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In this paper, the problem of robust preview control for uncertain discrete singular systems is considered. First of all, by employing
the forward difference for uncertain discrete singular systems, the singular augmented error system with the state vector, the input
control vector, and the previewable reference signal is derived. Since there is a singular matrix in the system, the existing method
cannot be directly applied to this problem. By considering the stability of the transposition system with Linear Matrix Inequality
(LMI) method, a new stability criterion for the transposition system is introduced. Then, the robust controller for the augmented
error system is obtained, which is regarded as the robust preview controller for the original singular system. At last, the numerical
simulation shows the correctness and effectiveness of the results.

1. Introduction

Since the singular system model [1] is proposed by Rosen-
brock in the early 1970s, the singular system has been widely
studied, and many results are obtained [2, 3]. Especially
after the 1980s, singular systems, as an appropriate tool to
deal with large-scale complex systems with multiobjective
and multidimensional, have been applied to the fields of
singularly perturbed theory [4], large-scale systems theory
[5], circuit system [6], and so on.

In practical, due to the modeling error, the measurement
error, the linear approximation, and the change of working
environment, the uncertainty of the system is objective. And
they are presented as uncertain model parameters, system
perturbation, measurement noise, external interference, etc.
There is no doubt that any controller without considering
the uncertainties may be difficult to achieve an ideal actual
effect or may even cause the collapse of the system.Therefore,
robust control is still regarded as one of the hotspot research
directions in control theory and the applications. And the
study of robust control theory and methods has formed
several important branches, such as Lyapunov-Razumikhin
method [7], Riccati inequality [8], Linear Matrix Inequality
method [9], etc.

For singular systems, uncertain problems also exist [10].
Therefore, the modeling, analysis, and design of uncertain
singular systems are particularly important. The related
research of uncertain singular systems began in the 1980s.The
main purpose of the study is to design a controller to make
the corresponding closed-loop system stable andmeet certain
performance targets, when there are model uncertainty and
external interference in the system.

Preview control is a control technique to improve the
performance of systems by making full use of known future
reference or disturbance signals in advance. Since the preview
control model was first proposed in 1960s, the theoretical
study and the applications of preview control have never
stopped. In recent years, preview control has been extended
to multisampling system [11], singular system [12], time-
varying system [13], and so on. And it has been applied to
many fields, such as automobile control [14], robot control
[15], electromechanical valve control system [16], etc.

Based on many results on the robust preview control
problem of nonsingular system, the robust preview control
problem of singular system is further discussed. Because
of the existence of the singular matrix, a proper Lyapunov
function cannot be found by the currentmethod to design the
robust preview controller. In this paper, a singular augmented
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error system is constructed by using forward differences.
Then, based on the method of [17], a Lyapunov function for
the transposition system of the closed-loop system for the
singular augmented error system is designed. And by the LMI
method, a stability criterion for the transposition system is
obtained. Since the two unforced systems before and after
transposition have the same stability, the robust controller for
the singular augmented error system can be obtained by the
transposition system. As for the original singular system, this
controller is the robust preview controller.

Notation. 𝑃 > 0(𝑃 < 0) denotes the notion that matrix 𝑃
is a positive definite (negative definite) matrix; 𝐼 denotes the
unit matrix; 𝐴 ∈ 𝑅𝑚×𝑛 denotes a𝑚 × 𝑛matrix; the symbol ∗
denotes the symmetric terms in a symmetric matrix.

2. Problem Statement

Consider the following linear uncertain singular system:

𝐸𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑥 (𝑘) + (𝐵 + Δ𝐵) 𝑢 (𝑘)
𝑦 (𝑘) = 𝐶𝑥 (𝑘) (1)

where 𝑥(𝑘) ∈ 𝑅𝑛 is the state vector, 𝑢(𝑘) ∈ 𝑅𝑚 is the input
vector, and 𝑦(𝑘) ∈ 𝑅𝑝 is the output vector. 𝐸 ∈ 𝑅𝑛×𝑛 is
the singular matrix with rank(𝐸) = 𝑞 < 𝑛. The matrices 𝐴,𝐵, and 𝐶 are known real constant matrices with appropriate
dimensions. Thematrices Δ𝐴 and Δ𝐵 are uncertain matrices.

First of all, the definition about admissible is needed.

Definition 1 (see [17]). The dynamic system

𝐸𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) (2)

is said to be admissible if it is regular, causal, and stable.

Then, the following assumption is needed for system (1).

Assumption 2. Thematrices pair (𝐴, 𝐵) is stabilizable and the
matrix [ 𝐴−𝐸 𝐵𝐶 0 ] is of full row rank.

By denoting the previewable reference signal 𝑟(𝑘), the
following assumption is needed.

Assumption 3. The reference signal 𝑟(𝑘) is previewable. That
is, at any time 𝑘, the future values 𝑟(𝑘 + 1), 𝑟(𝑘 + 2), . . . , 𝑟(𝑘 +𝑀𝑟), are available. When 𝜎 > 𝑘+𝑀𝑟, the reference signal 𝑟(𝜎)
is assumed to be unchanged, namely,

𝑟 (𝑘 + 𝑗) = 𝑟 (𝑘 +𝑀𝑟) , 𝑗 = 𝑀𝑟 + 1,𝑀𝑟 + 2, . . . (3)

where𝑀𝑟 is the preview length [18].

About the uncertain matrices Δ𝐴 and Δ𝐵, the following
assumption is needed.

Assumption 4. There exist real constant matrices 𝐸𝑖, 𝐻𝑖(𝑖 =1, 2) with appropriate dimensions and uncertain matricesΣ𝑖(𝑖 = 1, 2) satisfying

Δ𝐴 = 𝐸1Σ1𝐻1,
Δ𝐵 = 𝐸2Σ2𝐻2, (4)

Σ𝑇𝑖 Σ𝑖 ≤ 𝐼, (𝑖 = 1, 2) . (5)

Remark 5. Equation (4) shows that the uncertain matricesΔ𝐴 and Δ𝐵 in system (1) satisfy matching conditions, and (5)
shows that they are norm bounded.

The purpose in this paper is to design a controller for
system (1) with preview compensation to make the output𝑦(𝑘) track the reference value 𝑟(𝑘) accurately when there exist
disturbances Δ𝐴 and Δ𝐵 in system (1).

3. Construction of the Augmented
Error System

The error equation can be defined as follows:

𝑒 (𝑘) = 𝑦 (𝑘) − 𝑟 (𝑘) . (6)

Employing the difference operator as ΔV(𝑘) = V(𝑘 + 1) − V(𝑘)
to (1) and (6), we can obtain

𝐸Δ𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴) Δ𝑥 (𝑘) + (𝐵 + Δ𝐵) Δ𝑢 (𝑘) (7)

and

Δ𝑒 (𝑘) = Δ𝑦 (𝑘) − Δ𝑟 (𝑘) . (8)

Furthermore, (8) can be rewritten as

𝑒 (𝑘 + 1) = 𝑒 (𝑘) + Δ𝑒 (𝑘) = 𝑒 (𝑘) + 𝐶Δ𝑥 (𝑘) − Δ𝑟 (𝑘) . (9)

Putting (7) and (9) together, we have

𝐸0𝑋0 (𝑘 + 1) = (𝐴0 + Δ𝐴0)𝑋0 (𝑘)
+ (𝐵0 + Δ𝐵0) Δ𝑢 (𝑘) + 𝐵𝑟Δ𝑟 (𝑘) ,

(10)
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where

𝑋0 (𝑘) = [ 𝑒 (𝑘)Δ𝑥 (𝑘)] ,

𝐸0 = [𝐼𝑚 0
0 𝐸] ,

𝐴0 = [𝐼𝑚 𝐶0 𝐴] ,

Δ𝐴0 = [0 0
0 Δ𝐴] ,

𝐵0 = [0𝐵] ,

Δ𝐵0 = [ 0Δ𝐵] ,

𝐵𝑟 = [−𝐼𝑚0 ] .

(11)

Define 𝑋𝑟(𝑘) = [ Δ𝑟(𝑘)
...

Δ𝑟(𝑘+𝑀𝑟−1)

]. Since the future 𝑀𝑟
reference signal 𝑟(𝑖) (𝑖 = 𝑘 + 1, 𝑘 + 2, . . . , 𝑘 +𝑀𝑟) is known at
time 𝑘, it follows from the Assumption 3 that 𝑋𝑟(𝑘) satisfies

𝑋𝑟 (𝑘 + 1) = 𝐴𝑟𝑋𝑟 (𝑘) , (12)

where

𝐴𝑟 =
[[[[[[[[[
[

0 𝐼𝑚 ⋅ ⋅ ⋅ 0
0 d d

...
... d 𝐼𝑚
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

]]]]]]]]]
]

,

𝐵𝑃𝑟 = [𝐵𝑟 0 ⋅ ⋅ ⋅ 0] .

(13)

With (10) and (12), the augmented error system can be
written as follows:

𝐸𝑋 (𝑘 + 1) = (𝐴 + Δ𝐴)𝑋 (𝑘) + (𝐵 + Δ𝐵)Δ𝑢 (𝑘) (14)

where

𝑋 (𝑘) = [𝑋0 (𝑘)𝑋𝑟 (𝑘)] ,

𝐸 = [𝐸0 0
0 𝐼𝑀𝑟] ,

𝐴 = [𝐴0 𝐵𝑃𝑟0 𝐴𝑟 ] ,

Δ𝐴 = [Δ𝐴0 00 0] ,

𝐵 = [𝐵00 ] ,

Δ𝐵 = [Δ𝐵00 ] .

(15)

According to the properties of Δ𝐴 and Δ𝐵 in Assump-
tion 4, we have

Δ𝐴 = 𝐸11Σ11𝐻11,
Δ𝐵 = 𝐸22Σ22𝐻22 (16)

where

𝐸11 = [[
[
0
𝐸10
]]
]
,

Σ11 = Σ1,
𝐻11 = [0 𝐻1 0]

𝐸22 = [[
[
0
𝐸20
]]
]
,

Σ22 = Σ2,
𝐻22 = 𝐻2

(17)

The matrices Σ𝑖𝑖(𝑖 = 1, 2) still satisfy Σ𝑖𝑖Σ𝑖𝑖𝑇 ≤ 𝐼,(𝑖 = 1, 2).
Therefore, Δ𝐴 and Δ𝐵 are normal bounded.

4. Design of the Robust Preview Controller

In order to obtain the robust preview controller for system
(1), the stability problem of the unforced discrete singular
nominal system (2) should be considered first and the
following lemmas are needed.

Lemma 6 (see [17]). 
e discrete singular system (2) is
admissible if and only if there exists a matrix > 0 (𝑃 ∈ 𝑅𝑛×𝑛),
a symmetric matrix Φ ∈ 𝑅(𝑛−𝑞)×(𝑛−𝑞)such that

𝐴𝑇 (𝑃 − 𝑅𝑇Φ𝑅)𝐴 − 𝐸𝑇𝑃𝐸 < 0, (18)
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where 𝑅𝐸 = 0. 𝑅 ∈ 𝑅(𝑛−𝑞)×𝑛 is an annihilator basis of the range
space of the matrix 𝐸 and rank(𝑅) = 𝑛 − 𝑞.

If the matrices 𝐸 and 𝐴 are replaced with 𝐸𝑇 and 𝐴𝑇in
system (2), we have

𝐸𝑇𝑥 (𝑘 + 1) = 𝐴𝑇𝑥 (𝑘) (19)

Since 𝐸 is a singular matrix, there always exist nonsingular
matrices 𝑃 and 𝑄, such that 𝑄𝐸𝑃 = [ 𝐼𝑞 0

0 𝑁
] and 𝑄𝐴𝑃 =

[𝐴1 00 𝐼𝑛−𝑞 ] according to the first restricted equivalent form in
[19], where 𝑁ℎ = 0 with a constant ℎ. Substituting 𝑥(𝑘) =𝑃𝑥(𝑘) into (2) gives

𝐸𝑃𝑥 (𝑘 + 1) = 𝐴𝑃𝑥 (𝑘) . (20)

Premultiplying 𝑄 on both sides of (20), we have

𝑄𝐸𝑃𝑥 (𝑘 + 1) = 𝑄𝐴𝑃𝑥 (𝑘) . (21)

(21) can be rewritten as

[𝐼𝑞 00 𝑁][
𝑥𝑞 (𝑘 + 1)𝑥𝑛−𝑞 (𝑘 + 1)] = [

𝐴1 0
0 𝐼𝑛−𝑞][

𝑥𝑞 (𝑘)𝑥𝑛−𝑞 (𝑘)] . (22)

Concretely, we have that 𝑥𝑛−𝑞(𝑘) = 0 is a stable solution for
the second equation of (22). And the stability for the first
equation of (22) is decided by the eigenvalues of 𝐴1.

Similarly, substituting 𝑥(𝑘) = 𝑄𝑇𝑥(𝑘) into (19), we have
𝐸𝑇𝑄𝑇𝑥 (𝑘 + 1) = 𝐴𝑇𝑄𝑇𝑥 (𝑘) . (23)

Premultiplying 𝑃𝑇 on both sides of (20), we have

𝑃𝑇𝐸𝑇𝑄𝑇𝑥 (𝑘 + 1) = 𝑃𝑇𝐴𝑇𝑄𝑇𝑥 (𝑘) . (24)

Corresponding to (22), (24) can be rewritten as

[𝐼𝑞 0
0 𝑁𝑇][

𝑥𝑞 (𝑘 + 1)𝑥𝑛−𝑞 (𝑘 + 1)] = [
𝐴𝑇1 0
0 𝐼𝑛−𝑞][

𝑥𝑞 (𝑘)𝑥𝑛−𝑞 (𝑘)] . (25)

𝑥𝑛−𝑞(𝑘) = 0 is also a stable solution for the second equation of
(25). And the stability for the first equation of (25) is decided
by the eigenvalues of𝐴𝑇1 , which are the same as𝐴1.Therefore,
system (19) is stable if and only if system (2) is stable.

Through the definitions, it is obvious that system (19) is
regular and casual if and only if system (2) is regular and
casual. As a result, Lemma 7 can be obtained.

Lemma 7. 
e discrete singular system (2) is admissible if
there exists amatrix𝑃 > 0 (𝑃 ∈ 𝑅𝑛×𝑛) and a symmetric matrixΦ ∈ 𝑅(𝑛−𝑟)×(𝑛−𝑟) such that

𝐴(𝑃 − 𝑅Φ𝑅𝑇)𝐴𝑇 − 𝐸𝑃𝐸𝑇 < 0 (26)

where 𝑅𝐸 = 0. 𝑅 ∈ 𝑅𝑛×(𝑛−𝑞) is an annihilator basis of the range
space of the matrix 𝐸 and rank(𝑅) = 𝑛 − 𝑞.

Proof. According to Lemma 6, if (26) holds, we can get that
system (19) is admissible. Because of the equality of the two
systems, system (2) is also admissible and vice versa.

Furthermore, Theorem 8 can be obtained.

Theorem 8. 
e discrete singular system (2) is admissible if
there exist a matrix 𝑃 > 0 (𝑃 ∈ 𝑅𝑛×𝑛), a symmetric matrixΦ ∈ 𝑅(𝑛−𝑞)×(𝑛−𝑞), and matrices 𝑌𝑖(𝑖 = 1, 2; 𝑌𝑖 ∈ 𝑅𝑛×𝑛) such that

Π = [Π11 ∗
Π21 Π22] < 0 (27)

where

𝑍 = 𝑃 − 𝑇Φ𝑇𝑇
Π11 = 𝐴𝑌1 + 𝑌𝑇1 𝐴 − 𝐸𝑃𝐸𝑇
Π21 = 𝑌𝑇2 𝐴𝑇 − 𝑌1
Π22 = 𝑍 − 𝑌2 − 𝑌𝑇2 ,

(28)

𝐸𝑇 = 0. 𝑇 ∈ 𝑅𝑛×(𝑛−𝑞) is an annihilator basis of the range space
of the matrix 𝐸 and rank(𝑇) = 𝑛 − 𝑞.
Proof. From (27) and (28), it is easy to see that

Π = 𝑀 + ΛΥ + Υ𝑇Λ𝑇 (29)

where

𝑀 = [−𝐸𝑃𝐸𝑇 𝑍] ,

Λ = [ 𝐴−𝐼𝑛] ,
Υ = [𝑌1 𝑌2] .

(30)

Define 𝐻 = [𝐼𝑛 𝐴]. It is obvious that 𝐻Λ = 0. Pre- and
postmultiplying (29) by𝐻 and𝐻𝑇, from (27) we can get

𝐻𝑀𝐻𝑇 = 𝐴𝑍𝐴𝑇 − 𝐸𝑃𝐸𝑇 = 𝐻Π𝐻𝑇 < 0 (31)

According to Lemma 7, it can be concluded that system (2) is
admissible. This proves the theorem.

In the following, the robust preview controller will be
designed.

Considering the state feedback input of system (14)
described by

Δ𝑢 (𝑘) = 𝐿𝑋 (𝑘) , (32)

the closed-loop system is

𝐸𝑋 (𝑘 + 1) = (𝐴 + 𝐵𝐿)𝑋 (𝑘) (33)

where 𝐴 = 𝐴 + Δ𝐴 and 𝐵 = 𝐵 + Δ𝐵.
Next, the matrix 𝐿, which makes the closed-loop system

(33) admissible, is to be obtained.
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Theorem 9. 
e closed-loop discrete singular system
(33) is admissible, if there exist a matrix �̂� > 0 (�̂� ∈𝑅(𝑛+𝑚+𝑚×𝑀𝑟)×(𝑛+𝑚+𝑚×𝑀𝑟)), a symmetric matrix Φ̂(Φ̂ ∈𝑅(𝑛−𝑞+1)×(𝑛−𝑞+1)), a nonsingular matrix �̂�(�̂� ∈𝑅(𝑛+𝑚+𝑚×𝑀𝑟)×(𝑛+𝑚+𝑚×𝑀𝑟)), a matrix 𝑊 ∈ 𝑅𝑝×(𝑛+𝑚+𝑚×𝑀𝑟),
and some given scalars 𝜌𝑖 (𝑖 = 1, 2), such that

Π̂ = [Π̂11 ∗
Π̂21 Π̂22] < 0 (34)

where

𝑍 = �̂� − �̂�Φ̂�̂�𝑇
Π̂11 = −𝐸�̂�𝐸𝑇 + 𝜌1𝐴�̂� + 𝜌1�̂�𝑇𝐴𝑇 + 𝜌1𝐵𝑊 + 𝜌1𝑊𝑇𝐵𝑇
Π̂21 = −𝜌1�̂� + 𝜌2�̂�𝑇𝐴𝑇 + 𝜌2𝑊𝑇𝐵𝑇
Π̂22 = 𝑍 − 𝜌2�̂� − 𝜌2�̂�𝑇,

(35)

𝐸�̂� = 0. �̂� ∈ 𝑅(𝑛+𝑚+𝑚×𝑀𝑟)×(𝑛−𝑞+1) is an annihilator basis of the
range space of the matrix 𝐸 and rank(�̂�) = 𝑛 − 𝑟 + 1. 
e state
feedback controller (32) is Δ𝑢(𝑘) = 𝑊�̂�−1𝑋(𝑘).
Proof. Based on the results of Theorem 8, replacing 𝐴 with𝐴 + 𝐵𝐿 in (27) and (28), we have (34), where Π̂𝑖𝑗 (𝑖, 𝑗 = 1, 2)
are defined as

𝑍 = �̂� − �̂�Φ̂�̂�𝑇
Π̂11 = 𝐴�̂�1 + �̂�𝑇1 𝐴𝑇 − 𝐸�̂�𝐸𝑇 + 𝐵𝐿�̂�1 + �̂�𝑇1 𝐿𝑇𝐵𝑇
Π̂21 = �̂�𝑇2 𝐴𝑇 + �̂�𝑇2 𝐿𝑇𝐵𝑇 − �̂�1
Π̂22 = 𝑍 − �̂�2 − �̂�𝑇2 ,

(36)

and �̂�𝑖 ∈ 𝑅(𝑛+𝑚+𝑚×𝑀𝑟)×(𝑛+𝑚+𝑚×𝑀𝑟)(𝑖 = 1, 2). Since there exist
some quadratic matrices variables, such as �̂�𝑇𝑖 𝐿𝑇(𝑖 = 1, 2),
(34) is not a strict LMI based on the description of (36). To
tackle the problem effectively,matrices𝑌 ,𝑊 and some scalars𝜌𝑖(𝑖 = 1, 2) are introduced just like the condition in [17]. Let�̂�𝑖 = 𝜌𝑖�̂� and𝑊 = 𝐿�̂�. Substituting 𝜌𝑖�̂� into �̂�𝑖(𝑖 = 1, 2) and
substituting𝑊 into𝐿�̂� in (36), we have (34) and (35). Because�̂� is nonsingular, we have𝐿 = 𝑊�̂�−1 andΔ𝑢(𝑘) = 𝑊�̂�−1𝑋(𝑘).
This proves the theorem.

Since the uncertain terms Δ𝐴 and Δ𝐵 are contained in𝐴 and 𝐵 in (35), the robust controller cannot be directly
obtained by computing (34).

Next, the robust preview controller of system (1) is gained.
First, some other lemmas are needed.

Lemma 10 (see [20]). Let 𝐹 and 𝐺 be matrices of appropriate
dimensions. Let Ξ = diag(Ξ1, Ξ2, . . . , Ξ𝑠), where Ξ1, Ξ2, . . . , Ξ𝑠

are uncertain matrices that satisfy Ξ𝑇𝑖 Ξ𝑖 ≤ 𝐼, (𝑖 = 1, 2, . . . , 𝑠).

en, for arbitrary positive scalars 𝜀1, 𝜀2, . . . , 𝜀𝑠, we have

𝐹Ξ𝐺 + 𝐺𝑇Ξ𝑇𝐹𝑇 ≤ 𝐹Λ̃𝐹𝑇 + 𝐺𝑇Λ̃−1𝐺, (37)

where Λ̃ = diag(𝜀1𝐼, 𝜀2𝐼, . . . , 𝜀𝑠𝐼).
Lemma 11 (see [21]). Considering the matrix 𝑆 = [ 𝑆11 𝑆12

𝑆𝑇12 𝑆22
],

where 𝑆11 and 𝑆22 are symmetric matrices and invertible, the
following three conditions are equivalent:

(1) 𝑆 < 0;
(2) 𝑆11 < 0, 𝑆22 − 𝑆𝑇12𝑆−111𝑆12 < 0;
(3) 𝑆22 < 0, 𝑆11 − 𝑆12𝑆−122𝑆𝑇12 < 0.
Then, we can get Theorem 12.

Theorem 12. If there exist a matrix �̂� > 0 (�̂� ∈𝑅(𝑛+𝑚+𝑚×𝑀𝑟)×(𝑛+𝑚+𝑚×𝑀𝑟)), a symmetric matrix Φ̂(Φ̂ ∈𝑅(𝑛−𝑞+1)×(𝑛−𝑞+1)), a nonsingular matrix �̂�(�̂� ∈𝑅(𝑛+𝑚+𝑚×𝑀𝑟)×(𝑛+𝑚+𝑚×𝑀𝑟)), a matrix 𝑊 ∈ 𝑅𝑝×(𝑛+𝑚+𝑚×𝑀𝑟),
and some given scalars 𝜌𝑖, (𝑖 = 1, 2), 𝜀1 > 0, 𝜀2 > 0 such that

[[[[[[[
[

Λ 1 ∗ ∗ ∗
Λ 2 𝑍 − 𝜌2�̂� − 𝜌2�̂�𝑇 ∗ ∗

𝜌1𝐻11�̂� 𝜌2𝐻11�̂� −𝜀1𝐼 0
𝜌1𝐻22𝑊 𝜌2𝐻22𝑊 0 −𝜀2𝐼

]]]]]]]
]
< 0 (38)

where

𝑍 = �̂� − �̂�Φ̂�̂�𝑇
Λ 1 = 𝜌1𝐴�̂� + 𝜌1�̂�𝑇𝐴𝑇 − 𝐸�̂�𝐸𝑇 + 𝜌1𝐵𝑊 + 𝜌1𝑊𝑇𝐵𝑇
Λ 2 = 𝜌2�̂�𝑇𝐴𝑇 + 𝜌2𝑊𝑇𝐵𝑇 − 𝜌1�̂�,

(39)

the controller

𝑢 (𝑘) = 𝐾𝑒 𝑘∑
𝑗=1

𝑒 (𝑗 − 1) + 𝐾𝑥𝑥 (𝑘)

+ 𝑀𝑟−1∑
𝑗=0

𝑘∑
𝑖=1

𝐾𝑟 (𝑗) Δ𝑟 (𝑖 + 𝑗 − 1) + 𝑢 (0)
− 𝐾𝑥𝑥 (0)

(40)

is the robust preview controller for the discrete singular system
(1).
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Proof. From (34) and (35), we can get

[
[
𝜌1 (𝐴 + Δ𝐴) �̂� + 𝜌1�̂�𝑇 (𝐴 + Δ𝐴)𝑇 − 𝐸�̂�𝐸𝑇 + 𝜌1 (𝐵 + Δ𝐵)𝑊 + 𝜌1𝑊𝑇 (𝐵 + Δ𝐵)𝑇 ∗

𝜌2�̂�𝑇 (𝐴 + Δ𝐴)𝑇 + 𝜌2𝑊𝑇 (𝐵 + Δ𝐵)𝑇 − 𝜌1�̂� 𝑍 − 𝜌2�̂� − 𝜌2�̂�𝑇
]
]

= [𝜌1𝐴�̂� + 𝜌1�̂�𝑇𝐴𝑇 − 𝐸�̂�𝐸𝑇 + 𝜌1𝐵𝑊 + 𝜌1𝑊𝑇𝐵𝑇 ∗
𝜌2�̂�𝑇𝐴𝑇 + 𝜌2𝑊𝑇𝐵𝑇 − 𝜌1�̂� 𝑍 − 𝜌2�̂� − 𝜌2�̂�𝑇]

+ [𝜌1 (𝐸11Σ11𝐻11) �̂� + 𝜌1 (𝐸22Σ22𝐻22)𝑊 𝜌2 (𝐸11Σ11𝐻11) �̂� + 𝜌2 (𝐸22Σ22𝐻22)𝑊0 0 ]

+ [
[
𝜌1�̂�𝑇 (𝐸11Σ11𝐻11)𝑇 + 𝜌1𝑊𝑇 (𝐸22Σ22𝐻22)𝑇 0
𝜌2�̂�𝑇 (𝐸11Σ11𝐻11)𝑇 + 𝜌2𝑊𝑇 (𝐸22Σ22𝐻22)𝑇 0

]
]

(41)

Denote

Ψ = [
[
𝜌1 (𝐴 + Δ𝐴) �̂� + 𝜌1�̂�𝑇 (𝐴 + Δ𝐴)𝑇 − 𝐸�̂�𝐸𝑇 + 𝜌1 (𝐵 + Δ𝐵)𝑊 + 𝜌1𝑊𝑇 (𝐵 + Δ𝐵)𝑇 ∗

𝜌2�̂�𝑇 (𝐴 + Δ𝐴)𝑇 + 𝜌2𝑊𝑇 (𝐵 + Δ𝐵)𝑇 − 𝜌1�̂� 𝑍 − 𝜌2�̂� − 𝜌2�̂�𝑇
]
]
,

Ω = [𝜌1𝐴�̂� + 𝜌1�̂�𝑇𝐴𝑇 − 𝐸�̂�𝐸𝑇 + 𝜌1𝐵𝑊 + 𝜌1𝑊𝑇𝐵𝑇 ∗
𝜌2�̂�𝑇𝐴𝑇 + 𝜌2𝑊𝑇𝐵𝑇 − 𝜌1�̂� 𝑍 − 𝜌2�̂� − 𝜌2�̂�𝑇]

Ξ1 = [𝐸11 𝐸220 0 ] ,

Ξ2 = [Σ11 0
0 Σ22] ,

Ξ3 = [𝜌1𝐻11�̂� 𝜌2𝐻11�̂�𝜌1𝐻22𝑊 𝜌2𝐻22𝑊]

(42)

Then (41) can be rewritten as

Ψ = Ω + Ξ1Ξ2Ξ3 + Ξ3𝑇Ξ2𝑇Ξ1𝑇 (43)

According to the Assumption 4, Ξ2Ξ2𝑇 ≤ 𝐼. Applying
Lemma 10 to (43), we have

Ψ < Ω + Ξ1ΛΞ1𝑇 + Ξ3𝑇Λ−1Ξ3 (44)

where Λ = [ 𝜀1𝐼 𝜀2𝐼 ] , (𝜀1, 𝜀2 > 0).
Therefore, if there exist 𝜀1, 𝜀2 > 0 satisfying Ω+Ξ1ΛΞ1𝑇 +Ξ3𝑇Λ−1Ξ3 < 0, according to Lemma 11, namely, if

[[[[[[
[

Λ̂ 1 ∗ ∗ ∗
Λ̂ 2 𝑍 − 𝜌2�̂� − 𝜌2�̂�𝑇 ∗ ∗

𝜌1𝐻11�̂� 𝜌2𝐻11�̂� −𝜀1𝐼 0
𝜌1𝐻22𝑊 𝜌2𝐻22𝑊 0 −𝜀2𝐼

]]]]]]
]
< 0 (45)

where
𝑍 = �̂� − �̂�Φ̂�̂�𝑇
Λ̂ 1 = 𝜌1𝐴�̂� + 𝜌1�̂�𝑇𝐴𝑇 − 𝐸�̂�𝐸𝑇 + 𝜌1𝐵𝑊 + 𝜌1𝑊𝑇𝐵𝑇

+ 𝜀1𝐸11𝐸𝑇11 + 𝜀2𝐸22𝐸𝑇22
Λ̂ 2 = 𝜌2�̂�𝑇𝐴𝑇 + 𝜌2𝑊𝑇𝐵𝑇 − 𝜌1�̂�.

(46)

The state feedback controller for system (14) is

Δ𝑢 (𝑘) = 𝑊�̂�−1𝑋(𝑘) . (47)

Let 𝐿 = 𝑊�̂�−1 be blocked into 𝐿 =[𝐾𝑒 𝐾𝑥 𝐾𝑟(1) ⋅ ⋅ ⋅ 𝐾𝑟(𝑀𝑟)], then (47) can be expressed as

Δ𝑢 (𝑘) = 𝐾𝑒𝑒 (𝑘) + 𝐾𝑥Δ𝑥 (𝑘) +
𝑀𝑟−1∑
𝑖=0

𝐾𝑟 (𝑖) Δ𝑟 (𝑘 + 𝑖) . (48)
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With regard to the discrete singular system (1), since Δ𝑢(𝑘) =𝑢(𝑘 + 1) − 𝑢(𝑘), we have
𝑢 (1) − 𝑢 (0) = 𝐾𝑒𝑒 (0) + 𝐾𝑥Δ𝑥 (0)
+ 𝑀𝑟−1∑
𝑗=0

𝐾𝑟 (𝑗) Δ𝑟 (𝑗) ,
𝑢 (2) − 𝑢 (1) = 𝐾𝑒𝑒 (1) + 𝐾𝑥Δ𝑥 (1)
+ 𝑀𝑟−1∑
𝑗=0

𝐾𝑟 (𝑗) Δ𝑟 (𝑗 + 1) ,
...

𝑢 (𝑘) − 𝑢 (𝑘 − 1) = 𝐾𝑒𝑒 (𝑘 − 1) + 𝐾𝑥Δ𝑥 (𝑘 − 1)
+ 𝑀𝑟−1∑
𝑗=0

𝐾𝑟 (𝑗) Δ𝑟 (𝑗 + 𝑘 − 1) .

(49)

Add the above 𝑘 equations together on both sides, and move𝑢(0) to the right side of the equation. When 𝑘 ≥ 1, we have

𝑢 (𝑘) = 𝐾𝑒 𝑘∑
𝑗=1

𝑒 (𝑗 − 1) + 𝐾𝑥𝑥 (𝑘)

+ 𝑀𝑟−1∑
𝑗=0

𝑘∑
𝑖=1

𝐾𝑟 (𝑗) Δ𝑟 (𝑖 + 𝑗 − 1) + 𝑢 (0)
− 𝐾𝑥𝑥 (0) .

(50)

(50) is the robust preview controller for system (1). This
proves the theorem.

Remark 13. Since there exists the term∑𝑀𝑟−1𝑗=0 ∑𝑘𝑖=1𝐾𝑟(𝑗)Δ𝑟(𝑖+𝑗−1) in (50), the future know information about the reference
signal 𝑟(𝑡) is considered in the robust controller.

Remark 14. Unlike the free weighting matrix method for
normal system in [22], the difficulty of designing proper
Lyapunov function for singular systems is overcome by
introducing the method of [17].

5. Numerical Simulation

Consider the following system:

𝐸𝑥 (𝑘 + 1) = (𝐴 + Δ𝐴) 𝑥 (𝑘) + (𝐵 + Δ𝐵) 𝑢 (𝑘)
𝑦 (𝑘) = 𝐶𝑥 (𝑘) (51)

where

𝐴 = [ 0 1
−1 −1] ,

𝐵 = [0.21 ] ,
𝐶 = [0.5 0.1] ,
𝜌1 = 0.5,
𝜌2 = 1,
𝐸 = [1 00 0] ,

𝐸1 = [0.15 0.3
0.3 0.15] ,

𝐸2 = [ 0.3 0.15
0.15 0.15] ,

𝐻1 = [0.15 0.150.15 0.15] ,

𝐻2 = [0.150.3 ] ,

Σ1 = [1 0.5] ,

Σ2 = [0.5 0.9] .

(52)

It is proved that [ 𝐴−𝐸 𝐵𝐶 0 ] is invertible and Σ1, Σ2 satisfy
Assumption 4 for any 𝑘. So the system satisfies the fundamen-
tal assumptions.

The reference signal is taken as

𝑟 (𝑘) = {{{
1, 𝑘 ≥ 30
0, 𝑘 < 30 (53)

The preview length is 𝑀𝑟 = 0, 𝑀𝑟 = 1, and 𝑀𝑟 =7, respectively. When 𝑀𝑟 = 0, 𝐾𝑒 = 0.8155, 𝐾𝑥 =[1.8665 3.4830]. When 𝑀𝑟 = 1, 𝐾𝑒 = 0.8583, 𝐾𝑥 =[1.8890 3.5801], 𝐾𝑟 = [−0.7993 −0.5449]. When𝑀𝑟 = 7,𝐾𝑒 = 0.9344, 𝐾𝑥 = [1.9397 3.4174], 𝐾𝑟 = [−0.9115 −0.7297 −0.3429 −0.2242 −0.1183 −0.0682 −0.0352 −0.0175]. And we have Figures 1 and 2.
Figure 1 shows the output response for system (1). Figure 2

shows the tracking error. From the figures we can see that the
output response with preview can track the reference signal
much faster. And along with the preview length increasing,
the overshoots reduced. Meanwhile, the maximum tracking
errors decreased.
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reference signal: r(t)
Mr=0, output response: y(t)
Mr=1, output response: y(t)
Mr=7, output response: y(t)
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Figure 1: The output response of the closed-loop system.

Mr=0, tracking error: e(t)
Mr=1, tracking error: e(t)
Mr=7, tracking error: e(t)
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Figure 2: The tracking error of the closed-loop system.

As a comparison, the “nonrobust” controller is applied
to the uncertain system (51). Similarly, the reference signal is
also taken as

𝑟 (𝑘) = {{{
1, 𝑘 ≥ 30
0, 𝑘 < 30 (54)

and the preview length are𝑀𝑟 = 0 and𝑀𝑟 = 7, respectively.
When 𝑀𝑟 = 0, 𝐾𝑒 = 2.8488, 𝐾𝑥 = [1.6456 10.8839].
When 𝑀𝑟 = 7, 𝐾𝑒 = 1.2201, 𝐾𝑥 = [1.8265 3.7134],𝐾𝑟 = [−1.1122 − 0.8906 − 0.3268 − 0.1548 − 0.0588 −0.0297 − 0.0111 − 0.0047]. Thus, we have Figures 3 and 4.

reference signal: r(t)
Mr=0, output response
based on the robust controller: y(t)
Mr=0, output response
based on the non-robust controller: y(t)
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Figure 3: The output response of the closed-loop system based on
the robust controller and the “nonrobust” controller when𝑀𝑟 = 0.
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reference signal: r(t)
Mr=7, output response
based on the robust controller: y(t)
Mr=7, output response
based on the non-robust controller: y(t)
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Figure 4: The output response of the closed-loop system based
on the robust preview controller and the “nonrobust” preview
controller when𝑀𝑟 = 7.

Figures 3 and 4 are the output response of the closed-loop
system based on the robust controller and the “nonrobust”
preview controller when𝑀𝑟 = 0 and 𝑀𝑟 = 7, respectively.
From these twofigures, it can be easily seen that the overshoot
of the output response based on the robust controller is
smaller than that based on the nonrobust controller, which
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shows the effectiveness of the controller designed in this
paper.

6. Conclusion

In this paper, the robust preview control problem for uncer-
tain discrete singular systems is studied. At first, the singular
augmented error system is constructed. Then, by considering
the stability of the transposition system, some criterions are
gained by using LMI method. At last, the robust controller
for the singular augmented error system is obtained, which
is the robust preview controller for the original uncertain
discrete singular system. The numerical example shows the
effectiveness of this paper.
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