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A spherical particle’s acceleration fall through still fluid was investigated analytically and experimentally using the Basset-
Boussinesq-Oseen equation. The relationship between drag coefficient and Reynolds number was studied, and various parameters
in the drag coefficient equation were obtained with respect to the small, medium, and large Reynolds number zones. Next, some
equations were used to derive the finite fall time and distance equations in terms of certain assumptions. A simple experiment was
conducted to measure the fall time and distance for a spherical particle falling through still water. Sets of experimental data were
used to validate the relationship between fall velocity, time, and distance. Finally, the initial velocity effect on the total fall time
and distance was discussed with different terminal Reynolds numbers, and it was determined that the initial velocity plays a more
important role in the falling motion for small terminal Reynolds numbers than for large terminal Reynolds number scenarios.

1. Introduction

Since the middle of the 19th century, a solid particle falling
in gases or liquids has been investigated in many fields,
such as hydraulics and chemistry. Considerable attention has
been given to the steady-state motion of a spherical particle
falling in incompressible Newtonian fluids, especially for
the relationship between drag coefficient 𝐶𝐷 and Reynolds
number 𝑅. Stokes [1] neglected the inertia item in the Navier-
Stokes equations and proposed an inversely proportional
relationship between𝐶𝐷 and 𝑅with 𝑅 < 0.1 scenarios for the
first time. Then, the inertia item was taken into account by
Oseen [2, 3], and an improved relationship was proposed for𝑅 < 0.4 scenarios. Then, the perturbation theory was used to
obtain a𝐶𝐷 formula for 𝑅 < 1 scenarios [4, 5]. A more recent
study on 𝐶𝐷 correlations with 𝑅 can be found in the works of
Chester et al., Clift et al., and Liao and Julien [6–9]. It should
be noted that most of these aforementioned correlations had
little deviations [10].

In contrast to the steady-state fall of a particle, an
unsteady-state fall has an acceleration process before it
reaches the terminal fall velocity. Chang and Yen [11] dis-
cussed the importance of added mass and the Basset force of
a sphere falling for a low sphere-to-fluid density ratio and low

𝑅. Jalaal et al. [12] used the homotopy perturbation method
to derive the fall velocity, acceleration, and distance equations
of a spherical particle falling unsteadily in a Newtonian fluid,
ignoring the effect of the Basset force. Guo [13] analysed the
acceleration fall behaviour of a sphere through still fluid for
arbitrary Reynolds numbers and presented a simple solution
for fall distance and velocity. Yin et al. [14] neglected the
Basset force effect and experimentally investigated a spherical
particle acceleration fall through still water with large 𝑅.

The objective of our study was to investigate the initial
velocity effect on a spherical particle acceleration fall through
still fluid analytically and experimentally. In this study, the
relationship between𝐶𝐷 and𝑅was investigated, and different
parameters in the 𝐶𝐷 equation were obtained with respect
to small, medium, and large 𝑅 zones. Then, the finite fall
time and distance equations were derived in terms of some
assumptions by using the results reported by Guo [13].
Furthermore, a simple experiment was conducted tomeasure
the fall time and distance for a spherical particle falling
through still water. In addition, sets of experimental data
were used to validate the relationship between fall velocity,
time, and distance. The initial velocity effect on fall time
and distance was discussed with different terminal Reynolds
numbers. Finally, the conclusions are summarized.
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2. Kinetic Equation of an Acceleration Fall

2.1. Equation Derivations. Concerning a spherical particle
falling with acceleration through still fluid, the classic Basset-
Boussinesq-Oseen (BBO) equation has often been used to
depict the behaviour of the fall [3, 11–13, 15–17].

𝑚𝑠 𝑑𝑤𝑑𝑡 = (𝑚𝑠 − 𝑚) 𝑔 − 𝐶𝐷2 𝜌𝑤2 (𝜋𝐷2
4 ) − 𝐶𝐴0𝑚𝑑𝑤

𝑑𝑡
− 𝐶𝐵𝐷2 (𝜋𝜌𝜇)1/2 ∫

𝑡

0

𝑑𝑤
𝑑𝜏

𝑑𝜏
(𝑡 − 𝜏)1/2 ,

(1)

where the left-hand side of (1) is the inertia of a spherical
particle. The first, second, third, and fourth terms on the
right-hand side are its submerged weight, drag, added mass
force, andBasset history force, respectively.𝑚𝑠 is the spherical
particle mass, 𝑤 is the fall velocity, 𝑡 is the time, 𝑚 is the
mass of fluid for the same volume of spherical particle,𝑔 is the gravitational acceleration, 𝜌 is the fluid density,𝐷 is the diameter of spherical particle, 𝐶𝐷 is the drag
coefficient, 𝐶𝐴0 is the classic added mass coefficient, 𝐶𝐵 is
the classic Basset force coefficient, 𝐶𝐵 = 3/2, 𝜇 is the
dynamic viscosity of fluid, and 𝜏 is the dummy variable for
integration.

The submerged weight is given by subtracting the buoy-
ancy force from the particle weight, and it is well accepted
that this term plays an important role in the total force
[9]. The contribution of drag force is decided by 𝐶𝐷 to a
great extent. Considerable attention has been given to its
value with different 𝑅 (𝑅 = 𝑤𝐷/]), in which ] is the
kinematic viscosity of fluid [1–3, 7, 11–13]. In terms of 𝑅, it
can be classified as small, medium, and large numbers, and
the corresponding critical values are assumed to be 𝑅cr1 =𝑤cr1𝐷/] = 0.1 and 𝑅cr2 = 𝑤cr2𝐷/] = 1000 [13, 18], where𝑤cr1 = 0.1]/𝐷 is defined as the first critical velocity between
small and medium 𝑅 zones, 𝑤cr2 = 1000]/𝐷 is defined
as the second critical value between medium and large 𝑅
zones, and their corresponding times were defined as 𝑡cr1
and 𝑡cr2, respectively. The relationship between 𝐶𝐷 and 𝑅
can be expressed as the following general expression with
Rubey’s drag law [19]:

𝐶𝐷 = 𝛽
𝑅 + 𝛼. (2)

For small 𝑅 in a laminar zone (𝑅 < 0.1), 𝛼 = 0 and𝛽 = 24 [1]. For large 𝑅 in a turbulent zone (1000 < 𝑅 < 105),𝛼 = 0.44 ± 0.06 and 𝛽 = 24, which agreed well with the
experimental data over a wide range of Reynolds numbers
[13]. As for medium 𝑅 in a transitional zone (0.1 < 𝑅 <1000), Lapple and Shepherd [20] stated that 𝐶𝐷 decreases
with increasing 𝑅:

𝐶𝐷 = 24 (1 + 0.125𝑅0.72)
𝑅 . (3)

The range of 𝐶𝐷 deviation in (3) is −8% to 5% [7]. Using
(3), results for 𝑅 range from 0.1 to 1000 at a step of 0.1 were
obtained, and (3) was fitted as

𝐶𝐷 = 25.057
𝑅 + 0.5. (4)

The correlation coefficient is 0.997. Therefore, (4) can
be used to depict the relationship between 𝐶𝐷 and 𝑅 in a
transitional zone without causing major error.

Concerning the added mass force term, it deserves a
brief description. One important property of the solid-fluid
interaction is that the solid is not entirely free to move within
the fluid. As the solid particle moves from one position to the
other, an equal volume of fluid must move in the opposite
direction. So if the mass of solid particle is accelerated, the
mass of an equal volume of fluid must also be accelerated.
And this concept is referred to as the added mass [9]. In (1),𝐶𝐴0 is equal to 1/2 for the creeping motion after the inte-
gration of the potential unsteady pressure over the sphere’s
surface [21]. Hamilton and Lindell [22] also concluded that𝐶𝐴0 is consistently experimentally close to 0.5 for 𝑅 values
up to 35000, by neglecting the sphere acceleration effect. In
contrast, 𝐶𝐴0 increases with 𝑅 because of flow separation
[9]. Odar [23] further correlated 𝐶𝐴0 using an instantaneous
acceleration modulus; nevertheless, the modulus is arduous
to obtain explicitly.

The Basset force contribution to total force was deter-
mined by the density ratio 𝜌/𝜌𝑠 to a considerable extent,
where 𝜌𝑠 is the density of the particle. It was found that
the Basset force is always important in the calculations for𝜌/𝜌𝑠 > 1 scenarios. For some heavy particles in air such as𝜌/𝜌𝑠 < 0.004, the Basset force plays an insignificant role in the
total force. The Basset force contribution for 0.004 < 𝜌/𝜌𝑠 <1 depends on the type of particles and on the frequency
of the fluid velocity fluctuations [24]. Particular attention
has been devoted to the importance of the Basset force
compared to the other hydrodynamic forces [25]. Lawrence
and Weinbaum [26] investigated the unsteady force on a
sphere at low Reynolds number and pointed out that the
Basset force for an arbitrary velocity contained a newmemory
integral whose kernel differed from the classical behaviour
derived by Basset [15]. Sobral et al. [27] considered the
unsteadymotion of a rigid spherical particle in fluid flows and
found that its motion is significantly affected by the Basset
force on the early stages of the motion and on the approach
to the steady state. Due mainly to the complexity of the
Basset force, a series of numerical methods were employed
to resolve it, such as the Laplace transform method [28],
the “windowmodel” [29], and fractional-derivative approach
[30]. However, its computation was far more expensive than
other items in the BBO equation because of the dramatic
demands of computational time and memory. In contrast to
the numerical solutions, its analytical solution has advantages
including simplicity and reliability. However, the analytic
solutions of a spherical particle falling in still water were
still not found. Attempts to resolve this dilemma were made
for the theoretical solution of the Basset force and BBO
equation with a simplified method. Guo [13] assumed 𝑑𝑤/𝑑𝜏
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to be a constant to separate it from the definite integral and
𝐷2(𝜋𝜌𝜇)1/2 ∫𝑡

0
(𝑑𝜏/(𝑡 − 𝜏)1/2) as𝑚 in the Basset force item. He

empirically combined the added mass force and Basset force
into one integrated term, 𝐶𝐴𝑚(𝑑𝑤/𝑑𝑡) (𝐶𝐴 is the integrated
addedmass coefficient), and the fall velocity was expressed as

𝑤 = (2𝑐 − 𝑏𝑤0) + 𝑘𝑤0 coth (𝑘 (𝑡 − 𝑡0) /2)(𝑏 + 2𝑎𝑤0) + 𝑘 coth (𝑘 (𝑡 − 𝑡0) /2) , (5)

where 𝑎 = (3𝛼/4)(1/(Δ + 𝐶𝐴)𝐷), 𝑏 = (3𝛽/4)(V/(Δ + 𝐶𝐴)𝐷2),𝑐 = (Δ−1)𝑔/(Δ+𝐶𝐴), 𝑘 = √𝑏2 + 4𝑎𝑐, Δ = 𝜌𝑠/𝜌, 𝑡0 is the initial
time, and 𝑤0 is the initial velocity. The terminal fall velocity,𝑤𝑇, can be deduced with (5) for 𝑡 → ∞:

𝑤𝑇 = (𝑘 − 𝑏)
(2𝑎) . (6)

Using (5) with𝑤cr1 = 0.1]/𝐷 or𝑤cr2 = 1000]/𝐷, 𝑡cr1 and𝑡cr2 can be expressed as

𝑡cr1 = 1
𝑘 ln

(𝑏] + 0.2𝑎𝐷 + 𝑘]) (𝑏 + 2𝑎𝑤0 − 𝑘)
(𝑏] + 0.2𝑎𝐷 − 𝑘]) (𝑏 + 2𝑎𝑤0 + 𝑘) + 𝑡0 (7a)

𝑡cr2 = 1
𝑘 ln

(𝑏] + 2000𝑎𝐷 + 𝑘]) (𝑏 + 2𝑎𝑤0 − 𝑘)
(𝑏] + 2000𝑎𝐷 − 𝑘]) (𝑏 + 2𝑎𝑤0 + 𝑘) + 𝑡0. (7b)

The fall distance was expressed as

𝑠 = 1
𝑎 ln

(𝑘 − 𝑏 − 2𝑎𝑤0) 𝑒−𝑘(𝑡−𝑡0) + (𝑘 + 𝑏 + 2𝑎𝑤0)2𝑘
+ (𝑘 − 𝑏) (𝑡 − 𝑡0)2𝑎 .

(8)

Assuming an initial fall velocity of zero, Guo [13] derived
the following relationship between fall distance and fall
velocity:

𝑠 = 1
2𝑎 (ln 𝑐

𝑐 − 𝑏𝑤 − 𝑎𝑤2 −
2𝑏
𝑘 tanh−1 𝑘𝑤

2𝑐 − 𝑏𝑤) , (9)

where tanh−1 is the inverse hyperbolic function.

2.2. Finite Values of Acceleration Fall Time and Distance. For𝑡 → ∞, the fall distance in (8) approaches an infinite value.
In order to simplify the study, the finite values of fall time and
distance were expressed with the following assumptions.

For 𝑤0 < 0.99𝑤𝑇 scenarios, the acceleration fall process
was assumed to be completed when the fall velocity reached
99% of the terminal fall velocity. Applying (6) and 𝑤 =0.99𝑤𝑇 to (5) gives the corresponding time as follows:

𝑡𝑆 = 1
𝑘 ln

(1.99𝑘 + 0.01𝑏) (𝑏 + 2𝑎𝑤0 − 𝑘)
(0.01𝑏 − 0.01𝑘) (𝑏 + 2𝑎𝑤0 + 𝑘) + 𝑡0. (10)

Substituting (10) into (8) gives

𝑠𝑆 = 𝑘 + 𝑏
2𝑎 ln

𝑏 + 2𝑎𝑤0 + 𝑘
1.99𝑘 + 0.01𝑏 + 𝑘 − 𝑏

2𝑎𝑘 ln
𝑏 + 2𝑎𝑤0 − 𝑘
0.01𝑏 − 0.01𝑘 . (11)
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Figure 1: Fall velocities and distance relationships for experimental
data and computational results.

For 𝑤0 > 1.01𝑤𝑇 scenarios, the acceleration fall process
was assumed to be completed when the fall velocity reached
101% of the terminal fall velocity. Applying (6) and 𝑤 =1.01𝑤𝑇 to (5) gives the corresponding time as follows:

𝑡𝐿 = 1
𝑘 ln

(2.01𝑘 − 0.01𝑏) (𝑏 + 2𝑎𝑤0 − 𝑘)
(0.01𝑘 − 0.01𝑏) (𝑏 + 2𝑎𝑤0 + 𝑘) + 𝑡0. (12)

Substituting (12) into (8) gives

𝑠𝐿 = 𝑘 + 𝑏
2𝑎 ln

𝑏 + 2𝑎𝑤0 + 𝑘
2.01𝑘 − 0.01𝑏

+ 𝑘 − 𝑏
2𝑎𝑘 ln

𝑏 + 2𝑎𝑤0 − 𝑘
0.01𝑘 − 0.01𝑏 .

(13)

Note that the scenarios of 0.99𝑤𝑇 ⩽ 𝑤0 ⩽ 𝑤𝑇 or 𝑤𝑇 ⩽𝑤0 ⩽ 1.01𝑤𝑇 are not addressed in our study because they are
very close to the terminal fall velocity.

3. Validation by Experimental Data

In order to validate (9), two data sets of a spherical particle
acceleration falling through still fluid from Allen [31] and
Moorman [32] were used. Allen [31] measured a steel sphere
falling in a rectangular water tank; its depth, length, and
width were 28 cm, 11.5 cm, and 3 cm, respectively. The water
temperature was 17.8∘C, Δ = 7.82, 𝐷 = 3.18mm, 𝑤0 = 0,𝑤𝑇 = 83 cm/s, and the terminal Reynolds number 𝑅𝑇 =𝑤𝑇𝐷/] = 2440. Moorman’s (1955) tests were conducted in an
oil tank with 𝐷 = 12.7mm, 𝜌𝑠 = 7780 kg/m3, 𝜌 = 876 kg/m3,
] = 3.54 × 10−5m2s−1, 𝑤0 = 0, 𝑤𝑇 = 174.8 cm/s, and𝑅𝑇 = 627. The fall velocities and distances of the experiments
were plotted, and their comparisons with (9) were shown in
Figure 1. Note that 𝛼 = 0 and 𝛽 = 24 for 𝑅 < 0.1, 𝛼 = 0.5 and𝛽 = 25.507 for 0.1 < 𝑅 < 1000, 𝐶𝐴 = 0.5 for 𝑅 < 1000, and
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Figure 2: Fall distance relationship with time for 𝑤0 = 0.

𝛼 = 0.39, 𝛽 = 24, and 𝐶𝐴 = 2 for 1000 < 𝑅 < 105 as reported
by Guo [13] because of its good validation with Allen’s [31]
and Moorman’s [32] test data. Figure 1 shows that the results
from (9) for Allen’s [31] scenario and the experimental data
agreed well. As can be seen from Figure 1, the results from (9)
are slightly overestimated according to the experiment with
Moorman's scenarios [32].

In order to further validate (8), a series of experiments
was conducted in the Hydraulic Lab at Ocean University of
China. A rectangular glass tank was used with a height of
2.0m, a width of 0.3m, and a length of 0.3m. It was filledwith
tap water to a water depth of 1.8m. The water temperature
wasmeasuredwith a thermometer to be 20.7∘C.The spherical
particles were made of plastic or glass. The diameters of the
spherical particles weremeasured byVernier calipers, and the
mass of the spherical particles was measured by a balance
scale. As a result, the densities of the spherical particles were
calculated. The scale paper was pasted on the outside of the
tank to obtain its distance.The spherical particle was released
on the surface of thewater. A video camerawas used to record

Table 1: Experimental scenarios.

Scenario number 𝐷 (mm) 𝜌𝑠 (kgm−3) 𝑅𝑇
1 4.5 1125.6 520
2 5.1 1236.7 880
3 5.3 1445.6 1458
4 14.4 1165 4020
5 15.7 1165 4586
6 16.6 1165 4982
7 17.5 1165 5391

the falling process at a speed of 30 frames per second. Video
player software was used to read the video frame by frame,
and the corresponding time and distance of each frame were
obtained. Table 1 presents the detailed scenarios of the fall
experiments.

Figure 2 illustrates the relationship between fall distance
and time for scenarios 1 to 4 with 𝑤0 = 0. Note that the fall
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in a laminar zone was not measured because of the limitation
of camera performance and its very small value. Figures 2(a)
and 2(b) show the data only in the transitional zone, and
the horizontal coordinates of 𝑡 = 0.113 s and 𝑡 = 0.074 s
are the critical values between transitional and turbulent
zones as shown in Figures 2(c) and 2(d), respectively. It was
observed that results from (8) agree well with experimental
data, confirming that the determination of 𝐶𝐴, 𝛼, and 𝛽 is
reliable to compute the falling motion.

4. Different Initial Velocity Effects on Total
Fall Time and Distance

Previous research shows that the initial velocity plays an
important role in the fall time and distance [12, 13, 31, 32],
and it deserves detailed comments. In terms of 𝑤0 and 𝑅𝑇,
the total fall time 𝑇 and the total acceleration fall distance 𝑠𝑇
were discussed in the following nine scenarios.

4.1. 𝑤0 ⩽ 𝑤cr1 for 𝑅𝑇 < 0.1. For 𝑤0 < 0.99𝑤𝑇 scenarios, the
fall velocity increases from 𝑤0 to 𝑤𝑇. Therefore,

𝑇 = 𝑡𝑆 (𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5) (14a)

𝑠𝑇 = 𝑠𝑆 (𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5) . (14b)

For 𝑤0 > 1.01𝑤𝑇 scenarios, the fall velocity decreases from𝑤0 to 𝑤𝑇. Therefore,

𝑇 = 𝑡𝐿 (𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5) (14c)

𝑠𝑇 = 𝑠𝐿 (𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5) . (14d)

4.2. 𝑤cr1 < 𝑤0 ⩽ 𝑤cr2 for 𝑅𝑇 < 0.1. The fall velocity
decreases from 𝑤0 to 𝑤cr1 and 𝑤𝑇, and the corresponding
time increases from 𝑡0 to 𝑡cr1 and 𝑡𝐿. Therefore,

𝑇 = (𝑡cr1 − 𝑡0) + (𝑡𝐿 − 𝑡cr1) (15a)

𝑠𝑇 = 𝑠 (𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5, 𝑡 = 𝑡cr1)
+ 𝑠𝐿 (𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5, 𝑤0 = 𝑤cr1) , (15b)

where 𝑡𝐿 can be obtained with 𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5,𝑤0 = 𝑤cr1, and 𝑡0 = 𝑡cr1 using (12).
4.3. 𝑤0 > 𝑤cr2 for 𝑅𝑇 < 0.1. The fall velocity decreases from𝑤0 to𝑤cr2,𝑤cr1, and𝑤𝑇, and the corresponding time increases
from 𝑡0 to 𝑡cr2, 𝑡cr1, and 𝑡𝐿. Therefore,

𝑇 = (𝑡cr2 − 𝑡0) + (𝑡cr1 − 𝑡cr2) + (𝑡𝐿 − 𝑡cr1) (16a)

𝑠𝑇 = 𝑠 (𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2, 𝑡 = 𝑡cr2) + 𝑠 (𝛼
= 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5, 𝑤0 = 𝑤cr2, 𝑡0 = 𝑡cr2, 𝑡
= 𝑡cr1) + 𝑠𝐿 (𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5, 𝑤0 = 𝑤cr1) ,

(16b)

where 𝑡𝐿 can be obtained with 𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5,𝑤0 = 𝑤cr1, and 𝑡0 = 𝑡cr1 using (12).

4.4. 𝑤0 ⩽ 𝑤cr1 for 0.1 < 𝑅𝑇 < 1000. The fall velocity
increases from𝑤0 to𝑤cr1 and𝑤𝑇, and the corresponding time
increases from 𝑡0 to 𝑡cr1 and 𝑡𝑆. Therefore,

𝑇 = (𝑡cr1 − 𝑡0) + (𝑡𝑆 − 𝑡cr1) (17a)

𝑠𝑇
= 𝑠 (𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5, 𝑡 = 𝑡cr1)

+ 𝑠𝑆 (𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5, 𝑤0 = 𝑤cr1) ,
(17b)

where 𝑡𝑆 can be obtained with 𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5,𝑤0 = 𝑤cr1, and 𝑡0 = 𝑡cr1 using (10).
4.5. 𝑤cr1 < 𝑤0 ⩽ 𝑤cr2 for 0.1 < 𝑅𝑇 < 1000. For 𝑤0 < 0.99𝑤𝑇
scenarios, the fall velocity increases from𝑤0 to𝑤𝑇.Therefore,

𝑇 = 𝑡𝑆 (𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5) (18a)

𝑠𝑇 = 𝑠𝑆 (𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5) . (18b)

For 𝑤0 > 1.01𝑤𝑇 scenarios, the fall velocity decreases from𝑤0 to 𝑤𝑇. Therefore,

𝑇 = 𝑡𝐿 (𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5) (19a)

𝑠𝑇 = 𝑠𝐿 (𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5) . (19b)

4.6. 𝑤0 > 𝑤cr2 for 0.1 < 𝑅𝑇 < 1000. The fall velocity
decreases from 𝑤0 to 𝑤cr2 and 𝑤𝑇, and the corresponding
time increases from 𝑡0 to 𝑡cr2 and 𝑡𝐿. Therefore,

𝑇 = (𝑡cr2 − 𝑡0) + (𝑡𝐿 − 𝑡cr2) (20a)

𝑠𝑇
= 𝑠 (𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2, 𝑡 = 𝑡cr2)

+ 𝑠𝐿 (𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5, 𝑤0 = 𝑤cr2) ,
(20b)

where 𝑡𝐿 can be obtained with 𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5,𝑤0 = 𝑤cr2, and 𝑡0 = 𝑡cr2 using (12).
4.7. 𝑤0 ⩽ 𝑤cr1 for𝑅𝑇 > 1000. The fall velocity increases from𝑤0 to𝑤cr1,𝑤cr2, and𝑤𝑇, and the corresponding time increases
from 𝑡0 to 𝑡cr1, 𝑡cr2, and 𝑡𝑆. Therefore,

𝑇 = (𝑡cr1 − 𝑡0) + (𝑡cr2 − 𝑡cr1) + (𝑡𝑆 − 𝑡cr2) (21a)

𝑠𝑇 = 𝑠 (𝛼 = 0, 𝛽 = 24, 𝐶𝐴 = 0.5, 𝑡 = 𝑡cr1) + 𝑠 (𝛼
= 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5, 𝑤0 = 𝑤cr1, 𝑡0 = 𝑡cr1, 𝑡
= 𝑡cr2) + 𝑠𝑆 (𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2, 𝑤0 = 𝑤cr2) ,

(21b)

where 𝑡𝑆 can be obtained with 𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2,𝑤0 = 𝑤cr2, and 𝑡0 = 𝑡cr2 using (10).
Table 2 shows the total acceleration fall distance com-

parison between (21b) and experimental data with 𝑤0 = 0.
In Table 2, 𝑠𝑇𝑇 is the 𝑠𝑇 value of (21b), 𝑠𝑇𝐸 is the 𝑠𝑇 value
from the experiments, and the relative error was defined as
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Figure 3: Relationship between 𝑇, 𝑠𝑇, and 𝑤0 for 𝑤cr1 < 𝑤0 ⩽ 𝑤cr2 and 𝑅𝑇 > 1000.

Table 2: Eq. (21b) and experimental distance of total acceleration
with 𝑤0 = 0.
Scenario number 𝑆𝑇𝑇 (m) 𝑆𝑇𝐸 (m) 𝐸 (%)
4 0.299 0.290 3.1
5 0.330 0.315 4.8
6 0.347 0.357 −2.8
7 0.368 0.377 −2.4

𝐸 = ((𝑠𝑇𝑇 − 𝑠𝑇𝐸)/𝑠𝑇𝐸) × 100%. It was found that the all
of the relative errors between them were smaller than 5.0%,
confirming that (21b) is reliable to compute 𝑠𝑇 for 𝑤0 ⩽ 𝑤cr1
with 𝑅𝑇 > 1000.
4.8. 𝑤cr1 < 𝑤0 ⩽ 𝑤cr2 for 𝑅𝑇 > 1000. The fall velocity
increases from𝑤0 to𝑤cr2 and𝑤𝑇, and the corresponding time
increases from 𝑡0 to 𝑡cr2 and 𝑡𝑆. Therefore,

𝑇 = (𝑡cr2 − 𝑡0) + (𝑡𝑆 − 𝑡cr2) (22a)

𝑠𝑇 = 𝑠 (𝛼 = 0.5, 𝛽 = 25.057, 𝐶𝐴 = 0.5, 𝑡 = 𝑡cr2)
+ 𝑠𝑆 (𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2, 𝑤0 = 𝑤cr2) , (22b)

where 𝑡𝑆 can be obtained with 𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2,𝑤0 = 𝑤cr2, and 𝑡0 = 𝑡cr2 using (10).
Figure 3 shows the relationship between 𝑇, 𝑠𝑇, and 𝑤0

for 𝑤cr1 < 𝑤0 ⩽ 𝑤cr2 and 𝑅𝑇 > 1000. Note that 𝐸𝑉. is the
abbreviation for the experimental values in Figures 3(b) and
4(b). Figure 3(a) illustrates that 𝑇 decreases with increasing𝑤0, and its reduction rate is higher for small 𝑅𝑇 than for
large 𝑅𝑇. Figure 3(b) shows that 𝑠𝑇 decreases slightly with
increasing 𝑤0, and its reduction rate increases very slightly

with decreasing 𝑅𝑇, although it appears to remain constant
to a great extent. It was also found that results from (22b)
are consistent with the experimental values, as shown in
Figure 3(b).

4.9. 𝑤0 > 𝑤cr2 for 𝑅𝑇 > 1000. For 𝑤0 < 0.99 𝑤𝑇 scenarios,
the fall velocity increases from 𝑤0 to 𝑤𝑇. Therefore,

𝑇 = 𝑡𝑆 (𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2) (23a)

𝑠𝑇 = 𝑠𝑆 (𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2) . (23b)

For 𝑤0 > 1.01 𝑤𝑇 scenarios, the fall velocity decreases from𝑤0 to 𝑤𝑇. Therefore,

𝑇 = 𝑡𝐿 (𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2) (24a)

𝑠𝑇 = 𝑠𝐿 (𝛼 = 0.39, 𝛽 = 24, 𝐶𝐴 = 2) . (24b)

For 𝑤0 > 𝑤cr2 and 𝑅𝑇 > 1000 scenarios, the relationship
between 𝑇, 𝑠𝑇, and 𝑤0 is shown in Figure 4. Figure 4
indicates that 𝑇 and 𝑠𝑇 increase with increasing 𝑤0, and
the increase rates are higher for small 𝑅𝑇 than for large 𝑅𝑇.
Figure 4(b) shows that the results from (24b) agree with the
experimental values. Consequently, the initial velocity plays a
more important role in the acceleration motion for small 𝑅𝑇
than for large 𝑅𝑇 scenarios as shown in Figures 3 and 4.

5. Conclusions

Theaccelerationmotion of a spherical particle falling through
still fluid was analytically and experimentally investigated
using the BBO equation. The results of this study can be
summarized as follows.
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Figure 4: Relationship between 𝑇, 𝑠𝑇, and 𝑤0 for 𝑤0 > 𝑤cr2 and 𝑅𝑇 > 1000.

(1) The relationship between the drag coefficient and
Reynolds number was studied, and different param-
eters in the drag coefficient equation were obtained
with respect to the small,medium, and large Reynolds
number zones. In terms of some assumptions, the
finite fall time and distance equations were derived
using the results reported by Guo [13].

(2) A simple experiment was conducted in order to
measure a spherical particle fall process through still
water. Literature and experimental data were used to
validate the equations between fall time, velocity, and
distance, confirming the determination of a drag force
coefficient and an integrated added mass coefficient
for different Reynolds number zones.

(3) The different initial velocities and terminal Reynolds
numbers were taken into account, and the total fall
time and distance equations were obtained. They
fitted well with experimental data for 𝑅𝑇 > 1000
scenarios. It was found that the initial velocity plays
a more important role in the falling motion for small𝑅𝑇 than for large 𝑅𝑇 scenarios.

(4) The results of this study are possibly useful in
hydraulic, environmental, and chemical engineering
fields, such as particle size analysis, sediment depo-
sition in water treatment engineering, and chemical
reactions of particles in a fluidized bed.

It should be noted that this study experimentally mea-
sured fall data only in medium and large 𝑅𝑇 zones. We
failed to measure the corresponding data in small 𝑅𝑇 zones
because of camera performance limitations, spherical particle
material, and spherical particle size; this might deserve
further experimental evaluation in future work.

Notations

𝑎, 𝑏, 𝑐: Model parameters in (5) (—)𝐶𝐴: Integrated added mass coefficient (—)𝐶𝐴0: Classic added mass coefficient (—)𝐶𝐵: Classic Basset force coefficient (—)𝐶𝐷: Drag coefficient (—)𝐷: Diameter of spherical particle (m)𝑔: Gravitational acceleration (ms−2)𝑘: Interim parameter (—)𝑚: Mass of fluid for the same volume of
spherical particle (kg)𝑚𝑠: Spherical particle mass (kg)𝑅: Reynolds number (—)𝑠: Fall distance (m)𝑡: Time (s)𝑡0: Initial time (s)𝑤: Fall velocity (ms−1)𝑤0: Initial velocity (ms−1)𝑤𝑇: Terminal fall velocity (ms−1)𝛼, 𝛽: Drag parameters in (2) (—)Δ: Ratio of sphere to fluid density (—)𝜇: Dynamic viscosity of fluid (Nsm−2)

]: Kinematic viscosity of fluid (m2s−1)𝜌: Fluid density (kgm−3)𝜌𝑠: Density of a spherical particle (kgm−3)𝜏: Dummy variable for integration (—).
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