Data

The scatter of 2024-T62 aluminum alloy is analyzed by sta-
tistical analysis method. And crack growth behavior of 2024-
T62 aluminum alloy is described by mathematical model.

3.1. Scatter Analysis of Crack Growth Behavior. The mean
value 𝑥, standard deviation 𝜎, and coefficients of variation
(COV) of specimens sample are common statistical param-
eters to describe the variation of statistics. Mean value is used
to describe the centralized location of sample data, but 𝜎 and
COV are used to describe the scatter.
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Table 3: Crack lengths for different cycles (mm).

Specimen Crack length
0 9000 18000 27000 36000 45000 54000 63000 72000 81000 90000

No. 1 0.5 0.62 0.8 1.02 1.27 1.56 1.89 2.3 2.68 3.05 3.69
No. 2 0.51 0.8 1.11 1.47 1.91 2.42 2.9 3.48 4.08 4.7 5.57
No. 3 0.54 0.76 1.03 1.41 1.78 2.23 2.69 3.23 3.74 4.23 5.27
No. 4 0.48 0.77 1.02 1.28 1.54 1.88 2.16 2.53 2.95 3.33 3.99

Table 4: Statistics variables of crack lengths for different cycles.

Statistics variables Cycles
9000 18000 27000 36000 45000 54000 63000 72000 81000 90000𝜇 0.7375 0.99 1.295 1.625 2.0225 2.41 2.885 3.3625 3.8275 4.63𝜎 0.0870 0.1443 0.2168 0.3060 0.4134 0.5058 0.6080 0.7126 0.8350 1.0078

COV 0.1087 0.1343 0.1542 0.1735 0.1883 0.1934 0.1942 0.1953 0.2010 0.2005
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Figure 3: Change trend of statistical variables: (a) standard deviation 𝜎 and (b) coefficients of variation COV.

Mean value and standard deviation of observation𝑥1, 𝑥2, . . . , 𝑥𝑛 can be expressed as

𝑥 = 1𝑛 (𝑥1 + 𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑛)
𝜎 = √∑𝑛𝑖=1 𝑥𝑖2 − 𝑛𝑥2𝑛 − 1 .

(1)

The coefficients of variationCOV (simply asC) are shown
as

𝐶 = 𝑠𝑥 . (2)

The statistics 𝜇, 𝜎, and COV were calculated based on
experimental results (in Table 4). The statistical calculating
formulas ((1) and (2)) are listed in Table 4.

Figure 3 gives the trend of standard deviation and COV
of crack length (under same loading cycles).

As listed in Table 4 and depicted in Figure 3, standard
deviation 𝜎 and coefficients of variation COV increase grad-
ually with loading cycles increase. In a word, the scatter of
crack growth process increases gradually.

3.2. Statistics of Fatigue Crack Growth Behavior. The fatigue
crack growth (FCG) is modelled using Paris’ law [11]. Paris’
law gives the crack growth rate per stress cycle as a function
of the range of stress intensity factor and material constant.

𝑑𝑎𝑑𝑁 = 𝐶 (Δ𝐾)𝑚 , (3)

where a is the crack length (mm), N is number of loading
cycles, 𝑑𝑎/𝑑𝑁 is the crack growth rate per loading cycle
due to fatigue, Δ𝐾 is the range of stress intensity factor (in
Mpa√m), and C and m are constant material properties
obtained by testing standard specimensmade of thismaterial.
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Table 5: Estimation value of model parameters.

Specimen Parameter estimate value𝜃1 𝜃2
Number 1 2.4312 −0.2598
Number 2 3.7303 −0.5435
Number 3 3.2953 −0.4592
Number 4 3.0991 −0.7331
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Figure 4: Fitting curves versus experimental results.

The crack length after N number of loading cycles is𝑎(𝑁).The crack growth rate da/dN determines the true crack
length 𝑎(𝑁) according to Paris’ law (3), which has the form
of 𝜃1𝑘(𝑎)𝜃2+1, for some function 𝑘(𝑎). When 𝑘(𝑎) = a, the
solution for 𝑎(𝑁) can be expressed by [12]

𝑎 (𝑁) = 𝑎0(1 − 𝑎0𝜃2𝜃1𝜃2𝑁)1/𝜃2 , (4)

where a0 is the initial crack length (in mm). 𝜃1 and 𝜃2 are the
parameters of crack growth model for 2024-T62 aluminum
alloy under constant amplitude loading. So (4) is an empirical
analytical solution form for Paris’ crack growth law.

Firstly, it is necessary to validate the feasibility of using
(4), which can describe the crack growth behavior of 2024-
T62 aluminum alloy. The estimation value of 𝜃1 and 𝜃2 can
be obtained based on crack growth experimental a-N data
by maximum likelihoodmethod (MLE).The values of model
parameters 𝜃1 and 𝜃2 for four specimens are listed in Table 5.

The fatigue crack growth curve can be obtained by
substituting the estimation value of model parameters 𝜃1 and𝜃2 to (4). And the obtained curve is the fitting curve of crack
growth, which is shown in Figure 4.
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Figure 5: Error between experimental data and fitting curves.

It can be seen from Figure 4 that the fitting curves (based
on (4)) are in good agreement with the experimental results,
which can validate the feasibility of (4).

Relative error (crack growth fitting curves to experimen-
tal data) of four specimens is listed in Figure 5 and Table 6.

As listed in Table 6 and shown in Figure 5, the relative
errors between the fitting curves and the experimental results
were less than 7%. Itmeans that the approach (include (4) and
parameter estimating method) could be satisfactorily used in
engineering. As a result, (4) is a feasible and accurate model
to describe the crack growth behavior of 2024-T62 aluminum
alloy under constant amplitude loads.

4. Prediction Method of Fatigue Crack Growth

In aircraft structural engineering, the common use of the
media crack growth a-N experimental results represents the
fatigue crack propagation behavior, which cannot consider
the scatter and the distinguish of different specimens.

4.1. Prior Distribution. As we all know, crack length 𝑎(𝑁) is
a nonlinear function of loading cycles numbers N. By taking
natural logarithms e in (4), we can obtain the transformed
real crack length ln[𝑎(𝑁)/𝑎0] as

ln [𝑎 (𝑁)𝑎0 ] = − 1𝜃2 ln (1 − 𝑎0𝜃2𝜃1𝜃2𝑁) . (5)

For the experimental observed transformed crack length
Y, it includes the measure error 𝜀. And every 𝑌𝑖𝑗 can be
expressed as

𝑌𝑖𝑗 = − 1𝜃2𝑖 ln (1 − 𝑎0𝑖𝜃2𝑖𝜃1𝑖𝜃2𝑖𝑁𝑖𝑗) + 𝜀𝑖𝑗, (6)

where subscripts 𝑖 and 𝑗 represent sequence number of
specimen and sequence number of experimental observa-
tions point, respectively. So 𝑌𝑖𝑗 is the observed transformed
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Table 6: Parameter Estimate of fatigue crack propagation curve.

Specimen Error (%)
9000 18000 27000 36000 45000 54000 63000 72000 81000 90000

Number 1 3.91% 2.15% 0.22% −0.53% −1.04% −1.16% −2.60% −0.57% 3.14% −0.04%
Number 2 −3.95% −1.94% −0.79% −1.72% −3.16% −1.49% −1.84% −1.46% −0.65% −3.72%
Number 3 −5.53% −4.95% −8.91% −8.15% −8.90% −7.99% −8.16% −6.25% −3.19% −10.18%
Number 4 −2.20% 1.13% 4.04% 7.22% 5.76% 8.39% 7.08% 4.78% 4.68% −2.43%

crack length for jth observation point of ith specimen. And𝑎0𝑖 is the initial crack length of ith specimen. 𝜀𝑖𝑗 is the
observation error for jth observation point of ith specimen,
which is subjected to normal distribution (𝑁(0, 𝜎2)). And
error 𝜀𝑖𝑗 for different specimens and different observations is
independent identically distribution (i.i.d.).

The scatter of fatigue crack growth behavior in the model
parameter is modelled by using a prior probability density
function (PDF). And the assumption model parameters󳨀⇀𝜃 𝑖 = (𝜃1𝑖, 𝜃2𝑖) subjected to multinormal distribution can be
expressed as

󳨀⇀𝜃 𝑖 ∼ multi-Normal (󳨀⇀𝜇, 󳨀⇀Σ) . (7)

Likelihood of experimental transformed crack length
includes the PDF of 𝑦𝑖𝑗 and the PDF of model matrix

parameter
󳨀⇀𝜃 𝑖 = (𝜃1𝑖, 𝜃2𝑖).

𝑦𝑖𝑗 ∼ Normal [−( 1𝜃2𝑖) ln (1 − 𝑎0𝑖𝜃2𝑖𝜃1𝑖𝜃2𝑖𝑁𝑖𝑗) , 𝜎2] . (8)

In case of completely lack prior information, the diffuse
distribution can be used to describe the prior information
that can also be called noninformative prior distribution [13].
Assumption matrix parameter 󳨀⇀𝜇 subjected to multinormal
distribution can be expressed as

󳨀⇀𝜇 ∼ multi-Noraml (󳨀⇀𝜇, 󳨀⇀Σ𝜇0) ,
󳨀⇀𝜇 0 = (00) 󳨀⇀Σ𝜇0 = (1000 00 1000) .

(9)

Assumption parameter 󳨀⇀Σ subjected to inverse Wishart
distribution can be expressed as

󳨀⇀Σ ∼ InverseWishart (󳨀⇀Σ 0, 2) , 󳨀⇀Σ 0 = (10 00 10) . (10)

And assumption parameter 𝜎2 subjected to inverse
Gamma distribution is expressed as

𝜎2 ∼ InverseGamma (3, 0.001) . (11)

𝜇1, 𝜇2, Σ11, Σ12, Σ21, Σ22, and 𝜎 are the parameters of
fatigue crack growth model. The posterior PDF of the model
parameter is obtained using Bayesian updating, implemented

using the MCMC algorithms. MCMC algorithms are a
general class of computational methods used to produce
samples from posterior samples. They are often easy to
implement and, at least in principle, can be used to simulate
from very high-dimensional posterior distributions [12]. And
they have been successfully applied to literally thousands
of applications. Metropolis-Hastings algorithms and Gibbs
samplers are two general categories of MCMC simulation.

Briefly, OpenBUGS is a software package for Bayesian
analysis of complex statistical models with the Gibbs sam-
pler, which is a based implementation of BUGS (Bayesian
Inference Using Gibbs Sample). The package contains flex-
ible software for analyzing complex statistical models using
MCMC methods. For more information about background,
application, and introduction to OpenBUGS refer to Amiri
and Modarres [14] and Spiegelhalter et al. [15] and Cowles.
The model parameters statistics estimated from tested data
(in Table 3) and above method are listed in Table 7.

Oneway to assess the accuracy of the posterior estimation
is by calculating the Monte Carlo error (MC-error) for each
parameter. This is an estimate for the difference between
the mean of the sampled values (which we are using as our
estimate of the posterior mean for each parameter) and the
true posterior mean.

As a rule of thumb, the simulation should be run until
the Monte Carlo error for each parameter of interest is less
than about 5% of the sample standard deviation. As listed
in Table 7, the MC-error for each parameter is all less than
5%.Therefore, we can know that the posterior distribution of
model parameter is accurate.

4.2. Convergence Diagnose. Convergence diagnosis is an
important work in the using of MCMC algorithm. If the
convergence feature of chains is poor, the posterior distribu-
tions from chains based on MCMC are not accurate. Figure
diagnosis method, checking throughout mean method, and
contrasting deviation method are common methods to diag-
nose the convergence. And contrasting deviationmethod has
a wide use in the convergence diagnosis analysis.

Based on the contrasting deviation method proposed by
Gelman and Rubin [16], a more brief and convenient method
was established by Brooks and Gelman [17]. The basic idea is
to generate multiple chains starting at overdispersed initial
values and assess convergence by comparing within-chain
and between-chain variability over the second half of those
chains. We denote the number of chains generated by L and
the length of each chain by 2T. We take as a measure of
posterior variability the width of the 100(1 − 𝛼)% credible
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Table 7: Parameter Estimate of fatigue crack propagation curve.

Parameter Mean Standard deviation MC-error (%) Different percentile
0.025 0.05 0.5 0.95 0.975𝜇1 3.1390 0.3344 0.09 2.4860 2.638 3.1390 3.641 3.7940𝜇2 −0.4979 0.1209 0.04 −0.7369 −0.6819 −0.4977 −0.3163 −0.2605Σ11 0.4434 1.1000 0.37 0.0787 0.09277 0.2627 1.245 1.8240Σ12 −0.0881 0.3623 0.12 −0.4487 −0.301 −0.0468 0.0212 0.0507Σ21 −0.0881 0.3623 0.12 −0.4487 −0.301 −0.0468 0.0212 0.0507Σ22 0.0581 0.1555 0.06 0.0095 0.01134 0.0341 0.1653 0.2420𝜎 0.0251 0.0030 0.01 0.0201 0.02073 0.0248 0.03045 0.0318

interval for the parameter of interest (in OpenBUGS, 𝛼 =
0.2). From the final T iterations we calculate the empirical
credible interval for each chain.We then calculate the average
width of the intervals across the L chains and denote this by
L. Finally, we calculate the width l of the empirical credible
interval based on all LT samples pooled together. The ratio𝑅̂ = 𝐿/𝑙 of pooled to average interval widths should be greater
than 1 if the starting values are suitably overdispersed; it will
also tend to 1 as convergence is approached, and so we might
assume convergence for practical purposes if 𝑅̂ < 1.05.

Rather than calculating a single value of 𝑅̂, we can
examine the behavior of 𝑅̂ over iteration-time by performing
the above procedure repeatedly for an increasingly large
fraction of the total iteration range, ending with all of the
final T iterations contributing to the calculation as described
above.

In the OpenBUGS software, the bgr diagram can achieve
above approach. OpenBUGS automatically chooses the num-
ber of iterations between the ends of successive ranges:
max (100, 2𝑇/100). It then plots 𝑅̂ in red, 𝐿 (pooled) in green,
and 𝑙 (average) in blue. As shown in Figure 6, the red line
represents 𝑅̂, the green line represents 𝐿, and 𝑙 corresponds
to blue line.

In this study, three chains for each parameter were gen-
erated by OpenBUGS software. The convergence diagnosis
schematic diagrams for seven model parameters were shown
in Figure 6.

As shown in Figure 6, the convergence feature of model
parameters is good, and the trend of model parameter with
iteration increase is convergent. In other words, the posterior
distributions of seven parameters are accurate and credible.

4.3. Prediction Model of Fatigue Crack Growth. The predic-
tion of crack growth life (period) is a main thesis in the
aircraft structural engineering. In this study, it is aimed to
accurately predict the fatigue crack growth behavior (curve)
for one target specimen using least information.

The Bayesian theorem can be written in model updating
context as

𝑃(󳨀⇀𝜃 | 𝐷,𝑀) ∝ 𝑃(𝐷 | 󳨀⇀𝜃 ,𝑀)𝑃 (󳨀⇀𝜃 | 𝑀) , (12)

where 𝑃(󳨀⇀𝜃 | 𝐷,𝑀) corresponds to the PDF for the crack
growth model M after updating with the crack growth test

observations D; it is called the PDF of posterior distribution.𝑃(󳨀⇀𝜃 | 𝑀) is the PDF of model parameters
󳨀⇀𝜃 for the crack

growthmodelM before updating; it is called the PDF of prior
distribution.And𝑃(𝐷 | 󳨀⇀𝜃 ,𝑀) is the likelihood of occurrence
of the crack growth observation D given the vector of model
parameter

󳨀⇀𝜃 and crack modelM.
The fatigue crack growth experimental results can be

regarded as the prior information. And the parameter prior
distribution of crack growth model (4) can be obtained by
above approach. According to the analysis and inference in
the Section 4.1, crack growth model parameters

󳨀⇀𝜃 = (𝜃1, 𝜃2)
are subjected to multinormal (󳨀⇀𝜇, 󳨀⇀Σ):

󳨀⇀𝜇 = (3.1390, −0.4979)
󳨀⇀Σ = ( 0.4434 −0.0881−0.0881 0.0581 ) .

(13)

Therefore, the posterior likelihood function of model
parameters for one target specimen can be calculated as

𝑃(󳨀⇀𝜃 | 𝐷,𝑀)
∝ 𝑚∏
𝑧=1

exp(−12 (𝑦𝑧 − (1/𝜃2) ln (1 − 𝑎0
𝜃2𝜃1𝜃2𝑁𝑧)𝜎 )2)

⋅ 𝐻(󳨀⇀𝜃) ,
(14)

where m is the number of observation point used to update
the posterior distribution of model parameters. And if the
first test data point was used to update the posterior distri-
bution of parameters 𝜃1 and 𝜃2,𝑚 = 1.

The posterior distribution can be obtained via using
Markov chain Monte Carlo (MCMC) simulation with the
combination of the likelihood function (14) with prior dis-
tribution (13).

If the model parameters 𝜃1 and 𝜃2 for a specimen are
determined, the fatigue crack propagation curve of this
specimen can be obtained by (4). As a result, the residual
growth life (period) of this specimen can be determined.
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Figure 6: The bgr diagram of convergence diagnosis for fatigue crack growth model parameters: (a) 𝜃1, (b) 𝜃2, (c) Σ11, (d) Σ12, (e) Σ21, (f)Σ22, and (g) 𝜎.

5. Experimental Validations

This section presents the validation of the proposed method-
ology via using crack propagation data from additional crack
growth test.

5.1. Additional Crack Growth Test. Additional crack growth
test employs the same experimental method, environmental

condition, and measurement technology as the test in Sec-
tion 2. Similarly, when the crack approximately propagates
to 0.5mm, start counting the number of loading cycles. In
other words, the crack length is 0.5mm when the number of
loading cycles is zero.

The specific initial crack length and the crack length
after 9000 cycles (number 5, number 6, and number 7
target specimen) are listed in Table 8. It is noted that the
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Table 8: Crack lengths of initialization and first test point (mm).

Specimen Initial crack length Crack length after 9000 cycles
Number 5 0.5 0.66
Number 6 0.53 0.74
Number 7 0.5 0.69

experimental data (in Table 8) can represent the in-service
observation during the service for aircraft structures.

5.2. Prediction of Crack Growth. The prediction of crack
growth curve (number 5 specimen) combines different test
data information (different data sample length and different
test data). Mark different information source as Case I, Case
II, and Case III. A particular introduction of Case I–Case III
is presented as follows.

For Case I, the prior distribution of matrix parameter󳨀⇀𝜃 = (𝜃1, 𝜃2) is the only information source for the prediction
of crack growth curve. So the posterior distribution mean of
parameter

󳨀⇀𝜃 = (𝜃1, 𝜃2) is (3.1390, −0.4979).
For Case II, the information source includes prior dis-

tribution of matrix parameter
󳨀⇀𝜃 = (𝜃1, 𝜃2) and the first

observation data point (N = 9000, 𝑎(𝑁) = 0.66mm). And
the predictionmodel of Case II is the proposedmodel, which
corresponds to the Section 4.3. Based on (14), the likelihood
of Case II is expressed as

𝑃(󳨀⇀𝜃 | 𝐷,𝑀)
∝ exp(−12 (𝑦5,1 − (ln (1 − 𝑎5,0

𝜃5,2𝜃5,1𝜃5,2𝑁1) /𝜃5,2)𝜎 )2)
⋅ 𝐻(󳨀⇀𝜃) .

(15)

Based on the above likelihood function of posterior
distribution and the OpenBUGS package, the mean value
of posterior distribution of matrix parameters

󳨀⇀𝜃 = (𝜃1, 𝜃2)
can be obtained. Through the MC-error control and the
convergence diagnose of the posterior distribution of the
matrix parameter

󳨀⇀𝜃 , the mean value is (2.6035, −0.3172).
For Case III, the first observation data (𝑁 = 9000, 𝑎(𝑁) =0.66mm) is the only information source for the prediction of

crack growth curve.The posterior distribution mean value of󳨀⇀𝜃 = (𝜃1, 𝜃2) is (0.8838, −2.4941), which can be estimated by
using the method of Section 3.2.

For number 6 and number 7 specimen, they are also
deviated to Case I, Case II, and Case III. The posterior
distribution mean values of matrix parameters

󳨀⇀𝜃 = (𝜃1, 𝜃2)
for the additional three target specimens are listed in Table 10.

5.3. Additional Experimental Observation. The additional
fatigue crack growth tests to 90000 loading cycles were
conducted. The crack growth lengths of number 5, number
6, and number 7 specimens are listed in Table 9 (include the
data of Table 8).
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Figure 7: Crack propagation prediction curves of number 5 speci-
men.

The parameters are fitted with the same method of
Section 3.2. And the information source is called Case IV.The
posterior distribution of fitting parameters (𝜃1, 𝜃2) is listed in
Table 10.

The model parameter posterior distribution mean values
of Case I–Case IV for number 5, number 6, and number 7
specimens are listed in Table 10.

The fatigue crack growth curve can be obtained by
substituting the parameter of posterior distribution mean
value to crack growth model (4). In this paper, for one
target specimen, we can obtain four fatigue crack growth
curves, corresponding to the above Case I, Case II, Case III,
and Case IV, respectively. For example, four fatigue crack
growth curves and experimental a-N observations of number
5 specimen are shown in Figure 7.

As shown in Figure 7, the fatigue crack growth curve of
Case III is far away from the experimental a-N observations.
And the absolute error between fatigue crack growth curve
of Case II and experimental a-N observations is smaller than
that of Case III. Compare Case II with Case III, we can obtain
the prior information that is very important for the prediction
of fatigue crack growth behavior.

The fatigue crack growth curves for number 6 and
number 7 specimens are obtained by the same method and
analysis steps, which are shown in Figures 8 and 9. And the
experimental results of number 6 and number 7 specimen are
shown in Figures 8 and 9, respectively.

As shown in Figures 7, 8, and 9, we can know that the
prediction of fatigue crack growth of Case III is far away
from the experimental a-N observations, so the error cannot
satisfy the requirements of aircraft engineering.
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Table 9: Crack lengths for different cycles (mm).

Specimen Cycle
0 9000 18000 27000 36000 45000 54000 63000 72000 81000 90000

Number 5 0.5 0.66 0.92 1.1 1.39 1.74 2.1 2.45 2.88 3.47 4.25
Number 6 0.55 0.77 1.02 1.2 1.51 2 2.49 2.96 3.59 4.3 5.41
Number 7 0.5 0.70 0.93 1.16 1.53 1.96 2.42 2.74 3.3 4.12 4.84
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Figure 8: Crack propagation curves prediction of number 6 speci-
men.

Comparative analysis of the prediction for the fatigue
crack growth of Figures 7, 8, and 9 is based on the crack
growth model parameters prior distribution and observation
data (Case II) andwe can obtain the crack growth curve accu-
rately.Therefore, the predictionmethod (Case II) proposed in
this study is an advanced technology.

5.4. Error Analysis. Due to the high error of Case III, it will
not be considered in the following analysis. The absolute
errors (prediction value to experimental observations value)
of Case I, Case II, and Case IV are analyzed in the following
steps. And the absolute error is defined as

absolute error

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(pridiction value) − (experiment value)

experiment value

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨× 100%.
(16)

Figure 10 shows the prediction crack life (Figure 7)
versus the experimental results (Table 9) of number 5 target
specimen.
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Figure 9: Crack propagation curves prediction of number 7 speci-
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Figure 11: Prediction error of crack propagation curve for number
6 specimen.

As shown in Figure 10, the absolute error of Case IV
is the smallest for the three cases. In other words, the
prediction curve (life) of Case III is in good agreement
with experimental observations. Based on the absolute error
condition of Case I, it can be known that using the average𝑎-𝑁 curve of number 1, number 2, number 3, and number
4 specimens to represent crack growth curve of number 5
specimen may cause bigger error.

Crack life prediction (Figures 8 and 9) versus the
experimental results (Table 8) for number 6 and number 7
specimens is shown in Figures 11 and 12, respectively.

As shown in Figures 10, 11, and 12, the absolute error of
Case II can satisfy the aircraft engineering accurate needs.

It is worth noting that Case I represents the mean of
experimental results. In some time, the prediction of Case I
may be more concise than Case II, but it will not happen all
the time. In other words, it is a special circumstance, and it is
determined by the stochastic and the scatter of fatigue crack
growth behavior. For instance, the prediction fatigue crack
growth curve of Case I (number 7 specimen, in Figure 12) is
in good agreement with the experimental results.

6. Conclusion and Discussion

The paper presents a method of fatigue crack propagation by
using the crack test information and in-service inspection
information. The fatigue crack growth curve of 2024-T62
aluminum alloy is predicted by Bayesian theory with MCMC
algorithm and OpenBUGS package. Based on the current
investigation, four conclusions are drawn.(1) The introduced model (4) can describe the fatigue
crack growth behavior of 2024-T62 aluminum alloy accu-
rately.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

Er
ro

r (
%

)

Cycle (N)

0

1
×
1
0
4

2
×
1
0
4

3
×
1
0
4

4
×
1
0
4

5
×
1
0
4

6
×
1
0
4

7
×
1
0
4

8
×
1
0
4

9
×
1
0
4

−1

Case I 
Case II 
Case IV 

Figure 12: Prediction error of crack propagation curve for number
7 specimen.

(2) The scatter of crack length (under same loading
cycles) gradually increases with crack propagation process.(3) Prior information of crack growthmodel parameter is
an important information source to predict the crack growth
behavior. And the MCMC is a good method to resolve the
statistics estimation issue of multiparameter.(4) The proposed approach provides an insight into
fatigue crack growth curve prediction and associates the
MCMC with OpenBUGS package. The predicted fatigue
crack growth curve and residual life are in good agreement
with the experimental observations. And the performance of
proposed approach shows the superior results to the mean
value of a-N data.
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