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This paper investigates the adaptive parallel simultaneous stabilization and robust adaptive parallel simultaneous stabilization
problems of a class of nonlinear descriptor systems via dissipative matrix method. Firstly, under an output feedback law, two
nonlinear descriptor systems are transformed into two nonlinear differential-algebraic systems by nonsingular transformations,
and a sufficient condition of impulse-free is given for two resulting closed-loop systems. Then, the two systems are combined to
generate an augmented dissipative Hamiltonian differential-algebraic system by using the system-augmentation technique. Based
on the dissipative system, an adaptive parallel simultaneous stabilization controller and a robust adaptive parallel simultaneous
stabilization controller are designed for the two systems. Furthermore, the case of more than two nonlinear descriptor systems is
investigated. Finally, an illustrative example is studied by using the results proposed in this paper, and simulations show that the
adaptive parallel simultaneous stabilization controllers obtained in this paper work very well.

1. Introduction

In practical control designs, a commonly encountered prob-
lem is to design feedback controller(s) to stabilize a given
family of parallel systems. It is straightforward to consider
each system individually and design a stabilization controller
for each system. However, a more economical approach to
the problem is to design a single controller, which may take
measurements/signals from all members of the family, to
stabilize all the systems simultaneously [1, 2]. In this way, the
controller implementation cost will be greatly reduced. This
control is referred to the parallel simultaneous stabilization.
It is noted that this kind of stabilization is different from
the traditional simultaneous stabilization problem [3, 4].
The traditional simultaneous stabilization is concerned with
designing a control law such that any individual system
within the collection of systems can be stabilized by the
control law. In other words, the resulting closed-loop system
which consists of an individual system and its corresponding
controller via its state or output feedback based on that
control law is asymptotically stable. It is also noted that the

traditional simultaneous stabilization problem is one of the
important research topics in the area of robust control and
has received a considerable attention in the past few decades
[3–8].

The descriptor system is a natural representation of
dynamic systems and describes a larger class of systems than
the normal system model [9–16]. In the last three decades,
manynice results have been obtained for the controller design
of linear descriptor systems; see [9, 10, 13, 14] and references
therein. In general, it is not an easy task to design a controller
for nonlinear descriptor systems (NDSs) and, accordingly,
there are fewer works on NDSs except several special case
studies [11, 12, 15, 16]; particularly, it is more difficult to
design a parallel simultaneous stabilization controller for a
class of nonlinear descriptor systems; the pertinent results
were proposed for this case in [1]. For nonlinear differential-
algebraic systems, an 𝐻∞ controller was designed in [15]
based on the condition for the existence of 𝐻∞ controller
of nonlinear systems, while the stabilization and robust
stabilization of the systems were considered by the feedback
linearization approach in [11] and the Hamiltonian function
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method in [12], respectively. In [16], based on the linear
matrix inequality method, the generalized absolute stability
was studied for linear descriptor systems with feedback-
connected nonlinearities. Using a nonlinear performance
index to the nominal system, a robust adaptive control
scheme was presented in [17] for a class of nonlinear uncer-
tain descriptor systems. For the case in which the singular
matrix 𝐸𝑖 = 𝑀𝑖 diag{𝐼𝑟, 0}𝑀𝑖 with 𝑀𝑖 being an orthogonal
matrix, the parallel simultaneous stabilization and robust
adaptive parallel simultaneous stabilization problems were,
respectively, studied in [1, 18] for two or a family of nonlinear
descriptor systems via the Hamiltonian function method.
It should be pointed out that there are, to the best of the
authors’ knowledge, fewer works on the robust adaptive
parallel simultaneous stabilization of NDSs [18].

In this paper, motivated by the Hamiltonian function
method [2, 19–29], we apply the structural properties of
dissipative matrices to investigate the adaptive parallel simul-
taneous stabilization and robust adaptive parallel simulta-
neous stabilization problems for a class of NDSs via output
feedback law [30, 31], and propose a new approach, called
the dissipative matrix method, to study NDSs. Firstly, under
an output feedback law, two NDSs are transformed into
two nonlinear differential-algebraic systems by nonsingular
transformations, and a sufficient condition of impulse-free
is given for two closed-loop systems. Then, the two systems
are combined to generate an augmented dissipative Hamil-
tonian differential-algebraic system by using the system-
augmentation technique. Based on the dissipative system, an
adaptive parallel simultaneous stabilization controller and a
robust adaptive parallel simultaneous stabilization controller
are designed for two NDSs, in which the singular matrix𝐸𝑖 ≥ 0(≤ 0). Furthermore, the case of more than two NDSs
is investigated. Finally, an illustrative example is studied by
using the results proposed in this paper, and simulations
show that the adaptive parallel simultaneous stabilization
controllers obtained in this paper work very well.

The paper is organized as follows. In Section 2, we
study the adaptive parallel simultaneous stabilization of two
NDSs based on an augmented dissipative Hamiltonian form.
Section 3 presents the robust adaptive parallel simultaneous
stabilization controller for two NDSs with external distur-
bances and investigates the case of more than two NDSs.
In Section 4, an illustrative example is provided, which is
followed by the conclusion in Section 5.

2. Adaptive Parallel Simultaneous
Stabilization of Two NDSs

This section investigates adaptive parallel simultaneous stabi-
lization problem for twoNDSs via dissipative matrix method.
Firstly, based on suitable output feedback, two NDSs are
transformed into twononlinear differential-algebraic systems
by new coordinate transformations, and then the two systems
are combined to generate an augmented dissipative Hamil-
tonian differential-algebraic system by using the system-
augmentation technique, based on which an adaptive parallel
simultaneous stabilization controller is designed for the two
systems.

Consider the following two NDSs:

𝐸1𝑥̇ = 𝑓1 (𝑥, 𝑝1) + 𝑔1 (𝑥) 𝑢,
𝐸1𝑥 (0) = 𝐸1𝑥0,

𝑓1 (0, 𝑝1) = 𝑓𝑝1 (𝑝1) ,
𝑓1 (0, 0) = 0,

𝑦 = 𝑔𝑇1 (𝑥) 𝑥,

(1)

𝐸2 ̇𝜉 = 𝑓2 (𝜉, 𝑝2) + 𝑔2 (𝜉) 𝑢,
𝐸2𝜉 (0) = 𝐸2𝜉0,

𝑓2 (0, 𝑝2) = 𝑓𝑝2 (𝑝2) ,
𝑓2 (0, 0) = 0,

𝜂 = 𝑔𝑇2 (𝜉) 𝜉,

(2)

where 𝑥 = [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛]𝑇, 𝜉 = [𝜉1, 𝜉2, ⋅ ⋅ ⋅ , 𝜉𝑛]𝑇 ∈ R𝑛 and𝑦, 𝜂 ∈ R𝑚 are the states and outputs of the two systems,
respectively; 𝑢 ∈ R𝑚 is the control input; 𝑝𝑖 ∈ R𝑠 is an
unknown parameter perturbation vector and is assumed to
be small enough to keep the dissipative structure unchanged;
i.e., if𝑅(𝑥) > 0, then𝑅(𝑥, 𝑝𝑖) > 0;𝑓𝑖(𝑥, 𝑝𝑖) ∈ R𝑛 is sufficiently
smooth vector fields, 𝑔1(𝑥), 𝑔2(𝜉) ∈ R𝑛×𝑚; 𝐸𝑖 ∈ R𝑛×𝑛, 0 <
rank(𝐸i) = 𝑟 < 𝑛, and 𝐸𝑖 ≥ 0 or 𝐸𝑖 ≤ 0, 𝑖 = 1, 2. Without loss
of generality, we discuss 𝐸𝑖 ≥ 0, 𝑖 = 1, 2.
Definition 1 (see [32]). A control law 𝑢 = 𝑢(𝑥) is called
an admissible control law if, for any initial condition 𝐸𝑥0,
the resulting closed-loop descriptor system has no impulsive
solution.

Lemma 2 (see [33]). If a vector function ℎ(𝑥) with ℎ(0) =0 (𝑥 ∈ R𝑛) has continuous nth-order partial derivatives, thenℎ(𝑥) can be expressed as

ℎ (𝑥) = 𝑎1 (𝑥) 𝑥1 + ⋅ ⋅ ⋅ + 𝑎𝑛 (𝑥) 𝑥𝑛, (3)

where 𝑎𝑖(𝑥), 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, are vector functions.
According to Lemma 2, systems (1) and (2) can be

transformed into the following form:

𝐸1𝑥̇ = 𝐴1 (𝑥, 𝑝1) 𝛼1 (𝑥, 𝑝1) + 𝑔1 (𝑥) 𝑢,
𝑦 = 𝑔𝑇1 (𝑥) 𝑥, (4)

𝐸2 ̇𝜉 = 𝐴2 (𝜉, 𝑝2) 𝛼2 (𝜉, 𝑝2) + 𝑔2 (𝜉) 𝑢,
𝜂 = 𝑔𝑇2 (𝜉) 𝜉,

(5)

where the structural matrix 𝐴 𝑖(𝑥, 𝑝𝑖) ∈ R𝑛×𝑛, 𝛼𝑖(𝑥, 𝑝𝑖) ∈ R𝑛

is some vector of 𝑥 and 𝑝𝑖 satisfying 𝛼𝑖(𝑥, 0) = 𝑥, 𝑖 = 1, 2.
To study the adaptive parallel simultaneous stabilization

problem of systems (4) and (5), the following assumptions are
given:

(A1) rank [𝐸𝑖, 𝑔𝑖(𝑥)] = rank(𝐸𝑖), ∀𝑥 ∈ R𝑛, 𝑖 = 1, 2;
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(A2) assume there exists Φ ∈ R𝑙×𝑚 such that

𝐴 𝑖 (𝑥, 𝑝𝑖) (𝛼𝑖 (𝑥, 𝑝𝑖) − 𝑥) = 𝑔𝑖 (𝑥)Φ𝑇𝜃,
∀𝑥 ∈ R

𝑛, 𝑖 = 1, 2, (6)

where 𝜃 ∈ R𝑙 is an unknown constant vector related
to 𝑝𝑖.

Assumption (A1) implies that fast subsystems of the
descriptor systems (1) and (2) have no control 𝑢. Assumption
(A2) is the so-calledmatched condition. Inmost cases, we can
find Φ and 𝜃 such that (6) holds.

Under assumption (A2), systems (4) and (5) are changed
as

𝐸1𝑥̇ = 𝐴1 (𝑥, 𝑝1) 𝑥 + 𝑔1 (𝑥) 𝑢 + 𝑔1 (𝑥)Φ𝑇𝜃,
𝑦 = 𝑔𝑇1 (𝑥) 𝑥,

(7)

𝐸2 ̇𝜉 = 𝐴2 (𝜉, 𝑝2) 𝜉 + 𝑔2 (𝜉) 𝑢 + 𝑔2 (𝜉) Φ𝑇𝜃,
𝜂 = 𝑔𝑇2 (𝜉) 𝜉.

(8)

Definition 3. System (4) is called (strictly) dissipative if the
structural matrix 𝐴(𝑥) is (strictly) dissipative; i.e., 𝐴(𝑥) can
be expressed as 𝐴(𝑥) = 𝐽(𝑥) − 𝑅(𝑥), where 𝐽(𝑥) is skew-
symmetric and 𝑅(𝑥) ≥ 0 (𝑅(𝑥) > 0); system (4) is called
feedback (strictly) dissipative if there exists suitable state
feedback 𝑢(𝑥) = 𝛼(𝑥) + V such that the resulting closed-loop
descriptor system is (strictly) dissipative.

Remark 4. If 𝐸1 ≤ 0, then systems (7) can be rewritten as

𝐸󸀠1𝑥̇ = 𝐴󸀠1 (𝑥, 𝑝1) 𝑥 + 𝑔󸀠1 (𝑥) 𝑢 + 𝑔󸀠1 (𝑥)Φ𝑇𝜃,
𝑦󸀠 = 𝑔󸀠𝑇1 (𝑥) 𝑥,

(9)

where 𝐸󸀠1 = −𝐸1 ≥ 0, 𝐴󸀠1(𝑥, 𝑝1) = −𝐴1(𝑥, 𝑝1), and 𝑔󸀠1(𝑥) =−𝑔1(𝑥), 𝑦󸀠 = −𝑦.
We can always express 𝐴 𝑖(𝑥, 𝑝𝑖) as 𝐴 𝑖(𝑥, 𝑝𝑖) = 𝐽𝑖(𝑥, 𝑝𝑖) −𝑅𝑖0(𝑥, 𝑝𝑖), where 𝐽𝑖(𝑥, 𝑝𝑖) = (1/2)(𝐴 𝑖(𝑥, 𝑝𝑖) − 𝐴𝑇𝑖 (𝑥, 𝑝𝑖))

is skew-symmetric and 𝑅𝑖0(𝑥, 𝑝𝑖) = −(1/2)(𝐴 𝑖(𝑥, 𝑝𝑖) +𝐴𝑇𝑖 (𝑥, 𝑝𝑖)) is symmetric, 𝑖 = 1, 2. In order to investigate
adaptive parallel simultaneous stabilization of systems (4)
and (5), we design an output feedback law such that the
symmetric part of structural matrix of the closed-loop system
can be transformed into positive definite one. Based on this,
we have the following result.

Lemma 5. Assume that there exists a symmetric matrix 𝐾 ∈
R𝑚×𝑚 such that

−12 (𝐴1 (𝑥, 𝑝1) + 𝐴𝑇1 (𝑥, 𝑝1)) + 𝐾11 (𝑥, 𝑥) > 0,
−12 (𝐴2 (𝜉, 𝑝2) + 𝐴𝑇2 (𝜉, 𝑝2)) − 𝐾22 (𝜉, 𝜉) > 0,

(10)

where 𝐾𝑖𝑗(𝑥, 𝜉) = 𝑔𝑖(𝑥)𝐾𝑔𝑇𝑗 (𝜉), 𝑖, 𝑗 = 1, 2. Then, under the
following adaptive output feedback law

𝑢 = −𝐾 (𝑦 − 𝜂) − Φ𝑇𝜃 + V,
̇̂𝜃 = 𝑄Φ (𝑦 + 𝜂) , (11)

systems (4) and (5) can be expressed in the following forms:

𝐸1 ̇𝑥 = (𝐽1 (𝑥, 𝑝1) − 𝑅1 (𝑥, 𝑝1)) 𝑥 + 𝑔1 (𝑥)𝐾𝑔𝑇2 (𝜉) 𝜉
+ 𝑔1 (𝑥) V + 𝑔1 (𝑥)Φ𝑇 (𝜃 − 𝜃) ,

̇̂𝜃 = 𝑄Φ(𝑔𝑇1 (𝑥) 𝑥 + 𝑔𝑇2 (𝜉) 𝜉) ,
𝑦 = 𝑔𝑇1 (𝑥) 𝑥,

(12)

𝐸2 ̇𝜉 = (𝐽2 (𝜉, 𝑝2) − 𝑅2 (𝜉, 𝑝2)) 𝜉 − 𝑔2 (𝜉) 𝐾𝑔𝑇1 (𝑥) 𝑥
+ 𝑔2 (𝜉) V + 𝑔2 (𝜉) Φ𝑇 (𝜃 − 𝜃) ,

̇̂𝜃 = 𝑄Φ(𝑔𝑇1 (𝑥) 𝑥 + 𝑔𝑇2 (𝜉) 𝜉) ,
𝜂 = 𝑔𝑇2 (𝜉) 𝜉,

(13)

where 𝐽𝑖(𝑥, 𝑝𝑖) is skew-symmetric, 𝑅𝑖(𝑥, 𝑝𝑖) ∈ R𝑛×𝑛 is positive
definite, 𝑖 = 1, 2, 𝜃 is an estimate of 𝜃, 𝑄 > 0 is the adaptive
gain constant matrix, and V is a new reference input.

Proof. Substituting (11) into systems (7) and (8), respectively,
we can obtain systems (12) and (13), where 𝑅1(𝑥, 𝑝1) =−(1/2)(𝐴1(𝑥, 𝑝1)+𝐴𝑇1(𝑥, 𝑝1))+𝑔1(𝑥)𝐾𝑔𝑇1 (𝑥) and 𝑅2(𝜉, 𝑝2) =−(1/2)(𝐴2(𝜉, 𝑝2) + 𝐴𝑇2(𝜉, 𝑝2)) − 𝑔2(𝜉)𝐾𝑔𝑇2 (𝜉). According to
(10), we know that 𝑅𝑖(𝑥, 𝑝𝑖) > 0. The proof is completed.

Since 𝐸𝑖 ≥ 0 and 0 < rank(𝐸𝑖) = 𝑟 < 𝑛, there exists a
nonsingular matrix𝑀𝑖 ∈ R𝑛×𝑛 such that

𝑀𝑇𝑖 𝐸𝑖𝑀𝑖 = [𝐼𝑟 00 0] , 𝑖 = 1, 2. (14)

Denote

𝑥 = 𝑀𝑖𝑥,
𝑥 = [𝑥1𝑥2] , 𝑀𝑖 = [

𝑀𝑖11 𝑀𝑖12𝑀𝑖21 𝑀𝑖22] ,

𝑀𝑇𝑖 𝑔𝑖 (𝑥) = [𝑔𝑖1 (𝑥)𝑔𝑖2 (𝑥)] = [𝑔𝑖1 (𝑥)𝑔𝑖2 (𝑥)] ,

𝑀𝑇𝑖 𝐽𝑖 (𝑥, 𝑝𝑖)𝑀𝑖 = [ 𝐽𝑖11 (𝑥, 𝑝𝑖) 𝐽𝑖12 (𝑥, 𝑝𝑖)
−𝐽𝑇𝑖12 (𝑥, 𝑝𝑖) 𝐽𝑖22 (𝑥, 𝑝𝑖)]

= [
[
𝐽𝑖11 (𝑥, 𝑝𝑖) 𝐽𝑖12 (𝑥, 𝑝𝑖)
−𝐽𝑇𝑖12 (𝑥, 𝑝𝑖) 𝐽𝑖22 (𝑥, 𝑝𝑖)

]
]
,
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𝑀𝑇𝑖 𝑅𝑖 (𝑥, 𝑝𝑖)𝑀𝑖 = [𝑅̃𝑖11 (𝑥, 𝑝𝑖) 𝑅̃𝑖12 (𝑥, 𝑝𝑖)
𝑅̃𝑇𝑖12 (𝑥, 𝑝𝑖) 𝑅̃𝑖22 (𝑥, 𝑝𝑖)]

= [
[
𝑅𝑖11 (𝑥, 𝑝𝑖) 𝑅𝑖12 (𝑥, 𝑝𝑖)
𝑅𝑇𝑖12 (𝑥, 𝑝𝑖) 𝑅𝑖22 (𝑥, 𝑝𝑖)

]
]
,

∇𝑥𝐻𝑖 (𝑥) = 𝜕𝐻𝑖 (𝑥)𝜕𝑥 ,
𝑖 = 1, 2,

(15)

where 𝑥1 ∈ R𝑟, 𝑥2 ∈ R𝑛−𝑟, 𝐽𝑖11(𝑥, 𝑝𝑖) = 𝐽𝑖11(𝑥, 𝑝𝑖) and𝐽𝑖22(𝑥, 𝑝𝑖) = 𝐽𝑖22(𝑥, 𝑝𝑖) are skew-symmetric matrices, and𝑅𝑖11(𝑥, 𝑝𝑖) = 𝑅̃𝑖11(𝑥, 𝑝𝑖) > 0, 𝑅𝑖22(𝑥, 𝑝𝑖) = 𝑅̃𝑖22(𝑥, 𝑝𝑖) =[𝑀𝑇𝑖12 𝑀𝑇𝑖22] 𝑅𝑖(𝑥, 𝑝𝑖) [𝑀𝑖12𝑀𝑖22 ], which implies that 𝑅𝑖22(𝑥, 𝑝𝑖) =𝑅̃𝑖22(𝑥, 𝑝𝑖) > 0, 𝑖 = 1, 2.
Remark 6. That 𝑅𝑖(𝑥, 𝑝𝑖) > 0 is a sufficient not necessary
condition of 𝑅̃𝑖22(𝑥, 𝑝𝑖) > 0. In this paper, 𝑅̃𝑖22(𝑥, 𝑝𝑖) > 0 can
guarantee that the closed-loop descriptor systems (12) and
(13) have no impulsive solution. Therefore, (10) is a sufficient
condition of systems (12) and (13) to be impulse-free.

From (A1), we have

rank [𝐸𝑖, 𝑔𝑖 (𝑥)] = rank𝑀𝑇𝑖 [𝐸𝑖, 𝑔𝑖 (𝑥)] [𝑀𝑖 00 𝐼]

= rank [𝐼𝑟 0 𝑔𝑖1 (𝑥)0 0 𝑔𝑖2 (𝑥)]

= rank [𝐼𝑟 0
0 𝑔𝑖2 (𝑥) ] = rank (𝐸𝑖)

= 𝑟,

(16)

that is, 𝑔𝑖2(𝑥) = 𝑔𝑖2(𝑥) = 0. Thus, according to (15) and
assumption (A1), systems (12) and (13) can be transformed
into the following differential-algebraic systems:

𝑥̇1 = (𝐽111 (𝑥, 𝑝1) − 𝑅111 (𝑥, 𝑝1)) 𝑥1
+ (𝐽112 (𝑥, 𝑝1) − 𝑅112 (𝑥, 𝑝1)) 𝑥2
+ 𝑔11 (𝑥)𝐾𝑔𝑇21 (𝜉) 𝜉1 + 𝑔11 (𝑥) V
+ 𝑔11 (𝑥)Φ𝑇 (𝜃 − 𝜃) ,

0 = − (𝐽𝑇112 (𝑥, 𝑝1) + 𝑅𝑇112 (𝑥, 𝑝1)) 𝑥1
+ (𝐽122 (𝑥, 𝑝1) − 𝑅122 (𝑥, 𝑝1)) 𝑥2

š 𝜑 (𝑥1, 𝑥2, 𝑝1) ,
̇̂𝜃 = 𝑄Φ(𝑔𝑇11 (𝑥) 𝑥1 + 𝑔𝑇21 (𝜉) 𝜉1) ,
𝑦 = 𝑔𝑇11 (𝑥) 𝑥1,

(17)

̇𝜉1 = (𝐽211 (𝜉, 𝑝2) − 𝑅211 (𝜉, 𝑝2)) 𝜉1
+ (𝐽212 (𝜉, 𝑝2) − 𝑅212 (𝜉, 𝑝2)) 𝜉2
− 𝑔21 (𝜉)𝐾𝑔𝑇11 (𝑥) 𝑥1 + 𝑔21 (𝜉) V
+ 𝑔21 (𝜉)Φ𝑇 (𝜃 − 𝜃) ,

0 = − (𝐽𝑇212 (𝜉, 𝑝2) + 𝑅𝑇212 (𝜉, 𝑝2)) 𝜉1
+ (𝐽222 (𝜉, 𝑝2) − 𝑅222 (𝜉, 𝑝2)) 𝜉2,

̇̂𝜃 = 𝑄Φ (𝑔𝑇11 (𝑥) 𝑥1 + 𝑔𝑇21 (𝜉) 𝜉1) ,
𝜂 = 𝑔𝑇21 (𝜉) 𝜉1.

(18)

Since 𝐽𝑖22(𝑥, 𝑝𝑖) = −𝐽𝑇𝑖22(𝑥, 𝑝𝑖) and 𝑅𝑖22(𝑥, 𝑝𝑖) > 0, we
know that 𝐽𝑖22(𝑥, 𝑝𝑖) − 𝑅𝑖22(𝑥, 𝑝𝑖) is invertible [34], 𝑖 = 1, 2.
Therefore, systems (17) and (18) can be expressed in the
following forms:

𝑥̇1 = (𝐽11 (𝑥, 𝑝1) − 𝑅11 (𝑥, 𝑝1)) 𝑥1
+ 𝑔11 (𝑥)𝐾𝑔𝑇21 (𝜉) 𝜉1 + 𝑔11 (𝑥) V
+ 𝑔11 (𝑥)Φ𝑇 (𝜃 − 𝜃) ,

0 = − (𝐽𝑇112 (𝑥, 𝑝1) + 𝑅𝑇112 (𝑥, 𝑝1)) 𝑥1
+ (𝐽122 (𝑥, 𝑝1) − 𝑅122 (𝑥, 𝑝1)) 𝑥2,

̇̂𝜃 = 𝑄Φ (𝑔𝑇11 (𝑥) 𝑥1 + 𝑔𝑇21 (𝜉) 𝜉1) ,
𝑦 = 𝑔𝑇11 (𝑥) 𝑥1,

(19)

̇𝜉1 = (𝐽21 (𝜉, 𝑝2) − 𝑅21 (𝜉, 𝑝2)) 𝜉1
− 𝑔21 (𝜉)𝐾𝑔𝑇11 (𝑥) 𝑥1 + 𝑔21 (𝜉) V
+ 𝑔21 (𝜉)Φ𝑇 (𝜃 − 𝜃) ,

0 = − (𝐽𝑇212 (𝜉, 𝑝2) + 𝑅𝑇212 (𝜉, 𝑝2)) 𝜉1
+ (𝐽222 (𝜉, 𝑝2) − 𝑅222 (𝜉, 𝑝2)) 𝜉2,

̇̂𝜃 = 𝑄Φ (𝑔𝑇11 (𝑥) 𝑥1 + 𝑔𝑇21 (𝜉) 𝜉1) ,
𝜂 = 𝑔𝑇21 (𝜉) 𝜉1,

(20)

where 𝐽𝑖1(𝑥, 𝑝𝑖)−𝑅𝑖1(𝑥, 𝑝𝑖) = 𝐽𝑖11(𝑥, 𝑝𝑖)−𝑅𝑖11(𝑥, 𝑝𝑖)+ (𝐽𝑖12(𝑥,𝑝𝑖)−𝑅𝑖12(𝑥, 𝑝𝑖))(𝐽𝑖22(𝑥, 𝑝𝑖)−𝑅𝑖22(𝑥, 𝑝𝑖))−1 ⋅(𝐽𝑇𝑖12(𝑥, 𝑝𝑖)+𝑅𝑇𝑖12(𝑥,𝑝𝑖)), 𝑖 = 1, 2. 𝐽𝑖1(𝑥, 𝑝𝑖) is skew-symmetric, and 𝑅𝑖1(𝑥, 𝑝𝑖) is
positive definite, because

𝑁[
[

𝐽𝑖11 − 𝑅𝑖11 𝐽𝑖12 − 𝑅𝑖12
− (𝐽𝑇𝑖12 + 𝑅𝑇𝑖12) 𝐽𝑖22 − 𝑅𝑖22]]

𝑁𝑇
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= [𝐽𝑖1 − 𝑅𝑖1 0
∗ 𝐽𝑖22 − 𝑅𝑖22] ,

(21)

where

𝑁 = [𝐼 − (𝐽𝑖12 − 𝑅𝑖12) (𝐽𝑖22 − 𝑅𝑖22)−10 𝐼 ] . (22)

With assumptions (A1) and (A2), we have the following
result.

Theorem7. Consider systems (1) and (2) with their equivalent
forms (4) and (5). Assume assumptions (A1) and (A2) hold;
if there exist symmetric matrices 𝐾 ∈ R𝑚×𝑚 and Φ ∈ R𝑙×𝑚

such that (10) and (6) hold, respectively, then the admissible
adaptive parallel controller (11) (V = 0) can simultaneously
stabilize systems (1) and (2).

Proof. If assumptions (A1) and (A2) hold, then systems (4)
and (5) can be transformed into systems (19) and (20) by
the adaptive feedback law (11), which are of index one at
the equilibrium point 0 ( system (12) is said to have index
one at the equilibrium point 0 if 𝜕𝜑(𝑥1, 𝑥2, 𝑝1)/𝜕𝑥2 in (17)
is nonsingular in a neighborhood of 0); i.e., systems (19)
and (20) are impulse-free. According to the implicit function
theorem, there exist continuous functions 𝑞𝑖(⋅) such that 𝑥2 =𝑞1(𝑥1), 𝜉2 = 𝑞2(𝜉1), 𝑞𝑖(0) = 0. Thus, systems (19) and (20)
can be rewritten as (V = 0)

𝑋̇ = (𝐽 (𝑋, 𝑝) − 𝑅 (𝑋, 𝑝)) 𝜕𝐻 (𝑋)𝜕𝑋 ,
0 = − (𝐽𝑇112 (𝑥, 𝑝1) + 𝑅𝑇112 (𝑥, 𝑝1)) 𝑥1

+ (𝐽122 (𝑥, 𝑝1) − 𝑅122 (𝑥, 𝑝1)) 𝑥2,
0 = − (𝐽𝑇212 (𝜉, 𝑝2) + 𝑅𝑇212 (𝜉, 𝑝2)) 𝜉1

+ (𝐽222 (𝜉, 𝑝2) − 𝑅222 (𝜉, 𝑝2)) 𝜉2,

(23)

where

𝑋 = [[[
[

𝑥1𝜉1
𝜃
]]]
]
,

𝑝 = [𝑝1𝑝2] ,

𝑅 (𝑋, 𝑝) = [[
[
𝑅11 (𝑥1, 𝑞1 (𝑥1) , 𝑝1) 0 0

0 𝑅21 (𝜉1, 𝑞2 (𝜉1) , 𝑝2) 0
0 0 0

]]
]
,

𝐽 (𝑋, 𝑝) = [[[[
[

𝐽11 (𝑥1, 𝑞1 (𝑥1) , 𝑝1) 𝑔11 (𝑥1, 𝑞1 (𝑥1))𝐾𝑔𝑇21 (𝜉1, 𝑞2 (𝜉1)) −𝑔11 (𝑥1, 𝑞1 (𝑥1))Φ𝑇𝑄
− (𝑔11 (𝑥1, 𝑞1 (𝑥1))𝐾𝑔𝑇21 (𝜉1, 𝑞2 (𝜉1)))𝑇 𝐽21 (𝜉1, 𝑞2 (𝜉1) , 𝑝2) −𝑔21 (𝜉1, 𝑞2 (𝜉1))Φ𝑇𝑄

(𝑔11 (𝑥1, 𝑞1 (𝑥1))Φ𝑇𝑄)𝑇 (𝑔21 (𝜉1, 𝑞2 (𝜉1))Φ𝑇𝑄)𝑇 0
]]]]
]
,

𝐻 (𝑋) = 12 (𝑥𝑇1𝑥1 + 𝜉𝑇1 𝜉1) + 12 (𝜃 − 𝜃)𝑇𝑄−1 (𝜃 − 𝜃) .

(24)

Obviously, 𝐽(𝑋,𝑝) = −𝐽𝑇(𝑋, 𝑝), 𝑅(𝑋, 𝑝) ≥ 0, 𝐻(𝑋) ≥ 0.
Therefore, system (23) is a dissipative Hamiltonian system.
Choosing 𝑉(𝑋) = 𝐻(𝑋), then𝐻(𝑋) has a local minimum at𝑋0 = (0𝑇, 0𝑇, 𝜃𝑇0 )𝑇. Then, based on system (23) we have

𝑉̇ (𝑋) = 𝜕𝑇𝐻(𝑋)𝜕𝑋 𝑋̇
= 𝜕𝑇𝐻(𝑋)𝜕𝑋 (𝐽 (𝑋, 𝑝) − 𝑅 (𝑋, 𝑝)) 𝜕𝐻 (𝑋)𝜕𝑋
= −𝜕𝑇𝐻(𝑋)𝜕𝑋 𝑅 (𝑋, 𝑝) 𝜕𝐻 (𝑋)𝜕𝑋

= −𝑥𝑇1𝑅11 (𝑥1, 𝑞1 (𝑥1) , 𝑝1) 𝑥1
− 𝜉𝑇1 𝑅21 (𝜉1, 𝑞2 (𝜉1) , 𝑝2) 𝜉1 ≤ 0.

(25)
Thus, system (23) converges to the largest invariant set
contained in

{𝑋 : 𝑉̇ (𝑋) = 0} ⊂ {𝑋 : 𝑅1/211 (𝑥1, 𝑞1 (𝑥1) , 𝑝1) 𝑥1
= 0, 𝑅1/221 (𝜉1, 𝑞2 (𝜉1) , 𝑝2) 𝜉1 = 0, ∀𝑡 ≥ 0} fl 𝑆. (26)

From systems (19) and (20), we know that both 𝑅1/211 (𝑥1,𝑞1(𝑥1), 𝑝1) and 𝑅1/221 (𝜉1, 𝑞2(𝜉1), 𝑝2) are nonsingular, which
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implies that 𝑅1/211 (𝑥1, 𝑞1(𝑥1), 𝑝1)𝑥1 = 0 󳨐⇒ 𝑥1 = 0 and𝑅1/221 (𝜉1, 𝑞2(𝜉1), 𝑝2)𝜉1 = 0 󳨐⇒ 𝜉1 = 0. That is, the largest
invariant set only contains one point, i.e., 𝑆 = {[0𝑇, 0𝑇, 𝜃𝑇0 ]𝑇},
with which it is easy to see that 𝑥1 󳨀→ 0 and 𝜉1 󳨀→ 0, as𝑡 󳨀→ ∞. Moreover, according to systems (19) and (20), it is
clear that 𝑥2 󳨀→ 0 and 𝜉2 󳨀→ 0, as 𝑡 󳨀→ ∞. Thus, 𝑥 =𝑀1𝑥 󳨀→ 0, 𝜉 = 𝑀2𝜉 󳨀→ 0, as 𝑡 󳨀→ ∞. Therefore, under
the admissible adaptive parallel control law (11), systems (1)
and (2) can be simultaneously stabilized.

3. Robust Adaptive Parallel Simultaneous
Stabilization of Two NDSs and More Than
Two NDSs

In this section, we investigate the robust adaptive parallel
simultaneous stabilization problem of two NDSs with exter-
nal disturbances and parameters perturbation and discuss the
case of more than two NDSs. Firstly, for a given disturbance
attenuation level 𝛾 > 0, we design an adaptive parallel 𝐿2 dis-
turbance attenuation output feedback law such that under the
law the 𝐿2 gain (from 𝑤 to 𝑧) of the closed-loop system is
less than 𝛾. Then, we show that the two systems are simul-
taneously asymptotically stable when 𝑤 = 0.

To design the robust adaptive parallel simultaneous sta-
bilization controller, the following lemma is recalled, first.

Lemma 8 (see [34]). Consider a dissipative Hamiltonian
system as follows:

𝑥̇ = [𝐽 (𝑥) − 𝑅 (𝑥)] ∇𝐻 + 𝑔1 (𝑥) 𝑢 + 𝑔2 (𝑥) 𝑤,
𝑧 = ℎ (𝑥) 𝑔𝑇1 (𝑥) ∇𝐻, (27)

where𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the control input,𝑤 ∈ R𝑞 is
the disturbance, 𝐽(𝑥) is skew-symmetric, 𝑅(𝑥) ⩾ 0,𝐻(𝑥) has a
strict localminimumat the system’s equilibrium, 𝑧 is the penalty
function, and ℎ(𝑥) is a weighting matrix. Given a disturbance
attenuation level 𝛾 > 0, if

𝑅 (𝑥) + 12𝛾2 [𝑔1 (𝑥) 𝑔𝑇1 (𝑥) − 𝑔2 (𝑥) 𝑔𝑇2 (𝑥)] ≥ 0, (28)

then an 𝐿2 disturbance attenuation controller of system (27)
can be given as

𝑢 = −[12ℎ𝑇 (𝑥) ℎ (𝑥) + 12𝛾2 𝐼𝑚] 𝑔𝑇1 (𝑥) ∇𝐻, (29)

and the 𝛾-dissipation inequality

𝐻̇ + ∇𝑇𝐻[𝑅 (𝑥)
+ 12𝛾2 (𝑔1 (𝑥) 𝑔𝑇1 (𝑥) − 𝑔2 (𝑥) 𝑔𝑇2 (𝑥))] ∇𝐻
≤ 12 {𝛾2 ‖𝑤‖2 − ‖𝑧‖2}

(30)

holds along the trajectories of the closed-loop system consisting
of (27) and (29).

Now, we consider the following NDSs (1) and (2) with
external disturbances:

𝐸1 ̇𝑥 = 𝑓1 (𝑥, 𝑝1) + 𝑔1 (𝑥) 𝑢 + 𝑑1𝑤,
𝐸1𝑥 (0) = 𝐸1𝑥0,

𝑓1 (0, 𝑝1) = 𝑓𝑝1 (𝑝1) ,
𝑓1 (0, 0) = 0,

𝑦 = 𝑔𝑇1 (𝑥) 𝑥,

(31)

𝐸2 ̇𝜉 = 𝑓2 (𝜉, 𝑝2) + 𝑔2 (𝜉) 𝑢 + 𝑑2𝑤,
𝐸2𝜉 (0) = 𝐸2𝜉0,

𝑓2 (0, 𝑝2) = 𝑓𝑝2 (𝑝2) ,
𝑓2 (0, 0) = 0,

𝜂 = 𝑔𝑇2 (𝜉) 𝜉,

(32)

where𝑤 ∈ R𝑞 is the disturbance, 𝑑𝑖(𝑥) ∈ R𝑛×𝑞, 𝑖 = 1, 2, other
variables are the same as those in systems (1) and (2), and

𝑀𝑇𝑖 𝑑𝑖 (𝑥) = [𝑑𝑖1 (𝑥)𝑑𝑖2 (𝑥)] = [𝑑𝑖1 (𝑥)𝑑𝑖2 (𝑥)] . (33)

Given a disturbance attenuation level 𝛾 > 0, choose
𝑧 = Λ (𝑦 + 𝜂) (34)

as the penalty function, where Λ ∈ R𝑠×𝑚 is a weighting
matrix.

To design the adaptive parallel𝐿2 disturbance attenuation
output feedback control law for systems (31) and (32), the
following assumption is given:

(A3) rank [𝐸𝑖, 𝑑𝑖(𝑥)] = rank(𝐸𝑖), ∀𝑥 ∈ R𝑛, 𝑖 = 1, 2.
Assumption (A3) implies that fast subsystems of the

descriptor systems (31) and (32) have not been disturbed.
Similar to (A1), from (A3) we can obtain that 𝑑𝑖2(𝑥) =𝑑𝑖2(𝑥) = 0.

Based on Section 2, systems (31) and (32) can be trans-
formed into the following forms:

𝐸1𝑥̇ = 𝐴1 (𝑥, 𝑝1) 𝛼1 (𝑥, 𝑝1) + 𝑔1 (𝑥) 𝑢 + 𝑑1 (𝑥) 𝑤,
𝑦 = 𝑔𝑇1 (𝑥) 𝑥, (35)

𝐸2 ̇𝜉 = 𝐴2 (𝜉, 𝑝2) 𝛼2 (𝜉, 𝑝2) + 𝑔2 (𝜉) 𝑢 + 𝑑2 (𝑥) 𝑤,
𝜂 = 𝑔𝑇2 (𝜉) 𝜉.

(36)

Next, we design an adaptive parallel 𝐿2 disturbance
attenuation controller for systems (31) and (32).

Theorem 9. Consider systems (31) and (32) with their equiv-
alent forms (35) and (36), the penalty function (34), and the
disturbance attenuation level 𝛾 > 0. Assume that assumptions
(A1)∼ (A3) hold for systems (35) and (36). If
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(1) there exists a symmetric matrix 𝐾 ∈ R𝑚×𝑚 such that
(10) holds,

(2) 𝑔𝑖 = 𝑑𝑖, 𝑖 = 1, 2,
then, the following admissible adaptive parallel feedback law

𝑢 = −𝐾 (𝑦 − 𝜂) − [12Λ𝑇Λ + 12𝛾2 𝐼𝑚] (𝑦 + 𝜂) − Φ𝑇𝜃,
̇̂𝜃 = 𝑄Φ (𝑦 + 𝜂)

(37)

can simultaneously stabilize systems (31) and (32).

Proof. Rewrite (37) as follows

𝑢 = −𝐾 (𝑦 − 𝜂) − Φ𝑇𝜃 + V,
̇̂𝜃 = 𝑄Φ (𝑦 + 𝜂) ,
V = −[12Λ𝑇Λ + 12𝛾2 𝐼𝑚] (𝑦 + 𝜂) .

(38)

Substituting the first part of (38) into systems (35) and
(36), according to the proof of Theorem 7 and assumption
(A2), we know that systems (35) and (36) are impulse
controllable and can be expressed as the following dissipative
Hamiltonian form:

𝑋̇ = [𝐽 (𝑋, 𝑝) − 𝑅 (𝑋, 𝑝)] 𝜕𝐻 (𝑋)𝜕𝑋 + 𝐺 (𝑋) V
+ 𝐷 (𝑋)𝑤,

0 = − (𝐽𝑇112 (𝑥, 𝑝1) + 𝑅𝑇112 (𝑥, 𝑝1)) 𝑥1
+ (𝐽122 (𝑥, 𝑝1) − 𝑅122 (𝑥, 𝑝1)) 𝑥2,

0 = − (𝐽𝑇212 (𝜉, 𝑝2) + 𝑅𝑇212 (𝜉, 𝑝2)) 𝜉1
+ (𝐽222 (𝜉, 𝑝2) − 𝑅222 (𝜉, 𝑝2)) 𝜉2,

(39)

and

𝑧 = Λ𝐺𝑇 (𝑋) 𝜕𝐻 (𝑋)𝜕𝑋 , (40)

where 𝑋, 𝐽(𝑋,𝑝), 𝑅(𝑋, 𝑝), and 𝐻(𝑋) are given in (23),
𝐺(𝑋) = [𝑔𝑇11(𝑥1, 𝑞1(𝑥1)) 𝑔𝑇21(𝜉1, 𝑞2(𝜉1)) 0]𝑇 and 𝐷(𝑋) =
[𝑑𝑇11(𝑥1, 𝑞1(𝑥1)) 𝑑𝑇21(𝜉1, 𝑞2(𝜉1)) 0]𝑇.

Because 𝑔𝑖 = 𝑑𝑖, 𝑖 = 1, 2, it is easy to show
𝑅 (𝑋, 𝑝) + 12𝛾2 [𝐺 (𝑋)𝐺𝑇 (𝑋) − 𝐷 (𝑋)𝐷𝑇 (𝑋)]

= 𝑅 (𝑋, 𝑝) ≥ 0.
(41)

Thus, system (39) with the penalty function (40) satisfies
all the conditions of Lemma 8. From Lemma 8, an 𝐿2

disturbance attenuation controller of system (39) can be
designed as

V = − [12Λ𝑇Λ + 12𝛾2 𝐼𝑚] (𝑦 + 𝜂) , (42)

which is the second part of (38), and, furthermore, the 𝛾-
dissipation inequality

𝐻̇ + 𝜕𝑇𝐻𝜕𝑋 𝑅 (𝑋, 𝑝) 𝜕𝐻𝜕𝑋 ≤ 12 {𝛾2 ‖𝑤‖2 − ‖𝑧‖2} (43)

holds along the trajectories of the closed-loop system consist-
ing of (39) and (42).

Therefore, the feedback law (37) is an 𝐿2 disturbance
attenuation controller of systems (31) and (32). Accord-
ing to [34], the 𝐿2 gain from 𝑤 to 𝑧 is less than 𝛾.
On the other hand, because (𝜕𝑇𝐻/𝜕𝑋)𝑅(𝑋,𝑝)(𝜕𝐻/𝜕𝑋) =𝑥𝑇1𝑅11(𝑥1, 𝑞1(𝑥1), 𝑝1)𝑥1 + 𝜉𝑇1 𝑅21(𝜉1, 𝑞2(𝜉1), 𝑝2)𝜉1 > 0, from
(43), we know that system (39) is asymptotically stable when𝑤 = 0; that is, 𝑥1 󳨀→ 0 and 𝜉1 󳨀→ 0 (as 𝑡 󳨀→ ∞). Moreover,
it is clear that 𝑥2 = 𝑞1(𝑥1) 󳨀→ 0, 𝜉2 = 𝑞2(𝜉1) 󳨀→ 0 (as𝑡 󳨀→ ∞). Therefore, 𝑥 = 𝑀1𝑥 󳨀→ 0 and 𝜉 = 𝑀2𝜉 󳨀→ 0 (as𝑡 󳨀→ ∞). Thus, the admissible adaptive parallel control law
(37) can simultaneously stabilize systems (31) and (32).

Theorem 10. Consider systems (31) and (32) with their equiv-
alent forms (35) and (36), the penalty function (34), and the
disturbance attenuation level 𝛾 > 0. Assume that assumptions
(A1) ∼ (A3) hold for systems (35) and (36). If

(1) there exists a symmetric matrix 𝐾 ∈ R𝑚×𝑚 such that
(10) holds, and

− 12 (𝐴1 (𝑥, 𝑝1) + 𝐴1 (𝑥, 𝑝1)𝑇) + 𝐾11 (𝑥, 𝑥)
+ 12𝛾2 [𝑔1 (𝑥) 𝑔𝑇1 (𝑥) − 𝑑1 (𝑥) 𝑑𝑇1 (𝑥)] > 0,

− 12 (𝐴2 (𝜉, 𝑝2) + 𝐴2 (𝜉, 𝑝2)𝑇) − 𝐾22 (𝜉, 𝜉)
+ 12𝛾2 [𝑔2 (𝜉) 𝑔𝑇2 (𝜉) − 𝑑2 (𝜉) 𝑑𝑇2 (𝜉)] > 0,

(44)

where 𝐾𝑖𝑗(𝑥, 𝜉) = 𝑔𝑖(𝑥)𝐾𝑔𝑇𝑗 (𝜉), 𝑖, 𝑗 = 1, 2;
(2) 𝑔1𝑔𝑇2 = 0 and 𝑑1𝑑𝑇2 = 0,

then, the admissible adaptive parallel 𝐿2 disturbance attenu-
ation controller (37) can simultaneously stabilize systems (31)
and (32).

Proof. From the proof ofTheorem 9, we know that under the
controller (37), systems (35) and (36) are impulse controllable
and can be expressed as (39). From condition (2), it can be
seen that

𝑀𝑇1 𝑔1𝑔𝑇2𝑀2 = [𝑔11 (𝑥)0 ] [𝑔𝑇21 (𝑥) 0]

= [𝑔11 (𝑥) 𝑔𝑇21 (𝑥) 0
0 0] = 0,

(45)
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that is, 𝑔11(𝑥)𝑔𝑇21(𝑥) = 0, and in a similar way, we can obtain
𝑑11(𝑥)𝑑𝑇21(𝑥) = 0. Moreover, according to condition (1), we
have

𝑀𝑇1 (−12 (𝐴1 (𝑥, 𝑝1) + 𝐴𝑇1 (𝑥, 𝑝1))
+ 𝑔1 (𝑥)𝐾𝑔𝑇1 (𝑥))𝑀1 + 12𝛾2𝑀𝑇1 [𝑔1 (𝑥) 𝑔𝑇1 (𝑥)
− 𝑑1 (𝑥) 𝑑𝑇1 (𝑥)]𝑀1
= [
[
𝑅111 (𝑥, 𝑝1) 𝑅112 (𝑥, 𝑝1)
𝑅𝑇112 (𝑥, 𝑝1) 𝑅122 (𝑥, 𝑝1)

]
]
+ 12𝛾2

⋅ [
[
𝑔11 (𝑥) 𝑔𝑇11 (𝑥) − 𝑑11 (𝑥) 𝑑𝑇11 (𝑥) 0

0 0]]
> 0.

(46)

Thus,

𝑅111 (𝑥, 𝑝1) + 12𝛾2 [𝑔11 (𝑥) 𝑔𝑇11 (𝑥) − 𝑑11 (𝑥) 𝑑𝑇11 (𝑥)]
fl 𝑅111 (𝑥, 𝑝1) + 𝐶 (𝑥) > 0.

(47)

Since

𝑁[
[
𝐽111 − 𝑅111 − 𝐶 𝐽112 − 𝑅112
−(𝐽𝑇112 + 𝑅𝑇112) 𝐽122 − 𝑅122]]

𝑁𝑇

= [𝐽11 − 𝑅11 − 𝐶 0
∗ 𝐽22 − 𝑅22] ,

(48)

where 𝐽111 is skew-symmetric and 𝑁 is the same as that in
(22), we have

𝑅̂1 (𝑥, 𝑝1)
fl 𝑅11 (𝑥, 𝑝1)

+ 12𝛾2 [𝑔11 (𝑥) 𝑔𝑇11 (𝑥) − 𝑑11 (𝑥) 𝑑𝑇11 (𝑥)] > 0.
(49)

In a similar way,

𝑅̂2 (𝜉, 𝑝2)
fl 𝑅21 (𝜉, 𝑝2)

+ 12𝛾2 [𝑔21 (𝜉) 𝑔𝑇21 (𝜉) − 𝑑21 (𝜉) 𝑑𝑇21 (𝜉)] > 0.
(50)

Therefore,

𝑅 (𝑋, 𝑝) + 12𝛾2 [𝐺 (𝑋)𝐺𝑇 (𝑋) − 𝐷 (𝑋)𝐷𝑇 (𝑋)]

= [[[
[

𝑅̂1 (𝑥1, 𝑞1 (𝑥1) , 𝑝1) 0 0
0 𝑅̂2 (𝜉1, 𝑞2 (𝜉1) , 𝑝2) 0
0 0 0

]]]
]

≥ 0.

(51)

Thus, system (39) with the penalty function (40) satisfies all
the conditions of Lemma 8. From Lemma 8, an adaptive
parallel 𝐿2 disturbance attenuation controller of system (39)
can be designed as (42), and, furthermore, the 𝛾-dissipation
inequality

𝐻̇ + 𝜕𝑇𝐻𝜕𝑋 {𝑅 (𝑋, 𝑝)
+ 12𝛾2 [𝐺 (𝑋)𝐺𝑇 (𝑋) − 𝐷 (𝑋)𝐷𝑇 (𝑋)]} 𝜕𝐻𝜕𝑋
≤ 12 {𝛾2 ‖𝑤‖2 − ‖𝑧‖2}

(52)

holds along the trajectories of the closed-loop system con-
sisting of (39) and (42). Therefore, according to the proof of
Theorem 9, the admissible controller (37) can simultaneously
stabilize systems (31) and (32).

Remark 11. We can utilize the results obtained on adaptive
parallel simultaneous stabilization and robust adaptive par-
allel simultaneous stabilization problems for two NDSs to
investigate the same problems of more than two NDSs.

Consider the following 𝑁 NDSs:

𝐸𝑖𝑥̇𝑖 = 𝑓𝑖 (𝑥𝑖, 𝑝𝑖) + 𝑔𝑖 (𝑥𝑖) 𝑢 + 𝑑𝑖 (𝑥𝑖)𝑤,
𝐸𝑖𝑥𝑖 (0) = 𝐸𝑖𝑥𝑖0,
𝑓𝑖 (0, 𝑝𝑖) = 𝑓𝑝𝑖 (𝑝𝑖) ,
𝑓𝑖 (0, 0) = 0,

𝑦𝑖 = 𝑔𝑇𝑖 (𝑥𝑖) 𝑥𝑖,
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁,

(53)

where 𝑥𝑖 ∈ R𝑛𝑖 , 𝑢 ∈ R𝑚, 𝑤 ∈ R𝑞, and 𝑦𝑖 ∈ R𝑚 are the states,
control input, external disturbances, and outputs of the 𝑁
systems, respectively; 𝑝𝑖 is an unknown parameter perturba-
tion vector and is assumed to be small enough to keep the
dissipative structure unchanged; 𝑔𝑖(𝑥𝑖) ∈ R𝑛𝑖×𝑚, 0 ≤ 𝐸𝑖 ∈
R𝑛𝑖×𝑛𝑖 , and 0 < rank(𝐸𝑖) = 𝑟𝑖 < 𝑛𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁.

Given a disturbance attenuation level 𝛾 > 0, choose
𝑧 = Λ 𝑁∑

𝑖=1

𝑦𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (54)

as the penalty function, where Λ ∈ R𝑠×𝑚 is a weighting
matrix.

Similar to Section 2, we obtain the following forms:

𝐸𝑖 ̇𝑥𝑖 = 𝐴 𝑖 (𝑥𝑖, 𝑝𝑖) 𝛼𝑖 (𝑥𝑖, 𝑝𝑖) + 𝑔𝑖 (𝑥𝑖) 𝑢 + 𝑑𝑖 (𝑥𝑖)𝑤,
𝑦𝑖 = 𝑔𝑇𝑖 (𝑥𝑖) 𝑥𝑖,

(55)

where 𝛼𝑖(𝑥𝑖, 𝑝𝑖) ∈ R𝑛𝑖 is some vector of 𝑥𝑖 and 𝑝𝑖 satisfying𝛼𝑖(𝑥𝑖, 0) = 𝑥𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁.
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Assume that (𝑖1, 𝑖2, ⋅ ⋅ ⋅ , 𝑖𝑁) is an arbitrary permutation of{1, 2, ⋅ ⋅ ⋅ , 𝑁} and that 𝐿 is a positive integer satisfying 1 ⩽ 𝐿 ⩽𝑁 − 1. Let 𝑇1 = 𝑛𝑖1 + ⋅ ⋅ ⋅ + 𝑛𝑖𝐿 and 𝑇2 = 𝑛𝑖𝐿+1 + ⋅ ⋅ ⋅ + 𝑛𝑖𝑁 .
Now, we divide the𝑁 systems into two sets as follows:

𝐸𝑎𝑋̇𝑎 = 𝐴𝑎 (𝑋𝑎, 𝑝𝑎) Γ𝑎 (𝑋𝑎, 𝑝𝑎) + 𝐺𝑎 (𝑋𝑎) 𝑢
+ 𝐷𝑎 (𝑋𝑎) 𝑤,

𝑌𝑎 = 𝐺𝑇𝑎 (𝑋𝑎)𝑋𝑎,
(56)

𝐸𝑏𝑋̇𝑏 = 𝐴𝑏 (𝑋𝑏, 𝑝𝑏) Γ𝑏 (𝑋𝑏, 𝑝𝑏) + 𝐺𝑏 (𝑋𝑏) 𝑢
+ 𝐷𝑏 (𝑋𝑏)𝑤,

𝑌𝑏 = 𝐺𝑇𝑏 (𝑋𝑏)𝑋𝑏,
(57)

where 𝑋𝑎 = [(𝑥𝑖1)𝑇, ⋅ ⋅ ⋅ , (𝑥𝑖𝐿)𝑇]𝑇 ∈ R𝑇1 , 𝑋𝑏 = [(𝑥𝑖𝐿+1)𝑇, ⋅ ⋅ ⋅ ,(𝑥𝑖𝑁)𝑇]𝑇 ∈ R𝑇2 , 𝑝𝑎 = [𝑝𝑇𝑖1 , ⋅ ⋅ ⋅ , 𝑝𝑇𝑖𝐿]𝑇, 𝑝𝑏 = [𝑝𝑇𝑖𝐿+1 , ⋅ ⋅ ⋅ , 𝑝𝑇𝑖𝑁]𝑇,
𝐸𝑎 = diag {𝐸𝑖1 , ⋅ ⋅ ⋅ , 𝐸𝑖𝐿} ,
𝐸𝑏 = diag {𝐸𝑖𝐿+1 , ⋅ ⋅ ⋅ , 𝐸𝑖𝑁} ,
𝐴𝑎 (𝑋𝑎, 𝑝𝑎)

= diag {𝐴 𝑖1 (𝑥𝑖1 , 𝑝𝑖1) , ⋅ ⋅ ⋅ , 𝐴 𝑖𝐿 (𝑥𝑖𝐿 , 𝑝𝑖𝐿)} ,
𝐴𝑏 (𝑋𝑏, 𝑝𝑏)

= diag {𝐴 𝑖𝐿+1 (𝑥𝑖𝐿+1 , 𝑝𝑖𝐿+1) , ⋅ ⋅ ⋅ , 𝐴 𝑖𝑁 (𝑥𝑖𝑁 , 𝑝𝑖𝑁)} ,
Γ𝑎 (𝑋𝑎, 𝑝𝑎) = diag {𝛼𝑖1 (𝑥𝑖1 , 𝑝𝑖1) , ⋅ ⋅ ⋅ , 𝛼𝑖𝐿 (𝑥𝑖𝐿 , 𝑝𝑖𝐿)} ,
Γ𝑏 (𝑋𝑏, 𝑝𝑏)

= diag {𝛼𝑖𝐿+1 (𝑥𝑖𝐿+1 , 𝑝𝑖𝐿+1) , ⋅ ⋅ ⋅ , 𝛼𝑖𝑁 (𝑥𝑖𝑁 , 𝑝𝑖𝑁)} ,
𝑌𝑎 = 𝑦𝑖1 + ⋅ ⋅ ⋅ + 𝑦𝑖𝐿 ,
𝑌𝑏 = 𝑦𝑖𝐿+1 + ⋅ ⋅ ⋅ + 𝑦𝑖𝑁 ,
𝐺𝑎 (𝑋𝑎) = [𝑔𝑇𝑖1 (𝑥𝑖1) , ⋅ ⋅ ⋅ , 𝑔𝑇𝑖𝐿 (𝑥𝑖𝐿)]𝑇 ,
𝐺𝑏 (𝑋𝑏) = [𝑔𝑇𝑖𝐿+1 (𝑥𝑖𝐿+1) , ⋅ ⋅ ⋅ , 𝑔𝑇𝑖𝑁 (𝑥𝑖𝑁)]𝑇 ,
𝐷𝑎 (𝑋𝑎) = [𝑑𝑇𝑖1 (𝑥𝑖1) , ⋅ ⋅ ⋅ , 𝑑𝑇𝑖𝐿 (𝑥𝑖𝐿)]𝑇 ,
𝐷𝑏 (𝑋𝑏) = [𝑑𝑇𝑖𝐿+1 (𝑥𝑖𝐿+1) , ⋅ ⋅ ⋅ , 𝑑𝑇𝑖𝑁 (𝑥𝑖𝑁)]𝑇 .

(58)

According to Section 2, (56), (57), and Theorems 9 and
10, we can easily obtain an adaptive parallel simultaneous
stabilization controller (w=0) and a robust adaptive parallel
simultaneous stabilization controller of systems (53).

Theorem 12. Consider systems (53) (𝑤=0) with their equiva-
lent forms (55) (𝑤=0), and assume that assumptions (A1) and
(A2) hold (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁). If there exist a symmetric matrix

𝐾 ∈ R𝑚×𝑚, a permutation (𝑖1, 𝑖2, ⋅ ⋅ ⋅ , 𝑖𝑁) of {1, 2, ⋅ ⋅ ⋅ , 𝑁}, and
a positive integer 𝐿 (1 ⩽ 𝐿 ⩽ 𝑁 − 1) such that

𝑅𝑎 (𝑋𝑎, 𝑝𝑎) fl −12 (𝐴𝑎 (𝑋𝑎, 𝑝𝑎) + 𝐴𝑎 (𝑋𝑎, 𝑝𝑎)𝑇)
+ 𝐾𝑎𝑎 (𝑋𝑎, 𝑋𝑎) > 0,

𝑅𝑏 (𝑋𝑏, 𝑝𝑏) fl −12 (𝐴𝑏 (𝑋𝑏, 𝑝𝑏) + 𝐴𝑏 (𝑋𝑏, 𝑝𝑏)
𝑇)

− 𝐾𝑏𝑏 (𝑋𝑏, 𝑋𝑏) > 0,

(59)

where

𝐾𝑖𝑗 (𝑋𝑖, 𝑋𝑗) = 𝐺𝑖 (𝑋𝑖)𝐾𝐺𝑇𝑗 (𝑋𝑗) , 𝑖, 𝑗 = 𝑎, 𝑏, (60)

then, the adaptive control law

𝑢 = −𝐾(𝑦𝑖1 + ⋅ ⋅ ⋅ + 𝑦𝑖𝐿 − 𝑦𝑖𝐿+1 − ⋅ ⋅ ⋅ − 𝑦𝑖𝑁) − Φ𝑇𝜃 + V,
̇̂𝜃 = 𝑄Φ 𝑁∑

𝑖=1

𝑦𝑖 (61)

can simultaneously stabilize the N systems given by (53) (𝑤=0),
where v is a new reference input and 𝜃 and 𝑄 are the same as
those in (11).

Theorem 13. Consider systems (53), the penalty function (54),
and the disturbance attenuation level 𝛾 > 0. Assume that
assumptions (A1) ∼ (A3) (𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁) hold. If

(1) there exist a symmetric matrix 𝐾 ∈ R𝑚×𝑚, a per-
mutation (𝑖1, 𝑖2, ⋅ ⋅ ⋅ , 𝑖𝑁) of {1, 2, ⋅ ⋅ ⋅ ,N}, and a positive
integer 𝐿 (1 ⩽ 𝐿 ⩽ 𝑁 − 1) such that (59) holds,

(2) 𝑔𝑖 = 𝑑𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁,

then, the following robust adaptive parallel controller

𝑢 = −𝐾 (𝑦𝑖1 + ⋅ ⋅ ⋅ + 𝑦𝑖𝐿 − 𝑦𝑖𝐿+1 − ⋅ ⋅ ⋅ − 𝑦𝑖𝑁)
− [12Λ𝑇Λ + 12𝛾2 𝐼𝑚]

𝑁∑
𝑖=1

𝑦𝑖 − Φ𝑇𝜃,
̇̂𝜃 = 𝑄Φ 𝑁∑

𝑖=1

𝑦𝑖
(62)

can simultaneously stabilize the𝑁 systems given by (53).

4. An Illustrative Example

In the following, we give an illustrative example to show how
to apply Theorem 9 to investigate robust adaptive parallel
simultaneous stabilization for two NDSs.
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Example 14. Consider the following two NDSs:

𝐸1𝑥̇ = 𝑓1 (𝑥, 𝑝) + 𝑔1 (𝑥) 𝑢 + 𝑑1𝑤,
𝐸1𝑥 (0) = 𝐸1𝑥0,
𝑓1 (0, 𝑝) = 𝑓1,𝑝 (𝑝) ,
𝑓1 (0, 0) = 0,

𝑦 = 𝑔𝑇1 (𝑥) 𝑥,

(63)

𝐸2 ̇𝜉 = 𝑓2 (𝜉, 𝑝) + 𝑔2 (𝜉) 𝑢 + 𝑑2𝑤,
𝐸2𝜉 (0) = 𝐸2𝜉0,
𝑓2 (0, 𝑝) = 𝑓2,𝑝 (𝑝) ,
𝑓2 (0, 0) = 0,

𝜂 = 𝑔𝑇2 (𝜉) 𝜉,

(64)

where 𝑥 = [𝑥1, 𝑥2, 𝑥3]𝑇 ∈ R3, 𝜉 = [𝜉1, 𝜉2, 𝜉3]𝑇 ∈ R3, 𝑢 ∈
R2, 𝑤 ∈ R2,

𝐸1 = [[[
[

0 0 0
0 5 0
0 0 1

]]]
]
,

𝐸2 = [[[
[

2 0 0
0 2 0
0 0 0

]]]
]
,

𝑓1 (𝑥, 𝑝) = [[[
[

−𝑥1 + 2𝑥2
−2𝑥1 − 𝑥32 − 𝑥2 − 2𝑥3 − 2𝑝

2𝑥3 + 2𝑝
]]]
]
,

𝑓2 (𝜉, 𝑝) = [[[[
[

𝜉31 − 2𝜉1 − 𝜉2 − 𝑝 − 2𝜉3
−𝜉1 − 𝜉2 − 𝑝
2𝜉1 − 2𝜉3

]]]]
]
,

𝑔1 (𝑥) = 𝑑1 (𝑥) = [[[
[

0 0
2 𝑥2
−2 0

]]]
]
,

𝑔2 (𝜉) = 𝑑2 (𝜉) = [[[
[

1 𝜉1
1 0
0 0

]]]
]
.

(65)

Choose the penalty function 𝑧 = Λ(𝑦 + 𝜂), where Λ is a
weighting matrix.

Noticing that 𝑓1(0, 0) = 𝑓2(0, 0) = 0, we obtain 𝛼1(𝑥, 𝑝) =(𝑥1, 𝑥2, 𝑥3 + 𝑝)𝑇, 𝛼2(𝜉, 𝑝) = (𝜉1, 𝜉2 + 𝑝, 𝜉3)𝑇, and

𝐴1 (𝑥, 𝑝) = [[[
[

−1 2 0
−2 −1 − 𝑥22 −2
0 0 2

]]]
]
,

𝐴2 (𝜉, 𝑝) = [[[
[

𝜉21 − 2 −1 −2
−1 −1 0
2 0 −2

]]]
]
.

(66)

It is easy to check that assumption (A2) is satisfied, whereΦ = [−1, 0] and 𝜃 = 𝑝. According to Theorem 9, we obtain
the following forms of systems (63) and (64) by the output
feedback 𝑢 = −𝐾(𝑦 − 𝜂) + V:

𝐸1𝑥̇ = (𝐽1 (𝑥, 𝑝) − 𝑅1 (𝑥, 𝑝)) 𝑥 + 𝑔1 (𝑥)𝐾𝑔𝑇2 (𝜉) 𝜉
+ 𝑔1 (𝑥) V + 𝑑1 (𝑥) 𝑤 + 𝑔1 (𝑥)Φ𝑇 (𝜃 − 𝜃) ,

𝑦 = 𝑔𝑇1 (𝑥) 𝑥,
(67)

𝐸2 ̇𝜉 = (𝐽2 (𝜉, 𝑝) − 𝑅2 (𝜉, 𝑝)) 𝜉 − 𝑔2 (𝜉) 𝐾𝑔𝑇1 (𝑥) 𝑥
+ 𝑔2 (𝜉) V + 𝑑2 (𝜉) 𝑤 + 𝑔2 (𝜉) Φ𝑇 (𝜃 − 𝜃) ,

𝜂 = 𝑔𝑇2 (𝜉) 𝜉,
(68)

where

𝐾 = [0.8 0
0 −1] ,

𝐽1 (𝑥, 𝑝) = [[
[
0 2 0
−2 0 −1
0 1 0

]]
]
,

𝑅1 (𝑥, 𝑝) = [[
[
1 0 0
0 4.2 −2.2
0 −2.2 1.2

]]
]
,

𝐽2 (𝜉, 𝑝) = [[
[
0 0 −2
0 0 0
2 0 0

]]
]
,

𝑅2 (𝜉, 𝑝) = [[
[
1.2 0.2 0
0.2 0.2 0
0 0 2

]]
]
.

(69)

Since 𝐸1 ≥ 0 and 𝐸2 ≥ 0, we can give nonsingular
matrices

𝑀1 = [[[[
[

0 0 1
0 √55 0
1 0 0

]]]]
]
,
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Figure 1: Response of the state 𝑥.

𝑀2 =
[[[[[
[

√22 0 0
0 √22 0
0 0 1

]]]]]
]
.

(70)

Moreover, it is clear that (A1) and (A3) are also satisfied.
Thus, all the conditions of Theorem 9 hold. Therefore,
an admissible adaptive parallel simultaneous stabilization
controller of systems (63) and (64) can be designed as

𝑢 = −𝐾 (𝑦 − 𝜂) − [12Λ𝑇Λ + 12𝛾2 𝐼𝑚] (𝑦 + 𝜂) − Φ𝑇𝜃,
̇̂𝜃 = 𝑄Φ (𝑦 + 𝜂) .

(71)

In order to test the effectiveness of the controller (71),
we carry out some numerical simulations with the following
choices: initial condition: 𝐸1𝑥(0) = [0, −5, 2]𝑇, 𝐸2𝜉(0) = [2,−4, 0]𝑇, 𝜃0 = −0.5; parameter: 𝛾 = 1, 𝑝 = 0.5, 𝑄 = 1,
and weighting matrix Λ = 𝐼2. To test the robustness of the
controller with respect to external disturbances, we add a
square-wave disturbance of amplitude [2, −4]𝑇 to the systems
in the time duration [1𝑠 ∼ 2𝑠]. The responses of the states,
control signal, and 𝜃 are shown in Figures 1–3, respectively.

It can be observed from Figures 1–3 that the states quickly
converge to the origin after the disturbance is removed.
The simulation results show that the controller (71) is very
effective in simultaneously stabilizing the two systems and
has strong robustness against external disturbances and
parameters perturbation.

5. Conclusion

This paper has investigated the (robust) adaptive parallel
simultaneous stabilization problems of a class of nonlinear
descriptor systems via dissipative matrix method. Firstly,
under a suitable output feedback law, two nonlinear descrip-
tor systems have been changed as two equivalent nonlinear
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Figure 2: Response of the state 𝜉.
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Figure 3: The control 𝑢 and estimate 𝜃.

differential-algebraic systems by nonsingular transforms, and
a sufficient condition of impulse-free has been given for two
closed-loop systems. Then, the two systems are combined to
generate an augmented dissipative Hamiltonian differential-
algebraic system, with which an adaptive parallel simul-
taneous stabilization controller has been designed for the
two systems via the Hamiltonian function method. When
there are external disturbances in the two systems, a robust
adaptive parallel simultaneous stabilization controller has
been presented. Finally, the case of more than two nonlinear
descriptor systems has also been investigated in this paper.
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