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The differential problem given by a parabolic equation describing the purely viscous flow generated by a constant or an oscillating
motion of a boundary is the well-known Stokes’ problem. The one-dimensional equation is generally solved for unbounded or
bounded domains; for the latter, either free slip (i.e., zero normal gradient) or no-slip (i.e., zero velocity) conditions are enforced on
one boundary. Generally, the analytical strategy to solve these problems is based on finding the solutions of the Laplace-transformed
(in time) equation and on inverting these solutions. In the present paper this problem is solved by making use of the residuals
theorem; as it will be shown, this strategy allows achieving the solutions of First and Second Stokes’ problems in both infinite and
finite depth.The extension to generally periodic boundaries with the presence of a periodic pressure gradient is also presented.This
approach allows getting closed form solutions in the time domain in a rather fast and simple way. An ad hoc numerical algorithm,
based on a finite difference approximation of the differential equation, has been developed to check the correctness of the analytical
solutions.

1. Introduction

The analysis of purely viscous unsteady flows, or Stokes’ flow,
consists in finding analytical solutions of parabolic equations
(like the heat equation) for prescribed boundary conditions.
In Batchelor [1], the fluid is supposed to occupy the half plane(𝑥, 𝑦) for 𝑦 > 0, with the boundary at 𝑦 = 0 initially at the
rest and then moving in its own plane with a velocity which
suddenly assumes a constant (first problem) or sinusoidal
(second problem) time law.

Even if considered as an old-fashioned topic, the impor-
tance in solving this class of problems for different boundary
conditions lies in the wide application fields in which they
are encountered. For example, both the sudden or the
periodic movements of oceanic geophysical faults during an
earthquake are a clear example, as well as “the oscillatory
motion which arises in the design of an oscillating half-plate
flow chamber for examining the effects of fluid shear stress
on cultured cell monolayers” (see Zeng and Weinbaum [2]).
Moreover, some actual and interesting problems, including

the development of new materials, make the analysis of
Stokes problems a fundamental topic; indeed, the flow over
superhydrophobic surfaces is excellently modelled by a non-
convective equation with mixed (homogeneous Dirichlet-
homogeneous Neumann) boundary conditions (see, for
example, Lauga and Stone [3], Rothstein [4]).

Ocean wave dynamics are another example: among oth-
ers, Xu and Bowen [5] exploit simplified solutions of Stokes
problems in order to estimate the wave stress over the ocean
bottom. The great interest for these solutions lies in the
examination of the netmass transport phenomena associated
with an ocean wave (Stokes’ drift) generated by the wind in
a rotating frame (see Janssen [6], Hanley and Belcher [7],
and Polton et al. [8]). For large-scale problems, transitional
effects are normally neglected, focusing the interest on long
time dynamics. However the solutions from which final
conclusions are drawn contain some approximations and,
obviously, anything can be said on the time scale of the
problem or on fast dynamics events.
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The solutions of these problems in one-dimensional case
and for unbounded domains are well established in literature,
in particular for heat diffusion problems (see, for example,
Watson [9], Batchelor [1], Erdogan [10], and Liu and Liu
[11]). The strategy for the solution, as in the present paper,
is to consider the Laplace transformation in time; however,
the inverse transformation is not simple to achieve (see, for
example, Devakar and Iyengar [12] where the inverse trans-
form is obtained through a numerical procedure); therefore
a clear and a more general strategy, which would allow the
achievement of the analytical solution for different boundary
conditions, has to be found.

An example of analytical solutions in unbounded domain
can be found in Watson [9], where Stokes’ equation is
considered for the study of the boundary layer past an infinite
porous wall, assuming the pressure gradient as an arbitrary
function of time. The two-side Laplace transform in time is
used in order to obtain analytical solutions for homogeneous
Dirichlet boundary condition. However the approach to the
problem is carried out in a way which is difficult to extend for
finite domains and time-dependent boundary conditions.

The analytical solutions of parabolic equations for heat
conduction problems are strictly related to Stokes problems
and in the book of Carslaw [13] a wide class of interesting
cases are discussed and often solved with different techniques
such as Fourier series or Laplace transform. In the latter
case, the inversion theorem is adopted only for simple cases
and no mention is given for multidimensional problems,
which are considered instead in Section 15.11 but only for
parallelepipeds with a prescribed condition on one face. In
this way these examples are extensions of one-dimensional
problems and not two- or three-dimensional real ones.

When a bounded domain is considered and two spatial
dimensions are involved, the deduction of analytical solutions
is a no-trivial task. In Zeng and Weinbaum [2] the two-
dimensional problem is approached with an ad hoc definition
of similar variables for unbounded domains and extended
to bounded domains through an image superimposition
technique. In a technical note by Liu and Liu [11], the
one-dimensional second Stokes’ problem is solved in an
unbounded domain and for arbitrary initial phase; a complete
analysis of First and Second Stokes’ problems in one- and two-
dimensional bounded and unbounded domains can be found
in Liu [14]. In this paper, the author rearranges the inversion
integrals in such a way that the integrands are always straight
invertible, with the aid of Laplace transform tables.This has to
point out that the strategy adopted by these authors makes an
extension to more general boundary conditions very hard, as
well as the possibility of taking into account a pressure field.
In a following paper, Liu [15] used the same strategy to find
the solution of Stokes’ problems with porous wall in a two-
dimensional unbounded domain. A similar strategy was also
adopted in Khaled and Vafai [16].

In the present paper, the use of the residuals theorem is
exploited; once the path along which the complex integrals
of the inverse transformation should be evaluated is defined,
this theorem allows a straight deduction of the time- and
space-dependent solution. As it will be demonstrated, in
this way the analytical treatment of more general boundary

conditions becomes possible. In particular, the analytical
solutions of Stokes’ flows betweenmovingwalls with constant
and sinusoidal velocities with different frequency and initial
phase will be given.

It will be also shown that, by using the actual strategy,
the introduction of a constant or sinusoidal pressure gradient
offers only a slight complication which can be easily over-
taken; in fact, this term is normally a function of time only,
Batchelor [1], so it plays the role of a simple nonhomogeneity
in the transformed equation. However, even if the pressure is
a product of two functions (one of which of time only), the
achievement of a complete solution is possible in some cases
(see Section 6.2).

Moreover the extension of the present solving technique
to two-dimensional problems avoids the onset of additional
complications and will be the matter of a future work.

The extension to generally periodic boundary conditions
and pressure gradient is also possible; the development in
Fourier series of both the boundary conditions and the
pressure gradient permits superimposing the solutions for
constant and sinusoidal cases, the problem being linear. In
this light, the definitions of the first and the second Stokes’
problem are only particular cases of a generalized Stokes
problem, where the boundary conditions are referred to
generally periodic functions.

As it can be seen in the following, the expression of the
analytical solutions could be rather complicated. In some
cases, its computation involves the evaluation of integrals,
which are solved by means of series expansions whose
convergence could be rather slow. In order to check the
correctness of the computed analytical solutions, an algo-
rithmwhich resolves numerically the differential problemhas
been also implemented. The algorithm is based on a finite
difference approximation of the Laplace operator for a gener-
ally nonuniform orthogonal distribution of the discretization
points. The time integration is achieved by means of a
Crank-Nicholson scheme; the resulting tridiagonal system of
algebraic equations is solved bymeans of the classicalThomas
algorithm. It is easy to demonstrate that the algorithm is
unconditionally stable and globally second-order accurate
(see, for example, Morton [17]). Both the algorithms for the
computation of the analytical and the numerical solutions are
available on request.

The paper is organized as follows: in Section 2, the
methodology is explained and the classical one-dimensional
solution for infinite depth is recalled. In Sections 3 and 4,
the solutions of First and Second Stokes’ problem for the
finite depth case are obtained. In Section 3, a free slip wall
is considered on the top; this will highlight how the simple
solutions obtained in the previous section can be easily
used in a more complex cases. In Section 4, solutions are
deduced for both walls with either constant or oscillating
velocities. It has to be highlighted that the linearity of the
problem allows obtaining these solutions as a superposition
of solutions with only one wall with a nonzero velocity. In
Section 5, the presence of a constant and sinusoidal pressure
gradient is considered. Some examples are given in Section 6;
in 6.1, a comparison with the numerical solution is presented,
whereas in 6.2 an extension of the primary wave motion
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Figure 1: Sketch of the Stokes problem with an infinite depth.

solution for a gravity wave in a viscous fluid is addressed.
The aim is to show how the solutions presented are very easy
to handle and to be used for different problems, achieving
at the same time the best possible accuracy when problems
modelled with a purely viscous equation are considered.
In Section 7, a discussion on the possibility of handling
more general boundary conditions and pressure gradient
is carried out. In Section 8, conclusions and perspectives
will wind up the paper. The extension to the solutions
of two-dimensional problems will be the matter of future
works.

2. One-Dimensional Infinite Depth Flows

A Newtonian fluid with kinematical viscosity ] is contained
in an unbounded half space with 𝑦 > 0. The boundary starts
tomove at time 𝑡 = 0with a given velocity law𝑓(𝑡), moving in
its ownplane (𝑦 = 0).Theproblem is clearly one-dimensional
and the motion of the fluid is described by the solution of the
Stokes’ problem:

𝜕𝑡𝑢 = ]𝜕2𝑦𝑦𝑢
𝑢 (0, 𝑡) = 𝑓 (𝑡) , 𝑢 (+∞, 𝑡) ≡ 0
𝑢 (𝑦, 0) ≡ 0,

(1)

where 𝑢 is the velocity component parallel to the plane 𝑦 =0. The First and Second Stokes’ problem are defined by the
velocity law of the boundary 𝑦 = 0 for 𝑡 > 0:

FIRST PROBLEM SECOND PROBLEM
𝑓 (𝑡) = 𝑢0 𝑓 (𝑡) = 𝑢0 cos (𝜎𝑡 + 𝜃) (2)

being 𝑓(𝑡) = 0 at initial time. The problem is sketched in
Figure 1.

The solution of the problem could be obtained through a
Laplace transformation in time [1], according to which

�̂� (𝑦, 𝑠) = exp (−𝛽 𝑦) 𝑓 (𝑠) . (3)

where 𝛽 = √𝑠/] and the transformed quantities are indicated
with a hat.

The solutions of the classical Stokes’ problem are briefly
addressed, in order to establish the methodology. In the
following, the nondimensional quantities are indicated with
a tilde, where needed.

2.1. First Stokes’ Problem. In this case 𝑓(𝑠) = 𝑢0/𝑠 and the
time derivative of the nondimensional velocity �̃� = 𝑢/𝑢0 is

�̃�𝑡 = 12𝜋𝑖 lim
𝑀→∞

∫𝜇+𝑖𝑀
𝜇−𝑖𝑀

𝑑𝑠 exp (𝑡𝑠 − 𝛽𝑦) (4)

𝜇 being an arbitrary positive real number. The function�̃�𝑡(𝑦, 𝑡) is evaluated through an application of the Cauchy
theorem on the path in Figure 2(a):

�̃�𝑡 = 12𝜋𝑖 ∫
0

−∞
𝑑𝑥 [exp(𝑥𝑡 + 𝑖 𝑦√]

√−𝑥)

− exp(𝑥𝑡 − 𝑖 𝑦√]
√−𝑥)] = 1𝜋

⋅ 𝜂𝑒−𝜂2𝑡 [∫+∞
0

𝑑𝜉 𝑒−(𝜉−𝑖𝜂)2 + ∫+∞
0

𝑑𝜉 𝑒−(𝜉+𝑖𝜂)2] ,

(5)

where 𝜉2 = |𝑥|𝑡 and 𝜂 = 𝑦/(2√]𝑡). The two integrals in the
above relation are evaluated along the lower and upper paths
of Figure 2(b) and their sum gives √𝜋. As a consequence, �̃�𝑡
assumes the following form:

�̃�𝑡 (𝜂, 𝑡) = 𝜂√𝜋𝑡 exp (−𝜂2) . (6)

An integration in time leads to the classical solution:

�̃� (𝜂) = 2√𝜋 ∫+∞
𝜂

𝑑𝜉 𝑒−𝜉2 = erfc (𝜂) . (7)

As it is evident, the solution depends on a similar variable 𝜂.
The wall stress 𝜏𝑤, made nondimensional as 𝜏𝑤 = 𝜏𝑤/(𝜌𝑢20), 𝜌
being the density of the fluid, follows as

𝜏𝑤 = ]𝑢0 �̃�𝑦𝑦=0 = − 1√𝜋�̃� (8)

defining �̃� = 𝑡 𝑢20/].
2.2. Second Stokes’ Problem. In second Stokes’ problem the
Laplace transform of the wall velocity is

𝑓 (𝑠) = 𝑢02 ( 𝑒−𝑖𝜃𝑠 + 𝑖𝜎 + 𝑒+𝑖𝜃𝑠 − 𝑖𝜎) (9)



4 Mathematical Problems in Engineering

s=xe(+ipi) mu

−iM

+iM

s=xe(−ipi)

(a)

+iY

−iY

(b)

Figure 2: Integration paths in the plane of 𝑠: for the evaluation of the function �̃�𝑡 (𝑎) and of the integrals 𝐼1,2.

and solution (3) becomes

�̃� (𝑦, 𝑠)

= 12
{{{{{{{
𝑒−𝑖(𝜎𝑡+𝜃) 12𝜋𝑖 ∫

𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 exp [(𝑠 + 𝑖𝜎) 𝑡 − 𝛽𝑦]𝑠 + 𝑖𝜎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺1

+ 𝑒+𝑖(𝜎𝑡+𝜃) 12𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 exp [(𝑠 − 𝑖𝜎) 𝑡 − 𝛽𝑦]𝑠 − 𝑖𝜎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺2

}}}}}}}

(10)

in which the time derivatives of the functions 𝐺1,2(𝑦, 𝑡) are
easily evaluated in terms of (6), so that the following is
obtained:

𝐺1,2 (𝑦, 𝑡) = 𝐺1,2 (𝑦, 0)
+ 2√𝜋 ∫∞

𝜂
𝑑𝜉 exp [±𝑖𝑇𝜂2𝜉2 − 𝜉2] . (11)

where 𝑇 = 𝜎𝑡. An integration along the path of Figure 2(a)
proves that 𝐺1,2(𝑦, 0) = 0 (see Appendix A), so the initial
condition 𝑢(𝑦, 0) ≡ 0 is satisfied. Solution (10) is as follows:

�̃� (𝑦, 𝑇) = cos (𝑇 + 𝜃) 2√𝜋 ∫+∞
𝜂

𝑑𝜉 𝑒−𝜉2 cos(𝑇𝜂2𝜉2)
+ sin (𝑇 + 𝜃) 2√𝜋 ∫+∞

𝜂
𝑑𝜉 𝑒−𝜉2 sin(𝑇𝜂2𝜉2)

= cos (𝑇 + 𝜃) 𝐼𝑐 (𝜂, 𝑇)
+ sin (𝑇 + 𝜃) 𝐼𝑠 (𝜂, 𝑇) .

(12)

The above solution is the real form of the solution in Erdogan
[10] for 𝜃 = 0 and 𝜃 = 𝜋/2 and of the solution in Liu and Liu
[11]. Integrals 𝐼𝑐 and 𝐼𝑠 can be calculated by recursive formulas
for little values of 𝑇, as discussed in Appendix B.

The asymptotic expression of 𝐼𝑐 and 𝐼𝑠 for large 𝑇 is as
follows:

𝐼𝑐 (𝜂, 𝑇) → 𝑒−𝑦 cos (𝑦)
𝐼𝑠 (𝜂, 𝑇) → 𝑒−𝑦 sin (𝑦) (13)

where 𝑦 = 𝑦√𝜎/(2]). In Figure 3 integrals 𝐼𝑐 and 𝐼𝑠
are compared with their asymptotic expression for different
times. For long times, the convergence is evident.

The wall stress is given by

𝜏𝑤 (𝑇) = −cos 𝜃√𝜋�̃�
+ 𝛼 [sin (𝑇 + 𝜃) 𝐶1 (√𝑇) − cos (𝑇 + 𝜃) 𝑆1 (√𝑇)] ,

(14)

where 𝐶1 and 𝑆1 are the Fresnel integrals (see Abramowitz
and Stegun [18] page 300 equations 7.3.3 and 7.3.4, respec-
tively), while 𝛼2 = 𝜎]/𝑢20 and 𝛼 = √2𝛼. Note that the first
term is the wall stress of the First Stokes problem, due to the
initial nonvanishing value (cos 𝜃) of the wall velocity.
3. One-Dimensional Finite Depth Flows

Stokes’ problem is posed in the following way:

𝜕𝑡𝑢 = ]𝜕2𝑦𝑦𝑢
𝑢 (0, 𝑡) = 𝑓 (𝑡) ,

𝜕𝑦𝑢 (ℎ, 𝑡) ≡ 0
𝑢 (𝑦, 0) ≡ 0,

(15)

ℎ being the height of the fluid (hereafter, the corresponding
nondimensional height 𝑦 = 𝑦/ℎ will be used). Note that
the second boundary condition enforces vanishing viscous
stresses at the interface.

The Laplace transform (in time) of the solution is

�̂� (𝑦, 𝑠) = cosh [(ℎ − 𝑦) 𝛽]
cosh (ℎ𝛽) 𝑓 (𝑠) . (16)
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Figure 3: Behaviour of 𝐼𝑐 and 𝐼𝑠 integrals for short (red line), medium (green line), and long (blue line) times. Circular symbols represent the
asymptotic solution (13).

Note that the kernel cosh[(ℎ − 𝑦)𝛽]/ cosh(ℎ𝛽) possesses in
the 𝑠−plane a branch cut along the negative real axis and also
a countable set of real and negative poles of the first order: by
accounting for that, for any integer 𝑘, 2𝑘 + 1 will be indicated
with 𝑘 and 𝑘𝜋/2 with 𝐾, they are placed on the points𝑠𝑘 = −𝐾2]/ℎ2. Kernel (16) being an even function of 𝛽 results
in being continuous across the above branch cut, with the
exception of the poles.

3.1. First Stokes’ Problem. The time derivative of the nondi-
mensional velocity is

�̃�𝑡 = 12𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒𝑠𝑡 cosh [(ℎ − 𝑦) 𝛽]

cosh (ℎ𝛽) fl 𝐹 (17)

where the integral is evaluated by applying the residue
theorem on the path in Figure 2(a):

𝐹 = 2 ]ℎ2
∞∑
𝑘=0

𝐾 𝑒−𝐾2]𝑡/ℎ2 sin(𝐾𝑦ℎ ) . (18)

By accounting for the identity (see Abramowitz and Stegun
[18], pag. 1005),

∞∑
𝑘=0

sin (𝐾𝑦/ℎ)
𝐾 ≡ 12 , (19)

the solution of the problem becomes

�̃� (𝑦, �̃�) = 1 − 2∞∑
𝑘=0

sin (𝐾𝑦)
𝐾 exp (−𝐾2�̃�) , (20)

where �̃� = 𝑡]/ℎ2. The wall stress is given by

𝜏𝑤 = − 2𝑅𝑒0
∞∑
𝑘=0

exp (−𝐾2 �̃�) . (21)

where 𝑅𝑒0 = 𝑢0ℎ/] is the Reynolds number referring to the
constant velocity 𝑢0 and to the distance ℎ between walls.

3.2. Second Stokes’ Problem. By inserting the Laplace trans-
form of the wall velocity (9) inside solution (16), its nondi-
mensional value is as follows:

�̃� = 12
{{{{{{{
𝑒−𝑖(𝜎𝑡+𝜃) 12𝜋𝑖 ∫

𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒(𝑠+𝑖𝜎)𝑡𝑠 + 𝑖𝜎 cosh [(ℎ − 𝑦) 𝛽]

cosh (ℎ𝛽)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿1

+ 𝑒+𝑖(𝜎𝑡+𝜃) 12𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒(𝑠−𝑖𝜎)𝑡𝑠 − 𝑖𝜎 cosh [(ℎ − 𝑦) 𝛽]

cosh (ℎ𝛽)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐿2

}}}}}}}
.

(22)

Two functions 𝐿1,2(𝑦, 𝑡) are evaluated by observing that their
time derivatives are related to the function 𝐹 defined in (18):

𝜕𝑡𝐿1,2 = 𝑒±𝑖𝜎𝑡𝐹, (23)

which are integrated by starting from the initial values:

𝐿1,2 (𝑦, 0) = −2∞∑
𝑘=0

𝐾 sin (𝐾𝑦)
𝐾2 ∓ 𝑖𝛼2

+ cosh [𝛼 ((1 ∓ 𝑖) /√2) (1 − 𝑦)]
cosh (𝛼 ((1 ∓ 𝑖) /√2)) ,

(24)

where 𝛼 = √𝜎/]ℎ. It follows the nondimensional solution:

�̃� (𝑦, �̃�) = 𝑐 (𝑦) cos (𝑇 + 𝜃) + 𝑑 (𝑦) sin (𝑇 + 𝜃)
+ −2∞∑

𝑘=0

𝐾 sin (𝐾𝑦)
𝐾4 + 𝛼4 𝑒−𝐾2𝑇/𝛼2 (𝐾2 cos 𝜃

+ 𝛼2 sin 𝜃) ,
(25)

where the two functions 𝑐(𝑦), 𝑑(𝑦) are given in Appendix C.
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In (25), the stationary part of the solution is separated
from the transient one and can be conveniently written as
Fourier series:

𝑐 (𝑦) cos (𝑇 + 𝜃) + 𝑑 (𝑦) sin (𝑇 + 𝜃)
= 2∞∑

𝑘=0

𝐾
𝐾4 + 𝛼4 [𝐾

2 cos (𝑇 + 𝜃)
+ 𝛼2 sin (𝑇 + 𝜃)] sin (𝐾𝑦) ,

(26)

allowing the straightforward evaluation of the wall stress:

𝜏𝑤 = 2𝑅𝑒0
∞∑
𝑘=0

𝐾2
𝐾4 + 𝛼4 [𝐾

2 cos (𝑇 + 𝜃)
+ 𝛼2 sin (𝑇 + 𝜃)
− (𝐾2 cos 𝜃 + 𝛼2 sin 𝜃) 𝑒−𝐾2𝑇/𝛼2]

(27)

4. One-Dimensional Flow between
Moving Walls

The following Stokes’ problem is considered:

𝜕𝑡𝑢 = ]𝜕2𝑦𝑦𝑢
𝑢 (0, 𝑡) = 𝑓 (𝑡) , 𝑢 (ℎ, 𝑡) = 𝑔 (𝑡)
𝑢 (𝑦, 0) ≡ 0,

(28)

where the second boundary condition represents a moving
wall with a given velocity law 𝑔(𝑡).

The Laplace transform in time of the solution is

�̂� (𝑦, 𝑠) = 𝑓 (𝑠) sinh [𝛽 (ℎ − 𝑦)]
sinh [𝛽ℎ] + 𝑔 (𝑠) sinh [𝛽𝑦]

sinh [𝛽ℎ] . (29)

As in the previous case, the ratios possess in the 𝑠-plane a
branch cut along the negative real axis and a countable set
of real and negative poles of the first order. By indicating
with 𝐾 = 𝑘𝜋, they are placed on the points 𝑠𝑘 =−𝐾2]/ℎ2 for 𝑘 = 1, 2, . . ..The ratios sinh[𝛽(ℎ−𝑦)]/ sinh[𝛽ℎ]
and sinh[𝛽𝑦]/ sinh[𝛽ℎ] are even functions of 𝛽, so they
are continuous across the branch cut with exception of the
poles.

The case with two walls is more complicated, because it
could lead to a new class of problems. If the walls have the
same velocity law (either constant or periodical), one of the
classic Stokes problems arises, but if the laws are different the
resulting problem is a newone, which could be denoted as the
mixed problem. Anyhow it is easy to show that the problem
with one or both walls with constant velocity can be seen as a
special case of the more general periodical velocity laws with
zero frequency and initial phase.

4.1. First Stokes Problem. By assuming constant velocity laws
for the walls 𝑓 = 𝑢0/𝑠 and 𝑔 = V0/𝑠 and indicating with 𝛾0 =
V0/𝑢0, the time derivative of the velocity is

�̃�𝑡 = 12𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒𝑠𝑡 sinh [𝛽 (ℎ − 𝑦)]

sinh [𝛽ℎ]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹1

+ 𝛾02𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒𝑠𝑡 sinh [𝛽𝑦]

sinh [𝛽ℎ]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹2

.
(30)

The integrals are evaluated by applying the residue theorem
on the path of Figure 2(a):

�̃�𝑡 = 2 ]ℎ2
∞∑
𝑘=1

𝐾 𝑒−𝐾2]𝑡/ℎ2 sin(𝐾𝑦ℎ ) (1 − 𝛾0 (−1)𝑘) . (31)

By taking into account the identity (see Abramowitz and
Stegun [18], pag.1005),

∞∑
𝑘=1

sin (𝐾𝑦/ℎ)
𝐾 (−1)𝑘 ≡ − 𝑦2ℎ (32)

the solution is found with a simple integration in time:

�̃� (𝑦, �̃�) = 1 + (𝛾0 − 1) 𝑦
− 2∞∑

𝑘=1

sin (𝐾𝑦)
𝐾 𝑒−𝐾2 �̃� (1 − 𝛾0 (−1)𝑘) (33)

where �̃� = 𝑡]/ℎ2 and 𝑦 = 𝑦/ℎ. As expected, the stationary part
of the solution is a linear function of 𝑦 and it depends only on
the ratio of the velocities on the walls.

The shear stresses on the walls can be easily computed
taken the spatial derivative of the previous relation; for the
bottom wall, it reads

𝜏𝑏𝑤 (�̃�) = 1̃
ℎ [(𝛾0 − 1) − 2∞∑

𝑘=1

𝑒−𝐾2 �̃� (1 − 𝛾0 (−1)𝑘)] (34)

while the stress on the upper wall returns:

𝜏𝑢𝑤 (�̃�) = 1̃
ℎ [(𝛾0 − 1) − 2∞∑

𝑘=1

𝑒−𝐾2 �̃� ((−1)𝑘 − 𝛾0)] . (35)

4.2. Second Stokes’ Problem. By assuming periodical velocity
laws for the walls,

𝑓 (𝑠) = 𝑢02 ( 𝑒−𝑖𝜃𝑠 + 𝑖𝜎 + 𝑒𝑖𝜃𝑠 − 𝑖𝜎)
𝑔 (𝑠) = V02 ( 𝑒−𝑖𝜙𝑠 + 𝑖𝜔 + 𝑒𝑖𝜙𝑠 − 𝑖𝜔) ,

(36)
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the inverse Laplace transform of the velocity is

�̃� (𝑦, 𝑡)

= 12
{{{{{{{
𝑒−𝑖(𝜎𝑡+𝜃) 12𝜋𝑖 ∫

𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒(𝑠+𝑖𝜎)𝑡𝑠 + 𝑖𝜎 sinh [(ℎ − 𝑦) 𝛽]

sinh [ℎ𝛽]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑆1

+ 𝑒+𝑖(𝜎𝑡+𝜃) 12𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒(𝑠−𝑖𝜎)𝑡𝑠 − 𝑖𝜎 sinh [(ℎ − 𝑦) 𝛽]

sinh [ℎ𝛽]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑆2

+ 𝑒−𝑖(𝜔𝑡+𝜙) 𝛾02𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒(𝑠+𝑖𝜔)𝑡𝑠 + 𝑖𝜔 sinh [𝑦𝛽]

sinh [ℎ𝛽]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑆3

+ 𝑒+𝑖(𝜔𝑡+𝜙) 𝛾02𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒(𝑠−𝑖𝜔)𝑡𝑠 − 𝑖𝜔 sinh [𝑦𝛽]

sinh [ℎ𝛽]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑆4

}}}}}}}
.

(37)

Two functions 𝑆1,2(𝑦, 𝑡) are evaluated by observing that their
time derivatives are related to the function 𝐹1 defined in (30):

𝜕𝑡𝑆1,2 = 𝑒±𝑖𝜎𝑡𝐹1, (38)

which are integrated by starting from the initial values:

𝑆1,2 (𝑦, 0) = −2∞∑
𝑘=1

𝐾 sin (𝐾𝑦)
𝐾2 ∓ 𝑖𝛼2

+ sinh [𝛼 ((1 ∓ 𝑖) /√2) (1 − 𝑦)]
sinh (𝛼 ((1 ∓ 𝑖) /√2)) .

(39)

where 𝛼 = √𝜎/]ℎ. In the same way, the time derivatives of
the functions 𝑆3,4(𝑦, 𝑡) are related to function 𝐹2 defined in
(30),

𝜕𝑡𝑆3,4 = 𝑒±𝑖𝜔𝑡𝐹2, (40)

and are integrated by starting from the initial values:

𝑆3,4 (𝑦, 0) = 2∞∑
𝑘=1

(−1)𝑘 𝐾 sin (𝐾𝑦)
𝐾2 ∓ 𝑖𝛼22

+ 𝛾0 sinh (𝛼2 ((1 ∓ 𝑖) /√2)𝑦)
sinh (𝛼2 ((1 ∓ 𝑖) /√2)) ,

(41)

where 𝛼2 = √𝜔/]ℎ. The solution may be rewritten in terms
of 𝑆1,2,3,4 as

�̃� = 12 [
[

𝐴𝐴⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑆1 + 𝑆2) cos (𝑇 + 𝜃) + 𝑖 (𝑆2 − 𝑆1) sin (𝑇 + 𝜃)

+ (𝑆3 + 𝑆4) cos (𝑇2 + 𝜙) + 𝑖 (𝑆4 − 𝑆3) sin (𝑇2 + 𝜙)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐵𝐵

]
]

(42)

where 𝑇2 = 𝜔𝑡 is the nondimensional time with the
frequency of the top wall. In order to simplify the expression
of the solution, avoiding the presence of complex terms, the
following quantities are evaluated:

𝐴𝐴 = −4∞∑
𝑘=1

𝐾 sin (𝐾𝑦)
𝐾4 + 𝛼4 𝑒−𝑇/𝛼2𝐾2 [𝐾2 cos 𝜃

+ 𝛼2 sin 𝜃] + 2𝑐1 (𝑦) cos (𝑇 + 𝜃) + 2𝑑1 (𝑦) sin (𝑇
+ 𝜃)

𝐵𝐵 = +4𝛾0 ∞∑
𝑘=1

𝐾 sin (𝐾𝑦)
𝐾4 + 𝛼42 𝑒−𝑇2/𝛼22𝐾2 [𝐾2 cos𝜙

+ 𝛼22 sin 𝜙] (−1)𝑘 + 2 𝛾0𝑐2 (𝑦) cos (𝑇𝜓 + 𝜙)
+ 2𝛾0 𝑑2 (𝑦) sin (𝑇𝜓 + 𝜙)

(43)

where the complete expressions of the stationary terms 𝑐1, 𝑑1,𝑐2, 𝑑2 are given in Appendix C. It follows the nondimensional
solution:

�̃� (𝑦, 𝑇, 𝑇2) = �̃�𝑠𝑡 (𝑦, 𝑇, 𝑇2) + �̃�𝑡𝑟 (𝑦, 𝑇, 𝑇2) (44)

where �̃�𝑠𝑡 is the steady-state part of the solution:
�̃�𝑠𝑡 (𝑦, 𝑇, 𝑇2)

= 𝑐1 (𝑦) cos (𝑇 + 𝜃) + 𝑑1 (𝑦) sin (𝑇 + 𝜃)
+ 𝛾0 (𝑐2 (𝑦) cos (𝑇2 + 𝜙) + 𝑑2 (𝑦) sin (𝑇2 + 𝜙))

(45)

while �̃�𝑡𝑟 is the transient part of the solution:
�̃�𝑡𝑟 (𝑦, 𝑇, 𝑇2) = −2∞∑

𝑘=1

𝐾 sin (𝐾𝑦) 𝑒−𝑇/𝛼2𝐾2

⋅ 𝐾2 cos 𝜃 + 𝛼2 sin 𝜃𝐾4 + 𝛼4 + 2∞∑
𝑘=1

𝐾 sin (𝐾𝑦)

⋅ 𝑒−𝑇2/𝛼22𝐾2𝐾2 cos 𝜙 + 𝛼22 sin 𝜙𝐾4 + 𝛼42 𝛾0 (−1)𝑘 .

(46)

The shear stresses on the walls can be computed by deriving
expression (44) with respect to the normal direction; their
value for 𝑦 = 0 gives the stress on the bottom wall:

𝜏𝑏𝑤 (𝑇, 𝑇2) = 𝑐1 (0) cos (𝑇 + 𝜃) + 𝑑1 (0) sin (𝑇 + 𝜃)
+ +𝛾0 (𝑐2 (0) cos (𝑇2 + 𝜙) + 𝑑2 (0) sin (𝑇2 + 𝜙))
+ −2 ∞∑

𝑘=1

𝐾2 (𝐾2 cos 𝜃 + 𝛼2 sin 𝜃)
𝐾4 + 𝛼4 𝑒−𝑇/𝛼2𝐾2

+ +2 ∞∑
𝑘=1

𝐾2 (𝐾2 cos 𝜙 + 𝛼22 sin 𝜙)
𝐾4 + 𝛼42 𝑒−𝑇2/𝛼22𝐾2𝛾0 (−1)𝑘

(47)
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while the value of the derivative at 𝑦 = 1 gives the shear stress
on the upper wall:

𝜏𝑢𝑤 (𝑇, 𝑇2) = 𝑐1 (1) cos (𝑇 + 𝜃) + 𝑑1 (1) sin (𝑇 + 𝜃)
+ +𝛾0 (𝑐2 (1) cos (𝑇2 + 𝜙) + 𝑑2 (1) sin (𝑇2 + 𝜙))
+ −2 ∞∑

𝑘=1

𝐾2 (𝐾2 cos 𝜃 + 𝛼2 sin 𝜃)
𝐾4 + 𝛼4 𝑒−𝑇/𝛼2𝐾2 (−1)𝑘

+ +2 ∞∑
𝑘=1

𝐾2 (𝐾2 cos 𝜙 + 𝛼22 sin 𝜙)
𝐾4 + 𝛼42 𝑒−𝑇2/𝛼22𝐾2𝛾0

(48)

The expression of the derivatives 𝑐1, 𝑑1, 𝑐2, 𝑑2 can be found in
Appendix C.

As it has been anticipated, the solution for the First Stokes’
problem can be recovered from the solution of the problem
with two moving boundaries (44). As a matter of the fact,
by considering that 𝑐1(𝑦) → (1 − 𝑦) for 𝛼 → 0 and𝑐2(𝑦) → 𝑦 for 𝛼2 → 0, the steady-state solution (45) goes to
the stationary part of the (33), whereas, for the transient part
it can be easily demonstrated that, by taking 𝜃, 𝜙, 𝛼, and 𝛼2 in
(46) equal to zero, the transient part of (33) is recovered.

5. One-Dimensional Flow between Moving
Walls with Pressure Gradient

Auseful extension of the Stokes’ problems can be achieved by
considering the presence of a pressure gradient in the motion
equation (see Xu and Bowen [5]; Lauga and Stone [3]); this
term must be a function of time only [1], so that the Laplace
transform of the solution is very similar to the previous
case, allowing a direct inversion with the same procedure of
Section 4. Stokes’ problem considered is as follows:

𝜕𝑡𝑢 = −𝜕𝑥𝑃 + ]𝜕2𝑦𝑦𝑢
𝑢 (0, 𝑡) = 𝑓 (𝑡) , 𝑢 (ℎ, 𝑡) = 𝑔 (𝑡)
𝑢 (𝑦, 0) ≡ 0,

(49)

where 𝑃 = 𝑝/𝜌 and the boundary conditions refer to
oscillatory moving walls, since the case with constant velocity
can be seen as a particular case (see Section 4). A constant−𝜕𝑥𝑃 = 𝜆0 and sinusoidal time law −𝜕𝑥𝑃 = 𝜆0 cos(𝜒𝑡 + Θ)
are considered for the new term; in this way, as it will be
shown in Section 7, the solution for the case with a generally
periodical function of time for the pressure gradient can be
easily obtained by exploiting the linearity of the problem and
taking the Fourier series of the pressure term. The Laplace
transform in time of the solution (49) is

�̂� (𝑦, 𝑠)
= 𝑓 (𝑠) sinh [𝛽 (ℎ − 𝑦)]

sinh [𝛽ℎ] + 𝑔 (𝑠) sinh [𝛽𝑦]
sinh [𝛽ℎ]

− �̂� (𝑠)𝑠 { sinh [𝛽 (ℎ − 𝑦)]
sinh [𝛽ℎ] + sinh [𝛽𝑦]

sinh [𝛽ℎ] − 1} .
(50)

The first two quantities in the right-hand side are the
solution of the associated homogeneous equation (the same
just discussed in Section 4); similarly the pressure term is
composed by two terms with the same poles 𝑠𝑘 = −𝐾2]/ℎ2
plus a pole on the origin and a last term with a single pole on
the origin.

The inverse Laplace transform of the velocity is a linear
combination of the solutions deduced in Section 4 (the first or
second Stokes’ problem according to the expressions of 𝑓(𝑡)
and 𝑔(𝑡)), so only the inversion of pressure term, indicated
with �̂�𝑝, will be here discussed:

𝑢𝑝 (𝑦, 𝑡) = 12𝜋𝑖
⋅ ∫𝜇+𝑖∞
𝜇−𝑖∞

𝑑𝑠 𝑒𝑠𝑡 �̂�𝑠 [ sinh [(ℎ − 𝑦)𝛽]
sinh [ℎ𝛽] + sinh [𝑦𝛽]

sinh [ℎ𝛽]]
− ∫𝑡

0
𝑑𝑡 𝜆 (𝑡)

(51)

5.1. Constant Pressure Gradient. By assuming a constant
pressure gradient, the expression of 𝑢𝑝𝑡 is as follows:
𝑢𝑝𝑡
= 𝜆02𝜋𝑖 ∫

𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒𝑠𝑡𝑠 [ sinh [(ℎ − 𝑦) 𝛽]

sinh [ℎ𝛽] + sinh [𝑦𝛽]
sinh [ℎ𝛽]]

− 𝜆0.
(52)

A simple integration in time, starting by the initial value,

𝑢𝑝0 = 𝜆0ℎ22] (𝑦2 − 𝑦) + 4𝜆0ℎ2
]

∞∑
𝑘=1

sin (𝐾𝑜𝑦)𝐾3𝑜 , (53)

which can be derived from the general expression of the
inverse transform of �̂�𝑝 for 𝑡 = 0, leads to the particular
solution:

�̃�𝑝 (𝑦, �̃�) = 𝐻𝑔2 𝑅𝑒0 (𝑦2 − 𝑦) + 4𝐻𝑔𝑅𝑒0
∞∑
𝑘=1

sin (𝐾𝑜𝑦)𝐾3𝑜 𝑒−𝐾2𝑜 �̃� (54)

where the stationary part of the solution is the well-known
Poiseuille solution between planar solid walls. In the previous
relations 𝐾𝑜 = (2𝑘 − 1)𝜋 and 𝐻𝑔 = 𝜆0 ℎ3/]2 is the Hagen
number. It is worth noticing that, from the identity

∞∑
𝑘=1

sin (𝐾𝑜𝑦)𝐾3𝑜 ≡ 18 (𝑦 − 𝑦2) (55)

(see Abramowitz and Stegun [18] pag. 1005) the initial
condition �̃�𝑝(𝑦, 0) = 0 is satisfied.
5.2. Sinusoidal Pressure Gradient. By assuming a sinusoidal
law for the pressure gradient, the expression of 𝑢𝑝 is as
follows:

𝑢𝑝 (𝑦, 𝑡) = 𝜆02 (𝑍1 + 𝑍2 + 𝑍3 + 𝑍4)
+ 𝜆0𝜒 (sinΘ − sin (𝜒𝑡 + Θ))

(56)
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Figure 4: Sketches of the example problems presented in Section 6.1 (left) and in Section 6.2 (right).

where

𝑍1,2
= 𝑒∓𝑖(𝜒𝑡+Θ) 12𝜋𝑖 ∫

𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒(𝑠±𝑖𝜒)𝑡𝑠 (𝑠 ± 𝑖𝜒)

sinh [(ℎ − 𝑦) 𝛽]
sinh [ℎ𝛽]

(57)

𝑍3,4 = 𝑒∓𝑖(𝜒𝑡+Θ) 12𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠 𝑒(𝑠±𝑖𝜒)𝑡𝑠 (𝑠 ± 𝑖𝜒)

sinh [𝑦𝛽]
sinh [ℎ𝛽] . (58)

By observing that the time derivatives of 𝑍1,2 are similar to𝑆1,2 and the derivatives of 𝑍3,4 are similar to 𝑆3,4 (the sums𝑍1 + 𝑍2 and 𝑍3 + 𝑍4 are given in Appendix D), a simple
integration in time gives back the solution:

�̃�𝑝 (𝑦, 𝑇3) = 𝐻𝑔𝛼3 𝑅𝑒0 (�̃�
𝑝
𝑠𝑡 + �̃�𝑝𝑡𝑟) (59)

where the definition of 𝛼3 is given in Appendix D. The
stationary part of the solution is

�̃�𝑝𝑠𝑡 (𝑦, 𝑇3) = − sin (𝑇3 + Θ)
+ [𝑐1 (𝑦) + 𝑐2 (𝑦)] sin (𝑇3 + Θ)
− [𝑑1 (𝑦) + 𝑑2 (𝑦)] cos (𝑇3 + Θ)

(60)

while the transient part is

�̃�𝑝𝑡𝑟 (𝑦, 𝑇3) = 4𝛼23 ∞∑
𝑘=1

sin (𝐾𝑜𝑦)𝐾𝑜 (𝐾4𝑜 + 𝛼43) 𝑒
−𝐾2
𝑜
𝑇3/𝛼
2

3 [𝐾2𝑜 cosΘ
+ 𝛼23 sinΘ]

(61)

whereas the definition of 𝑇3 is given in Appendix D.
It is useful to notice that

lim
𝜒→0

[𝑐1 (𝑦) + 𝑐2 (𝑦)] = 1
lim
𝜒→0

[𝑑1 (𝑦) + 𝑑2 (𝑦)] 𝐻𝑔𝛼3 𝑅𝑒0 = 𝐻𝑔2𝑅𝑒0 (𝑦 − 𝑦2) (62)

so that, for Θ = 0, the limit for 𝜒 → 0 of �̃�𝑝𝑠𝑡 goes to the
stationary part of the solution (54), while for the transient
part �̃�𝑝𝑡𝑟 the limit is obvious.

6. Examples

In this section, two examples of solutions for the extended
Stokes’s problem are given; namely, a general case of Stokes’
flow within two moving walls without and with a pressure
gradient (see also Durante and Broglia [19]) and a more
physical application in which the complete primary wave
motion for gravity waves will be given as an extension of the
solutions presented in Xu and Bowen [5]. The problems are
outlined in Figure 4 for the sake of clearness.

6.1. Flow within Two Moving Walls. In this section, the cases
of the Stokes’ flow within two moving walls without (Sec-
tion 4) or with (Section 5) a pressure gradient are presented.
For both cases the two walls have an oscillatory movement, in
particular, the problem is defined by the following periodical
boundary conditions:

𝑢 (0, 𝑡) = 𝑓 (𝑡) = 𝑢0 cos (𝜎𝑡 + 𝜃)
𝑢 (1, 𝑡) = 𝑔 (𝑡) = V0 cos (𝜔𝑡 + 𝜙) (63)

with V0 = 0.5 𝑢0, 𝜎 = 10𝜋, 𝜔 = 20𝜋, 𝜃 = 𝜋/4 and 𝜙 = 0. For
the problem with nonzero pressure gradient, the following
law has been set:

−𝜕𝑥𝑃 = 𝜆0 cos (𝜒𝑡 + Θ) (64)

with 𝜆0 = 10, 𝜒 = 3/10𝜋 and Θ = 𝜋/2. In Figure 5,
the solutions at six time instants are given; for the sake of
completeness, the transient and the steady-state components
of the solutions are individually plotted as well. The time
instants shown are chosen between an early stage (𝑡 = 0.01)
(where the transient part is still of the same order of the
stationary part), passing through an intermediate stage (𝑡 =0.07) (the energy associated with the transient part is only a
small fraction of that associated with the steady-state part)
and finally to a late stage (𝑡 = 1.84) (the transient part is
negligible).

In order to give a comparison with the case where a
pressure gradient is enforced, Figure 6 is sketched. In an
initial stage the contributions coming from stationary and
transient parts are higher respect to the former case. The
transient part becomes practically zero at the late stage, as
before. The correctness of the analytical solutions and of
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Figure 5: One-dimensional flow between two walls with periodical motion. Solid line: global solution; dashed line: transient part; dashed-
dotted line, stationary part.
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Figure 6: One-dimensional flow between two walls with periodical motion and pressure gradient. Solid line: global solution; dashed line:
transient part; dashed-dotted line, stationary part.

their evaluation has been checked by a comparison with
a numerical solution of the related Stokes’ problem. The
solutions and the comparison errors are given in Figure 7; the
comparison error, which is substantially the truncation error
of the numerical scheme, is always less than 2.5 10−5. It has
been tested that this error goes to zero accordingly with the
accuracy of the numerical scheme.

6.2. The Complete Primary Wave Motion for Gravity Waves.
The motion field of a gravity wave has been largely investi-
gated since Stokes in 1847 found that a net material transport
(called Stokes’ drift) is associated with a periodic wave field,
being in this way responsible for an advection process in

the dispersion of passive scalars over a fluid surface. The
equations of motion of a gravity wave (described as 𝑓𝑠 =𝑎 cos(𝑘𝑥 − 𝜎𝑡)) in a viscous and incompressible fluid are
normally written in terms of Stokes problems:

𝜕𝑢𝜕𝑡 = −1𝜌 𝜕𝑝𝜕𝑥 + ]
𝜕2𝑢𝜕𝑧2

𝜕𝑤𝜕𝑡 = −1𝜌 𝜕𝑝𝜕𝑧 + ]
𝜕2𝑤𝜕𝑧2

𝜕𝑢𝜕𝑥 + 𝜕𝑤𝜕𝑧 = 0
(65)
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Figure 7: One-dimensional flow between two walls with periodical motion. The analytical solution is drawn with a solid line, whereas the
error between numerical and analytical solutions is in dashed line (the reference axis is plotted on top). Top row, zero pressure gradient;
bottom row, periodical pressure gradient.

where 𝑝 = 𝑝𝑑 + 𝜌𝑔𝑧 is the total pressure, i.e., the sum of
the hydrostatic and the dynamical contributions. For a finite
depth flow, the inviscid solution is achieved by supposing
the velocity field to be irrotational and the amplitude 𝑎 of
the surface wave small enough that the kinematic condition𝑝 = 0, to be satisfied on the surface 𝑧 = 𝑓𝑠, is instead
considered on 𝑧 = 0. In this way the pressure field is found to
be a periodical function of time:

𝑝 = 𝜌𝑔𝑎cosh (𝑘𝑧)
cosh (𝑘ℎ) cos (𝑘𝑥 − 𝜎𝑡) (66)

where 𝑧 = 𝑧 + ℎ, ℎ is the distance of mean free surface (𝑧 =0) from the bottom and 𝑘 is the wave-number (see Xu and
Bowen [5]). The 𝑢 and 𝑤 components of the velocity field are
found through direct integration in time of 𝑥 and 𝑧 pressure
derivatives, respectively, giving

𝑢𝑛V = 𝑎𝜎cosh (𝑘𝑧)
sinh (𝑘ℎ) cos (𝑘𝑥 − 𝜎𝑡)

𝑤𝑛V = 𝑎𝜎 sinh (𝑘𝑧)
sinh (𝑘ℎ) sin (𝑘𝑥 − 𝜎𝑡)

(67)

where 𝜎2 = 𝑔𝑘 tanh(𝑘ℎ) and subscript 𝑛V stands for
nonviscous solutions. Normally in earth sciences the transient
phenomena are not interesting on large-scale problems,

often adopting simplified approaches to achieve analytical
solutions. This is evident in the paper Xu and Bowen [5],
where the perturbed potential approach has been exploited
for resolving the problem (65). A more detailed solution
can be derived without any further simplification, by a
simple application of the procedure discussed in the previous
sections.

By considering a wave travelling along 𝑥 direction in deep
water (where the effect of viscosity is not taken into account)
which encounters an increasing bottom, it is clear that the
solution passes from a nonviscous to a viscous one. In the
classical approach of earth sciences the unsteady effect which
comes from this event is normally neglected. Nonetheless, it
will be pointed out that once the complete sets of the Stokes
problems solutions have been deduced, a solution, which
considers transient effects, is simple enough to be achieved.

The boundary conditions

𝑢 (0, 𝑥, 𝑧) = 𝑢𝑛V (0, 𝑥, 𝑧)
𝑢 (𝑡, 𝑥, 0) = 0
𝑢 − 𝑢𝑛V → 0 for large z

(68)

for 𝑢 hold, the homogeneity at 𝑧 = 0 being enforced for 𝑤.
The solution 𝑢 will be extensively discussed, while 𝑤 will

be deduced by a direct integration of the continuity equation.
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The viscous solution is associated with a different and
unknown pressure field, which, in general, is a function of𝑡, 𝑥, 𝑧. By considering the nonviscous solution, the pressure
field must be the product of a function of 𝑧 only and a
function of 𝑥 and 𝑡, as it will be clear later.

The Laplace transform of the solution is

�̂�V = 𝐴𝑒−𝛽𝑧 + 𝐵𝑒+𝛽𝑧 + 𝑓 (69)

where 𝑓 is the particular integral. By considering that for
large 𝑧 the viscous solution must match the nonviscous one,
the following condition holds:

𝐵𝑒𝛽𝑧 + 𝑓 = �̂�𝑛V (70)

where a term of kind 𝐵𝑒𝛽𝑧 is not present in �̂�𝑛V. Obviously, 𝐵
must be zero in order to allow this identity and 𝑓 is equal to
the Laplace transform of the nonviscous solution. The other
constant 𝐴 is found by the no-slip boundary condition, then
the antitransform is as follows:

𝑢 = 𝑢𝑛V − 𝑎𝜎
sinh (𝑘ℎ) 12𝜋𝑖

⋅ ∫𝜇+𝑖∞
𝜇−𝑖∞

𝑑𝑠exp [𝑠𝑡 − 𝛽𝑧]
2 ( 𝑒−𝑖𝑘𝑥𝑠 − 𝑖𝜎 + 𝑒+𝑖𝑘𝑥𝑠 + 𝑖𝜎)

(71)

where the integral can be directly evaluated, having the
expressions of 𝐺1,2 (see Section 2.2). The final expression of
the solution can be finally found as

�̃� = �̃�𝑛V − 1
sinh (𝑘ℎ) [cos (𝑘𝑥 − 𝑇) 𝐼𝑐 (𝜂, 𝑇)

− sin (𝑘𝑥 − 𝑇) 𝐼𝑠 (𝜂, 𝑇)]
(72)

where �̃� = 𝑢/(𝑎𝜎), 𝑇 = 𝜎𝑡 and 𝐼𝑐, 𝐼𝑠 are the integral expres-
sions described in Section 2.2 and numerically investigated in
Appendix (Appendix B), with 𝜂 = �̃�/√2𝑇 (�̃� = 𝑧√𝜎/(2])).
Solution (72) must match the nonviscous solution for �̃� →∞ and this is guaranteed by the behaviour of the (12) for 𝑦
diverging.

As it can be clearly noticed, the solution is composed
by a term 𝑢𝑛V which resolves the nonviscous equation with
a prescribed pressure gradient and by a second term 𝑢V
which resolves a viscous equation without a pressure gradient
but with a prescribed oscillating boundary condition on the
bottom and a homogeneous boundary condition at infinite.

For large 𝑇, solution (72) recovers the simplified one:

�̃� = �̃�𝑛V − 𝑒−𝑧
sinh (𝑘ℎ) cos (𝑘𝑥 − 𝑇 + �̃�) (73)

presented in Xu and Bowen [5], as it can be noticed from the
behaviour of integrals 𝐼𝑐 and 𝐼𝑠 sketched in Figure 3.

By exploiting the continuity, the 𝑧-component of velocity𝑤 is found to be straightforward:

𝑤 = 𝑤𝑛V − 1
sinh (𝑘ℎ) 𝑘𝜒 [sin (𝑘𝑥 − 𝑇)∫𝑧

0
𝑑𝑧 𝐼𝑐

+ cos (𝑘𝑥 − 𝑇) ∫𝑧
0
𝑑𝑧 𝐼𝑠]

(74)

where 𝜒2 = 𝜎/(2]). The expression of Xu and Bowen [5] can
be recovered, by considering (13).

In order to establish the behaviour of the complete
solution with respect to the approximate one, the velocity
field may be considered as the superposition of a nonviscous
and a viscous field:

𝑢 = 𝑢𝑛V + 𝑢V
𝑤 = 𝑤𝑛V + 𝑤V

(75)

and the viscous kinetic energy

𝐸𝑐𝜌𝑎3𝜎2 = 𝐸𝑐 = 12 ∫�̃�𝑚
0

𝑑𝑧 (𝑢2V + 𝑤2V) (76)

(�̃�𝑚 is the nondimensional distance from the bottom) can be
evaluated. In Figure 8 the kinetic energy associated with the
viscous part of the velocity fields (72) and (74) is shown in
comparison with the same fields of approximate solutions.
The difference is initially of about 10% and it reduces to 3%
for 𝑇 = 40 and to less than 1% for 𝑇 = 80 (not shown).
This means that, for a gravity wave with a wavelength of 62.8
meters (𝜎 ≈ 1𝑠−1), which passes from a deep to a 50-meter
bottom, the kinetic energy associated with the viscous part is
described with a satisfactory agreement (error less than 1%)
with the approximate solutions after 80 seconds.

To get the pressure field, it is worth noticing that �̂�𝑛V
satisfies the nonhomogeneous transformed equation, so it
can be inserted into together with the transformed pressure
gradient, arriving to the complete expression of the pressure
field:

𝑝 = 𝜌𝑔𝑎
⋅ cosh (𝑘𝑧)
cosh (𝑘ℎ) [cos (𝑘𝑥 − 𝜎𝑡) + ]

𝑘2𝜎 sin (𝑘𝑥 − 𝜎𝑡)] (77)

which returns (66) for ] → 0. The pressure field possess
two components: one is in phase with the velocity field 𝑢𝑛V
along the propagation direction, while the other component
(the viscous) is in phase with the vertical component of
velocity 𝑤𝑛V. As the decomposition of the velocity field (75)
is valid, it similarly holds for the pressure. In particular, the
gradient of the viscous component equals the Laplacian of the
nonviscous velocity.

7. Discussion

The classical approach to Stokes’ problems consists in solving
a parabolic linear differential problem with two different
kind of boundary conditions: constant or sinusoidal. These
problemsmay be solved for bounded or unbounded domains
and for Dirichlet or Neumann boundary conditions.

When a wall (see Section 2) or two walls (Section 4)
move with a generally periodical time law, the problem
may be approached developing in Fourier series both the
functions describing themovement of the boundaries and the
periodical pressure gradient.

In order to underline this point, consider the differential
problem (49) and assume𝜆(𝑡) to be a periodical functionwith
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Figure 8: On the top, the viscous kinetic energy calculated with the approximate solutions of Xu and Bowen [5] is plotted with symbols and
compared with the analytical solution, represented with solid line. On the top right, the magnifying of the comparison for short times. On
the bottom, the difference between the two solutions. In abscissa, the time is nondimensional with frequency 𝜎. The values of energy are
multiplied for 105.

a period 𝜏; the pressure term in (50) may be developed in
Fourier series and recast as

�̂�𝑝 (𝑠) + �̂�𝑠 = 𝜆0𝑠2 ( sinh [𝛽 (ℎ − 𝑦)]
sinh [𝛽ℎ] + sinh [𝛽𝑦]

sinh [𝛽ℎ])

+ ∞∑
𝑙=1

𝜆𝑐𝑙2𝑠 ( 1𝑠 + 𝑖𝐿 + 1𝑠 − 𝑖𝐿)

⋅ ( sinh [𝛽 (ℎ − 𝑦)]
sinh [𝛽ℎ] + sinh [𝛽𝑦]

sinh [𝛽ℎ])

+ ∞∑
𝑙=1

𝜆𝑠𝑙2𝑠 ( 𝑖𝑠 + 𝑖𝐿 − 𝑖𝑠 − 𝑖𝐿)

⋅ ( sinh [𝛽 (ℎ − 𝑦)]
sinh [𝛽ℎ] + sinh [𝛽𝑦]

sinh [𝛽ℎ])

(78)

where the inversion of the first row leads to a solution of kind
(54), while the second and the third rows lead to a linear

superposition of solutions of kind (59).The term �̂�/𝑠 has been
moved to the left-hand side and is not discussed, because the
inversion is a trivial integration in time.

8. Conclusions and Future Perspectives

In this paper a general methodology for achieving the
analytical solution of the one-dimensional Stokes’ problem
has been illustrated; solutions for constant and periodical
velocity laws of the boundaries have been deduced. The
present strategy has allowed taking into account the presence
of a time-dependent pressure gradient. Moreover, differently
from other approaches, the residual theorem allows with
a reasonable mathematical effort getting time solutions in
closed forms.

Solutions for constant and periodical forcing term have
been derived and the complete primary motion field for a
gravity wave has been achieved. The generalization to gener-
ally periodic boundary conditions and pressure gradient has
been also discussed.

Numerical solutions of the Stokes’ problem, provided by
a second-order finite difference scheme, have been employed
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in order to check the correctness of the analytical solutions,
as well as of their evaluations.

Thanks to the present approach the extension to two-
dimensional problems with nonzero time-dependent pres-
sure gradient is possible and will be the matter of future
works. The extension of this strategy to different geometries
is also under investigation.

Appendix

A. Calculation of 𝐺1,2(𝑦,0)
The goal is the demonstration of the nullity of 𝐺1,2 which
consists in calculating the integral:

12𝜋𝑖 ∫
𝜇+𝑖∞

𝜇−𝑖∞
𝑑𝑠exp (−𝛽𝑦)𝑠 ± 𝑖𝜎 (A.1)

where the integral function possesses one pole on ∓𝑖𝜎 and a
phase discontinuity through the negative real axis. A double
application of residuals theorem will be performed.

By considering Figure 2(a), the integral can be written as
the limit for 𝑀 → ∞ of the difference among the integral
on the whole path (called C) and the integrals calculated on
the following curves:

(1) the segment (𝜇, 𝑖𝑀) − (0, 𝑖𝑀)
(2) the segment (0, −𝑖𝑀) − (𝜇, −𝑖𝑀)
(3) the upper quarter of circle
(4) the lower quarter of circle
(5) the segment (−𝑖𝑀, 0) − (0, 0)
(6) the segment (0, 0) − (−𝑖𝑀, 0),

where integrals (3) and (4) go to zero, while integrals (1) and(2) are opposite and their sum is identically null. By taking
into account only 𝐺1 (for 𝐺2 the following considerations are
identical), the integral can be expressed as

12𝜋𝑖 ∫C 𝑑𝑠exp (−𝛽𝑦)𝑠 + 𝑖𝜎 + 12𝜋𝑖
⋅ ∫0
−∞

𝑑𝑥exp (𝑖𝑦√−𝑥/]) − exp (−𝑖𝑦√−𝑥/])
𝑥 + 𝑖𝜎

(A.2)

where the first integral can be evaluated directly by mean of
the residuals theorem as

12𝜋𝑖 ∫C 𝑑𝑠exp (−𝛽𝑦)𝑠 + 𝑖𝜎 = exp [−√𝜎
]
𝑦√22 (1 − 𝑖)] (A.3)

with a consistent choice of the argument of the root √−𝑖 =√2/2(1 − 𝑖). By performing the change 𝜉2 = −𝑥, the integrals
on the real axis are expressed as

− 12𝜋𝑖 ∫
+∞

0
𝑑𝜉 2𝜉𝜉2 − 𝑖𝜎 [exp (𝑖𝛼𝜉) − exp (−𝑖𝛼𝜉)] (A.4)

where 𝛼 = 𝑦/√].The calculation of the latter integral needs a
further application of the residuals theorem. By considering

the fact that the integrand is an even function, once written
in complex form, the integral is recasted as

− 1𝜋𝑖 ∫C+ 𝑑𝑧
2𝑧 exp (𝑖𝛼𝑧)(𝑧 − 𝑧1) (𝑧 − 𝑧2) (A.5)

where 𝑧1 = √2𝜎/2(1 + 𝑖) and 𝑧2 = −𝑧1 are the poles of
the integrands and C+ is the path of integration (the half of
circle in the upper half plane). An application of the residuals
theorem shows that

− 1𝜋𝑖 ∫C+ 𝑑𝑧
2𝑧 exp (𝑖𝛼𝑧)(𝑧 − 𝑧1) (𝑧 − 𝑧2) = − exp (𝑖𝛼𝑧1) (A.6)

being this last term opposite to (A.3), an their sum is
identically null.

B. Evaluation of the Integrals by Series

In Appendix, the integrals in the different solutions are
analytically evaluated by series. Routines which calculate
these integrals are available on request.

The integral

𝐼𝑐 (𝑦, 𝑡) = 2√𝜋 ∫+∞
𝑦

𝑑𝜂 𝑒−𝜂2 cos(𝑡𝑦2𝜂2) (B.1)

and the analogous one (𝐼𝑠) with the sine in place of the cosine,
which are present in solution (12), are calculated through the
introduction of the integrals:

𝑔𝑚 (𝑥) = 𝑥2𝑚 2√𝜋 ∫+∞
𝑥

𝑑𝜉 𝑒−𝜉2𝜉2𝑚 (B.2)

that follow by recurrence

𝑔0 = erfc (𝑥) ,
𝑔𝑚 = 2𝑥2𝑚 − 1 ( 1√𝜋 𝑒−𝑥2 − 𝑥𝑔𝑚−1) for 𝑚 ≥ 1. (B.3)

The integral (B.1) is evaluated as

𝐼𝑐 (𝑦, 𝑡) = ∞∑
𝑘=0

(−1)𝑘(2𝑘)! 𝑡2𝑘𝑔2𝑘 (𝑦) (B.4)

and an analogous formula is used for 𝐼𝑠.
C. Stationary Solutions of the Finite

Depth-Second Stokes Problem

In Appendix, the complete expressions of the constants 𝑐(𝑦),𝑑(𝑦), 𝑐1(𝑦), 𝑑1(𝑦), 𝑐2(𝑦), 𝑑2(𝑦) are given:
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𝑐 (𝑦) = cosh [𝛼 (1 − 𝑦/2)] cos (𝑦𝛼/2) + cos [𝛼 (1 − 𝑦/2)] cosh (𝑦𝛼/2)
cosh (𝛼) + cos (𝛼)

𝑑 (𝑦) = sinh [𝛼 (1 − 𝑦/2)] sin (𝑦𝛼/2) + sin [𝛼 (1 − 𝑦/2)] sinh (𝑦𝛼/2)
cosh (𝛼) + cos (𝛼)

𝑐1 (𝑦) = cosh [𝛼 (1 − 𝑦/2)] cos (𝑦𝛼/2) − cos [𝛼 (1 − 𝑦/2)] cosh (𝑦𝛼/2)
cosh (𝛼) − cos (𝛼)

𝑑1 (𝑦) = sinh [𝛼 (1 − 𝑦/2)] sin (𝑦𝛼/2) − sin [𝛼 (1 − 𝑦/2)] sinh (𝑦𝛼/2)
cosh (𝛼) − cos (𝛼) ,

𝑐2 (𝑦) = cosh [𝛼2/2 (1 + 𝑦)] cos [𝛼2/2 (1 − 𝑦)]
cosh (𝛼2) − cos (𝛼2) + −cos [𝛼2/2 (1 + 𝑦)] cosh [𝛼2/2 (1 − 𝑦)]

cosh (𝛼2) − cos (𝛼2)
𝑑2 (𝑦) = sinh [𝛼2/2 (1 + 𝑦)] sin [𝛼2/2 (1 − 𝑦)]

cosh (𝛼2) − cos (𝛼2) + − sin [𝛼2/2 (1 + 𝑦)] sinh [𝛼2/2 (1 − 𝑦)]
cosh (𝛼2) − cos (𝛼2)

(C.1)

with 𝛼 = √2𝛼, 𝛼2 = √2𝛼2. Similarly it follows the evaluation
of the derivatives for 𝑦 = 0 and 𝑦 = 1:

𝑐1 (0) = −𝛼2 sinh 𝛼 + sin 𝛼
cosh 𝛼 − cos 𝛼

𝑑1 (0) = +𝛼2 sinh 𝛼 − sin 𝛼
cosh 𝛼 − cos 𝛼

𝑐2 (0) = +𝛼2
⋅ sinh (𝛼2/2) cos (𝛼2/2) + cosh (𝛼2/2) sin (𝛼2/2)

cosh 𝛼2 − cos 𝛼2
𝑑2 (0) = +𝛼2

⋅ cosh (𝛼2/2) sin (𝛼2/2) − sinh (𝛼2/2) cos (𝛼2/2)
cosh 𝛼2 − cos 𝛼2

𝑐1 (1) = −𝛼

⋅ sinh (𝛼/2) cos (𝛼/2) + sin (𝛼/2) cosh (𝛼/2)
cosh 𝛼 − cos 𝛼

𝑑1 (1) = −𝛼

⋅ cosh (𝛼/2) sin (𝛼/2) − sinh (𝛼/2) cos (𝛼/2)
cosh 𝛼 − cos 𝛼

𝑐2 (1) = +𝛼22 sinh 𝛼2 + sin 𝛼2
cosh 𝛼2 − cos 𝛼2

𝑑2 (1) = −𝛼22 sinh 𝛼2 − sin 𝛼2
cosh 𝛼2 − cos 𝛼2 .

(C.2)

D. Second Stokes’ Problem with Pressure
Gradient: Some Useful Terms

In Appendix, the terms 𝑍1 + 𝑍3 and 𝑍2 + 𝑍4 in (52) are
extensively shown. Starting by a calculation of 𝑍1,2 and 𝑍3,4,
we have

𝑍1,2 = 𝑒∓𝑖𝜃 [2ℎ2
]

∞∑
𝑘=1

sin (𝐾𝑦)
𝐾 (𝐾2 ∓ 𝑖𝛼23)𝑒

−𝑇3/𝛼
2

3
𝐾2

± 𝑖𝜒𝑒∓𝑖𝑇3 sinh [𝛼3 ((1 ∓ 𝑖) /√2) (1 − 𝑦)]
sinh [𝛼3 ((1 ∓ 𝑖) /√2)]

∓ 𝑖𝜒 (1 − 𝑦)]

𝑍3,4 = 𝑒∓𝑖𝜃 [−2ℎ2
]

∞∑
𝑘=1

(−1)𝑘 sin (𝐾𝑦)
𝐾 (𝐾2 ∓ 𝑖𝛼23) 𝑒

−𝑇3/𝛼
2

3
𝐾2

± 𝑖𝜒𝑒∓𝑖𝑇3 sinh [𝛼3 ((1 ∓ 𝑖) /√2) 𝑦]
sinh [𝛼3 ((1 ∓ 𝑖) /√2)] ∓ 𝑖𝜒𝑦]

(D.1)

where 𝑖 is the imaginary unit, 𝛼3 = √𝜒/]ℎ and 𝑇3 = 𝜒𝑡. Then
sums 𝑍1 + 𝑍3 (indicated by 𝑍1+3) and 𝑍2 + 𝑍4 (𝑍2+4) follow:

𝑍1+3,2+4 = 𝑒∓𝑖𝜃 [4ℎ2
]

∞∑
𝑘=1

sin (𝐾𝑜𝑦)𝐾𝑜 (𝐾2𝑜 ∓ 𝑖𝛼23) 𝑒
−𝐾2
𝑜
𝑇3/𝛼
2

3

± 𝑖𝜒𝑒∓𝑖𝑇3 ( sinh [𝛼3 ((1 ∓ 𝑖) /√2) (1 − 𝑦)]
sinh [𝛼3 ((1 ∓ 𝑖) /√2)]

+ sinh [𝛼3 ((1 ∓ 𝑖) /√2)𝑦]
sinh [𝛼3 ((1 ∓ 𝑖) /√2)] ) ∓ 𝑖𝜒]

(D.2)
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