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We extend the univariate 𝛼-quantile residual life function tomultivariate setting preserving its dynamic feature. Principal attributes
of this function are derived and their relationship to the dynamic multivariate hazard rate function is discussed. A corresponding
ordering, namely, 𝛼-quantile residual life order, for random vectors of lifetimes is introduced and studied. Based on the proposed
ordering, a notion of positive dependency is presented. Finally, a discussion about conditions characterizing the class of decreasing
multivariate 𝛼-quantile residual life functions is pointed out.

1. Introduction

For a random lifetime 𝑋, the 𝛼-quantile residual life (𝛼-
QRL) function proposed by Haines and Singpurwalla (1974)
describes the 𝛼-quantile of the well-known remaining life-
time of 𝑋 given its survival at time 𝑥 > 0. This function
has been regarded as a prominent tool in reliability theory
and survival analysis specially due to its potential advan-
tages rather than the popular mean residual lifetime (MRL)
function. Schmittlein and Morrison [1] discussed some of
these advantages and applications of the median residual
life function. Joe and Proschan [2], Gupta and Longford
[3], Franco-Pereira and Uña-Álvarez [4], and Lillo [5] are
among many authors who conducted their researches on
the 𝛼-QRL function. Intuitively, we may deal with vectors
of possibly dependent random lifetimes. In such situations,
extending concerned concepts to multivariate setting allows
us to treat the problems in the right way. The multivariate
statistical methods play a crucial role in studying a wide
variety of several complex engineering models. From many
researchers who have extensively studied the multivari-
ate lifetime measures, we refer to Johnson and Kotz [6],
Arjas and Norros [7], Arnold and Zahedi [8], Baccelli and
Makowski [9], Nair and Nair [10], Shaked and Shanthikumar
[11, 12], Kulkarni and Rattihalli [13], and Hu et. al. [14].

Shaked and Shanthikumar [15] introduced and studied a
dynamic version of the multivariate MRL function. This
function is called dynamic in the sense that it is a measure
conditioned on an observed history (which can consist of
some failures) up to time 𝑥.

Recently, Shafaei Noughabi and Kayid [16] proposed a
bivariate 𝛼-QRL (𝛼-BQRL) function which characterizes the
underlying distribution properly. Although this function is
useful and applicable in statistics and reliability fields, it is
nondynamic. In the areas of reliability theory, the dynamic
residual life function authorizes engineers to track reliability
of their systems at any time given any observed history. As
an example, consider a machine having some belts working
simultaneously. One engineer that tracks the machine may
observe different types of histories. At arbitrary time𝑥, he/she
may observe that (i) all belts may be safely working or (ii) one
ormore of themmay fail at 𝑥.The bivariate 𝛼-QRL (𝛼-BQRL)
function introduced by Shafaei Noughabi andKayid [16] does
not support histories of type (ii). This motivates us to extend
the univariate𝛼-quantile residual life function tomultivariate
setting preserving its dynamic feature. Now we are motivated
to propose a dynamic measure which enables engineer to
describe the belts lifetimes after observing any history, type
(i) or (ii). For the components or subsystems survived
until time 𝑥, the dynamic multivariate 𝛼-QRL (𝛼-MQRL)
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function measures the 𝛼-quantile of the remaining lifetime
conditioned on any possible history at this time. It can be
regarded as a serious competitor for the multivariate MRL
recommended by Shaked and Shanthikumar [15] and may
even be preferred to that due to the comments of Schmittlein
and Morrison [1].

The rest of the paper is arranged as follows. The next
section provides some preparative material that we need to
develop the results. We start our results with the dynamic𝛼-BQRL function and its basic behaviour in Section 3. In
that section, the concept has been generalized to multivariate
setting. Section 4 deals with a new stochastic order for
random vectors based on the proposed 𝛼-MQRL function.
Also, a notion of positive dependency has been proposed
and discussed. Section 5 investigates conditions defining the
class of distributions with decreasing 𝛼-MQRL functions and
provides some related results. Finally, in Section 6, we give a
brief conclusion and some remarks of the current and future
of this research.

Throughout the paper, we assume that the random
vectors X and Y follow absolutely continuous distributions
on the support [0,∞)𝑛.Moreover, to distinguish nondynamic
multivariate functions fromdynamicwe insert a tilde (∼) sign
for nondynamic ones. Also, to provide succinct notations,
denote (𝑥1, . . . , 𝑥𝑖−1, 𝑡, 𝑥𝑖+1, . . . , 𝑥𝑛) by x⟨𝑖; 𝑡⟩.
2. Preliminaries

Let random lifetime 𝑋 be distributed on [0,∞) according to
continuous distribution 𝐹. Then, the well-known hazard rate
and 𝛼-QRL functions are given, respectively, by

𝜆 (𝑥) = − 𝑑𝑑𝑥 ln𝐹 (𝑥) , 𝑥 ≥ 0, (1)

and

𝑞𝛼 (𝑥) = 𝐹−1 (𝛼𝐹 (𝑥)) − 𝑥, 𝑥 ≥ 0, (2)

in which 𝐹(𝑥) = 1 − 𝐹(𝑥) shows the reliability function, 𝛼 =
1 − 𝛼, and 𝐹−1(𝑝) = inf{𝑥; 𝐹(𝑥) = 𝑝} is the inverse function
of 𝐹. These two functions are related in the way of the simple
equation

∫𝑥+𝑞𝛼(𝑥)

𝑥
𝜆 (𝑥) 𝑑𝑥 = − ln𝛼, (3)

which directly can be translated to

1 + 𝑞𝛼 (𝑥) = 𝜆 (𝑥)𝜆 (𝑥 + 𝑞𝛼 (𝑥)) . (4)

It implies immediately that 𝑞𝛼(𝑥) ≥ −1. Moreover, when
the hazard rate is increasing (decreasing) at all points of the
support, the 𝛼-QRL exhibits a decreasing (increasing) form.

Let X = (𝑋1, 𝑋2, . . . , 𝑋𝑛) follow the absolutely continu-
ous reliability function 𝐹. Johnson and Kotz [6] defined the
multivariate hazard rate, as a vector

Λ̃ (x) = −( 𝜕𝜕𝑥1

, 𝜕𝜕𝑥2

, . . . , 𝜕𝜕𝑥𝑛

) ln𝐹 (x) , x ∈ R
+𝑛. (5)

Denote the 𝑖th element of this vector by �̃�𝑖(x). We generalize
the 𝛼-BQRL function proposed by Shafaei Noughabi and
Kayid [16] to define the 𝛼-MQRL given by

q̃𝛼 (x) = (𝑞𝛼,1 (x) , 𝑞𝛼,2 (x) , . . . , 𝑞𝛼,𝑛 (x)) , x ∈ R
+𝑛, (6)

where

𝑞𝛼,𝑖 (x) = inf {𝑡 : 𝐹(𝑖) (𝑡; x) = 𝛼} , (7)

with 𝐹(𝑖)(𝑡; x) = 𝑃(𝑋𝑖 − 𝑥𝑖 > 𝑡 | 𝑋1 > 𝑥1, . . . , 𝑋𝑛 > 𝑥𝑛).
Applying straightforward algebra, it can be written as

𝑞𝛼,𝑖 (x) = 𝐹−1

𝑖 (𝛼𝐹 (x) ; x(−𝑖)) − 𝑥𝑖, (8)

in which 𝐹−1

𝑖 (𝑝; x(−𝑖)) = inf{𝑥𝑖 : 𝐹(x) = 𝑝} and vector
x(−𝑖) has dimension 𝑛 − 1 and is obtained by removing the𝑖th element of x. This version of 𝛼-MQRL gives a measure
just for histories without experiencing any failure which
violates its dynamicity. Nevertheless, it is sufficiently useful
and applicable in reliability engineering and survival analysis
to be studied in detail.

The next result investigates the relation of 𝛼-MQRL
with the multivariate hazard rate function. The proof is
straightforward and hence omitted (cf. Shafaei Noughabi and
Kayid [16]).

Lemma 1. Consider the reliability function 𝐹 with the hazard
rate function Λ̃(x)and the 𝛼-MQRL function q̃𝛼(x); then for
every 𝑖 = 1, 2, . . . , 𝑛 we have

∫𝑥𝑖+𝑞𝛼,1(x)

𝑥𝑖

�̃�𝑖 (x ⟨𝑖; 𝑡⟩) 𝑑𝑡 = − ln𝛼, (9)

and in turn

1 + 𝜕𝜕𝑥𝑖

𝑞𝛼,𝑖 (x) = �̃�𝑖 (x)�̃�𝑖 (x ⟨𝑖; 𝑥𝑖 + 𝑞𝛼,𝑖 (x)⟩) . (10)

3. Dynamic Multivariate 𝛼-Quantile
Residual Life

Let 𝐹 represent the reliability function of a bivariate ran-
dom variable X. For brief representation, denote lim𝛿→0(1/𝛿)𝑃(𝑥1 < 𝑋1 ≤ 𝑥1 + 𝛿,𝑋2 > 𝑥2) by 𝑃𝛿1(𝑋1 = 𝑥1, 𝑋2 > 𝑥2)
and similarly lim𝛿→0(1/𝛿)𝑃(𝑋1 > 𝑥1, 𝑥2 < 𝑋2 ≤ 𝑥2 + 𝛿) by𝑃𝛿2(𝑋1 > 𝑥1, 𝑋2 = 𝑥2).The conditional hazard rate functions
of X are (cf. Shaked and Shanthikumar [15] or Cox [17])

𝜆𝑖 (𝑥) = lim
𝛿→0

1𝛿𝑃 (𝑥 < 𝑋𝑖 ≤ 𝑥 + 𝛿 | X > 𝑥1) ,
𝑖 = 1, 2, 𝑥 ≥ 0,

𝜆1 (𝑥 | 𝑥2)
= lim

𝛿→0

1𝛿𝑃 (𝑥 < 𝑋1 ≤ 𝑥 + 𝛿 | 𝑋1 > 𝑥, 𝑋2 = 𝑥2) ,
𝑥 ≥ 𝑥2 ≥ 0,

(11)
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and

𝜆2 (𝑥 | 𝑥1)
= lim

𝛿→0

1𝛿𝑃 (𝑥 < 𝑋2 ≤ 𝑥 + 𝛿 | 𝑋1 = 𝑥1, 𝑋2 > 𝑥) ,
𝑥 ≥ 𝑥1 ≥ 0.

(12)

Intuitively𝜆𝑖(𝑥), 𝑖 = 1, 2, are referred to initial hazard rate
functions in the sense that they measure the hazard rate for
components before any failure.The underlying distribution 𝐹
can be characterized uniquely by these four functions (cf. Cox
[17]). Shaked and Shanthikumar [15] applied the conditional
hazard rate functions in description attributes of dynamic
bivariate MRL.We define the dynamic 𝛼-BQRL functions by

𝑞𝛼,𝑖 (𝑥) = inf {𝑡 : 𝐹(𝑖) (𝑡; 𝑥) = 𝛼} ,
𝑖 = 1, 2, 𝑥 ≥ 0,

𝑞𝛼,1 (𝑥 | 𝑥2) = inf {𝑡 : 𝐹(1∗) (𝑡; 𝑥, 𝑥2) = 𝛼} ,
𝑥 ≥ 𝑥2 ≥ 0,

(13)

and

𝑞𝛼,2 (𝑥 | 𝑥1) = inf {𝑡 : 𝐹(2∗) (𝑡; 𝑥1, 𝑥) = 𝛼} ,
𝑥 ≥ 𝑥1 ≥ 0, (14)

where

𝐹(𝑖) (𝑡; 𝑥) = 𝑃 (𝑋𝑖 − 𝑥 > 𝑡 | 𝑋1 > 𝑥, 𝑋2 > 𝑥) ,
𝐹(1∗) (𝑡; 𝑥, 𝑥2) = 𝑃 (𝑋1 − 𝑥 > 𝑡 | 𝑋1 > 𝑥, 𝑋2 = 𝑥2) ,

(15)

and

𝐹(2∗) (𝑡; 𝑥1, 𝑥) = 𝑃 (𝑋2 − 𝑥 > 𝑡 | 𝑋1 = 𝑥1, 𝑋2 > 𝑥) . (16)

Simple calculations imply

𝑞𝛼,𝑖 (𝑥) = 𝐹−1

𝑖 (𝛼𝐹 (𝑥, 𝑥) ; 𝑥) − 𝑥, 𝑖 = 1, 2, (17)

𝑞𝛼,1 (𝑥 | 𝑥2) = 𝐹∗−1

1 (𝛼𝑃𝛿2 (𝑋1 > 𝑥, 𝑋2 = 𝑥2) ; 𝑥2)
− 𝑥, (18)

and

𝑞𝛼,2 (𝑥 | 𝑥1) = 𝐹∗−1

2 (𝛼𝑃𝛿1 (𝑋1 = 𝑥1, 𝑋2 > 𝑥) ; 𝑥1)
− 𝑥, (19)

where

𝐹−1

1 (𝑝; 𝑥) = inf {𝑡 : 𝐹 (𝑡, 𝑥) = 𝑝} ,
𝐹∗−1

1 (𝑝; 𝑥2) = inf {𝑦 : 𝑃𝛿2 (𝑋1 > 𝑦, 𝑋2 = 𝑥2) = 𝑝} , (20)

and the expressions for 𝐹−1

2 (𝑝; 𝑥) and 𝐹∗−1

2 (𝑝; 𝑥1) are analo-
gous.

Relations (17) to (19) give us the possibility of computing
the quantiles of remaining life of the surviving components
conditioning on the observed history up to time 𝑥. Thus,
these functions may be relevant for engineers that deal with
systems of multiple dependent objects. They can measure the
remaining quantiles of surviving objects taking the effect of
the observed history at any time 𝑥 into account. The next
result provides the relation between conditional bivariate
hazard rate functions and dynamic 𝛼-BQRL.
Theorem 2. Let 𝑞𝛼,𝑖(𝑥1, 𝑥2), 𝑖 = 1, 2, have continuous
differentiation functions with respect to their both coordinates.
Then, we have

1 + 𝑞𝛼,1 (𝑥) = �̃�1 (𝑥, 𝑥)�̃�1 (𝑥 + 𝑞𝛼,1 (𝑥) , 𝑥) +
𝑃𝛿2 (𝑋1 > 𝑥 + 𝑞𝛼,1 (𝑥 | 𝑥) , 𝑋2 = 𝑥) − 𝑃𝛿2 (𝑋1 > 𝑥 + 𝑞𝛼,1 (𝑥) , 𝑋2 = 𝑥)

𝑃𝛿1 (𝑋1 = 𝑥 + 𝑞𝛼,1 (𝑥) , 𝑋2 > 𝑥) , (21)

1 + 𝑞𝛼,2 (𝑥) = �̃�2 (𝑥, 𝑥)�̃�2 (𝑥, 𝑥 + 𝑞𝛼,2 (𝑥)) +
𝑃𝛿1 (𝑋1 = 𝑥, 𝑋2 > 𝑥 + 𝑞𝛼,2 (𝑥 | 𝑥)) − 𝑃𝛿1 (𝑋1 = 𝑥, 𝑋2 > 𝑥 + 𝑞𝛼,2 (𝑥))𝑃𝛿2 (𝑋1 > 𝑥, 𝑋2 = 𝑥 + 𝑞𝛼,2 (𝑥)) , (22)

1 + 𝑞𝛼,1 (𝑥 | 𝑥2) = 𝜆1 (𝑥 | 𝑥2)𝜆1 (𝑥 + 𝑞𝛼,1 (𝑥 | 𝑥2) | 𝑥2) , (23)

and

1 + 𝑞𝛼,2 (𝑥 | 𝑥1) = 𝜆2 (𝑥 | 𝑥1)𝜆2 (𝑥 + 𝑞𝛼,2 (𝑥 | 𝑥1) | 𝑥1) . (24)

Proof. Due to the relation 𝑞𝛼,1(𝑥) = 𝑞𝛼,1(𝑥, 𝑥), the differentia-
tion of 𝑞𝛼,1(𝑥) can be described as the sum of differentiations
in two directions

𝜕𝜕𝑥𝑞𝛼,1 (𝑥) = 𝜕𝜕𝑥1

𝑞𝛼,1 (𝑥1, 𝑥)𝑥1=𝑥
+ 𝜕𝜕𝑥2

𝑞𝛼,1 (𝑥, 𝑥2)𝑥2=𝑥 ,
(25)

Taking 𝑛 = 2 and applying (10) with 𝑖 = 1 gives the first
expression. By some algebra for the second differentiation, we
have



4 Mathematical Problems in Engineering

1 + 𝑞𝛼,1 (𝑥) = �̃�1 (𝑥, 𝑥)�̃�1 (𝑥 + 𝑞𝛼,1 (𝑥) , 𝑥) +
𝑃𝛿2 (𝑋1 > 𝑥 + 𝑞𝛼,1 (𝑥 | 𝑥) , 𝑋2 = 𝑥) − 𝑃𝛿2 (𝑋1 > 𝑥 + 𝑞𝛼,1 (𝑥) , 𝑋2 = 𝑥)

𝑃𝛿1 (𝑋1 = 𝑥 + 𝑞𝛼,1 (𝑥) , 𝑋2 > 𝑥) , (26)

which shows (21). Analogous statements indicate (22). To
justify (23), we consider

𝑞𝛼,1 (𝑥 | 𝑥2) + 𝑥 = inf {𝑦 : 𝑃𝛿2 (𝑋1 > 𝑦, 𝑋2 = 𝑥2)
= 𝛼𝑃𝛿2 (𝑋1 > 𝑥, 𝑋2 = 𝑥2)} . (27)

By differentiation from 𝑦 with respect to 𝑥 in the equation
inside brackets and applying definition of 𝑞𝛼,1(𝑥 | 𝑥2) the
result follows. In a similar way, (24) is obtained, and this
complete the proof.

Suppose that X consists of two independent components𝑋1 and 𝑋2. It is easily detectable that 𝑞𝛼,1(𝑥 | 𝑥2) = 𝑞𝛼,1(𝑥)
and 𝑞𝛼,2(𝑥 | 𝑥1) = 𝑞𝛼,2(𝑥) for every 𝑥1 and 𝑥2, where 𝑞𝛼,𝑖(𝑥)
shows the 𝛼-QRL defined by (2) for𝑋𝑖. In the sequel, we will
see that a form of positive dependency between 𝑋1 and 𝑋2

implies 𝑞𝛼,1(𝑥) ≥ 𝑞𝛼,1(𝑥 | 𝑥2) and 𝑞𝛼,2(𝑥) ≥ 𝑞𝛼,2(𝑥 | 𝑥1).
Therefore, for 𝑋1 and 𝑋2 positively dependent in such way,
(21) and (22), respectively, imply

1 + 𝑞𝛼,1 (𝑥) ≥ �̃�1 (𝑥, 𝑥)�̃�1 (𝑥 + 𝑞𝛼,1 (𝑥) , 𝑥) , (28)

and

1 + 𝑞𝛼,2 (𝑥) ≥ �̃�2 (𝑥, 𝑥)�̃�2 (𝑥, 𝑥 + 𝑞𝛼,2 (𝑥)) . (29)

Fix 𝑥2 and suppose that 𝜆1(𝑥 | 𝑥2) is increasing in 𝑥 and then
(23) implies that 𝑞𝛼,1(𝑥 | 𝑥2) decreases in 𝑥. Similar argument
holds for 𝑞𝛼,2(𝑥 | 𝑥1).
Example 3. The reliability function

𝐹 (x) = exp {−𝜃1𝑥1 − 𝜃2𝑥2 − 𝜃12 max (𝑥1, 𝑥2)} ,
𝜃1, 𝜃2, 𝜃12 ≥ 0, 𝑥1, 𝑥2 ≥ 0, (30)

proposed byMarshal andOlkin [18] reveals a simple bivariate
structure. Direct calculations show

𝑞𝛼,𝑖 (𝑥) = − ln 𝛼𝜃𝑖 + 𝜃12 , 𝑥 ≥ 0, 𝑖 = 1, 2,
𝑞𝛼,1 (𝑥 | 𝑥2) = − ln 𝛼𝜃1 + 𝜃12 , 𝑥 > 𝑥2 ≥ 0,

(31)

and

𝑞𝛼,2 (𝑥 | 𝑥1) = − ln𝛼𝜃2 + 𝜃12 , 𝑥 > 𝑥1 ≥ 0, (32)

exhibiting constant 𝛼-BQRL functions.

Next, we generalize the concept to multivariate setting.
Let the nonnegative random vector X = (𝑋1, 𝑋2, . . . , 𝑋𝑛)
accommodate distribution 𝐹, and ℎ𝑥 captures history of
events related to 𝑛 components up to time 𝑥, i.e.,

ℎ𝑥 = {X𝐼 = x𝐼, X𝐼 > 𝑥1} , (33)

in which 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑘} shows indices of events up to 𝑥, 𝐼
is the complement of 𝐼 with respect to𝑁 = {1, 2, . . . , 𝑛}, and
1 is a vector of 1’s with proper dimension. Note that 𝑥1 is the
multiplication of scalar 𝑥 by a vector 1 (a vector with same
elements 1 and proper dimension) which clearly reduces to a
vector with the same elements 𝑥 and dimension of 1. Fix the
history ℎ𝑥 as above, and then for any component 𝑗 ∈ 𝐼, the
conditional hazard rate function can be written as

𝜆𝑗 (𝑥 | ℎ𝑥) = lim
𝛿→0

1𝛿𝑃 (𝑥 < 𝑋𝑗 ≤ 𝑥 + 𝛿 | ℎ𝑥) ,
𝑥 ≥ 0,

(34)

which describes the probability of instant failure of com-
ponent 𝑗 at time 𝑥, given history ℎ𝑥. For empty set 𝐼, we
have initial hazard functions. Denote 𝛼-quantile of a random
variable 𝑋 with reliability function 𝐹 by 𝑄𝛼(𝑋) = 𝐹−1(𝛼).
Then for 𝑗 ∈ 𝐼, we define the 𝛼-MQRL function at time 𝑥 by

𝑞𝛼,𝑗 (𝑥 | ℎ𝑥) = 𝑄𝛼 (𝑋𝑗 − 𝑥 | ℎ𝑥) , 𝑥 ≥ 0, (35)

which can be simplified to

𝑞𝛼,𝑗 (𝑥 | ℎ𝑥)
= inf {𝑦 : 𝑃 (𝑋𝑗 − 𝑥 > 𝑦 | 𝑋𝐼 = 𝑥𝐼, 𝑋𝐼 ≥ 𝑥1)
= 𝛼}
= inf {𝑦 : 𝑃𝐼 (𝑋𝑗 > 𝑥 + 𝑦, 𝑋𝐼 ≥ 𝑥1, 𝑋𝐼 = 𝑥𝐼)
= 𝛼𝑃𝐼 (𝑋𝐼 = 𝑥𝐼, 𝑋𝐼 ≥ 𝑥1)} .

(36)

For a simple representation denote

lim
𝛿𝑖→0, 𝑖∈𝐼

(∏
𝑖∈𝐼

1𝛿𝑖)
⋅ 𝑃 (X𝐼 > x𝐼 , 𝑥𝑖 < 𝑋𝑖 ≤ 𝑥𝑖 + 𝛿𝑖, 𝑖 ∈ 𝐼)

(37)
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by 𝑃𝛿𝐼(X𝐼 = x𝐼,X𝐼 > x𝐼 ). Observing history ℎ𝑥 = {𝑋1 >𝑥, . . . , 𝑋𝑛 > 𝑥} at 𝑥, i.e., 𝐼 = 0, we have the initial 𝛼-MQRL
functions that can be calculated as

𝑞𝑖,𝛼 (𝑥) = inf {𝑦 : 𝐹(𝑥, . . . , 𝑥 + 𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑖th element

, . . . , 𝑥)

= 𝛼𝐹 (𝑥, . . . , 𝑥)} = inf {𝑦 : 𝐹 (𝑥, . . . , 𝑥 + 𝑦, . . . , 𝑥)
= 𝛼𝐹 (𝑥, . . . , 𝑥)} − 𝑥.

(38)

Theorem 4. Assume that 𝑞𝛼,𝑖(𝑥1, . . . , 𝑥𝑛), 𝑖 = 1, 2, . . . , 𝑛,
defined by (7), have continuous differentiation functions with
respect to their coordinates. If 𝐼 = 0, we have a system of 𝑛
equations

1 + 𝑞𝛼,𝑖 (𝑥) = �̃�𝑖 (𝑥, . . . , 𝑥)�̃�𝑖 (𝑥, . . . , 𝑥 + 𝑞𝛼,𝑖 (𝑥) , . . . , 𝑥) +
𝑛∑

𝑗=1,𝑗 ̸=𝑖

[𝑃𝛿𝑗 (𝑋𝑗 = 𝑥, 𝑋𝑖 > 𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑖) , 𝑋𝑟 > 𝑥; 𝑟 = 1, . . . 𝑛, 𝑟 ̸= 𝑖, 𝑗)
𝑃𝛿𝑖 (𝑋1 > 𝑥, . . . , 𝑋𝑖 = 𝑥 + 𝑞𝛼,𝑖 (𝑥) , . . . , 𝑋𝑛 > 𝑥)

− 𝑃𝛿𝑗 (𝑋𝑗 = 𝑥, 𝑋𝑖 > 𝑥 + 𝑞𝛼,𝑖 (𝑥) , 𝑋𝑟 > 𝑥; 𝑟 = 1, . . . 𝑛, 𝑟 ̸= 𝑖, 𝑗)
𝑃𝛿𝑖 (𝑋1 > 𝑥, . . . , 𝑋𝑖 = 𝑥 + 𝑞𝛼,𝑖 (𝑥) , . . . , 𝑋𝑛 > 𝑥) ] ,

(39)

for 𝑖 = 1, . . . , 𝑛. Also, if we fix the history at 𝑥 by ℎ𝑥 = {X𝐽 =
x𝐽,X𝐽 > 𝑥1}, where x𝐽 < 𝑥1, then for any survived component𝑖 ∈ 𝐽 at 𝑥 we can write

1 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥) = 𝜆𝑖 (𝑥 | ℎ𝑥)𝜆∗
𝑖 (𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥) | 𝑐ℎ𝑥+𝑞𝛼,𝑖 (𝐽 − {𝑖})) + 𝛼∑𝑛

𝑘∈𝐽 ̸=𝑖 𝑃𝛿(𝐽∪{𝑘}) (X𝐽 = x𝐽, 𝑋𝑘 = 𝑥, X𝐽−{𝑘} > 𝑥1)
𝑃𝛿({𝑖}∪𝐽) (𝑋𝑖 = 𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥) , X𝐽 > 𝑥1, X𝐽 = x𝐽)

− ∑𝑛
𝑘∈𝐽 ̸=𝑖 𝑃𝛿({𝑘}∪𝐽) (X𝐽 = x𝐽, 𝑋𝑘 = 𝑥, X𝐽−{𝑘} > 𝑥1, 𝑋𝑖 > 𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥))𝑃𝛿({𝑖}∪𝐽) (𝑋𝑖 = 𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥) , X𝐽 > 𝑥1, X𝐽 = x𝐽) ,

(40)

where

𝜆∗
𝑖 (𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥) | 𝑐ℎ𝑥+𝑞𝛼,𝑖 (𝐽 − {𝑖}))
= 𝑃𝛿({𝑖}∪𝐽) (𝑋𝑖 = 𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥) , X𝐽 > 𝑥1, X𝐽 = x𝐽)𝑃𝛿𝐽 (𝑋𝑖 > 𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥) , X𝐽 > 𝑥1, X𝐽 = x𝐽)

(41)

represents instantaneous risk of failure of component 𝑖 by time𝑥 + 𝑞𝛼,𝑖(𝑥 | ℎ𝑥), given history ℎ𝑥 up to time 𝑥 and censored
history of components 𝐽 except 𝑖 after 𝑥.
Proof. As (38) shows, 𝑞𝛼,𝑖(𝑥) equals 𝑞𝛼,𝑖(𝑥, . . . , 𝑥) defined by
(7), so

𝑞𝛼,𝑖 (𝑥) =
𝑛∑

𝑗=1

𝜕𝜕𝑥𝑗

𝑞𝛼,𝑖 (𝑥1 ⟨𝑗; 𝑥𝑗⟩)
𝑥𝑗=𝑥 . (42)

The 𝑖th term of this summation is
𝜕𝜕𝑥𝑖

𝑞𝛼,𝑖 (𝑥1 ⟨𝑖; 𝑥𝑖⟩)𝑥𝑖=𝑥
= �̃�𝑖 (𝑥, . . . , 𝑥)�̃�𝑖 (𝑥, . . . , 𝑥 + 𝑞𝛼,𝑖 (𝑥) , . . . , 𝑥) − 1.

(43)

Other terms of it can be obtained by differentiation fromboth
sides of the following equality with respect to𝑥𝑗 at point𝑥, for𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑖:

𝐹 ((𝑥, . . . , 𝑥 + 𝑞𝛼,𝑖 (𝑥1⟨𝑗; 𝑥𝑗⟩) , . . . , 𝑥𝑛) ⟨𝑥𝑗⟩)
= 𝛼𝐹 (𝑥1⟨𝑗; 𝑥𝑗⟩) , (44)

which proves (39). To show (40), we can differentiate from
both sides of

𝑃𝛿𝐽 (𝑋𝑖 > 𝑥 + 𝑞𝛼,𝑖 (𝑥 | ℎ𝑥) , X𝐽 > 1𝑥, X𝐽 = x𝐽)
= 𝛼𝑃𝛿𝐽 (X𝐽 = x𝐽, X𝐽 > 1𝑥) , (45)

with respect to 𝑥, and hence the proof is completed.

4. Multivariate 𝛼-Quantile Residual Life Order
Stochastic orderings are very useful tools and have several
applications in various areas such as probability, statistics,
reliability engineering, and statistical decision theory. In liter-
ature, several concepts of stochastic orders between random
variables have been given (cf. Shaked and Shanthikumar [19],
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as an excellent treatment of this topic). Consider two lifetime
random variables 𝑋 and 𝑌 with reliability functions 𝐹 and 𝐺
in the univariate context. Statisticians apply different ordering
criteria in their investigations. As a simple one, 𝑋 is said to
be smaller than 𝑌 in the usual stochastic order,𝑋≤𝑠𝑡 𝑌, if for
every 𝑥 > 0, 𝐹(𝑥) ≤ 𝐺(𝑥). In the multivariate framework,
X≤𝑠𝑡 Ywhen𝐸𝜑(X) ≤ 𝐸𝜑(Y) for all nondecreasing functions𝜑 : 𝑅+𝑛 → 𝑅+ for which these expectations exist.

As a stronger ordering, 𝑋 is said to be smaller than 𝑌 in
the hazard rate order,𝑋≤ℎ𝑟 𝑌, if

𝐹 (𝑥2) 𝐺 (𝑥1) ≤ 𝐹 (𝑥1)𝐺 (𝑥2) , (46)

for all 𝑥1 ≤ 𝑥2. Provided that 𝑋 and 𝑌 are equipped with
the hazard rate functions 𝜆𝑋 and 𝜆𝑌 respectively, condition
(46) is equivalent with the inequality 𝜆𝑋(𝑥) ≥ 𝜆𝑌(𝑥) for every𝑥 ≥ 0.

To extend some reliability and ageing concepts for ran-
dom vectors, we should be able to compare possibly different
histories. In the simplest case, we consider two histories with
same lengths. At every time 𝑥, the history ℎ𝑥 is referred to be
more severe than ℎ𝑥, denoted as ℎ𝑥 ⪯ ℎ𝑥, if

(i) every failed component in ℎ𝑥 also be failed in ℎ𝑥;
(ii) for common failures in both ℎ𝑥 and ℎ𝑥, the failures inℎ𝑥 are earlier than failures in ℎ𝑥.
More formally,

ℎ𝑋𝑥 = {X𝐼 = x𝐼, X𝐽 = x𝐽, X(𝐼∪𝐽) > 𝑥1} , (47)

and

ℎ𝑌𝑥 = {Y𝐼 = y𝐼, Y𝐼 > 𝑥1} , (48)

where 𝐼 ∩ 𝐽 = 0, 01 ≤ x𝐼 ≤ y𝐼 ≤ 𝑥1 and 01 ≤ x𝐽 ≤ 𝑥1. In
view of these notations, X is defined to be smaller than Y in
the hazard rate order, X≤ℎ𝑟 Y, if for every 𝑥 ≥ 0

𝜆𝑋
𝑗 (𝑥 | ℎ𝑋𝑥 ) ≥ 𝜆𝑌

𝑗 (𝑥 | ℎ𝑌𝑥) , (49)

whenever ℎ𝑌𝑥 ⪯ ℎ𝑋𝑥 , 𝑗 ∈ (𝐼 ∪ 𝐽); that is, 𝑗 shows a component
survived in both histories and 𝜆𝑋

𝑗 and 𝜆𝑌
𝑗 are the multivariate

hazard rate functions defined in (34) corresponding to X
and Y, respectively. This order is not reflexive; that is,
X≤ℎ𝑟 X is not necessarily the case and implies a kind of
positive dependency, namely, hazard increasing upon failure
(cf. Shaked and Shanthikumar [11, 20] and Belzunce et. al.
[21]).

In many problems, we may deal with situations in which
some of 𝑋𝑖’s are identically zero. Without loss of generality,
X can be rearranged such that just 𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑘, is
identically zero and the rest of the vectors are absolutely
continuous. Then, we say X≤ℎ𝑟 X if (49) is true for 𝑗 > 𝑘.

As a weaker order,𝑋 is said to be smaller than 𝑌 in the 𝛼-
quantile residual life order, denoted as 𝑋≤𝛼−𝑞 𝑌, if for every𝑥 ≥ 0

𝑞𝑋𝛼 (𝑥) ≤ 𝑞𝑌𝛼 (𝑥) . (50)

Franco-Pereira et. al. [22] proved that 𝑋≤ℎ𝑟 𝑌 if for any 𝛼 ∈(0, 1) we have𝑋≤𝛼−𝑞 𝑌. Here, we define X to be smaller than
Y in the 𝛼-quantile residual life if order X≤𝛼−𝑞 Y, if

𝑞𝑋𝛼,𝑗 (𝑥 | ℎ𝑋𝑥 ) ≤ 𝑞𝑌𝛼,𝑗 (𝑥 | ℎ𝑌𝑥) , (51)

whenever ℎ𝑌𝑥 ⪯ ℎ𝑋𝑥 and for all components 𝑗 alive in both
histories. Likemultivariate hazard rate order, it is not reflexive
too. In fact X≤𝛼−𝑞X shows a positive dependency between
components of X. Situations in which some of 𝑋𝑖’s are
identically zero can be treated as explained for multivariate
hazard rate order.

Theorem 5. For two vectorsX andY,X≤ℎ𝑟 Y if and only if for
every 𝛼 ∈ (0, 1) we have X≤𝛼−𝑞 Y.

Proof. Firstly, we show that X≤ℎ𝑟 Y if and only if for every
𝑥 ≥ 0, 𝑡 ≥ 0, ℎ𝑌𝑥 ⪯ ℎ𝑋𝑥 , and 𝑗 are alive in both of them

𝑃(𝑋𝑗 − 𝑥 > 𝑡 | ℎ𝑋𝑥 ) ≤ 𝑃 (𝑌𝑗 − 𝑥 > 𝑡 | ℎ𝑌𝑥) . (52)

To achieve this, let ℎ𝑋𝑥 = {X𝐼 = x𝐼,X𝐽 = x𝐽,X(𝐼∪𝐽) > 𝑥1} andℎ𝑌𝑥 = {Y𝐼 = x̃𝐼,Y𝐼 > 𝑥1}. We notice that X≤ℎ𝑟 Y if

lim
𝜖→0

1𝜖𝑃𝛿𝐼 (𝑥 < 𝑌𝑗 < 𝑥 + 𝜖, ℎ𝑌𝑥) 𝑃𝛿(𝐼∪𝐽) (ℎ𝑋𝑥 )
− lim

𝜖→0

1𝜖𝑃𝛿(𝐼∪𝐽) (𝑥 < 𝑋𝑗 < 𝑥 + 𝜖, ℎ𝑋𝑥 ) 𝑃𝛿𝐼 (ℎ𝑌𝑥)
≤ 0,

(53)

which is equivalent to the statement that

𝑃𝛿(𝐼∪𝐽) (ℎ𝑋𝑥 )
𝑃𝛿𝐼 (ℎ𝑌𝑥) (54)

is decreasing in the 𝑗th survived component at 𝑥. Denote{Y𝐼 = x̃𝐼,Y𝐼 > 𝑥1, 𝑌𝑗 > 𝑦} by ℎ𝑌𝑥 [𝑗, 𝑦] and assume similar

notation ℎ𝑋𝑥 [𝑗, 𝑥]. Now it is easy to check that (54) is the case
if

𝑃𝛿(𝐼∪𝐽) (ℎ𝑋𝑥 [𝑗, 𝑥 + 𝑡])
𝑃𝛿(𝐼∪𝐽) (ℎ𝑋𝑥 [𝑗, 𝑥]) ≤ 𝑃𝛿𝐼 (ℎ𝑌𝑥 [𝑗, 𝑥 + 𝑡])

𝑃𝛿𝐼 (ℎ𝑌𝑥 [𝑗, 𝑥]) , (55)

for every 𝑥 ≥ 0, 𝑡 ≥ 0, which is apparently equivalent to (52).
Thus, the result follows by definition of 𝛼-MQRL function in
(35) and (52), and the proof is completed.

Remark 6. Let 𝑥 and two histories ℎ𝑥 ⪯ ℎ𝑥 be fixed. It can be
seen from Shaked and Shanthikumar [15] thatX ≤ℎ𝑟 Y implies

[(X − 𝑥1)+ | ℎ𝑥] ≤𝑠𝑡 [(Y − 𝑥1)+ | ℎ𝑥] , (56)

in which (X − 𝑥1)+ is the vector ((𝑋1 − 𝑥)+, . . . , (𝑋𝑛 − 𝑥)+)
and (𝑋𝑖 − 𝑥)+ = max{𝑋𝑖 − 𝑥, 0}, 𝑖 = 1, . . . , 𝑛. As can be seen
from the proof of Theorem 5, we can write

X≤ℎ𝑟 Y ⇐⇒ [(X − 𝑥1)+ | ℎ𝑥] ≤𝑠𝑡 [(Y − 𝑥1)+ | ℎ𝑥]
for every 𝑥 ≥ 0 and ℎ𝑥 ⪯ ℎ𝑥.

(57)



Mathematical Problems in Engineering 7

Assume that the structure of a lifetime vector X satis-
fies the following rule. For an alive component, the more
severe history it belongs to, the smaller 𝛼-MQRL values
are expected; i.e., the 𝛼-MQRL is decreasing in history ℎ𝑥.
Intuitively, this structure describes a positive dependency
between lifetimes. More precisely, we say that X is 𝛼-QRL
decreasing upon failure (𝛼-QRL-DF) if for every 𝑥 ≥ 0

𝑞𝑋𝛼,𝑖 (𝑥 | ℎ𝑥) ≤ 𝑞𝑋𝛼,𝑖 (𝑥 | ℎ𝑥) , (58)

where ℎ𝑥 ⪯ ℎ𝑥 and 𝑖 is an alive component at time 𝑥 in both
histories. Apparently, it is equivalent to say that

X≤𝛼−𝑞X. (59)

Shaked and Shanthikumar [15] discussed a similar depen-
dency based on the multivariate MRL, namely, MRL-DF
property.The condition investigated in the following theorem
provides a simpler investigation of 𝛼-QRL-DF property
which is similar to characterizations for MRL-DF, weakened
by failure (WBF), supportive lifetimes (SL), hazard rate
increase upon failure (HIF), and multivariate totally positive
of order 2 (MTP2) presented in Shaked and Shanthikumar
[11, 15].

Theorem 7. A sufficient and necessary condition for X to be𝛼-QRL-DF is that
[X𝐼 − 𝑥1 | X𝐼 = x𝐼, 𝑋𝑗 = 𝑥, X𝐼−{𝑗} > 𝑥1]
≤𝛼−𝑞 [X𝐼 − 𝑥1 | X𝐼 = x𝐼, X𝐼 > 𝑥1] , (60)

for every 𝐼 ⊂ {1, . . . , 𝑛}, 𝑗 ∈ 𝐼, 𝑥 ≥ 0, and 01 ≤ x𝐼 ≤ 𝑥1.
Proof. First, we state (60) in terms of 𝛼-MQRL of X. Rename
vectors of the left hand side and right hand side of (60) by X1

and X2, respectively. Let 𝐼, 𝑗, and 𝑥 be fixed and note that X1

has one zero value and therefore its dimension is one unit less
than dimension of X2. Then, (60) is equivalent to

𝑞𝑋1𝛼,𝑘 (𝑦 | ℎ∗𝑦) ≤ 𝑞𝑋2𝛼,𝑘 (𝑦 | ℎ∗𝑦) , (61)

whence ℎ∗𝑦 ⪯ ℎ∗𝑦; 𝑘 ∈ 𝐼 − {𝑗} shows a component alive at time
𝑦 at both histories ℎ∗𝑦 and ℎ∗𝑦 and 𝑦 ≥ 0. On the other hand,
we have

𝑞𝑋1𝛼,𝑘 (𝑦 | ℎ∗𝑦)
= 𝑞𝑋𝛼,𝑘 (𝑥 + 𝑦 | {X𝐼 = x𝐼, 𝑋𝑗 = 𝑥, ℎ∗𝑦}) ,

(62)

and

𝑞𝑋2𝛼,𝑘 (𝑦 | ℎ∗𝑦) = 𝑞𝑋𝛼,𝑘 (𝑥 + 𝑦 | {X𝐼 = x𝐼, ℎ∗𝑦}) (63)

Thus, we can write (61) in the form

𝑞𝑋𝛼,𝑘 (𝑥 + 𝑦 | {X𝐼 = x𝐼, 𝑋𝑗 = 𝑥, ℎ∗𝑦})
≤ 𝑞𝑋𝛼,𝑘 (𝑥 + 𝑦 | {X𝐼 = x𝐼, ℎ∗𝑦}) ,

(64)

for every 𝑦 ≥ 0, ℎ∗𝑦 ⪯ ℎ∗𝑦 and 𝑘 ∈ 𝐼−{𝑖}which is alive in both
histories. Clearly, (58) implies (64) which by the fact that 𝐼, 𝑗,
and 𝑥 are arbitrary proves the necessity part.

To show sufficiency, assume that (60) holds and ℎ𝑡 ⪯ ℎ𝑡
are two arbitrary histories up to time 𝑡 ≥ 0. We need to show
that

𝑞𝑋𝛼,𝑘 (𝑡 | ℎ𝑡) ≤ 𝑞𝑋𝛼,𝑘 (𝑡 | ℎ𝑡) (65)

for every component 𝑘 survived at 𝑡 in ℎ𝑡. Note that ℎ𝑡
requires at least one recorded failure with failure time strictly
greater than maximum failure times of ℎ𝑡, to be more
sever than ℎ𝑡. If both of these histories contain same failed
components which occur in same times, denote this set of
common failed components and their failure times by 𝐼 and
x𝐼, respectively. If there are not such common failures, set𝐼 = 0. Then, if 𝐼 ̸= 0, let 𝑗 be the first component (which
its existence is guaranteed) failed after components 𝐼 and 𝑥
denote its failure time. When 𝐼 = 0, let 𝑗 and 𝑥 be the first
failed component of ℎ𝑡 and its failure time, respectively. Now,
two different cases are possible in history ℎ𝑡 about component𝑗:

(i) it be alive at time 𝑡
(ii) it fails at a time ∘𝑥 such that 𝑥 ≤ ∘𝑥 ≤ 𝑡.

Based on these arrangements, ℎ𝑡 and ℎ𝑡 can be written
in one of the following cases (a) or (b):

(a) ℎ𝑡 = {X𝐼 = x𝐼, 𝑋𝑗 = 𝑥,X𝐴 = x𝐴,X𝐵 = x𝐵,X𝐶 >𝑡1},
andℎ𝑡 = {X𝐼 = x𝐼,X𝐴 = ∘x𝐴,X𝐵∪𝐶∪{𝑗} > 𝑡1},
where 𝑥1 ≤ x𝐴 ≤ ∘x𝐴 ≤ 𝑡1 and 𝑥1 ≤ x𝐵 ≤ 𝑡1.

(b) ℎ𝑡 = {X𝐼 = x𝐼, 𝑋𝑗 = 𝑥,X𝐴 = x𝐴,X𝐵 = x𝐵,X𝐶 >𝑡1},
andℎ𝑡 = {X𝐼 = x𝐼, 𝑋𝑗 = ∘𝑥,X𝐴 = ∘x𝐴,X𝐵∪𝐶 > 𝑡1},
where 𝑥1 ≤ x𝐴 ≤ ∘x𝐴 ≤ 𝑡1, 𝑥1 ≤ x𝐵 ≤ 𝑡1, and𝑥 ≤ ∘𝑥 ≤ 𝑡.

In either case, (60) implies that 𝑞𝑋𝛼,𝑘(𝑡 | ℎ𝑡) ≤ 𝑞𝑋𝛼,𝑘(𝑡 | ℎ𝑡)
for every alive component 𝑘 at time 𝑡 in history ℎ𝑡, and this
completes the proof.

Remark 8. A random vector X is said to hold positive
dependency property SL if

[X𝐼 − 𝑥1 | X𝐼 = x𝐼, 𝑋𝑗 = 𝑥, X𝐼−{𝑗} > 𝑥1]
≤ℎ𝑟 [X𝐼 − 𝑥1 | X𝐼 = x𝐼, X𝐼 > 𝑥1] , (66)

while 𝐼 ⊂ {1, . . . , 𝑛}, 𝑗 ∈ 𝐼, 𝑥 ≥ 0, and 01 ≤ x𝐼 ≤ 𝑥1 (cf.
Shaked and Shanthikumar [11] for more information). Now
byTheorem 5, it is immediate that

X is SL ⇐⇒ X is 𝛼-QRL-DF for all 𝛼 ∈ (0, 1) . (67)
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5. Decreasing 𝛼-MQRL Class of
Life Distributions

The study of changes in the properties of any model, as the
constituent components vary, is of great interest. A univariate
random lifetime 𝑋 is said to accommodate decreasing 𝛼-
QRL if 𝑞𝛼(𝑥) is decreasing in 𝑥 ≥ 0 or one of the following
equivalent conditions hold:

[𝑋 − 𝑥 | 𝑋 ≥ 𝑥] ≤𝛼−𝑞𝑋, (68)

[𝑋 − 𝑥 | 𝑋 ≥ 𝑥] ≤𝛼−𝑞 [𝑋 − 𝑥 | 𝑋 ≥ 𝑥] ,
𝑥 ≥ 𝑥 ≥ 0. (69)

To extend these conditions in the dynamic multivariate
setting, we need to generalize the concept of comparing
severity of two histories, discussed in Section 4, in the case
that their lengths are not necessarily equal. Consider two
histories ℎ𝑥 and ℎ𝑥 with different lengths 𝑥 ≤ 𝑥. Then, ℎ𝑥 is
referred to be more severe than ℎ𝑥, notationally ℎ𝑥 ⪯ ℎ𝑥 , ifℎ𝑥 ⪯ ℎ𝑥, where ℎ𝑥 contains all information of ℎ𝑥 over [0, 𝑥].

Define a shift operator 𝜃𝑥 on a random vectorX by 𝜃𝑥X =(X − 𝑥1)+, 𝑥 ≥ 0. For a random vector X, we extend the
arguments (68) and (69), respectively, by

[𝜃𝑥X | ℎ𝑥] ≤𝛼−𝑞X, 𝑥 ≥ 0, (70)

for every arbitrary history ℎ𝑥 and
[𝜃𝑥X | ℎ𝑥] ≤𝛼−𝑞 [𝜃𝑥X | ℎ𝑥] , 𝑥 ≥ 𝑥 ≥ 0, (71)

whence ℎ𝑥 ⪯ ℎ𝑥 . These extensions are similar to conditions
for multivariate decreasing mean residual life by Shaked and
Shanthikumar [15]. Another possible extension of (69) is

[𝜃𝑥X | ℎ𝑥] ≤𝛼−𝑞 [𝜃𝑥X | ℎ𝑥] , 𝑥 ≥ 𝑥 ≥ 0, (72)

where ℎ𝑥 and ℎ𝑥 coincide on the interval [0, 𝑥]. This means
that all failed components in ℎ𝑥 are failed in ℎ𝑥 too with
equal failure times. The condition (72) is similar to the
multivariate increasing failure rate, proposed inArjas [7], and
a multivariate decreasing mean residual life notion of Shaked
and Shanthikumar [15].

Here we need some further notations to prove the
following result. For 𝑎 < 𝑏, let ℎ[𝑎,𝑏] represent a history which
gives us those components alive at 𝑎 and components failed
in the interval [𝑎, 𝑏] along with their failure times. Then, the
previously defined history ℎ𝑡 is same as ℎ[0,𝑡]. We say that
ℎ[𝑎+𝑢,𝑏+𝑢], 𝑢 ≥ 0, is more severe than ℎ[𝑎,𝑏], denoted as ℎ[𝑎,𝑏] ⪯ℎ[𝑎+𝑢,𝑏+𝑢], if every alive component at 𝑎+𝑢 in history ℎ[𝑎+𝑢,𝑏+𝑢]
is alive at 𝑎 in ℎ[𝑎,𝑏] too and if a component fails in history
ℎ[𝑎,𝑏] at time 𝑥, it also fails in ℎ[𝑎+𝑢,𝑏+𝑢] at some time 𝑥0 + 𝑢
such that 𝑥0 ≤ 𝑥.

Let 0 ≤ 𝑎 < 𝑏 < 𝑐 be fixed times. For two histories ℎ[𝑎,𝑏],
and ℎ[𝑏,𝑐], define the aggregated history ℎ[𝑎,𝑏] ⊕ ℎ[𝑏,𝑐] to be a
history over the interval [𝑎, 𝑐], which shows the same alive
components at time 𝑎 as ℎ[𝑎,𝑏] shows at 𝑎 and contains all of
the information that ℎ[𝑎,𝑏] and ℎ[𝑏,𝑐] have, respectively, on the
intervals [𝑎, 𝑏] and [𝑐, 𝑑].

Theorem 9. Three conditions (70), (71), and (72) are equiva-
lent.

Proof. It is readily detectable that

(71) ⇒ (72) ⇒ (70) . (73)

Thus, it is sufficient to show that (70) ⇒ (71). Let (70) be true.
Thus, we have

𝑞𝑋𝛼,𝑗 (𝑥 + 𝑠 | ℎ𝑥 ⊕ ℎ1[𝑥,𝑥+𝑠]) ≤ 𝑞𝑋𝛼,𝑗 (𝑠 | ℎ1[0,𝑠]) , (74)

for every 𝑥, 𝑠 ≥ 0, ℎ1[0,𝑠] ⪯ ℎ1[𝑥,𝑥+𝑠], and ℎ𝑥, for components
𝑗 alive at 𝑥 + 𝑠 in history ℎ1[𝑥,𝑥+𝑠]. Now we must show that X
satisfies (71), that is,

𝑞𝑋𝛼,𝑗 (𝑥 + 𝑡 | ℏ𝑥 ⊕ ℎ2[𝑥 ,𝑥+𝑡])
≤ 𝑞𝑋𝛼,𝑗 (𝑥 + 𝑡 | ℏ𝑥 ⊕ ℎ2[𝑥,𝑥+𝑡]) ,

(75)

for every 𝑥 ≥ 𝑥 ≥ 0, 𝑡 ≥ 0, ℏ𝑥 ⪯ ℏ𝑥 , and ℎ2[𝑥,𝑥+𝑡] ⪯
ℎ2[𝑥,𝑥+𝑡].

Let 𝑡, 𝑥, 𝑥, ℏ𝑥 ⪯ ℏ𝑥 , and ℎ2[𝑥 ,𝑥+𝑡] ⪯ ℎ2[𝑥 ,𝑥+𝑡] be given.
We set 𝑠 = 𝑥 + 𝑡 ≥ 0 and 𝑥 = 𝑥 − 𝑥 ≥ 0. Moreover,
set ℎ1[0,𝑠], ℎ1[𝑥,𝑥+𝑠], and ℎ𝑥 to be ℏ𝑥 ⊕ ℎ2[𝑥 ,𝑥+𝑡], ℏ[𝑥−𝑥 ,𝑥] ⊕
ℎ2[𝑥,𝑥+𝑡], and ℏ[0,𝑥−𝑥]. By these considerations, it can be
easily checked that (74) implies (75), which completes the
proof immediately.

In the presence of Theorem 9, the following definition is
well defined.

Definition 10. A random vector X is decreasing multivariate𝛼-quantile residual life (D 𝛼-MQRL) if one of the conditions
(70), (71), or (72) is the case.

If 𝑋 satisfies condition (70), then apparently we have
X≤𝛼−𝑞 X.Thismeans that theD𝛼-MQRL implies the positive
dependency property 𝛼-QRL-DF.

Shaked and Shanthikumar [12] proposed X to be multi-
variate increasing failure rate (MIFR) when

[𝜃𝑥X | ℎ𝑥] ≤ℎ𝑟 X, (76)

for every 𝑥 ≥ 0 and history ℎ𝑥 . It is a proper extension of the
following condition:

[𝑋 − 𝑥 | 𝑋 ≥ 𝑥] ≤ℎ𝑟𝑋. (77)

When it holds,𝑋 is said to accommodate an increasing failure
rate form.

Theorem 11. The random vector X is MIFR if it is D 𝛼-MQRL
for every 𝛼 ∈ (0, 1).
Proof. The proof is followed immediately by (70), (76), and
Theorem 5.
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Example 12. Ross [23] considered a system composed of𝑛 possibly dependent components, labelled by 1, 2, . . . , 𝑛,
starting their work at time zero. The system satisfies a
Markovian property in the sense that the failure rate of an
alive component at any time, namely, 𝑡 ≥ 0, just depends
on the set of alive components at that time. Suppose that𝐼 ⊂ {1, 2, . . . , 𝑛} denote the set of alive components at some
time 𝑡. Then, for a component 𝑘 ∈ 𝐼, the failure rate function
at 𝑡, 𝜆𝑘(𝑡 | ℎ𝑡), reduces to

𝜆𝑘 (𝑡 | 𝐼) = lim
Δ→0

1Δ𝑃 (𝑡 ≤ 𝑋𝑘 < 𝑡 + Δ | 𝐼) . (78)

ApplyingTheorem 1 fromShaked and Shanthikumar [12], this
model follows MIFR property and in turn D 𝛼-MQRL for
every 𝛼 ∈ (0, 1) if

𝜆𝑘 (𝑡 | 𝐽) ≥ 𝜆𝑘 (𝑡 | 𝐼) , (79)

for every 𝐽 ⊂ 𝐼 ⊂ {1, 2, . . . , 𝑛}, where they show alive
components at 𝑡 and 𝑘 ∈ 𝐽.
6. Conclusion

The dynamic 𝛼-MQRL measure proposed in this paper is
useful in both theoretical and applied aspects of reliability
theory and survival analysis. It has been shown that this mea-
sure is closely related to the conditional hazard rate functions.
In the bivariate case, the 𝛼-QRL of a survived component
at time 𝑥 > 0, given that the other one has failed at some
prior time, is decreasing when its corresponding conditional
hazard rate is increasing. However, the behaviour of initial 𝛼-
QRL functions is affected by the dependency structure of the
components. When the corresponding conditional hazard
rates are increasing, the positive dependency relieves the rate
of descending of initial 𝛼-QRL functions, as results show that
similar spirit holds in the multivariate case. A new multi-
variate stochastic order, namely, 𝛼-MQRL order, has been
defined.The results reveal that 𝛼-MQRL order is weaker than
the multivariate hazard rate order. However, the 𝛼-MQRL
order for every 𝛼 ∈ (0, 1) implies the multivariate hazard
rate order. Like some other multivariate orders, this order is
not reflexive too. In fact, the statement that a vector is less
than itself implies a positive dependency structure between
components. This dependency is weaker than the supportive
lifetime property discussed in Shaked and Shanthikumar
[11]. The class of multivariate distributions with decreasing𝛼-MQRL functions has been defined. It has been shown
that this class includes the class of distributions following
increasing multivariate hazard rate functions. Nevertheless,
the following topics are interesting and still remain as open
problems:

(i) Find out how closely the 𝛼-MQRL functions char-
acterize the corresponding distributions. Specially, in

the bivariate case it leads us to solving the following
functional equations in terms of 𝐹:

𝐹 (𝜑1 (𝑥) , 𝑥) = 𝛼𝐹 (𝑥, 𝑥) ,
𝐹 (𝑥, 𝜑2 (𝑥)) = 𝛼𝐹 (𝑥, 𝑥) ,

𝜕𝜕𝑥2

𝐹 (𝜑3 (𝑥 | 𝑥2) , 𝑥2) = 𝛼 𝜕𝜕𝑥2

𝐹 (𝑥, 𝑥2) ,
𝜕𝜕𝑥1

𝐹 (𝑥1, 𝜑4 (𝑥 | 𝑥1)) = 𝛼 𝜕𝜕𝑥1

𝐹 (𝑥1, 𝑥)

(80)

where 𝜑𝑖(𝑥) = 𝑥 + 𝑞𝛼,𝑖(𝑥), 𝑖 = 1, 2, 𝜑3(𝑥 | 𝑥2) = 𝑥 + 𝑞𝛼,1(𝑥 |𝑥2), and 𝜑4(𝑥 | 𝑥1) = 𝑥 + 𝑞𝛼,2(𝑥 | 𝑥1).
(ii) Provide a nonparametric estimator of the 𝛼-MQRL

functions when X𝑖, 𝑖 = 1, 2, . . . , 𝑛, is a sample of𝑛 independent and identically distributed random
vectors.
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