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Spectral leakage in the harmonic measured by quasi-synchronous DFT (QSDFT) is mainly due to short-range leakage caused by
deviation in the signal frequency. By analysing the short-range-leakage characteristic of QSDFT, a linear-correction algorithm
(LCQS) for QSDFT’s harmonic-analysis results is proposed. LCQS contains two linear-correction equations: an amplitude-
correction equation and an initial-phase-angle-correction equation.The former is constructed by the least-squaresmethod,whereas
the latter is generated based on the linear error characteristic of the QSDFT harmonic phase. Simulation and experimental results
indicate that this proposed algorithm can efficiently increase the accuracy of the harmonic parameters over a wide frequency range
by minimizing the short-range spectral leakage.

1. Introduction

Harmonic analysis technology can break down complex
signals into simple periodic ones to facilitate their under-
standing. This technique is widely used in many fields such
as power-quality monitoring, electronic product inspection,
and electrical equipment monitoring. The Fourier transform
method, including discrete Fourier transforms (DFTs) and
fast Fourier transforms (FFTs), is the most widely used
method for harmonic analysis. However, two types of spec-
trum leakage—i.e., long-range leakage caused by the trunca-
tion effect (finite points sampling) and short-range leakage
caused by the fence effect (asynchronous sampling)—appear
when DFT and FFT are applied, resulting in inaccurate and
untrustworthy analytical results [1–3]. Thus, many solutions
have been presented, including the windowed-interpolation
algorithm [4–7] and quasi-synchronous DFT (QSDFT) [8–
15].

The QSDFT algorithm is simple and easy to imple-
ment, and the measurement accuracy of the signal fre-
quency is high when the frequency is deviated [3]. However,
suppression of the short-range spectral leakage caused by
signal-frequency deviation is insufficient, limiting analytical
accuracy. Many improved methods to address this problem

have been presented in the literature, such as parameter-
adapted QSDFT [16], the periodic-sampling-points correc-
tionmethod [17], and the least-squaresmethod [18]; however,
none can completely suppress spectral leakage. [19] proposed
the so-called variable picket fence (VPF) harmonic-analysis
method, which effectively suppresses short-range spectrum
leakage but requires two analytical operations to obtain
results, making it unsuitable for real-time operation.

QSDFT uses the multiple iterations integral method to
suppress spectral leakage; however, it causes the spectral
equation to become extremely complex, preventing a simple
interpolation-correction function for the frequency devia-
tion from being obtained. In this paper, a linear-correction
algorithm (LCQS) for QSDFT is proposed, containing two
equations: the amplitude-correction equation and the initial-
phase-angle-correction equation. It can easily correct the
errors caused by frequency deviation. Simulation and appli-
cation results show the validity of this algorithm.

2. QSDFT and VFP

2.1. QSDFT Algorithm. Consider a periodic signal, 𝑓(𝑡):
𝑓 (𝑡) = 𝐴0 + ∞∑

𝑘=1

𝐴𝑘 sin (2𝜋𝑘𝑓1𝑡 + 𝜑𝑘) (1)
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Here, 𝑘 is the harmonic order, 𝐴𝑘 and 𝜑𝑘 are the amplitude
and initial phase of the kth harmonic, respectively, and 𝑓1 is
the frequency of 𝑓(𝑡).

According to the sampling frequency 𝑓𝑆 and the number
of sampling points within a cycle 𝑁, uniformly spaced
sampling is performedW+1 times in the range [𝑡0, 𝑡0+𝑊×𝑇𝑆]
to obtain the sampled sequence 𝑓(𝑖), 𝑖 = 0 𝑡𝑜 𝑊. Here,𝑊 is determined by the integral method, 𝑊 = 𝑛𝑁, when
using trapezoidal integration methods; 𝑛 is the number of
iterations.

Appling Eqs. (2) and (3) to calculate the real part, 𝑎𝑘 and
the imaginary part, 𝑏𝑘, and thus the 𝐴𝑘 and 𝜑𝑘 values of the
kth harmonic, QSDFT is given by [8]

𝑎𝑘 = 2𝐹𝑛𝑎𝑘 (𝑖) = 2𝑄
𝑊∑
𝑗=0

𝛾𝑗𝑓 (𝑖 + 𝑗) cos(𝑘2𝜋𝑁 𝑗)
𝑏𝑘 = 2𝐹𝑛𝑏𝑘 (𝑖) = 2𝑄

𝑊∑
𝑗=0

𝛾𝑗𝑓 (𝑖 + 𝑗) sin(𝑘2𝜋𝑁 𝑗)
(2)

𝐴𝑘 = √𝑎2𝑘 + 𝑏2𝑘
𝜑𝑘 = 𝑡𝑔−1 [𝑎𝑘𝑏𝑘 ]

(3)

where 𝑖 is the initial sampling point, normally 𝑖 = 0; 𝛾𝑗 is
the weighting coefficient, determined by the integral method,𝑛 and 𝑁; and 𝑄 = ∑𝑊𝑗=0 𝛾𝑗 is the sum of all weighting
coefficients, with 𝑄 = (𝑁 + 1)𝑛 when𝑊 = 𝑛𝑁.

Strictly whole-cycle synchronous sampling is difficult
to implement in the actual measurement process. Multiple
factors, including the precision and integer-multiple error of
the sampling clock and the signal-frequency deviation, will
affect the sampling process, leading to short-range leakage
of the discrete spectrum, as well as the most important
source of leakage, namely, signal-frequency deviation. In
theory, based on the convergence characteristics of multiple
iterations, QSDFT can suppress short-range leakage caused
by frequency deviation. However, the inhibitory effect upon
the short-range leakage is not significant during practical
applications.

[19] pointed out that high analytical precision for the
amplitude of QSDFT occurs only in the range of 50 ± 0.1Hz
and that the initial-phase from QSDFT is untrustworthy
except when it is close to the original frequency. In other
words, QSDFT is almost completely incapable of suppressing
short-range spectrum leakage.

2.2. Rate of Signal-Frequency Deviation

Definition 1. The rate of signal-frequency deviation, 𝜇, is the
degree of signal-frequency deviation, which is defined as
follows:

𝜇 = 𝑁𝑓1𝑓𝑆 (4)

If the signal frequency does not deviate, 𝜇 = 1; if it does,𝜇 ̸= 1 and
Δ𝜇 = 𝜇 − 1 (5)

Suppose 𝑁 > (2 + 𝑁𝑓1/𝑓S), 𝑓S/𝑁 > 2𝑀|𝑓1|, and 𝑛 is a
large number; the following equations can be deduced from
[20]:

𝐹𝑛𝑎1 = (𝜌11)𝑛 𝐴1 cos (2𝜋𝑓1𝑁𝑇𝑆𝐶𝑛 + 𝜑∗1 )
𝐹𝑛𝑏1 = (𝜌11)𝑛 𝐴1 sin (2𝜋𝑓1𝑁𝑇𝑆𝐶𝑛 + 𝜑∗1 ) (6)

Here,𝑀 is the maximum harmonic order,

𝐶𝑛 = 𝑖0𝑁 + 𝑛(12 − 12𝑁) (7)

𝜌11 = 1𝑁 sin (𝜋𝑓Δ𝑁𝑇𝑆)
sin (𝜋𝑓Δ𝑇𝑆) (8)

The fundamental initial phase 𝜑1(𝑖) analyzed by QSDFT
from the ith sample point is

𝜑1 (𝑖) = 𝑡𝑔−1 [𝐹𝑛𝑎1 (𝑖)𝐹𝑛
𝑏1 (𝑖)]

= 2𝜋𝑓1𝑁𝑇𝑆 [ 𝑖0𝑁 + 𝑛(12 − 12𝑁)] + 𝜑∗1
(9)

For two adjacent sampling points, the fundamental
initial-phase difference is

𝜑1 (𝑖 + 1) − 𝜑1 (𝑖) = 2𝜋𝑓1𝑓S (10)

For engineering applications, the fundamental initial
phases, 𝜑1(0) and 𝜑1(1), of the two adjacent sampling points
can be calculated from two starting points 𝑖 = 0 and 𝑖 = 1
with Eq. (2), so 𝜇 is
𝜇 = 𝑁𝑡𝑔−1 [𝐹𝑛𝑎1 (1) /𝐹𝑛𝑏1 (1)] − 𝑡𝑔−1 [𝐹𝑛𝑎1 (0) /𝐹𝑛𝑏1 (0)]2𝜋 (11)

2.3. VFP Algorithm. [19] showed that when signal-frequency
deviation occurs, the sampling position in the frequency
domain is still 2𝜋/𝑁 (the corresponding analog frequency𝑓𝑆/𝑁), leading to great spectral leakage. Adjusting the
frequency-domain sampling position to 𝜇2𝜋/𝑁 (the corre-
sponding analog frequency 𝜇𝑓𝑆/𝑁) will suppress short-range
spectrum leakage.

Thus, the improved VFP equation is

𝑎𝑘 = 2𝐹𝑛𝑎𝑘 (𝑖) = 2𝑄
𝑊∑
𝑗=0

𝛾𝑗𝑓 (𝑖 + 𝑗) cos(𝑘𝜇2𝜋𝑁 𝑗)
𝑏𝑘 = 2𝐹𝑛𝑏𝑘 (𝑖) = 2𝑄

𝑊∑
𝑗=0

𝛾𝑗𝑓 (𝑖 + 𝑗) sin(𝑘𝜇2𝜋𝑁 𝑗)
(12)

However, the introduction of the frequency-deviation
rate 𝜇 leads to two problems for the implementation of the
VFP harmonic analysis algorithm:
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Figure 1: The discrete amplitude spectrum of QSDFT with signal frequency.

(1) the sine/cosine calculation of the Fourier transform
factor cannot be achieved using the look-up-table method,
and the computational cost increases significantly;(2) the VFP harmonic calculation must be completed
after the sample is completed and cannot be calculated step
by step.

3. Linear-Correction Algorithm

3.1. Amplitude Correction. Because the spectral function of
QSDFT is too complex, it is almost impossible to derive a
simple interpolation iterative formula to correct the analytical
error caused by frequency deviation.This paper gives a linear
amplitude-correction method based on the principle of least
squares, the specific idea of which is(1) to construct the error curve between the fundamental
amplitude error and the rate of signal-frequency deviation 𝜇
according to the law relating these quantities;(2) to obtain an equation for the error curve between
the fundamental amplitude and 𝜇 using the least-squares
method, as well as the linear-correction equation between the
fundamental amplitude and 𝜇;(3) to extend the linear-correction equation of fundamen-
tal amplitude to each harmonic and obtain such an equation
between each harmonic amplitude and 𝜇.

We know that if the signal frequency𝑓1 deviates𝜇 times to𝜇𝑓1, the spectrumpeak of theQSDFT amplitudewill stretch𝜇
times along with the frequency axis to 𝜇𝑓𝑠/𝑁, and amplitude-
analysis error will result from it if the peak is still found at𝑓𝑠/𝑁. For example, there are three fundamental signals of
different frequencies with the same amplitude of 1: the ideal
signal frequency of 50Hz, and the deviated frequencies at
40Hz and 55Hz; using QSDFT to analyze the harmonics of

these three signals, we find that they have peaks of amplitudes
A, B, and C, respectively (Figure 1, left). Obviously, only
the fundamental amplitude of 50Hz obtained by QSDFT
is correct, and the obtained fundamental amplitudes of the
other two signals have larger errors.

Figure 1 suggests a means of obtaining the fundamental
amplitude-error curve of QSDFT.This involves recording the
fundamental amplitude-analysis results of these three signals,
together with their frequency deviations (0Hz, +5Hz, and -
10Hz, resp.). Then, these deviations can be used as abscissas
(in units of hertz) and the fundamental amplitude can be
used as ordinates; points A, B, and C can then be plotted as
Figure 1, right. Then, the fundamental signal from 20Hz to
80Hz will be continuously generated and QSDFT harmonic
analysis will be carried out. The fundamental amplitude is
recorded and plotted, and its error curve can be obtained
(Figure 1, right). The equation of the QSDFT fundamental
amplitude-error curve is

𝑎1 (Δ𝜇) = 2𝑄
𝑊∑
𝑗=0

𝛾𝑗 sin(2𝜋 (Δ𝜇 + 1)𝑁 𝑗) cos(2𝜋𝑁 𝑗)
𝑏1 (Δ𝜇) = 2𝑄

𝑊∑
𝑗=0

𝛾𝑗 sin(2𝜋 (Δ𝜇 + 1)𝑁 𝑗) sin(2𝜋𝑁 𝑗)
(13)

𝐴1 (Δ𝜇) = √𝑎21 (Δ𝜇) + 𝑏21 (Δ𝜇) (14)

The least-squares principle is employed to obtain the
solution of Eq. (14); set

𝐴1 (Δ𝜇) = 𝑀∑
𝑖=0

𝛽𝑖 (Δ𝜇)𝑖 (15)
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There are two unknown quantities,𝑀 and 𝛽𝑖, in Eq. (15)
when the error curve of the fundamental amplitude is known.
Assuming that𝑀 is known, set

𝐵 =
[[[[[[[[[[[[[[

𝛽0𝛽1...𝛽𝑖...𝛽𝑀

]]]]]]]]]]]]]]

(16)

Δ𝑘 = [1 Δ𝜇𝑘 ⋅ ⋅ ⋅ (Δ𝜇𝑘)𝑖 ⋅ ⋅ ⋅ (Δ𝜇𝑘)𝑀] (17)

Thus,

𝐴1𝑘 = 𝐴1 (Δ𝜇𝑘) = Δ𝑘𝐵 (18)

We apply Eqs. (13) and (14) to produce 𝐿-group data 𝐴1𝑘
and Δ 𝑘, denoted as

𝐴 =
[[[[[[[[[[[[[[

𝐴10𝐴11...𝐴1𝑘...𝐴1𝐿

]]]]]]]]]]]]]]

(19)

Δ =
[[[[[[[[[[[[[[

Δ0

Δ1...
Δ𝑘...
Δ𝐿

]]]]]]]]]]]]]]

=

[[[[[[[[[[[[[[[[

1 Δ𝜇0 ⋅ ⋅ ⋅ (Δ𝜇0)𝑖 ⋅ ⋅ ⋅ (Δ𝜇0)𝑀1 Δ𝜇1 ⋅ ⋅ ⋅ (Δ𝜇1)𝑖 ⋅ ⋅ ⋅ (Δ𝜇1)𝑀... ... d
... d

...
1 Δ𝜇𝑘 ⋅ ⋅ ⋅ (Δ𝜇𝑘)𝑖 ⋅ ⋅ ⋅ (Δ𝜇𝑘)𝑀... ... d

... d
...

1 Δ𝜇𝐿 ⋅ ⋅ ⋅ (Δ𝜇𝐿)𝑖 ⋅ ⋅ ⋅ (Δ𝜇𝐿)𝑀

]]]]]]]]]]]]]]]]

(20)

Then,

𝐴 = Δ𝐵 (21)

The least-squares solution of 𝐵 is

𝐵 = (Δ𝑇Δ)−1 Δ𝑇𝐴 (22)

The remaining issue is to determine the unknown quan-
tity𝑀. Suppose the error between the fitted value and the true
value is

𝛿𝑘 = 𝐴1𝑘 − Δ𝑘𝐵 (23)

The mean square error of 𝛿𝑘 is
𝐺 = √ 𝐿∑

𝑘=0

𝛿𝑘2 = √ 𝐿∑
𝑘=0

(𝐴1𝑘 − Δ𝑘𝐵)2 (24)

In a certain range searching𝑀 to make 𝐺minimum, we
can obtain the value of𝑀.

The number of iterations, n, is different, and the funda-
mental amplitude-error curve is not consistent. Table 1 shows𝛽𝑖 with different 𝑛.

We also know that the spectral peak of the kth harmonic
amplitude will deviate by 𝑘Δ𝜇 from the ideal position when
the signal frequency deviates by Δ𝜇, so the amplitude linear-
correction function of QSDFT is

𝐴𝑘 = 2√(𝐹𝑛
𝑘𝑎
)2 + (𝐹𝑛

𝑘𝑏
)2𝐴1 (𝑘Δ𝜇) (25)

3.2. Initial-Phase Angle Correction. Suppose 𝑁 > (2 +𝑁𝑓1/𝑓S), 𝑓S/𝑁 > 2𝑀|𝑓1|, and 𝑛 is a large number; the
following equation can be deduced from [20]:

𝜑𝑘 = 𝑡𝑔−1 [𝐹𝑛𝑎𝑘𝐹𝑛
𝑏𝑘

] = 2𝜋𝑓1𝑁𝑇𝑆𝐶𝑛 + 𝜑∗𝑘 (26)

So,

𝜑𝑛𝑘 = 𝑡𝑔−1 (𝐹𝑛𝑎𝑘𝐹𝑛
𝑏𝑘

) ≈ 𝜑𝑘 + 𝐶𝑘 (27)

Here, 𝐶𝑘 is a constant.
Eq. (27) suggests that there is a linear relationship

between the analytical results and the real values of the
harmonic initial-phase-angle of signal-frequency deviation.
However, no method for determining 𝐶𝑘 is given in [20].

A large number of simulation experiments show that 𝐶𝑘
is associated with the rate of signal-frequency deviation 𝜇,
the number of iterations 𝑛, and the harmonic order 𝑘 and is
not affected by the number of sampling points 𝑁 and other
parameters. Thus, the initial-phase-angle linear-correction
function of QSDFT is

𝜑𝑘 = 𝑡𝑔−1 (𝐹𝑛𝑘𝑎𝐹𝑛
𝑘𝑏

) − 𝐶𝑘 (28)

where 𝐶𝑘 = 𝑛(𝑘Δ𝜇)𝜋.
3.3. Analytical Process of LCQS. The analytical process of
LCQS consists of five steps:(1) sampling𝑊+2 data. Adding onemore sampling point
is necessary for LCQS due to the need for two starting points,𝑖 = 0 and 𝑖 = 1;(2) calculating 𝐹𝑛𝑎1(0), 𝐹𝑛𝑏1(0), 𝐹𝑛𝑎1(1), and 𝐹𝑛𝑏1(1) for 𝑖 = 0
and 𝑖 = 1, respectively, using Eq. (2);(3) calculating 𝜇 and Δ𝜇 by Eqs. (11) and (5);(4) calculating the raw amplitude and the initial phase of
each harmonic by Eqs. (2) and (3);(5) correcting the amplitude and the initial phase of each
harmonic using Eqs. (25) and (28), respectively.

4. Simulation

We design two groups of simulation experiments to examine
the effectiveness of LCQS: an analytical-accuracy experiment
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Figure 2: The amplitude errors of these four methods. (a) Hanning, (b) QSDFT, (c) VFP, and (d) LCQS.

and a time complexity experiment. For comparison, we also
perform the same experiments with the Hanning interpola-
tion [21], QSDFT, and VFP methods.

4.1. Analytical-Accuracy Experiment. Somewaveform signals
are generated from Eq. (29) to verify the analytical accuracy
of these four methods. The signals are measured with 𝑓S =
6,400 𝐻𝑧,𝑁 = 128, and the number of iterations 𝑛 = 8:

𝑓 (𝑡) = 8∑
𝑘=1

𝐴2𝑘−1 sin [(2𝑘 − 1) 2𝜋𝑓1𝑡 + 𝜑2𝑘−1] (29)

Here, 𝐴2𝑘−1 and 𝜑2𝑘−1 are arbitrary; 𝑓1 = 49.5 to 50.5Hz;
Amplitude Relative Error = (Analyzed-Theoretical)/Theo-
retical ∗ 100%; Initial-phase Absolute Error = (Analyzed-
Theoretical)∘.

Figure 2 shows the relative errors in the amplitude
obtained by each of the four methods. In Figure 2, the x-axis
is the signal frequency inHz; the Y-axis is the harmonic order
from 1 to 15; and the z-axis is the relative percent error in
amplitude. As can be seen from Figure 2, the error of QSDFT

is the largest and reaches 10% level; the error of Hanning
interpolation is second and is to 10−4% level; the error of
LCQS is to 10−7% level; and the error of VFP is minimal at
10−12% level.

Figure 3 illustrates the absolute error of the initial phase
obtained by the four above-mentioned methods. In Figure 3,
the x-axis is the signal frequency in hertz, the y-axis is the
harmonic order from 1 to 15, and the z-axis is the absolute
error of the initial-phase angle in degrees. As can be seen
fromFigure 3, the error inQSDFT is largest, reaching the 102-
degree level; however, if 360-degree periodicity is considered,
the error surface falls in a plane, which is also the theoretical
basis for LCQS; the error of Hanning interpolation is second
largest, reaching the 10−2-degree level; the error of LCQS
reaches the 10−8-degree level, and that of VFP reaches the
10−9-degree level. However, the error of LCQS only slightly
protrudes at the frequency and harmonic edges, and the
overall error falls almost in a plane.

The analytical-accuracy experiments show that(1) LCQS makes up for the short-range leakage of the
QSDFT algorithm, relaxes the requirement for synchronous
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Figure 3: The initial-phase errors of these four methods. (a) Hanning, (b) QSDFT, (c) VFP, and (d) LCQS.

sampling, and significantly increases the analytical accuracy
of each harmonic.(2) Compared with QSDFT, LCQS can obtain high
analytical precision simply by adding one sample point and
one fundamental initial-phase calculation.(3) Compared with the VFP, LCQS greatly reduces the
complexity of the algorithm and can be calculated step by
step.

4.2. Time Complexity Experiment. In order to qualitatively
describe the time complexity of the four harmonic-analysis
methods, we designed a simulation experiment. A waveform
signal is generated from Eq. (29), where 𝐴2𝑘−1 and 𝜑2𝑘−1
are arbitrary, 𝑓1 = 50Hz, 𝑓S = 6,400𝐻𝑧, 𝑁 = 128,
and the number of iterations is 𝑛 = 8. In the MATLAB
R2016b software environment, the analysis times of these
four methods are recorded. To exclude other interference
factors, the same 200 consecutive analytical experimentswere
performed, and the time averagewas taken.The experimental
results are presented in Table 2.

The simulation results show that the time complexity
of LCQS is only slightly higher than that of the QSDFT at

Table 2: The required time (s) for the four harmonic-analysis
algorithms for different numbers of iterations.

𝑛 Hanning QSDFT VFP LCQS
4 0.001826 0.001139 0.010694 0.001844
5 0.002388 0.001440 0.013180 0.002208
6 0.002684 0.001729 0.015721 0.002438
7 0.003119 0.001979 0.017495 0.002757
8 0.003519 0.002218 0.020051 0.002998

different iterations, but about an order of magnitude lower
than the VFP algorithm.

5. Experimental Results

To evaluate the practical performance of LCQS,we embedded
LCQS into ameasuring device, JCQ-5 (Figure 4(a)), designed
to monitor the capacitive equipment online. This equipment
is important to the power grid and usually requires online
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Table 3: Experimental results with different methods.

𝑓 𝐴 𝑖1/% 𝛿/∘
Hanning QSDFT VPF LCQS Hanning QSDFT VPF LCQS

49.5 -0.5000 -1.3333 -0.1667 -0.2000 -0.079 -0.020 0.005 -0.006
49.7 -0.2667 -0.5000 -0.0333 -0.0667 -0.035 -0.017 -0.002 -0.002
50.0 0.0667 0.3333 0.0667 0.1000 0.018 0.008 0.002 0.001
50.3 -0.1000 -0.6667 -0.0667 -0.1000 -0.028 0.012 0.003 -0.003
50.5 0.4333 -1.4333 -0.1333 -0.1667 0.083 0.017 -0.006 0.006

u
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RC
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u

iC
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Figure 4: Harmonic analysis by JCQ-5. (a) Measuring model of the capacitive equipment, (b) JCQ-5 measuring the signal from JB706.

monitoring of its current, 𝑖, and dissipation angle, 𝛿, or
dissipation factor, tan 𝛿, to evaluate its status (Figure 4(a)):

𝛿 = 𝜋2 − (𝜑𝑖1 − 𝜑𝑢1) (30)

Here, 𝜑𝑖1 and 𝜑𝑢1 are the fundamental initial phases of 𝑖 and𝑢, respectively.
JCQ-5 consists of four parts: Voltage / Current Trans-

former, Signal Conditioning, Synchronous ADC AD7606,
and a CPU STM32F103. JCQ-5 samples 𝑖 and 𝑢 syn-
chronously; in this device, we set 𝑓S = 6,400𝐻𝑧, 𝑁 = 128,
and 𝑛 = 8. It calculates 𝐴 𝑖1 (fundamental amplitude of𝑖), 𝜑𝑖1, 𝜑𝑢1, 𝛿 and tan 𝛿. A highly precise and stable three-
phase harmonic source JB706 (Figure 4(b)) was used as the
signal source.Theoutput parameters of JB706were as follows:𝐴𝑢1 = 81.6𝑉, 𝜑𝑢1 = 0∘, 𝐴 𝑖1 = 0.03𝐴, 𝜑𝑖1 = 85∘, 𝑓𝑢1 =𝑓𝑖1 = 49.5 ∼ 50.5𝐻𝑧. The amplitude of the third and
fifth harmonics was 5% and 1% of that of the fundamental,
respectively.

For comparison, we also embedded the Hanning inter-
polation, QSDFT, and VPF into JCQ-5; their performances
are shown in Table 3. Among them, the error of𝐴 𝑖1 is relative
error, the unit is%; the error of 𝛿 is absolute error, and the unit
is degree. For the measurement accuracy of 𝐴 𝑖1, QSDFT is
inferior to the other methods, while VPF and LCQS have the
same level of high accuracy. For the measurement accuracy
of 𝛿, Hanning has a relatively poor result because of its lower

initial-phase analysis accuracy; QSDFT can also obtain the
correct result, but only because the errors of𝜑𝑢1 and𝜑𝑖1 cancel
each other out and themeasurement results of 𝜑𝑢1 and 𝜑𝑖1 are
not correct; VPF and LCQS still have the same high level of
accuracy.

6. Conclusions

This paper proposed a linear-correction algorithm (LCQS)
for QSDFT; it has the following features:(1) Compared to QSDFT, LCQS suppresses the short-
range spectral leakage efficiently; compared to VPF, LCQS
reduces the computations and can be operated in real time.(2) LCQS loosens the requirements for synchronous
sampling and increases the analytical accuracy of amplitude
and initial-phase determination significantly.(3) LCQS truly implements the linear correction of
QSDFT harmonic-analysis results when the signal frequency
deviates.(4) LCQS can work in real time and can be easily
transplanted into existing hardware systems, making it a very
practical algorithm.
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