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Hopf bifurcation for an SEIRS-V model with delays on the transmission of worms in a wireless sensor network is investigated.
We focus on existence of the Hopf bifurcation by regarding the diverse delay as a bifurcation parameter. The results show that
propagation of worms in the wireless sensor network can be controlled when the delay is suitably small under some certain
conditions. Then, we study properties of the Hopf bifurcation by using the normal form theory and center manifold theorem.
Finally, we give a numerical example to support the theoretical results.

i dR (t)
1. Introduction - = [(6)-(C+8)R(),
In recent years, wireless sensor networks have received exten- av
sive. attention due to their Vast.potenti.al in many application % =pS(t)-((+n)V(t),
environments. However, security of wireless sensor networks t
still remains one of the most critical challenges because @

sensor nodes are often placed in a hostile or dangerous
environment [1]. Many epidemiological models [2-6] have
been proposed to study and predict the spread of viruses
in wireless networks motivated by the pioneering work of
Murray [7] and Kephart and White [8, 9]. In [10], Mishra and
Keshri proposed the following SEIRS-V model to describe the
propagation of worms in a wireless sensor network:

where S(t), E(t), I(t), R(t), and V(t) denote the number of
susceptible, exposed (infected, but not infectious), infectious,
recovered, and vaccinated sensor nodes at time t, respectively.
A, p,a, 3,9, 8,1, &, and { are the positive parameters of system
(1) and for the specific meanings of them one can refer to [10].
Considering the time delays in system (1), Zhang and Si [11]

dil it) — A= BSWI() —({ + p)S(E) +OR(2) proposed the following delayed SEIRS-V system:
v %=A—ﬂS(t)I(t)—(C+p)S(t)+5R(t—Tz)

dE(t)

SR =BSOIO-C+E®, iV (-1,

T eEO- (oo, O _ps010-CraEO,
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2
PO k@) - @+ 910 -y (-7),
% =yI(t-1)-(R(t)-SR(t-T,),
O~ ps @) -1v 0 -V (t-7),
2)
where 7; > 0 is the time delay due to the period that antivirus

software uses to clean worms in the infected nodes; 7, > 0
is the time delay due to the temporary immunity period of
the recovered and the vaccinated nodes. For the convenience
of analysis, Zhang and Si [11] let 7, = 7, and considered the
following system:

diit)_A BSOI(H) = (C+p)S(H)+OR(t~7)
V-1,

dit(t) =BSMOI(H) - +a)E(®),

dﬁiit) aE(t) = (C+e)I(t) - yI(t-1), ’

dl;:t) = yI(t-1)-(R(t) - 6R(t - 1),

d‘;(t) = pSM =LV () =V (t-7).

Zhang and Si [11] investigated existence and properties of the
Hopf bifurcation of system (3).

It should be pointed out that one of the significant features
of worms in networks is its latent characteristic. Therefore,
there exists a certain period before the exposed nodes develop
themselves into the infectious ones. In addition, as far as we
know, there have been some papers that deal with research
of Hopf bifurcation of dynamical systems with multiple
delays in recent years [12-15]. In [12], Xu et al. studied Hopf
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bifurcation of a ring of five neurons with delays. In [14],
Bianca et al. investigated Hopf bifurcation of an economic
growth model with two delays. Considering that there is a
latent period of worms in the exposed nodes in system (3),
we study the following system with delays:

dilit)_A BSHI(t) - ({+p)S(t) +OR(t-1,)
+V (t-1,),

dE(t) _ BS()T(H) - B (t—1,) - (EW),

50y coatooon.

%:yI(t—Tz)—CR(t)—‘SR(t_Tz)’

%:pS(f)—CV(t)_WV(t_TZ)’

where 7, is the time delay due to the latent period of worms in
the exposed nodes and 7, is the time delay due to the period
that the antivirus software uses to clean worms in the infected
nodes and that due to the temporary immunity period of the
recovered and the vaccinated nodes.

The structure of this paper is as follows. In Section 2, we
obtain sufficient conditions for local stability of the positive
equilibrium and existence of a Hopf bifurcation of system
(4). In Section 3, we deal with the properties of the Hopf
bifurcation by using the normal form theory and center
manifold theorem. Some numerical simulations are carried
out in Section4 with the aim of verifying the obtained
analytic results. Finally, conclusions and future work are
summarized.

2. Hopf Bifurcation Analysis

By a direct computation, we know that if R, = (aBA({ +
1)+ pr(C + a)(C + &+ P)/(C + p)IC + a) + ) + e+

y) > 1, then system (4) has a unique positive equilibrium
D.(S,,E,,I,,R,,V,) in which

(5)

s =(C+oc)(C+s+y)
" —oc/)’ ,
E*:C+s+y1
o
-y
R*_C+8I*’
v o PErarery)
’ aB(§+1n)
! =<x/3A(C+<S)((+11)+p;7(C+<x YC+8)([(+e+y)—((+p)C+a)((+96) (C+;1)((+s+y)

* BUE+a)(+8)((+n) ([ +e+y)—apdy(+n)
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The characteristic equation of system (4) at D, is

X+AMN+ AL + ANV +AL+A,
+ (B4/\4 +B,A° + B,A* + BA + B(,) e
+(CA+CA +CA +C A+ CO) et

+ (DA + DA* + DA + DO) e hn

(
(
+ (EsA® + E)A? + E\A + Ep) e 0™
+(BA + FiA+ Fy) e 02
+ (G + G+ Gy) e

(

+ (H A+ Hy) e M%) —

Ag = —0y105,0330,,055,
A\ = 4y1ay 05304 + 0110055 (33 + Gyy)

+ a33044055 (ay, + ayy)

A, = —ags (ay10y, + as3a4, + (ay; + ay,) (a35 + ayy))
= (1105 (a33 + Ayy) + 33044 (a1 + a,)) »
As = a0y, + as3a,, + (ay; + ay,) (G55 + agg)
+ ass (a1 + Ay + a3 + Ay),
Ay =—(ay +ay +ag3 + ay + ass)

By = ayassbs, (‘111“23 - 313“21) — 4y102,033044b),

B, = by, (a1ay; (as3 + ayy) + a33a4 (a); + ay,))

+ by, ((ag + as5) (a1305) — y3011) — Gy3044655) »

B, = ayby, (ayy + ass) + by (41,053 — ay305,)

= by, (1109 + a33a44 + (ay; + ay,) (a3 + ay))

s
w
|

= by, (ay, + ay, + as; + ay,) — aysbsy,
B, = _bzz’

Co = —a11a5,033 (“44b55 + “55b44) = Ay10,044055bs3,

C, = by; (a1,0 (Agg + ass) + agaass (ag; + ay,))
+(ay,ayy + a11053 + yy053) (Agabss + assbyy)
+ 105033 (byy + bss) »

C, = —(ay,ay, + 11053 + ypa33) (byy + bss)

— (ay4bss + assby,) (ay) + ay + ass)

= by (41,05 + Ayyss + (ay) + ) (Agy + as5)) 5

Cs = bys (ay, + ayy + ayy + ass) + aybss + assby,

+(ay + ay +as3) (byy + bss)

O
N
|

= —(by + by, +bss),

Dy = —ay,ay; (433044055 + a44b33b55 + assbysby,)

O
[

= bysbyy (4110, + ay1a55 + a055)
+b33bss (a1105 + a1 a4 + A5p044)
+ byybss (ar10y, + 1033 + aya33)
D, = ~bysby (ay + a5, + as5)
= bysbss (ary + ay, + ayy)
—bybss (ay) +ay +az),
Ds = byzbyy + bysbss + byybss,
Eq = by, (a4sbss + assby) (a11053 — a1305:)
— 11y (44055033 + A33a44bs55 + A33055by) »
E; = a1a33by; (byy + bss)
+ byybss (a11 G4 + 11855 + A44a55)
+(a110yy + a33by; — Ay3bsy) (Agsbss + Assbyy)
+ b3y (bay + bss) (@130 — a11453) 5
E, = ay3by, (byy + bss) = byybs (ary + ayy + ass)
= byy (Ayabss + assbyy + (by + bis) (ary +as3)) 5
E; = by, (bss + byy + bss)
Fy = aya55b14b35by5 + b3y bysbss (a11055 — a1305:)
= 11y, (33044055 + A44b33b55 + assbssbyy)
Fy = bybysbss (ay + ag) + bybyubss (ar + as3)
— (a1b1absobys + ax3035b44b55)
Fy = ~by, (bs3byy + bysbss + bybss) »
Gy = =01, b33b44b55,
G, = bysbybss (ay; +ay),
G, = —bs3byybss,
Hy = a5,b14b3,by3bs5 — 1105505344 b5s5

H, = bzzb33b44b55>

7)
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with Ay, 1 0
det, = A, Ay Ay | >0,
ay =~ (BL +{+p), 0 Ay Ap
a3 = —pS. A, 1 0 0
- BI,, Ap Ay Ay 1
ay = det, = 12 4413 g >0,
a, ==, Ay A Ap A
0 0 Ay A
s = BS,., 10 A
4=~ +e), Ay 1 0 0 0
4y = —C Ap A Ay 10
44 = 6>
det; = A Ay A A Ay > 0.
%51 = P 0 0 Ay Ay Ap
as5 = =G, (8) 0 0 0 0 A
by, =6, (11)
bis =1, Case 2. When 1, > 0, 7, = 0, (6) becomes
by, = -, X+ AuA + Al + AN + Ayl + Ay,
by, =a, _
32 + (324/\4 + By A’ + ByyA” + By A + BZO) e M (12)
by; = —y» i
by =y
where
by, = =9,
Ay =Ay+Cy+ Dy + Gy,
bss = -1
Ay, =A, +C+D; +Gy,
Case 1. When 7, = 7, = 0, (6) becomes Ap=A+C+ Dy + Gy,
A,y = A+ Cy+ Dy,
NP +A N+ AN +ALN+AA+A,,=0, (9) Ay =A,+C,
(13)
B,, = By + E;, + F, + Hy,
where
B, =B, +E, +F +H,
Ay=Ay+By+Cy+Dy,+E,+F,+G,+H,, B,, =B, +E, + F,,
A=A +B+C;+D, +E, +F +G, +H,, By, = B; + E;,
A,=A,+B,+Cy+D,+E, +F, +G,, (10) B,, = B,.
A3 =A3+B3+C3+ D5+ Es, Let A = iw,; (w, > 0) be a root of (12). Then,
A=A+ B+ Gy (B21w1 - Bz3wf) sin 7, w,
(B,y{ — B,yw; + Byy) = Ay}
Itis easy to get that A, = p+a+y+8+e+y+5(+pBI, > 0. + P2y = By + By ) COST 0y = Agp0y
Thus, we have the following condition: 4
= Ay = Ay
(14)

(H;) If (11) holds, D, is locally asymptotically stable: (B21w1 - B23wi) COS T, W,
4 2 . 3 5
- (3240.)1 - By,w] + Bzo) sinTyw; = Ayw] — w;

d A T
et, = >0,
? Ay A ~An©r
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Thus, we have
10 3 6 4
W]+ $p,00] + S300) + S + S w; + 559 =0,  (15)
where
2 2
Sy = A — Byps

2 2
Sy1 = A = By — 245045, + 2By By,

2 2
Sy = Ay — By +2A50A5, —2A5 A5 — 2By By,

(16)
+2B,,B,;,
2 2
Sy3 = Ay = Byy + 245, - 2A5 Ay, + 2By, By,
2 2
Sy = AL~ B2, —2A,,
Let wf = v;; then, (15) becomes
v? + 5241/11 + 5231/? + szzvf + 55,V; + 55 = 0. 17)

According to the analysis of roots of (17) in [16], we assume
that

(H,;) Equation (17) has at least one positive root.

Then, there exists a positive root v,, for (17). Thus, we obtain
wyo = +/Vyo. Further,

S
10 o0
8 6 4 2 (18)
% arccos PagWyg + PasWig T P2aWig + P2aWip + Pao
Das@ + 26@Py + a8a®ip + 422@To + Gao
where
2
d20 = Bzo’
2
42 = By = 2By,
2
Gas = By, + 2By By, — By B3,
2
G426 = B33 = 2By, Byy,
2
928 = By 19)
P20 = —AzByo;
P2 = AyByy + ApByy — Ay By,
DPaa = Ay Bys — AygByy = ApyByy + Aps By — Ay By,
P26 = ApByy + AyByy — ApsBys — By,
Pas = Bys — AyuByy.
Differentiating (12) regarding 7,, we have
o]
dr,
_ SAY + 4A,,0° + 34507 + 2A 0 + Ay 20)

A (A + Ay At + Ap A3 + ApA? + Ay A+ Ayp)

4B,, A’ +3B,;A* + 2B,,A + By, T,

A(ByyA* + BysA% + ByA2 + B,y + Byy) A

5
Then,
dr 1™
Re [— ]
dTl A=iwy,
, (21)
_ S (vi)
= 5 5
(By1wig = Byswiy)” + (Brawiy — Byl + Byg)
where

5 4 3 2
For (V1) = V] #5049 +$53] +55uV] + 5,V +59  (22)

_ 2
and v, = wj,.

Thus, we can conclude that if
(Hy,) lel(vl*) + 0 holds, then Re[d/\/drl]iiiwlo +0.

Summarizing the analysis above, we have the following.

Theorem 1. For system (4), let T,y be specified by (18). If
the conditions (H,,)-(H,,) are satisfied, then D,(S,,E,,I,,
R,,V.,) is asymptotically stable when 1, € [0, 1,,) and a Hopf
bifurcation occurs at D, (S,,E,,I,,R,,V,) when 1, = 1.

Case 3. When 1, = 0 and 7, > 0, (6) becomes

2+ A34/X4 + A33A3 + A32)L2 + A A+ Ay
+ (B34)L4 + B\’ + ByA® + By A + B30) e
(23)
+ (C33)\3 +CpA” +Cy A + C30) e hn

+ (D32)t2 + Dy A + D30) e =,
Multiplying by e*™ on both sides of (23), we have

By, A* + BjA® + By, A% + By A + By,
+ (/\5 + AN AV AN+ A A+ A30) e
(24)
+ (C33/\3 +Cy A2+ Cy A + C30) e

+ (D32/\2 + Dy A + D3O) e =,
Let A = iw, (w, > 0) be the root of (24). Then,

931 (‘Uz) COST,W, — g3 (“’2) Sin T,w, + g3 (wz)

= hy, (w,) sin 27,w, + h3, (w,) cos 27, w,,
(25)
34 (@3) SIn T, + g5 (;) COS T, + g6 ()

= hy, (w,) cos 2T,w, — hy, (w,) sin 27,w,,



where

g3 (w,) = A34“)‘21 — (A5 +Cyy) “’; + Az + Gy,

93 (@) = @) — (As5~ Cy3) “’; + (A3 — Cyp) wy,

933 (@3) = B3y} — B3y, + By,

G34 (@) = A34w3 - (A -Cy) w§ + Az = Cso (26)
G35 (wp) = “)g - (A3 +Cy3) “’; + (A3 +Cyp) @y,

36 (w;) = By, — 333“);

hy) (0,) = —Dy,w,,

hy, (@) = Dsz“)g = Dy

According to the analysis in [11], we obtain the
expressions of cosT,w, and sinT,w, when sint,w, =

/1 — cos? T,w, and we denote f3;(w,) = cos T,w, and f,(w,)

= sin 7,w,. Then, we obtain a function regarding w,:

f321 (wp) + f322 (wy) = 1. 27)
Next, we suppose that
(Hs,;) Equation (27) has at least one positive root.
Then, there exists w,;, > 0 which makes (24) have roots

tiw,;,. For wyg,

1
To10 = o arccos f3; (w,y0) - (28)
210

Similarly, one can also obtain expressions of cosT,w,

and sin 7,w, for sinT,w, = —4/1 — cos? T,w, and we denote

f33(w,) = cos T,w, and f3,(w,) = sin T,w,. Then,

frs (@) + f3 () = 1. (29)
Obviously, if (29) has a root w,,, > 0, then (24) has roots

+iw,,,. For w,,,

1
Ty0 = o arccos f3 (wyy) - (30)
220

Let

Tyo = min {7210> 7220} > (31)

and tiw,, are the roots of (24) when 7, = 1. Differentiating
(24) regarding T,, one can obtain

k3
dr,

= P30 (D) + ps V) e+ P32 (M) e 4 P33 (M) e hn (32)
qz0 V) — q5; (A) M

T

A >
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with
P30 (A) = 4B, A* + 3B, A + 2B, A + By,
P (V) =50 +4A,0° + 34,507 + 24,0 + Ay,

P32 (A) = 3C33A° +2CA + Cyy,
P33 (A) =2D3A + Dy,

(33)
g3 (A) = C33)t4 +(Csy + 2Ds,) 2+ (Cs; +2Dy)) 22
+(Csy +2D50) A,
Gs V) = A+ AN+ A A AL + A0
+ Al
Define
R[] BaQerhiOn g,
Aty Dziay, 3Rt Q5

Obviously, if the condition
(Hs,) P;Qsp+P3;Q;; # 0holds, then Re[dA/d, ] ;,.ww #0.

Therefore, we can otain the following according to the
analysis above.

Theorem 2. For system (4), let T,, be specified by (31).
If the conditions (Hs,)-(Hs,) are satisfied, then D,(S,,E,,
I.,R,,V,) is asymptotically stable when 1, € [0,7,,) and a
Hopf bifurcation occurs at D,(S,,E,,I,,R,,V,) when 7, =

Tyo-

Case 4 (r; > 0,7, > 0,and 7, € (0,7y)). Let A = iw,,
(w;, > 0) be the root of (6); then, one can obtain

9a (@y,) sinTywy, + gy, (@,,) cos Ty,
= hy (“’u)»
9a (“’1*) COST Wy, — Ga (“’1*) sin 7y Wy,

= hy (01,),

(35)

where
(w,,) = Byw,, — B;w,
9 \ Wy, ) = D1y, 3Wy,
+ (E,w,, — E;0’.) cos 1,0
1% % 3% % 2%«
—(E, - E,0*.) sin,w
0 2% % 201
+ Fiw,, cos 2T,w,,
—(F, - F,w?. ) sin 27,w
0 2% % 2% 1%

+ H,w,, cos31,w,, — H, sin37,w,,,
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4 2
s (wy,) = Bywy, — Bywy, + By
+(E w,, — E;w? )sin‘rw
1% % 3% 2%«
+(E, - Eyw?, ) cos Tyw
0~ HalWy, 2014
+ F w,, sin 21w,
+(F, - F,w?,) cos 21,0
0~ 20 2014
+ H,w,, sin 31,w,, + H, cos 3t,w,,,
_ 2 4
hy (wy.) = Aywy, = Ay, — Ay
3 .
+ (C3w1* - Clwl*) sin T,w, ,,
2 4
+ (Czwl* - Cyw,, — CO) COS T, Wy,
3 .
+ (D3w1* - Dlwl*) $in 27,w;
2
+ (Dza)l* - DO) COS 2T,w,,
- Gw,, sin 31w,
2
+ (szl* - Go) cos 3t,w,,,
3 5
hy (w1.) = Asw;, -0y, - Ay,
3
+ (C3w1* - Clwl*) COS T, Wy,
2 4 .
- (C2w1* -Gy, - Co) SIN THW,
3
+ (D3w1* - Dlwl*) COS 2T, Wy,
2 .
- (Dzwl* - DO) sin 27, w ,,
- G,w;, cos3T,w;,

- (szf* - GO) sin 3t,w, .

(36)
Thus, we can obtain
fao (@1.) +2fy (w1,) cos 1y,
+2fp (wy,) sin Ty, +2f4 (0),) cos 210y,
(37)

+ 24 (@01.) $in 2101, + 245 (w1,) cos 31,0,

+2f46 (wy,) sin 31,0, =0,
where
fao (@) = “’12 + (Ai - Bi + Ci - 2A3)“"f* + (A23
~B,+C;+ D} - E;-2A,A, +2B,B, - 2C,C,
+24A,)wy, + (A -B+ G+ Dy - E5 - F, +G)

+2A,A, —2A A, — 2B,B, + 2B, B, + 2C,C,

-2C,C, - 2D, D, + 2, E; ) wy, + (A] - B} + C}
+D} - E} + G} — Hl -24,A, - 2C,C, — 2D, D,
+2B)B, + 2E,E, + 2F,F, - 2G,G, ) w}, + A}
+C.+D}+G, - B, -E, - F, - H_,

far (@1,) = (A,Cy = Cy) “’?* +(A5C; - A,C,
~ A,C, — ByE; + B,E, + C;D; — C,D, + C,) o},
+(AyCy— A,Cy+ A,C,y — ASC, + A,Cy - C Dy
- C;D, + D,G, - DG, + C,D, + C,D, + B, E;
~ B,E, + B;E, — B,E, + E;F, - E,F,) w},
+(A,C, - A)C, — A,C, + C,D, - CyD, — C,D,
+D,G, - D,G, - D,G, — B,E, + B,E, + B,E,
- E\F, + E,F, + E,F, - F,H, + F,H,) w,, — B,E,
- E,F, - F,H,,

fu (w,) = _C4‘U?* +(A3Cy ~ ACs + BE;
-CyD; +C,) “’I* +(A4,C5+ A,C) - AC,
- A,C, - B,E; + B,E, - B,E, + C,D, + C,D,
- C3D, - D;G, — E;F, - Cy) “-’f* +(A,C,
+A;Cy - A,C, - AyCs + ByE; — B|E, + B,E;
- B,E, - C,D, +C,D, — C,D, + D,G, + C;D,
- D,G, - D;G, - E|F, + E,F, + F,H, - E;F,))
: wf* +(AC, = A,Cy - ByE, - B,E; + C,D,
-D,G, - C,D, - D,G, — E,F, + E,F, — F,H,

+F Hy) w,,,

fu3(wy,) = —D3wf* +(A;D; - A,D, + B,F,

-C,G, + D) wf* +(A,D, — AsD; + A,Dy

- A,D; - B,F, + B;F, — B,F, - C;G,; + C,G,
+C,G, - E;Hy) “"All* +(A Dy = AgD, - A, D,
+ ByF, + B,F, — B, F, — C,G, + C,G; — C,G,
- E\H, + E,Hy) @}, + AgDy + CyG, — ByF,

- EoHy,

fua (@),) = (D, - A,D;) wi* +(A,D; - A;D,

+ A,D, + B;F, — B,F, - C5G, + C,G, - D) w’,

+(A,D, - A,D; + AsD, — A,D; - B,F, + B,F,



— ByF, - C,G, + C,G, + CsG, + E,H, — E;H,)
-w?, + (AyD, — A, Dy + C,G, - C,G, + B, F,
- ByF, - EyH, + E|H,) w,,,

fis (w1.) = (G, - A4G,) wf* +(A,G; - AG
+A,4Gy + B;H, - B,H,) w‘f* +(A1G, - AG,
- A,G,y - BH, + B,Hy) w}, + AyG, — ByH,,

fis (w1,) = Gy, + (A,G, - A;G, - B,H, - G,)
‘ “’f* +(A,G, - A,G, + A3Gy + B,H, - B3H,)
' “’f* +(A¢Gy = A\Gy — BoH, + B H,) w,,.

(38)
Suppose that

(H,;) Equation (37) has at least one positive root.

Then, there exists a positive root w;, for (37) and (6) has roots
tiwy,. For w},, we have

T = 1
v Wiy
X arccos g1 (0]y) X hzz (“)io) + 9:2 (in) X hyy (“)10).
9In (wlo) + 95 (“’10)
Differentiating (6) with respect to 7;, one can obtain
[ﬂ]_l -3 (40)
dTl - Q4* (A') A '
where
Py (V) = pio (W) + pyy N e + pyy (M) e
+ p43 (A) e—ZATZ + p44 (A) e—)L(Tl +T2)
+ p45 (A) e—)t(‘rl+2‘rz) + P46 ()L) 6—3/\12
(41)
+ P47 (A) e—A(Tl+3‘rz),

Qu (V) = g4 (M) et qs (M) e Mmm)

e—/\(rl +27, —A(T,+37,)

+q43 (1) )+ qu(Ne )
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with
Pao(A) =51 +4A,0° +3A,0% + 24,0+ A,
P (A) = 4B\ +3B,A> + 2B,A + B,
P (M) = —1,C, A" + (4C, - 1,C) N
+(3C; - 1,C,) A + (2C, — 1,C; ) A
+C, - 1,Cy,
Pus (A) = =21,D51° + (3D - 21,D,) A’
+ (2D, - 21,D;) A + D, = 21,D,,

Pas(A) = —1,E;A° + (3E; — 1,E,) A?

(42)
+(2E, - 1,E;) A + E; — 1,E,,
Pus (A) = —21,F,A* + 2 (F, - 1,F,) A + F, - 21,F,,
Pus (M) = =31,G,A% + (2G, - 31,G,) A + G, - 31,Gy,
pyy (A) = 21,H,A + H, - 31,H,,
gu (A) = B,A® + B;A* + By,AY + BA® + ByA,
qe (A) = E3/\4 + E2A3 + ElAZ + EyA,
4z V) = BA' + FA° + FyA,
Qs (A) = HIA® + Hy\.
Define
e[ e W

A=iwy,
Obviously, if the condition
(Hyy) PipQup+PyyQur # Oholds, then Re[dA/dr 13, # 0.
Thus, we have the following based on the analysis above.
Theorem 3. For system (4), let 1}, be specified by (39) and
T, € (0,7y). If the conditions (Hy,)-(H,,) are satisfied,
then D,(S,,E,,I,,R,,V,) is asymptotically stable when T, €
[0, 7)) and a Hopf bifurcation occurs at D, (S,, E,,I,,R,,V,)

when 1, = T/,.

Case 5 (1, > 0,7, > 0,and 7, € (0,7,5)). Multiplying by ',
(6) becomes

CA +CA +CA* +C A+ C,
+ (E3/\3 +E, M + EjA + EO) et
+ (AS + AN AL AN AL+ AO) e

+ (D3)t3 +D,A* + DA + DO) e
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+ (B4)L4 +B;A° + ByA” + BA + BO) e

+(BA’ +FA+F) g M),

(44)
Let A = iw,, (w,, > 0) be aroot of (44). Then,
51 (@3,) COS T3, = g, (w3,) sin T35, + g3 (w3,.)
= hs; (w,,) 8 27,0, + hs; (@,,.) €08 27,0, (45)

G54 (@2,) SIN 1,05, + gss (wy,) COS Ty, + gs (w,.)

= hs; (w,,) €08 21,0, — hs, (wz*) $in 275w, ,

where
51 (@,.)
= Aw;, — (A, + D,)wl, + Ay + D,
+ (B4w‘21* ~(By + ) wl, + By + FO) COS T, W,
+ ((B1 +F)w,, — B3w;*) sin T, w,,,
gs2 (@3,)
= w5, = (A;-D;) @), + (A, - D)) w,,
+ ((Bz -F,) wg* - B4w§* - By + Fo) sin 7, w,,
+ ((Bl - F)w,, - B3w;*) COST W),
gs3 (w3,)
= Cyw,, - Cyw5, +C,
+ (Ele* - E3w§*) sin T, w,,
+ (EO - Ezwi*) COS T Wy, »
G54 (w2,
= A0y, — (A, - Dy) w5, + Ay — D,
+ (B4w‘21* -(B,-F,) wg* + B, — FO) COS Ty W5,
+ ((B1 -F)w, - B3w;*) sin T, w,,,
ss (@3,)
= w5, —(A;+D;) @), + (A, + D)) w,,
+ ((BZ +F,) “’g* - B4“)§* - By - Fo) sin 7y w,,
+ ((Bl +F)w,, — B3w;*) COS Ty W,
s (@3,)

_ 3 3
= Ciw,, - G, + (Ele* - E3w2*) COS T1 Wy,

2 .
- (EO - Ezwz*) sin 7,w,,,,

9
hsy (w,.,)
= Gw,, + Hysin1yw,, — Hyw,, cos T,w,,,
hs; (w,.)
=Gy - szg* — Hjcostyw,, — Hw,, sint w,,.
(46)

Similar to Case 3, we can obtain the expressions of
COS T,w,, and sin T,w,, when sint,w,, = /1 - cos? 1,w0,,
and we denote f; (w,,) = cosT,w,, and fs5(w,,) =
sin 7,w,, . Then, one can obtain

2 2
fs (@5.) + f5 (w3.) = 1. (47)
In order to give the main results in this paper, we suppose that
(Hs,) Equation (47) has at least one positive root.

If the condition (Hs;) holds, then there exists w,;, > 0
such that (6) has a pair of purely imaginary roots +iw,,,. For
w;; ., we have

1
Ty1. = —— xarccos f5; (wyy,) - (48)
W1
Similarly, one can obtain expressions of cos T,w,, and
sin 7,w,, when sin 1,w,, = —1/1 — cos? T,w,, and we denote

fs3(w,,) = cos T,w,, and f5,(w,,) = sin T,w,, . Then, one can
obtain

f523 (wZ*) + f524 (wZ*) =1 (49)

If (49) has one positive root w,,,, then (6) has roots +iw,,,.
For w,,, , we have

Tyy, = X arccos fs; (wy, ) - (50)

22%
Let
Ty = min {7y, Ty, } (51)
and tiwj, be the roots of (6) with 7, = 75,. Differentiating (6)

with respect to 7,, we get

[ﬂ]l - : (52)
dr, Q. (V) A7

where
P, (A) = psy (A) + ps; M e + p, M) e
+ sy (M) e M7 4 po, () e M)
+ pss M) e M) 4 Q) e
+ psy (A) e—/\(rﬁsrz), (53)
Qs () = g5, (V) €™ 4+ gy (A) e ™)
+ 53 (V) e 2 4 g, (1) M)

+qss (M) e 4 g (V) 1,
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with
Pso M) = 50 +4A,0° + 34,07 + 24,0 + A,
psy M) = —1,BA* + (4B, — 1, - By) A’
+(3B; - 1,B,)\* + (2B, - 1,B,) + B,
- 1,B,,
Psy (A) = 4C,A° +3C,A° + 2C,A + Cy,
Ps3 (A) = 3D3A° + 2D,A + D,
Pss A) = 1, E;A° + (3E; — 1,Ey) A
+(2E, - 1,E;) A + E; - 1,E,,
pss (A) = =1, F,A° + (2F, — 1,F)) A + F, — 1,F,, (54)
Pss (1) =2G,A + Gy,
ps; A) = -1 HA+H, -1, - Hy,
gs1 () = CA° + CA* + C,A° + C A% + G,
g5, V) = E;A + E,0° + EJA + B,
qs3 (1) = 2(DsA" + DA’ + DA + DyA),
sy (V) = 2 (F,A° + FiA? + Fy)),
55 (1) =3(G,A” + GA* + Gyh ),
qss (1) = 3 (H,A* + Hy)).
Define
Re[ﬂ]‘l _ PsrQsp + P51 Q1. (55)
ary Diziey, s+ Qi

Obviously, if the condition
(Hsz) PspQsp+P5;Qsp # 0holds, then Re[dA/dr,]3L,,,. # 0.

Thus, we have the following based on the analysis above.

Theorem 4. For system (4), let 7,, be specified by (51) and
17, € (0,1y). If the conditions (Hs,)-(Hs,) are satisfied,
then D, (S,,E,,I,,R,,V,) is asymptotically stable when T, €
[0, 75y) and a Hopf bifurcation occurs at D, (S,, E,,I,,R,,V,)
when 1, = 15,

3. Properties of the Hopf Bifurcation

We will investigate properties of the Hopf bifurcation of
system (4) with respect to 7; and 7, € (0, T,) in this section.
Let 7,, < Ty, with 7,, € (0,7y) and 7, = 7/, + 4, 4 € R.
By the transformation u, (t) = S(t) - S,, u,(t) = E(t) - E,,
w(t) = 1) - L, ug() = R(t) = R, us(t) = V(£) - V., and
t — (t/1,), system (4) can be written as

u(t) = Ly +F (1), (56)

Mathematical Problems in Engineering

where u, = (ul(t),uz(t),u3(t),u4(t),u5(t))T e C([-1,0],R%),
and

L,u(/) = (TO + [4)

: (Amax¢ (0) + Bmax1¢ (_:?: > + BmaxZ(/> (_1)) >

10

~B1 ()¢5 (0) )
By (0) ¢5 (0)
F(u¢) = (13 + 1) 0 ;
0
0
where
a; 0 a3 0 0
Ay Gy Gy 00
ALk = 0 asp a3 0 0 ,
0 0 0 ay O
as; 0 0 0 as
00 0 by b,
00 0 0 O
Biaxa = 00b; 0 O , (58)
00b; b, O
00 0 0 by
0
by,
B = b

o ©O o o o
oY
¥

o ©O o o O

According to the Riesz representation theorem, we know
that there exists a 5 x 5 matrix function #(0, 4) : [-1,0] —
R¥® such that

0
Lo=[ mOws®. pec. 6
-1
In fact, we choose
n(6,u)
(TI*O + [/l) (Amax + Bmaxl + Bmaxz) > 0= 0,
T
T* + Bmax +Bmax > 6 € - 2*;0>,
( 10 ) ( 1 2) [ o (60)
(710 + #) Brraxas 0 ¢ <—1>—T2:>,
Tio
0, 6=-1.




Mathematical Problems in Engineering 11
For ¢ € C([-1,0], R®), we define Then, we define A™:
(d9©) U 29, 0<s<l,
e ST AP =90 (63)
A(u)¢ =1 J dn’ (s,0)p(-s), s=0,
-1

0
| an@.wo®. o-o.

(61) and a bilinear form

o 1=0<0 (9(9),9©) =50 ¢0)
R(p)¢ =1 0 o (64)
F(19), 0=0. [ [ ee-odeswad
Then, system (56) is equivalent to where 7(6) = (6, 0).
_ Let p(0) = (1, pyr ps» par ps) " €070 be the eigenvector
u(t) = A(u)u, + R(u) uy, (62) of A(0) with +iwj 7, and let p*(s) = (1/K)(1,p;,p;,

pi, pi)e oo be the eigenvector of A*(0) with —iw} 7},

where 1,(0) = u(t + 0) for 6 € [-1,0]. Then, we obtain

ay (iwfo — a3~ b33e_ﬂz*w1°)

R —iT W ok —7,, W} —ith Wk’
(’wlo — Gy, — bye M) ("Uw — G35 — byze %0 — ay3byye Mo

P2

b32 e_iTl*owfo

p3= E—— T
iwy — a3 — byze ™+

b43e*i72*wfo

Ps= 7T, i P3
i}, — Ay — by ™10

_ asy
PS - % T >
Wl — as5 — byse” ™0
65
iw),+a byse'™ (©)
pl = w0 * % a5195€
2 * bl
: (2231 ay (wfy + ass + bsse'™“b)
.k . % —it, ok ity 0 (1, % —iT] W],
. (iwjy+ay) (’“’10 +ay +bye www) as, byse’ 0 (“"10 +ay, +bpe w)
Pz = e - IS : ra)
’ Gy byye 00 ay byye Mo (iw], + ass + bsse i)
iT), @]
P* 3 b14e 2+ W1o
- = ; ¥
4 i}y + Ay + byye'™ 10
. blse_i‘fz*wl*o
pS = T b —iT,, W "
1140 + dsg + D55e 20
From (64), we obtain Then, we can choose
(pp) = = [1 + PaPs + PsP3 + PaPy + PsPs K=1+pp. +psp. + b + pspr
K 2 3 4 5 = LT PPy T P3P3 Tt PaPy Tt PsPs
x it W) — —
_ _ +1,.€ “’“’p(b * + by,
« —itho P * 10 2 (D22P2 + 93205
tTe P (bzzpz + b3, 03 ) (67)

+ Tz*eiﬁz*ww (ps (bs3p5 +byspy)

66 —iT), Wy, — —x
(66) +175.€ (ps (bs3p3 + byspy)

+ Py (byy +bypy) + ps (bys + bssps ) -

+ Py (bry + byspy) + ps (bys + bssps ))] . such that (p*, p) = 1and (p",B) = 0.
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Following the same algorithms introduced in [17] and the
similar computation used in [18-22], we obtain

920 = 2[’)71%?%73 (ﬁ; -1),

Mathematical Problems in Engineering

% T [—% 1 —
9a1 = 2P7,K (Pz -1) <W1(11) 0) p3 + sz(é) 0)p;

1
FW 0+ W ),

g = PriK (ps +75) (P, - 1), (68)
9oz = 2B11,K p5 (3 — 1), with
Wy ) = iga0P (0) eirl*owfoe + igozﬁ (0) e—irfowfoe + Eleli‘rl*owfoe,
10@To 31wy,
Wy, ) = _ignP (0) ei‘rl*owfoe + l?llﬁ(o) e—ifl*owaG +E,,
10%T0 T1oWro
o e -l
“{1 0 —as _bl4e—211’2*w10 _blse—Zz‘rZ*ww —ﬁp3
—y @) 3 0 0 Pps
E =2 0 —as, — byye i s 0 0 0 (69)
0 0 —byye 2l al, 0 0
—as, 0 0 0 als 0
-1 _
an 0 a3 by bis —B(ps +ps)
Ay Gy +by  ay 0 0 B(ps +p5)
E, =- 0 ay,+by, as;+by 0 0 0 ,
0 0 by au+b, O 0
as, 0 0 0 ass + b 0
where According to the analysis about properties of the Hopf
bifurcation in [17], we have the following for system (4).
! .ox
ayy = 2iwy, — ay, Th .
eorem 5. Let p,, f,, and T, be specified by (71). w,
A = 2iwt — g — by d@0To determines the direction of the Hopf bifurcation (supercritical
2 o T if u, > 0, subcritical if u, < 0); B, determines the stability
ahy = 2iwt, - ay - b33e’2inoT2*’ (70)  of the bifurcating periodic solutions (stable if B < 0, unstable if
» 10 B > 0); T, > 0 determines the period of the bifurcating periodic
ay, = 200 — ay - 5446—21‘60{‘012*, solutions (increasing if T, > 0, decreasing if T, < 0).
! it — _b —2iw]) Ty, .
55 = 219 ~ A5 — Uss€ : 4. A Numerical Example
Consequently, we can compute the following values: In this section we give a numerical example of system (4)
to validate the analysis above. By extracting the same values
| |2 from [11], we get the following system:
2 |90z g
Cr(0) = o | gugw —2lgul - = |+ =+
2715wy, 3 2 ds(t)
— = 2-03S()I(t)-0.323S(t) + 0.3R(t — 1)
_Re{C, (0)} t
b= T Re (N ()} oD +0.06V (t - 1,),
- dE (t
B, = 2Re{C, (0)}, % = 0.3S(t) I (t) - 0.003E () — 0.25E (t - 1,)
Im {C, (0)} + 1, Im {A’ (TI*O)}
= dI (¢)
2 v : 5 = 0.25E(t —1,) - 0.073I (f) - 041 (t - 7,),
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28 T T T T T T

27 + 1
26 |
25 +

N quII\I"“""li"i i

23 +

22 +

21+

20

19 1 1 1 1 1 1

T

FIGURE : Bifurcation regarding 7, with 7, = 0.

_““; ® _ 041 (t - 1,) - 0.003R (1) ~ 03R (t - 1,),
% = 0.325 () — 0.003V () — 0.06V (t - 1,) .

(72)

It is easy to get R, = 4.8750 > 1 and system (72) has
a unique positive equilibrium D, (1.5956, 44.7772,23.6666,
31.2430, 8.1046). Also we get that the condition (H,) holds.

Firstly, we can obtain w;,, = 02162 and 7, =
7.9833 by some computations. According to Theorem I,
we can conclude that the positive equilibrium D, (1.5956,
44.7772,23.6666, 31.2430, 8.1046) is asymptotically stable for
T, < Ty = 7.9833. In this case, the propagation of worms can
be predicted and controlled easily. However, once the value of
T, is above 7, = 7.9833, a Hopf bifurcation will occur which
implies that the propagation of worms will be out of control.
This property can be illustrated by the bifurcation diagram
with respect to 7, in Figure 1. Similarly, we have w,, = 0.4883
and 1,, = 2.4273. The corresponding bifurcation diagram
with respect to 7, is as shown in Figure 2.

Secondly, we may obtain w;, = 1.8164 and 1,, = 3.5477
fort; > 0Oand 7, = 1.5 € (0,7,,) by computing. It follows
from Theorem 3 that when 7, = 7/, = 3.5477, a Hopf
bifurcation occurs, which can be shown by the bifurcation
diagram regarding 7, and 7, = 1.5 in Figure 3. Moreover, we
have C,(0) = —-1.2298 + 3.8550i, y, = 455.4815 > 0, 3, =
—-2.4596 < 0,and T, = —-22.5006 < 0. Thus, It follows from
Theorem 5 that the Hopf bifurcation is supercritical and the
bifurcating periodic solutions are stable and decreasing. Since
the bifurcating periodic solutions are stable, the numbers
of every class of nodes in system (72) may coexist in an
oscillatory mode, which is not welcome in networks.

Lastly, by computing, we obtain w,, = 2.0979 and 7,, =
1.5536 for 7, > O and 7, = 3.5 € (0,7;y). By Theorem 4,
we know that the positive equilibrium D, (1.5956,44.7772,
23.6666,31.2430, 8.1046) is asymptotically stable for 7, <
7,9, which makes it possible for the propagation of worms
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FIGURE 2: Bifurcation regarding 7, with 7, = 0.
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I(t)

23

22.5

22+ EZ:
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FIGURE 3: Bifurcation regarding 7, with 7, = L.5.

to be predicted and controlled by taking effective mea-
sures. However, the positive equilibrium D, (1.5956,44.7772,
23.6666, 31.2430, 8.1046) loses stability and a Hopf bifurca-
tion occurs, when 7, passes through 1'2*0 = 1.5536. In this case,
it is difficult to take measures to control the propagation of
worms. The Hopf bifurcation phenomenon can be illustrated
by Figure 4.

5. Conclusions

In the present paper, the generalization of the delayed SEIRS-
V model describing worms spreading in a wireless sensor
network investigated in [11] by inserting the latent period
delay in the exposed sensor nodes has been considered. We
find that not only 7; but also 7, can influence stability of
system (4) and make system (4) undergo a Hopf bifurcation
under some certain conditions. It has been shown that
characteristics of the propagation of worms in system (4) can
be easily predicted and eliminated when the value of delay is
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FIGURE 4: Bifurcation regarding 7, with 7, = 3.5.

below the corresponding critical value and the propagation
of worms in system (4) may be out of control once the delay
passes through the corresponding critical value. Thus, we can
conclude that the worms propagation can be controlled by
postponing occurrence of a Hopf bifurcation. Subsequently,
we use the normal form approach theory and center manifold
theory introduced in [17] to deal with properties of the Hopf
bifurcation when 7; > 0 and 7, € (0, 7).

According to the numerical example, we can conclude
that the dynamics of system (4) is more complicated than
that of the system considered in [11]. However, it should
be pointed out that we assume that the exposed sensor
nodes can not infect other nodes, which is not consistent
with reality, because the exposed nodes can also infect
other nodes through vulnerability seeking or other methods.
Consequently, it is more realistic to investigate dynamics of
the proposed model in this paper with graded infection rate.
We leave this as our future work.
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