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In somemechanicalmodels, the tensile armors of bent flexible pipes are treated as geodesics on a torus and, based on this hypothesis,
the curvatures of these curves are calculated to obtain the acting stresses.However, a closed-form solution of the geodesic differential
equations is not possible, which imposes difficulties on determining these curvatures.This work, therefore, proposes two alternative
solutions to the nonlinear geodesic differential equations. The first relies on an artificial neural network (ANN) and the second is
obtained by symbolic regression (SR). Both employ data from the numerical solution of the geodesic differential equations and
showed good correlation with the complete dataset. Nevertheless, when tested against new data, the SR equations led to results
almost equal to those obtained with the numerical solution of the differential equations and to null geodesic curvature. Despite
also agreeing well with the numerical solution, the ANN indicates nonnull geodesic curvatures. Moreover, when compared to
equations often employed in the design of flexible pipes, the SR equations may indicate different results, which can impact, for
example, the fatigue or the instability analysis of the tensile armors of these pipes.

1. Introduction

Unbonded flexible pipes (or, simply, flexible pipes), such as
the one presented in Figure 1, are largely employed in off-
shore oil and gas exploitation. These multilayered composite
structures combine high axial strength and stiffness with low
bending stiffness, resulting in highly compliant pipes. Each
layer of these pipes has a specific function and may be either
metallic or polymeric. Whereas the metallic layers provide
structural resistance, the polymeric layers are used to seal the
pipe and/or to mitigate wear and friction between layers. In a
typical flexible pipe, three different metallic layers are found
[1]: inner carcass, which is made from profiled steel strips
wound at angles close to 90 degrees with respect to the pipe
axis that mainly resists radial inward forces; pressure armors,
which are usually Z-shaped steel wires also wound at angles

close to 90 degrees with the main function of supporting the
system internal pressure and also radial inward forces; and
tensile armors, which are constituted of several approximately
rectangular steel wires laid in two or four layers, cross-wound
at angles between 20 degrees and 55 degrees, which resist
tension, torque, and pressure end cap effects.

The structural responses of these pipes to bending
and axial loads have been extensively studied since the
mid-seventies. Several analytical and numerical models, as
reviewed and summarized by Tang et al. [2], are available
in the public literature, but some aspects of their response
remain challenging and the computation of the stresses in the
tensile armors due to bending loads, as stated by Dai et al. [3]
and Zhou and Vaz [4], is among them.

The bending response of a flexible pipe depends on
the curvature imposed on the pipe. Several authors [5–7]
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Figure 1: Typical unbonded flexible pipe.

M
C

A (f ,Mf )

B

E

D

O

EIns

EIfs



Figure 2: Bending moment, 𝑀, versus curvature, 𝜅: schematic
representation of the response of flexible pipes to bending.

describe this response as a stick-slip mechanism (Figure 2),
which is activated by the contact pressures between layers due
to the applied axisymmetric loads.

For small curvatures, friction between the armors and
the adjacent layers prevent their relative slip. Hence, axial
forces are induced in the armors and these forces are opposed
by friction forces with the same magnitude. This leads to a
linear bending moment 𝑀 versus curvature 𝜅 relationship
with very high tangent stiffness.This tangent stiffness is called
no-slip bending stiffness, EIns.

As curvature increases, interlayer friction is overcome
and progressively allows the relative movement of the layers.
This slippage reduces the tension increase in the extrados of
the pipe and compression decreases in its intrados, thereby
reducing the tangent stiffness of the pipe. This stiffness keeps
decreasing until friction forces are fully overcome and the
tensile armor wires are free to slip. At this point, the tangent
stiffness reaches a limit value, much lower than the no-slip
one. This lower limit is called full-slip bending stiffness, EIfs,

and is the value usually provided by the manufacturers of
flexible pipes. Moreover, the curvature at which the interlayer
friction is fully overcome is called critical curvature, 𝜅f , and
the associated bending moment is named internal friction
moment,𝑀f . Figure 2 schematically shows this mechanism.
If no friction is considered between layers, the bending
response of the pipe is linear with bending stiffness equal to
the full-slip value.

In the prediction of the stresses in the tensile armors
induced by the bending of the pipe, these armors are com-
monly treated as naturally curved beams [6–9]. A traditional
mathematical model used to describe the mechanics of a
naturally curved rod was systematized by Love [10]. In there,
a system of six differential equations is stated (see (1)),
which holds the equilibrium of such rods concerning its local
coordinate system.

𝑃𝑡,𝑠 − 𝜅𝑛 ⋅ 𝑃𝑛 + 𝜅𝑏 ⋅ 𝑃𝑏 + 𝑝𝑡 = 0,
𝑃𝑛,𝑠 + 𝜅𝑛 ⋅ 𝑃𝑡 − 𝜏 ⋅ 𝑃𝑏 + 𝑝𝑛 = 0,
𝑃𝑏,𝑠 − 𝜅𝑏 ⋅ 𝑃𝑡 + 𝜏 ⋅ 𝑃𝑛 + 𝑝𝑏 = 0,

𝑀𝑡,𝑠 − 𝜅𝑛 ⋅ 𝑀𝑛 + 𝜅𝑏 ⋅ 𝑀𝑏 + 𝑚𝑡 = 0,
𝑀𝑛,𝑠 + 𝜅𝑛 ⋅ 𝑀𝑡 − 𝜏 ⋅ 𝑀𝑏 − 𝑃𝑏 + 𝑚𝑛 = 0,
𝑀𝑏,𝑠 − 𝜅𝑏 ⋅ 𝑀𝑡 + 𝜏 ⋅ 𝑀𝑛 + 𝑃𝑛 + 𝑚𝑏 = 0,

(1)

where 𝑃∗ and𝑀∗ represent, respectively, the internal forces
and moments of the rod in its tangential (∗𝑡), normal (∗𝑛),
and binormal (∗𝑏) directions; the external distributed loads
and moments are given by 𝑝∗ and 𝑚∗ in this order; and the
natural curvature and torsion of the rod are given by 𝜅∗ and𝜏, respectively. It is important to note that the curvature in
the binormal direction, for surface curves, is usually called
the geodesic curvature. The comma after a symbol (∗,∗), in
this work, indicates the derivative of the given variable with
respect to the indicated one; for instance, 𝑃𝑡,𝑠 is equivalent to𝑑𝑃𝑡/𝑑𝑠.

The stresses in the tensile armors are induced by the
internal forces and moments that result from the variation of
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the natural curvatures and torsion caused by the bending of
the pipe. Therefore, the evaluation of the internal forces and
moments is not possible unless these geometric components
are previously known, as can be depicted from (1).

Several analytical models devoted to the bending analysis
of flexible pipes consider that the curvatures and torsion
induced in the tensile armors depend on the path followed by
these armors during loading. Typically, two assumptions are
made with respect to this path [8]: the geodesic and the loxo-
dromic.These curves correspond to physical limit paths of the
stressed tensile armors. The geodesic is the curve associated
with the shortest distance between two points at a cylindrical
supporting surface, while the loxodromic is the curve that
makes the same angle with every meridian of this surface.
The geodesic has no transverse (geodesic) curvature and both
longitudinal and transverse slips relative to the loxodromic
are needed to reach this path, as indicated in Figure 3.

In some analytical models proposed to predict the bend-
ing response of flexible pipes, such as those from Féret and
Bournazel [9], Estrier [11], Out and Von Morgen [12], and
Ramos Jr. and Pesce [13], the geodesic path is related to
conditions in which no interlayer friction is considered or is
disregarded, since the friction forces would restrain the slip of
the armors. On the other hand, if friction forces are present,
as noted by Sævik [5], the transverse slip towards the geodesic
path is restrained and, therefore, the curvatures and torsion
in the armor are somewhere between the loxodromic and the
geodesic paths [14]. If no relative slip is assumed between
the armor and the supporting surface, the loxodromic may
be directly employed, as described in Witz and Tan (1992),
Estrier [11], Sævik [5], or Larsen et al. [14], but, since at
least the longitudinal slip is unavoidable when the critical
curvature is reached, the loxodromic curvatures and torsion
need to be modified even if no transverse slip occurs. In this
last case, Sævik [15] and Larsen et al. [14] propose expressions
to calculate these quantities by neglecting the longitudinal
friction.

More general models are proposed by Féret et al. [6],
Leroy and Estrier [7], and Østergaard [16]. Féret et al.
[6] proposed a function dependent on an empirical term
allowing the consideration of any curve in between the
two limit paths. Later, Leroy and Estrier [7] followed the
same approach but disregarding this empirical parameter and
attributing the function to be dependent on the interlayer
friction and the variation of the transverse displacement. A

similar procedure was also adopted byØstergaard [16], where
six differential equations based on angular coordinates are
proposed to describe the mechanics of a frictionless armor
sliding on a torus surface.

The use of these more generic models, however, has some
difficulties regarding, for example, the stability of the solu-
tion, implementation procedures, and required approxima-
tions. Numerical models, usually based on the finite element
method, are also employed in the bending analysis of flexible
pipes, such as those proposed by Sævik [5, 15]. Nevertheless,
these models usually demand high computational resources
thatmay hamper, for instance, their use in the fatigue analysis
of flexible pipes, as this type of analysis typically requires
thousands of bending mechanical analyses [17].

In this scenario, the use of analytical models that rely on
the choice of limit curves is quite attractive, but while closed-
form equations for the curvatures and torsion of the loxo-
dromic curve can be easily obtained from its differential equa-
tion, the geodesic quantities cannot be directly calculated.
The geodesic is defined by stiff nonlinear differential equa-
tions of second order, which are usually solved by numerical
methods [12]. Aiming at simplifying the use of this hypothesis
in the analysis of the bending response of flexible pipes,
this work proposes closed-form solutions of the geodesic
differential equations obtained by symbolic regression (SR)
over a dataset generated from the numerical solution of these
equations considering different conditions. Moreover, this
dataset is used to train an artificial neural network (ANN),
whose predictions are then compared to the SR equations.

Therefore, initially, a brief description of the geometrical
relations involved in the derivation of the geodesic differential
equations is presented. After that, these equations are derived
followed by a description of the numerical method (Runge-
Kutta Lobatto IIIa) used to solve them. The ANN and the SR
approaches are then described and the results of a case study
are presented and discussed. Finally, the main conclusions of
this work are stated.

2. Geometric Relations

The geometric representation of the tensile armors as surface
curves is quite common. The torus is a useful surface for
this purpose, as it stands for a generic bent cylinder under
constant curvature, thus representing a wide range of real
structures. Figure 4 illustrates the torus and the angles
necessary to its parametrization and its parametric equation
is given by the following equation:

[x] = [[
[
[𝑅 + 𝑟 ⋅ cos (𝜃)] ⋅ cos (𝜐)
[𝑅 + 𝑟 ⋅ cos (𝜃)] ⋅ sin (𝜐)

𝑟 ⋅ sin (𝜃)
]]
]
. (2)

An infinite number of curves can be defined on the
torus surface and an orthogonal triad must be established
to orient them. In this work, the Darboux-Ribaucourt axes([t], [N], [B]) are employed, where [t] is the unit tangent of
the curve and [N] and [B] are the normal and the binormal
vectors of the surface [18], as indicated in Figure 4. The
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Figure 4: Geometry and parameters of a torus.

variation of this triad with respect to the curve arc-length (𝑠)
gives

[[
[

t
N
B

]]
],𝑠

= [[[
[
0 𝜅𝑛 𝜅𝑔−𝜅𝑛 0 −𝜏
−𝜅𝑔 𝜏 0

]]]
]
[[
[

t
N
B

]]
]
, (3)

where 𝜅𝑛 and 𝜅𝑔 (𝜅𝑏 = 𝜅𝑔 in (1)) are, respectively, the normal
and geodesic curvatures and 𝜏𝑔 is the geodesic torsion of the
curve. Generically, the curvatures and torsion can be directly
determined by differential geometry formulas, named after
Leonhard Euler (see (4)), Joseph Liouville (see (5)), and
Sophie Germain (see (6)) [19].

𝜅𝑛 = 𝜅1 ⋅ cos2 (𝜙) + 𝜅2 ⋅ sin2 (𝜙) , (4)

𝜅𝑔 = 𝜅𝑔𝜃 ⋅ cos (𝜙) + 𝜅𝑔𝜐 ⋅ sin (𝜙) + 𝜙,𝑠, (5)

𝜏 = (𝜅1 − 𝜅2) ⋅ cos (𝜙) ⋅ sin (𝜙) , (6)

where 𝜙 is the curve lay angle with respect to torus lon-
gitudinal direction (see 𝐵𝐵󸀠 in Figure 4); 𝜅1 and 𝜅2 are, in
this order, the major and minor principal curvatures of the
surface and 𝜅𝑔𝜃 and 𝜅𝑔𝜐 are the geodesic curvature for the 𝜃-
constant (𝐵𝐵󸀠 in Figure 4) and 𝜐-constant (𝐴𝐴󸀠 in Figure 4)
curves, respectively. As the angular coordinates 𝜐 and 𝜃 are
orthogonal, the following formulas, which are based on the
fundamental form of the torus, express these components
[18]:

𝜅1 = −[N],𝜐 ⋅ [x],𝜐𝐸 ;
𝜅2 = −[N],𝜃 ⋅ [x],𝜃𝐺 ,

𝜅𝑔𝜃 = − 𝐸,𝜃2 ⋅ 𝐸 ⋅ √𝐺;
𝜅𝑔𝜐 = 𝐺,𝜐2 ⋅ 𝐸 ⋅ √𝐺,

(7)

where 𝐸, 𝐹, and 𝐺 are the first fundamental forms given by
Nutbourne and Martin [18]:

𝐸 = [x],𝜐 ⋅ [x],𝜐 = [𝑅 + 𝑟 ⋅ cos (𝜃)]2 ,
𝐹 = [x],𝜐 ⋅ [x],𝜃 = 0,
𝐺 = [x],𝜃 ⋅ [x],𝜃 = 𝑟2.

(8)

Physically, 𝐸 and𝐺may be interpreted, for an orthogonal
surface, such as the torus, as the square of the speed along the
first and second parameters, respectively [20].

3. Geodesic Equations

The evaluation of the curvature components in the tensile
armors is of fundamental importance to predict the acting
forces and moments on them. These curvature components,
as discussed in Section 1, are usually calculated by considering
two limit curves: the loxodromic and the geodesic.This work
focuses on the geodesic curve.

Geodesic curves have their normal coincident with the
surface normal. A more precise and mathematic accurate
description of a geodesic is given by doCarmo [19], for whom
geodesics are constant speed curves with vanishing geodesic
curvature. They are also the shortest curves that connect
two points in a surface being analogous to a straight line in
a plane [18]. Many different parametrizations lead to many
different differential equations of the geodesic of a surface:
the first (and more widespread) was given by Leonhard Euler
and Joseph Louis Lagrange [21], which consists of obtaining
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the minimization of the arc-length functional, Π, of a given
surface [x]. This minimization problem recalls the classical
Euler-Lagrange equation, which is written as

𝑠 = ∫𝑙
0
Π𝑑𝜐 = ∫𝑙

0

√𝐸 + 𝐺 (𝜃,𝜐)2𝑑𝜐, (9)

𝜕Π𝜕𝜃 − 𝑑𝑑𝜐 ( 𝜕Π𝜕𝜃,𝜐) = 0. (10)

This problem was also studied by Sævik [8] and Out and
Von Morgen [12], stating that these differential equations
cannot be solved analytically. A less straightforward, but
more systematic way, to obtain the differential equations of a
geodesic of a generic surface is given by the set of differential
equations presented in Nutbourne and Martin [18]:

𝜐,𝑠𝑠 + Γ111 ⋅ (𝜐,𝑠)2 + 2 ⋅ Γ112 ⋅ (𝜐,𝑠) ⋅ (𝜃,𝑠) + Γ122 ⋅ (𝜃,𝑠)2 = 0,
𝜃,𝑠𝑠 + Γ211 ⋅ (𝜐,𝑠)2 + 2 ⋅ Γ212 ⋅ (𝜐,𝑠) ⋅ (𝜃,𝑠) + Γ222 ⋅ (𝜃,𝑠)2 = 0. (11)

In surfaces parameterized by an orthogonal coordinate
system, such as the torus, the first fundamental form𝐹 is zero;
thus the Christoffel symbols Γ𝑖𝑗𝑘 (𝑖, 𝑗, 𝑘 = 1, 2), which relate
the first fundamental forms of a surface and their derivatives,
are given by the following equations:

Γ111 = 𝐸,𝜐2 ⋅ 𝐸 ;
Γ112 = 𝐸,𝜃2 ⋅ 𝐸 ;
Γ122 = − 𝐺,𝜐2 ⋅ 𝐸 ,
Γ211 = − 𝐸,𝜃2 ⋅ 𝐺 ;
Γ112 = 𝐺,𝜐2 ⋅ 𝐺 ;
Γ122 = −𝐺,𝜐𝐺 .

(12)

Substituting (10) and (12) into (11), the classical set of
differential equations for the geodesic of a torus can be writ-
ten as

𝜐,𝑠𝑠 − 2 ⋅ 𝑟 ⋅ sin (𝜃)𝑅 + 𝑟 ⋅ cos (𝜃) ⋅ (𝜐,𝑠) ⋅ (𝜃,𝑠) = 0,
𝜃,𝑠𝑠 + 1𝑟 ⋅ sin (𝜃) ⋅ [𝑅 + 𝑟 ⋅ cos (𝜃)] ⋅ (𝜐,𝑠)2 = 0.

(13)

However, do Carmo [19], using Liouville’s formula for
the binormal curvature (see (14)), presents an alternative
differential equation for the geodesic.Thebinormal curvature
is initially written as

𝜅𝑏 = − 𝐸,𝜃2 ⋅ 𝐸 ⋅ √𝐺 cos (𝜙) + 𝐺,𝜐2 ⋅ 𝐸 ⋅ √𝐺 sin (𝜙) + 𝜙,𝑠. (14)

As previously stated, geodesic curves have null geodesic,
or binormal, curvature, 𝜅𝑏. Thus, by equating (14) to zero, a
first-order differential equation written in terms of the lay
angle 𝜙 can be written. Aiming at establishing the geodesic
equations, a relation with any other torus angular parameter
is still necessary. This relation may be obtained from the
tangent definition, as can be seen in (15).The tangent of a unit
speed curve 𝛼 provides the following relation:

[t] = [𝛼],𝑠 = [t],𝜐 ⋅ cos (𝜙) + [t],𝜃 ⋅ sin (𝜙) . (15)

Using this equation, it is possible to write the following
equation:

𝜐,𝑠 = cos (𝜙)󵄩󵄩󵄩󵄩[x],𝜐󵄩󵄩󵄩󵄩 ;
𝜃,𝑠 = sin (𝜙)󵄩󵄩󵄩󵄩[x],𝜃󵄩󵄩󵄩󵄩 ,

(16)

where ‖ ∗ ‖ is the norm of vector ∗.
Thus, distinct differential equations of a geodesic may be

obtained in terms of two functions of the arc-length 𝑠, the lay
angle 𝜙, and the radial angular parameter 𝜃, as shown in (17).

𝜃,𝑠 = sin (𝜙)𝑟 ,
𝜙,𝑠 = − sin (𝜃)𝑅 − 𝑟 ⋅ cos (𝜃) ⋅ cos (𝜙) .

(17)

Østergaard [16] showed the equivalency between the two
sets of differential equations, given by (13) and (17). In order
to obtain the geodesic parameters (such as normal curvature
and torsion), any of these sets of differential equations need
to be solved numerically. In this work, the sixth-order Runge-
Kutta (RK) Lobatto IIIa method is chosen. However, in the
design of flexible pipes, a high number of local mechani-
cal analyses are demanded and, consequently, direct approx-
imations to the curvatures and torsion of the geodesics are
desirable to define the equilibrium equations of the tensile
armors (see (1)), thus minimizing the computational effort.

Therefore, here, two machine learning techniques are
employed to obtain these approximations, that is, ANNs and
SRs, based on Genetic Programming (GP) model.The results
of the accurate numerical solution serve as a database to
train the ANNs and as input for the SR approach. Next, these
approaches are discussed.

4. Runge-Kutta (RK) Lobatto IIIa Method

Lobatto IIIa method derives from the family of implicit
RK methods. The method was proposed to overcome some
implementation difficulties, stability issues, and convergence
properties of traditional explicit and implicit Runge-Kutta
methods. Later, other families of RKmethods, such as Radau
IIa, were developed. They present better convergence and
stability than Lobatto IIIa method, which is A-stable but not
algebraically or L-stable [22]. Despite the apparent draw-
backs, Lobatto IIIa gives quite accurate solutions for stiff



6 Mathematical Problems in Engineering

differential equations with global error lower than other
methods, even the Radau IIa [22].

Consider the stiff ordinary differential equations and
their boundary condition; for example,

𝑦 (𝑡),𝑡 = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ [𝑡0, 𝑡𝑓] , 𝑦 (𝑡0) = 𝑦0 ∈ R. (18)

The formulas that define general RK methods of 𝑞 stages
are given by

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑛 ⋅ 𝑞∑
𝑖=1

[𝑏𝑖 ⋅ 𝑓 (𝑡𝑛 + 𝑐𝑖 ⋅ ℎ, 𝑌𝑛𝑖)] ,
𝑌𝑛𝑖 = 𝑦𝑛 + ℎ𝑛 ⋅ 𝑞∑

𝑗=1

[𝑎𝑖𝑗 ⋅ 𝑓 (𝑡𝑛 + 𝑐𝑗 ⋅ ℎ, 𝑌𝑛𝑗)]
for 𝑖 = 1, . . . , 𝑞,

(19)

where 𝑞 is the number of stages (𝑞 ≥ 2), 𝑦𝑛 is an approx-
imation of the function 𝑦(𝑡𝑛) that represents the integral
of the analyzed differential equation (main numerical RK
approximation), and 𝑌 are the so-called internal stages (an
approximation of the solution at 𝑡𝑛 + 𝑐𝑗 ⋅ ℎ𝑛). The coefficients𝑎𝑖𝑗, 𝑏𝑗, and 𝑐𝑗 define the chosen RKmethod.These coefficients
are usually presented in a Butcher tableau (see (20)), which
relates the coefficients 𝑎𝑖𝑗, 𝑏𝑗, and 𝑐𝑗 to any of the RK family
methods, as follows:

𝑐1 𝑎1,1 𝑎1,2 ⋅ ⋅ ⋅ 𝑎1,𝑞−1 𝑎1,𝑞𝑐2 𝑎2,1 𝑎2,2 ⋅ ⋅ ⋅ 𝑎2,𝑞−1 𝑎2,𝑞... ... ... d
... ...𝑐𝑞−1 𝑎𝑞−1,1 𝑎𝑞−1,2 ⋅ ⋅ ⋅ 𝑎𝑞−1,𝑞−1 𝑎𝑞−1,𝑞𝑐𝑞 𝑎𝑞,1 𝑎𝑞,2 ⋅ ⋅ ⋅ 𝑎𝑞,𝑞−1 𝑎𝑞,𝑞𝑏1 𝑏2 ⋅ ⋅ ⋅ 𝑏𝑞−1 𝑏𝑞

. (20)

It is interesting to note that when Lobatto IIIa method
is considered in its simpler form (𝑞 = 2), the well-known
implicit trapezoidal rule is obtained. Lobatto RK family of
methods (IIIa, IIIb, IIIc, and IIIc∗) are characterized by
having the same coefficients 𝑏𝑗 and 𝑐𝑗, known as weight and
node coefficients, respectively. Moreover, for all these family
of methods, 𝑐1 = 0 and 𝑐𝑞 = 1.The coefficients for the Lobatto
IIIa method are given by [23]

𝑞∑
𝑗=1

𝑎𝑖𝑗 = 𝑐𝑖;
𝑞∑
𝑗=1

𝑏𝑗 ⋅ 𝑐𝑘−1𝑗 𝑎𝑗𝑖 = 𝑏𝑖2 ⋅ (1 − 𝑐𝑘𝑖 ) ,
for 𝑖 = 1, . . . , 𝑞, 𝑘 = 1, . . . , 𝑞 − 2,

𝑏𝑗 = 1
𝑞 ⋅ (𝑞 − 1) ⋅ 𝑃𝑞−1 ⋅ (2𝑐𝑗 − 1)2 ,

𝑐𝑗 = root{ 𝑑𝑞−2𝑑𝑡𝑞−2 [𝑡𝑞−1⋅ (1 − 𝑡)𝑞−1]} ,

(21)

where 𝑃 is the 𝑘th Legendre polynomial [23].

The sixth-order Lobatto IIIa method is obtained consid-
ering 𝑞 = 4, 𝑎1𝑗 = 0, and 𝑎𝑠𝑗 = 𝑏𝑗 for 𝑗 = 1, . . . , 4. The Butcher
tableau for this method is, therefore, given as follows:

0 0 0 0 0
5 − √510 25 + √5120 25 + 13√5120 −1 + √5120 −1 + √51205 + √510 11 − √5120 25 + 13√5120 25 + √5120 −1 − √51201 112 512 512 112112 512 512 112

. (22)

In this work, the differential equations given by (17) were
solved according to the algorithm proposed by Pinto et al.
[24], where the RK Lobatto IIIa method is generalized for
systems with any number of first-order differential equations.
The applied boundary conditions are equal to 𝜃(0) = 𝜃ini and𝜙(0) = 𝜑0.
5. Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) constitute a form of
mathematical processing of information with architecture
and operation similar to the biological neural networks. The
learning ability is the remarkable feature of the ANNs, and,
in practice, this ability applies pattern recognition, classifica-
tion, clustering, optimization, and function approximation,
among others [25].

In this work, ANNs are employed as function approxi-
mators. These ANNs define relationships between the bent
flexible pipe tensile armor geometrical parameters (network
inputs) and the geodesic curve parameters, that is, the radial
angle 𝜃 and the lay angle 𝜙 given as functions of the armor
arc-length 𝑠 (network outputs). However, the ANN needs
sample data of the inputs and outputs to define the relation
between them (ANN training) and, here, this data is provided
by the numerical integration of the geodesic curve differential
equations (see (17)) for some training cases.

The main goal is training an ANN and checking whether
its extrapolated results are valid or not. This is one of the
most critical issues when it comes to ANN applications. In
order to do so, the radial (𝜃) and the lay (𝜙) angles along
the armor arc-length for a given pipe configuration, which
is not present in the training examples, are compared to the
numerical solution.

The most common ANN architecture employs a single
hidden layer between the input and output layers. This
configuration is outlined in Figure 5. The first layer reads the
input values of the network, while the output layer delivers
the responses of the network. Both hidden and output
layers are composed of neurons (numerical functions). Each
connection between elements in neighboring layers contains
a weight (synapse weighting). Linked to the hidden and
output layers, there are also bias parameters with unitary
values.
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Figure 5: ANN architecture.
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Figure 6: Activation functions.

In a typical ANN, firstly, a neuron 𝑗 in the hidden layer
receives an input 𝑢𝑗 given by

𝑢𝑗 = 𝑤𝐼𝐻0,𝑗 ⋅ 1 + 𝐼∑
𝑖=1

(𝑤𝐼𝐻𝑖,𝑗 ⋅ 𝑥𝑖) , (23)

where 𝐼 is the total number of network inputs,𝑤𝐼𝐻0,𝑗 is the bias
weight of the input layer,𝑤𝐼𝐻𝑖,𝑗 is the weight between the input𝑖 and the respective neuron 𝑗 in the hidden layer (𝑗 = 1, . . . , 𝐽,𝐽 is the total number of hidden layer neurons), and 𝑥𝑖 is the𝑖th network input. Each neuron returns an output 𝑦𝑖 written
as

𝑦𝑗 = Φ𝐻 (𝑢𝑗) = Φ𝐻(𝑤𝐼𝐻0,𝑗 ⋅ 1 + 𝐼∑
𝑖=1

(𝑤𝐼𝐻𝑖,𝑗 ⋅ 𝑥𝑖)) , (24)

where Φ𝐻(⋅) is the so-called activation or transfer function.
The activation functions are usually sigmoid functions, like

the hyperbolic tangent or the logistic functions, as shown in
Figure 6. Both functions are monotonic, differentiable over
their domain, and limited. These features are required to
introduce a nonlinear mapping in the network [26]. Due to
the nature of the limit values, the logistic function is usually
employed in pattern recognition applications, while the
hyperbolic tangent is employed to function approximation
and time series prediction. The weights control the steepness
and the offset function. As the use of ANN in this work is
related to function fitting, the hyperbolic tangent is chosen
for the hidden neurons of the networks.

For an ANN with a single output 𝜌, this parameter is
determined by

𝜌 = Φ𝑂 (V) = Φ𝑂(𝑤𝐻𝑂0 ⋅ 1 + 𝐽∑
𝑗=1

(𝑤𝐻𝑂𝑗 ⋅ 𝑦𝑗)) , (25)

where Φ𝑂(⋅) is the activation function of the neuron in
the output layer, usually a linear function. The remaining
parameters are defined similarly to those in the hidden layer
expressed by (23).

For an ANN, considering the input as a group of parame-
ters values, the relation between these values and the network
output 𝜌 is expressed by

𝜌 (𝑊, 𝑥) = 𝑓 (𝑊, 𝑥) , (26)

where 𝑥 is a vector containing the parameters values of the
input and 𝑊 is a matrix containing all ANN connecting
weights.

The so-called network training consists in the search
of a set of weights which leads to a good fitting of the
approximated function. In this manner, a sample set of inputs
and outputs is needed to adjust the network weights by an
optimizationmethod.The optimization problem is expressed
by the minimization of an error function, usually the mean
square error MSE, defined by

MSE (𝑊) = 1𝑁 ⋅ 𝑁∑
𝑖=1

[𝜌 (𝑊, 𝑥𝑖) − 𝑡𝑖]2 , (27)

where 𝑁 is the length of the training sample and 𝑡 is the
desired output sample.

An iterative optimization procedure is employed to
obtain optimum values for the weights𝑊. In this work, the
Levenberg-Marquardt algorithm is employed in the network-
ing training.This algorithm is a variation of Newton’smethod
designed to minimize functions that are sums of squares
of other nonlinear functions [27] as the error function (see
(27)). Through the variation of a parameter called learning
rate, this algorithm provides a good equilibrium between the
speed of Newton’s method and the convergence guaranteed
by the steepest descent procedure. Each iteration in the
optimization procedure is named epoch.

All the optimization methods (also named training algo-
rithms) begin with setting the initial weights (a point in the
error surface; see (27)). Usually, the weights are initialized
using small random values [26]. Hence, the outputs of the
activation functions fall out of the saturation region (low
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magnitude derivatives region), turning the training proce-
dure faster.

Since the input and output parameters can present differ-
ent order of magnitude values, they must be scaled in some
way. As in this work the parameters values will be in a defined
range, the training data is scaled to fall in the [−1; +1] range.
This is done using the mathematical expression:

𝑦𝑖 = 𝑦max − 𝑦min𝑥max − 𝑥min
⋅ (𝑥𝑖 − 𝑥min) + 𝑦min, (28)

where the minor subscripts max and min refer to the max-
imum and minimum values present in the training sample,
respectively. For some applications (as time series), the data
is normalized with respect to its mean and deviations values.
The data normalization also aids in turning the training
process faster. For a network trained with scaled data, the
network application for new inputswill result in scaled output
values, which must be reversed for an adequate use.

In general, two types of errors may occur during the
network training. The first is related to the stopping of
training in the beginning of the iterative procedure, far from
a good set of weights, resulting in high approximation errors
(even for trained data).The second is related to the overfitting
of the training sample: the network adapts too much to the
particular training set. Both cases lead to poor estimation
for new inputs (nontrained data) [26, 27]. Therefore, there
is an optimum level of training to be achieved. A com-
mon and simple procedure applied to avoid both errors is
to separate part of the training set for the training itself
(weights optimization) and the other part for validation, with
separated error function evaluations. The usual behavior of
these errors is depicted in Figure 7.The training process must
be stopped when the error of the validation set begins to
increase, avoiding the overfitting and ensuring good network
generalization.

6. Symbolic Regression (SR)

Genetic Programming (GP) consists of searching and opti-
mizing executable expressions modeled as natural evolution
[28]. The GP is inspired by Darwin’s theory of evolution,
which states that the fittest species are the ones to survive.
The three concepts stated by Darwin (reproduction, crossover,

andmutation) are the main operations followed in GP.These
operations control the evolution of the population or the
set of solutions to the problems. Each of these solutions is
named chromosome and, at each generation, it will undergo
a fitness process. This process determines if each of the
chromosomes is more likely to be maintained in the next
generation (the higher the fitness rate, the higher the odds)
[29] or not. Crossover is a reproduction process that accounts
for the combination of genes of two successful chromosomes.
Mutations occur in the same generation and alter the genes
of its chromosomes. These processes are controlled by the
crossover andmutation rates, respectively. Figure 8 presents a
flowchart that exemplifies the main steps of a generic genetic
algorithm.

Symbolic regression (SR) is a data-driven approach to
extract an appropriate model from the space of mathematical
expressions, 𝑆, which is defined by a set of binary operations
and mathematical functions [30]. This regression technique,
unlike traditional regression methods, does not require a
mathematical model of a given form being a kind of non-
deterministic polynomial problem, which simultaneously
optimizes the structure and coefficients of a targetmodel [30].

SR is used in a wide branch of disciplines, varying from
physical to psychological and from chemistry to astronomy.
In engineering, it also has a wide branch of applications,
such as deriving implicit or explicit parameters relations
[31], simplifying complexmathematical relations into concise
expressions [32], fitting numerical data to an equation to
avoid dealing with unstable and hard to implement mathe-
maticalmodels [33], distilling natural laws fromexperimental
data [34], and automating of reverse engineering problems in
dynamics of nonlinear systems [35].

Symbolic regression initially works forming expressions
by randomly combining what is calledmathematical building
blocks. These blocks comprise algebraic operators (+, −, ×, ÷),
analytical functions (i.e., sine, cosine, and exponential),
constants, and state variables [34]. Symbolic equations, in
each step, compete to model the experimental data retaining
equations that best fit the given dataset while abandoning the
unpromising solutions.This procedure can be written as [30]

𝑓∗ = argmin
𝑓∈S

𝑁∑
𝑖

󵄩󵄩󵄩󵄩󵄩𝑓 (𝑥(𝑖)) − 𝑦𝑖󵄩󵄩󵄩󵄩󵄩2𝑁 , (29)

where 𝑥(𝑖) ∈ 𝑅𝑑 and 𝑦𝑖 ∈ 𝑅 represent the sampling data; 𝑓∗ is
the result equation and 𝑓 is the target model.

New expressions are formed by a combination of pre-
viously accepted equations with probabilistic adjustment of
their subexpressions [34]. After a considerable amount of
computational time, the algorithm returns a set of equations,
their size and fitness corresponding to the given data series.
These equations vary from the most accurate and sophis-
ticated to the simplest and less accurate. Paraphrasing the
suggestion given by Schmidt and Lipson [34], in order to
obtain a physical significant equation, the adopted solution
should pass Occam’s razor principle, which states that, given
more than one solution that satisfactorily fits the same
problem, that is, solutions with desirable level of accuracy, the
simplest one shall be adopted.
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In this work, the commercial software Eureqa� [34] was
employed for the symbolic regression of the data generated by
the numerical solution of the geodesic equation.The software
allows the user to choose between different errormetrics [34].
In this work, the mean squared error (MSE) (see (30)) was
chosen, because the noise in the data would, by hypothesis,
follow a normal distribution. The same error metric is used
in the ANN training.

MSE = 1𝑁 ⋅ 𝑁∑
𝑖

[𝑦𝑖 − 𝑓 (𝑥(𝑖))]2 . (30)

7. Case Study

This work proposal consists in training ANNs and obtaining
a physically meaningful equation by SR, both capable of
predicting the path of the geodesic curve followed by a tensile
armor when a flexible pipe is under bending. Aiming at
predicting this path, geometrical parameters such as the torus
minor (mean radius of the armor, 𝑟) and major (bend radius
of the pipe, 𝑅) radii, initial lay angle (𝜑0) of the armor,
length of the armor (𝑆max), and the normalized arc-length (𝑠)
are taken as input parameters, while the angles that define
the geodesic differential equations (see (17)), 𝜃 and 𝜙, are
the aimed outputs. This can be represented by the following
expressions:

𝜃 = 𝑓 ([𝑟, 𝑅, 𝜑0, 𝑆max, 𝑠]) ,
𝜙 = 𝑔 ([𝑟, 𝑅, 𝜑0, 𝑆max, 𝑠]) . (31)

When dealing with machine learning algorithms, a typ-
ical approach is to feed the algorithm with inputs and

target outputs for training. Thus, multiple cases are selected
to compose the training dataset for the ANN and the SR
approaches. These cases comprise variations in the armor
geometrical parameters and the imposed bending radius. By
considering these parameters and the geodesic differential
equations, (see (17)), the radial angle 𝜃 and the lay angle𝜙 responses are obtained. The training dataset can thus be
represented in the following form:

[[[[[[[[[[[[[[[[[[[[[[[
[

𝑟1, 𝑅1, 𝜑01, 𝑆max1, 𝑠1,1, 𝜃1,1, 𝜙1,1𝑟1, 𝑅1, 𝜑01, 𝑆max1, 𝑠1,2, 𝜃1,2, 𝜙1,2...
𝑟1, 𝑅1, 𝜑01, 𝑆max1, 𝑠1,𝐼, 𝜃1,𝐼, 𝜙1,𝐼𝑟2, 𝑅2, 𝜑02, 𝑆max2, 𝑠2,1, 𝜃2,1, 𝜙2,1...
𝑟𝑘, 𝑅𝑘, 𝜑0𝑘, 𝑆max𝑘, 𝑠𝑘,𝑖, 𝜃𝑘,𝑖, 𝜙𝑘,𝑖...

𝑟𝐾, 𝑅𝐾, 𝜑0𝐾, 𝑆max𝐾, 𝑠𝐾,𝐼, 𝜃𝐾,𝐼, 𝜙𝐾,𝐼

]]]]]]]]]]]]]]]]]]]]]]]
]

, (32)

where 𝐾 is the total number of selected cases and 𝐼 is the
total number of points in the arc-length in each case.The first
five columns are the inputs of the network/genetic algorithm,
while the sixth and seventh columns are the outputs (see (31)).
In this manner, the inputs can be seen like (𝐼 ⋅𝐾) vectors.The
outputs for training the network and evolving the population
of the genetic algorithm are two vectors of (𝐼 ⋅𝐾) values of 𝜃𝑘,𝑖
and 𝜙𝑘,𝑖, respectively.
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Table 1: Input parameters to obtain the ANNs and the SR equations.

Parameter Minimum value Maximum value𝑟 0.04m 0.40m𝑅 1.0m 30.0m𝜑0 15.0∘ 55.0∘𝑆max 0.472m 5.870m𝑠 0 1

The selection of cases must be done with caution. The
limit values of the parameters must be present in the training
set to cover their entire domain. Furthermore, specifically
for the ANN, cases with a combination of values inside
the domain are required to enable the network learning of
the cross relationship between the parameters. Additionally,
when selecting the input data, the identification of possible
outliers is necessary. These outliers, which may arise from
numerical errors and/or chosen unreal armor parameters,
may conceive bias to correlation and, therefore, hamper the
modeling of the data.

It is important to highlight that the geodesic lay angle 𝜙 is
a periodic cosine-like shape function,while the 𝜃parameter is
close to a linear function, both with respect to the arc-length
[16]. Therefore, only one pitch of the armor is considered
as representative of the entire length, which significantly
reduces the computational efforts of the finite difference
problem (RK solution). As the shapes of the functions 𝜙 and𝜃 are approximately known, initial forms of these functions,
known as base equations (or seeds), may be stated for the
search of the SR program.This procedure consists in giving a
short-cut in the trajectory followed by the algorithm, which
speeds up the convergence of themodel.These base equations
should be used with caution, because misleading base equa-
tionsmay result in greater computational time effort and even
unreliable responses of the SR program. In this work, the base
equations for 𝜙base and 𝜃base are written, respectively, as

𝜙base (𝑟, 𝑅, 𝜑0, 𝑆max, 𝑠)
= 𝜑0 + 𝑟𝑅 ⋅ tan (𝜑0) ⋅ cos[

sin (𝜑0)𝑟 ⋅ 𝑆max ⋅ 𝑠] ,
𝜃base (𝑟, 𝑅, 𝜑0, 𝑆max, 𝑠) = sin (𝜑0)𝑟 ⋅ 𝑆max ⋅ 𝑠.

(33)

A total of 106 cases were selectedwith discretization in the
arc-length 𝑠 of 51 points (from 0 to 1, normalized) totalizing
5406 training (inputs and outputs) data points. The range
values of the inputs are presented in Table 1 and comprise the
common usage scenarios of flexible pipes.

Moreover, for the ANN to work properly, it is crucial
to randomly sort the input dataset for its training. This is
necessary because discontinuities on the 𝜙 parameter arise
from case to case and theymay end up governing the fitting of
the network. On the other hand, in the SR approach, the data
should be organized case by case in an 𝑠 ascendant manner to
obtain better accuracy.

As discussed in Section 5, the network architecture
consists in the number of inputs, outputs, and nodes in the

Table 2: Input parameters to test the ANNs and the SR equations.

Parameter Minimum value Maximum value𝑟 0.07m 0.35m𝑅 8.0m 13.0m𝜑0 22.0∘ 42.0∘𝑆max 0.657m 5.870m𝑠 0 1

hidden layer. While the numbers of inputs and outputs are
defined by the problem, the quantity of hidden nodes must
be chosen.The capacity of the network to represent functions
increases with the number of nodes employed. However, an
excess of hidden nodes turns the network prone to overfitting
and weak generalization [26]. One way to estimate the suffi-
cient quantity of nodes is to perform a sensitivity analysis by
iteratively varying this parameter and checking the validation
fitting. As the network weights are initialized randomly, the
training procedure stops at a different point in the error
surface (a local minimum) every time the training is done.
Hence, in the sensitivity analysis, the training was repeated 15
times for each number of nodes to compose a statistical view
of the errors (mean and variation). From this study and some
initial test trainings, a hidden layer with 20 nodes was found
to be enough to reach good fitting for both geodesic angles.

Therefore, in this work, two ANNs, one for the radial
angle 𝜃 and the other for the lay angle 𝜙, were trained with 20
nodes each using 80% of the data for the training itself and
the remaining 20% is separated for validation. The selection
was done randomly in the shuffled dataset generated by
numerically solving (17). All networks were trained using the
Neural Network Toolbox� fromMATLAB� [36].

On the other hand, the SR approach results in a series of
equations as viable solutions. Each of these equations carries
a fit measure and a complexity size. The best fit is also the
most complex equation and, therefore, it is wise to choose
the less complex equation with enough accuracy among all
solutions provided.Moreover, as the geodesic has no geodesic
(or binormal) curvature, only equations that nullify (14) are
considered. In the performed SR analyses, the equations that
satisfy all these requirements are

𝜃SR (𝑠) = sin [𝜙SR (𝑠)]𝑟 ⋅ 𝑆max ⋅ 𝑠,
𝜙SR (𝑠) = 𝜙0 + 𝑟𝑅 ⋅ tan (𝜙0) ⋅ cos [𝜃base (𝑠)] − (

𝑟𝑅)
2

⋅ 12 ⋅ tan (𝜙0) ⋅ cos [2 ⋅ 𝜃base (𝑠)] .
(34)

With the trained ANNs and the SR equations, new cases
are selected to test their performance. These cases have
parameters in ranges between the values applied in the
training of the networks and the evolution of the genetic
algorithm. Their values are presented in Table 2. Altogether,
49 cases were generated, which constitute 2499 testing data
points.
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In Figure 9, the results of the ANN approximation and
the SR equations (see (34)) are plotted for a case in which𝑟 = 0.17m, 𝑅 = 8m, 𝜑0 = 31 degrees, and 𝑆max = 2.074m,
while, in Figure 10, the results obtained in a case with 𝑟 =
0.35m, 𝑅 = 13m, 𝜑0 = 22 degrees, and 𝑆max = 5.871m are
presented.These figures indicate that the ANN and SR results

showed agreement with the numerical integration results of
(17) (named RK).

Figures 11 and 12 present the correlation coefficient and
the MSE for the radial and lay angles in all test cases,
respectively. These figures indicate that the correlation of the
radial angle is very high for both the SR and ANN results, as



12 Mathematical Problems in Engineering

 (ANN)
 (SR)

Case ID#

0 5
0

4
8

4
6

4
4

4
2

4
0

3
8

3
6

3
4

3
2

3
0

282624222018161412108642

0.9995

0.9996

0.9997

0.9998

0.9999

1

C
or

re
lat

io
n 

co
effi

ci
en

t (

)

(a)

 (ANN)
 (SR)

Case ID#

0 5
0

4
8

4
6

4
4

4
2

4
0

3
8

3
6

3
4

3
2

3
0

282624222018161412108642

0

1E − 005

2E − 005

3E − 005

M
ea

n 
sq

ua
re

d 
er

ro
r (


)

(b)

Figure 11: (a) Correlation coefficients and (b) MSE in all testing cases, radial angle 𝜃.
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Figure 12: (a) Correlation coefficients and (b) MSE for the testing cases, lay angle 𝜙.

expected from its almost linear behavior. For the lay angle,
the ANN approach led to higher correlation coefficients than
those from the SR approach. The MSEs for the radial angle
are higher than theMSEs for the laying angle, despite its high
fitting.

Furthermore, inwhat concerns themechanical analysis of
flexible pipes, the proposedmodels (ANNs and SR equations)
may be employed to evaluate the curvatures (geodesic and
normal) and torsion of the geodesics considering (4) and
(5). Moreover, these results can also be compared to those
obtained using the approximate expressions proposed by
Sævik [8]:

𝜅𝑛 = sin2 (𝜑0)𝑟 ⋅ [1 − 3𝑅 ⋅ sin (𝜃)
tan2 (𝜑0)] ,

𝜅𝑔 = 0,
𝜏 = sin (𝜑0) ⋅ cos (𝜑0)𝑟

⋅ {1 + 𝑟𝑅 ⋅ cos2 (𝜑0) ⋅ cos (𝜃)} .

(35)

Figures 13 and 14 present the variation of the curvatures
and torsion for the cases illustrated in Figures 9 and 10.These

quantities were predicted by the ANNs, the SR equations,
the approximate expressions proposed by Sævik [8], and the
numerical solution of (17). It is important to highlight, how-
ever, that the values presented in Figures 13 and 14 are varia-
tions of the curvatures and torsion with respect to the initial
configuration of the considered pipes. In these cases, the pipes
are initially straight and the armors can be represented by
cylindrical helices.The variations of these quantities are, thus,
obtained by subtracting the initial curvature parameters (see
(36)) from their final values (see (4)–(6)).

𝜅0𝑛 = sin2 (𝜙)𝑟 ,
𝜅0𝑔 = 0,
𝜏0 = cos (𝜙) ⋅ sin (𝜙)𝑟 .

(36)

Figures 13 and 14 indicate that the quantities calculated
with the proposed ANNs and SR equations are very accurate
in comparison to the numerical values. On the other hand,
the proposedANNs, in some cases, indicate nonnull geodesic
curvatures. The ANNs consider that the dataset employed in
their training is a continuous sign, which is approximated by a
combination of weights and hyperbolic tangential functions.
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Figure 13: Variation of (a) normal curvature, (b) geodesic torsion, and (c) geodesic curvature (case 25): 𝑟 = 0.17m, 𝑅 = 8m, 𝜑0 = 31 degrees,
and 𝑆max = 2.074m.

The overall fitting to the training data is thus approximately
the same along the whole sign. However, the employed
dataset (this sign) is composed of several cases, each one
corresponding to a tensile armor in a different flexible pipe,
resulting in unmeaningful discontinuities from one case to
another that the ANNs try to represent. Hence, the ANNs
overfit these discontinuities and may lose accuracy in the
overall behavior of the meaningful part of the response. On
the other hand, the SR searches for closed form functions
that appear to satisfy the training data, thus guaranteeing the
well representation of the behavior of the geodesic among the

meaningful discrete data points. Therefore, the SR equations,
in this case, seem to be more suitable for the mechanical
analysis of flexible pipes.

In the bending mechanical analysis of flexible pipes,
equations similar to those proposed by Sævik [8] are usually
employed. Figures 13 and 14 indicate that these equations
present differences with respect to the SR, ANN, and numer-
ical results. Figure 14, for instance, indicates that the SR
and the numerical results are almost coincident, while the
maximum normal curvature predicted by (35) is about 12%
higher than the value estimated by the SR equation and the
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Figure 14: Variation of (a) normal curvature, (b) geodesic torsion, and (c) geodesic curvature comparisons: 𝑟 = 0.35m, 𝑅 = 13m, 𝜑0 = 22
degrees, and 𝑆max = 5.871m.

geodesic torsion is 8% lower. Moreover, differences occur not
only in the mid-section of the armor but also along all its
length.

The bending stresses in the tensile armors of flexible pipes
are proportional to the calculated normal curvature and the
torsion in these armors [11]. Furthermore, bending stresses
are important in the computation of their fatigue lives and
slight changes in these stresses may lead to significant modi-
fications in the armor’s service life [17]. Moreover, the normal
curvatures are usually considered as initial imperfections in
the buckling analysis of the tensile armors and, again, the
buckling loads may be affected by changes in the values of
these curvatures [16]. Altogether, the use of the proposed SR
equations may be adequate in both types of analyses.

8. Conclusions

Thestiff nonlinear differential equations of the geodesic curve
of a torus do not have exact solutions and, in this work,
two different approaches are proposed and compared to
approximate this curve, that is, artificial neural networks
(ANNs) and equations obtained by symbolic regression (SR).
These approximated approaches rely on a dataset generated
by numerically solving the geodesic differential equations, in
terms of the radial (𝜃) and lay (𝜙) angles, using the Runge-
Kutta (RK) Lobatto IIIa method.

Both the ANN and the SR approaches agreed quite well
with the dataset results. However, when tested with new data,
the SR equations indicate null geodesic curvatures, while
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the ANN calculates nonnull values. The difference between
the ANN and SR predictions may be probably due to dis-
continuities in the dataset which are caused by the different
case conditions considered in solving the geodesic equations.
These unmeaningful discontinuities affect the overall behav-
ior of the ANN in the meaningful part of the response. The
SR approach, nonetheless, indicated several possible equa-
tions that have the same correlation coefficient with the RK
results, but the admissible equation must have null geodesic
curvature. The solution proposed in this work is thus the one
that has the maximum correlation coefficient with null geo-
desic curvature.

These approximated approaches are of fundamental
importance in the local mechanical bending analysis of flex-
ible pipes. In this analysis, the geodesic of a torus is assumed
as a limit path for the tensile armors of flexible pipes and the
curvatures and torsion of the geodesic need to be determined
to calculate the stresses in these armors. Moreover, the
definition of a limit curve is also important in the stability
analysis of these armors when the pipe is under axial com-
pression. The results obtained with the proposed approaches
were compared to those from equations usually employed in
the mechanical bending analysis of flexible pipes. The curva-
tures and torsion predicted with the SR approach agree with
the numerical (RK) calculation, but not all cases coincide
with the usual equations. Deviations between the analytical
and SR normal curvature and the geodesic torsion up to 12%
and 8% were observed, respectively.

To sum up, it is authors’ belief that the ANNs and, mainly,
the SR equations proposed here can be used as efficient
approximations to the geodesics of a torus, which is of
importance not only in the analysis of flexible pipes but also
in other engineering applications.
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