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Based on Timoshenko’s beam theory, this paper adopts segmented strategy in establishing the governing equations of a multibeam
system subjected to various boundary conditions, inwhich free, clamped, hinged, and elastic constraints are considered.Meanwhile,
Galerkin method is incorporated as a competitive alternative, in which a new set of unified, efficient, and reliable trial functions
are proposed. A further optimization in regard to boundary distributions under forces is implemented and established on the
least absorbed energy principle. High agreement is observed between the analytical results and the FEM results, verifying the
correctness of the derivations. Complete comparisons between the analytical and the numerical results indicate the Galerkin
method is beneficial when slender ratio is larger than 30, in which the continuity of the deformation is proved to be a crucial
influencing factor. A modified numerical strategy about optimal boundary is employed and the remarks imply the algorithm can
be availably used to reduce the energy absorption of the whole system.

1. Introduction

The static and dynamic properties of the beam structures in
engineering possess great significance, in which the achieve-
ments can be directly implemented in wide fields including
civil engineering, composite material manufacture, and wing
design. In beam analysis, the neglect of the shear and the
rotary inertia restricts the utilization of the Euler-Bernoulli
theory in short beam cases [1], while the Timoshenko theory
can solve these issues well and provide far more reliable
solutions [2–4]. Papers reported in [5, 6] were such examples,
in which the mode superposition method and the Laplace
transform method, for the analytical characteristics, have
become the leads. Nevertheless, in some cases that the
analytical solution cannot be derived, for example, when
system incorporates complicated boundaries, the typical
numerical methods like the conventional residual method
[7], the Rayleigh-Ritz method [8–10], and the Galerkin
method [11, 12] can provide alternative ways. Further, on
account of the great computing ability in computers, the finite

element method (FEM) and the boundary element method
(BEM) have been developed to calculate more sophisticated
structural systems, for example, when system subjected to
complicated loads and boundary conditions, which are also
regarded as criterions to verify analytical and numerical
methods.

The beam systems with various boundary conditions
(abbreviated as BCs) and internal constraints (also called
BCs), for example, clamped, free, hinged, and elastic BCs,
are named as multibeam systems. Actually, such systems
have been investigated constantly during recent years [13–
15]. Reference [5] has computed a beam system with hinge-
joint constraint by employing BEM and FEM and com-
pared the Euler-Bernoulli and the Timoshenko models, in
which uniform descriptions for deflection, rotation, bending
moment, and shear forces were derived at the first time.
Reference [16] built up a FEM model in which the natural
frequencies and the mode shapes of an Euler-Bernoulli
pontoon system applied with arbitrary numbers of internal
hinges were solved via the transfer matrix method. Through
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Figure 1: Configuration of the beam.

a limited superposed method in Euler-Bernoulli model, [17]
studied the vibrational power transmission in a uniform
and multisupported beam. Reference [18] calculated the
eigenvalues by a proposed algorithm and the validity was
verified through case studies. Reference [19] considered a
multispan Euler-Bernoulli beam with a series of one-sided
inner constraints to study the numerical simulations through
assumedmodemethod. Further, [20] analyzed the multispan
beams carrying multiple spring-mass systems with axial
force based on Timoshenko theory. The free vibration of a
multispan Timoshenko beam was studied by Rayleigh-Ritz
method in [21], where the trial functions were composed of
a series sine or cosine functions plus a set of polynomial
functions. Furthermore, by using the transfermatrixmethod,
[22] calculated the eigensolutions of a multispan beam
with arbitrary numbers of flexible constraints and compared
with the result of the Euler-Bernoulli beam. Reference [23]
investigated the free vibrations of the Timoshenko beam
with an internal hinge and computed the optimal location
of this internal hinge maximized the fundamental frequency.
Nevertheless, although most types of the constraints are
mentioned in above literatures, few efforts has been made
in counting more complex BCs. Additionally, a majority of
references lack parallel comparisons with analytical method,
the numerical approach, or the FEM. Hence, the primary
goal of this article is to analyze a constructed multibeam
system established in Timoshenko theory with arbitrary
types and numbers of BCs, in which remarkable efforts have
been made in derivations and case studies. Based on that,
the optimization for BCs under given loads is put forward
through the minimum energy principle.

This paper is organized as follows. In Section 2, the
nondimensional governing equations of the multibeam sys-
tem are derived through Hamilton’s principle and an ele-
mentary solution is obtained where several typical BCs
are also listed. Section 3 performs the detailed derivations
about the beam under arbitrary BCs through an analytical
segmented method, in which the matrices are connected
through transformation. As an alternative, Galerkin method
is introduced in which a group of new trial functions with

orthogonal properties are conducted. Section 4 puts forward
the optimization process for optimal BCs based on Section 3,
achieving the minimum energy absorption under specific
loads. A total analysis is drawn in Section 5, in which validity,
flexibility, and efficiency of the analytical and the Galerkin
methods are measured through FEM in case studies. Based
on that, a further optimization about BCs is conducted to
verify the derivation in Section 4. Finally, the most relevant
conclusions are summarized in Section 6.

2. Modeling Based on Timoshenko Theory

As depicted in Figure 1, an ordinary beam system is con-
figured under external loads with various BCs (at 𝑖, the
coordinate is 𝑥𝑖), each BC herein can be free, simply
supported, clamped, hinge-joint, or elastic constraint. As
described, 𝐹𝑝 and 𝐹𝑚 denote the external force and moment
respectively. 𝐿 is the longitudinal length of the entire beam.
Suppose the numbers of elastic BCs are 𝐽0 (0 ≤ 𝐽0 ≤ 𝑁)
and Hamilton’s principle is generally used to construct the
governing equations of such multibeam system based on
Timoshenko’s beam theory. Since this approach iswidely used
[24–26], we refine the derivations as follows.

In consideration of the lateral rotation and the shearing
effect, the kinetic energy 𝑇 and the internal energy 𝑉 can be
expressed as𝑇 = 12 ∫𝐿0 𝜌𝐴(𝜕𝑧 (𝑥, 𝑡)𝜕𝑡 )2 𝑑𝑥+ 12 ∫𝐿0 𝜌𝐼 (𝜕𝜑 (𝑥, 𝑡)𝜕𝑡 )2 𝑑𝑥, (1a)

𝑉 = 12 ∫𝐿0 𝐸𝐼(𝜕𝜑 (𝑥, 𝑡)𝜕𝑥 )2 𝑑𝑥 + 12 ∫𝐿0 𝑘𝐺𝐴𝛾 (𝑥, 𝑡)2𝑑𝑥+ 12 𝐽0∑
𝐽=1

𝑘𝑠𝐽 [𝑧 (𝑥, 𝑡) 𝛿 (𝑥 − 𝑥𝐽)]2
+ 12 𝐽0∑
𝐽=1

𝑘𝑡𝐽 [𝜑 (𝑥, 𝑡) 𝛿 (𝑥 − 𝑥𝐽)]2 .
(1b)
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Herein, 𝑧, 𝜑, and 𝛾 represent the bending deflection, bending
rotation, and shear deformation respectively, and 𝐸 and𝐺 are
the elastic modulus and the shearing modulus. 𝑘 is the so-
called shear coefficient [27, 28], giving the shear strain ratio
on cross section. 𝐼 is the moment inertia in cross section, 𝜌
is the solid density, 𝑘𝑠𝐽 and 𝑘𝑡𝐽 are the elastic and torsional
spring coefficients of the BC at 𝑥𝐽, and 𝛿() is the Dirac
delta function. In view of the inherent relationship within
Timoshenko model [24], the shear in beam yields𝛾 (𝑥, 𝑡) = 𝜕𝑧 (𝑥, 𝑡)𝜕𝑡 − 𝜑 (𝑥, 𝑡) . (2)

For simplification, distributed loading functions in regard
to the external forces are originally used and hold𝛿𝑊 = ∫𝐿

0
𝐹𝑝 (𝑥, 𝑡) 𝛿𝑧 (𝑥, 𝑡) 𝑑𝑥

+ ∫𝐿
0
𝐹𝑚 (𝑥, 𝑡) 𝛿𝜑 (𝑥, 𝑡) 𝑑𝑥. (3)

In Hamilton’s manner, 𝛿 ∫𝑡2
𝑡1
(𝑇 − 𝑉)𝑑𝑡 + ∫𝑡2

𝑡1
𝛿𝑊𝑛𝑐𝑑𝑡 = 0,

and through the variation procedure herein and in conjunc-
tion with (2), the final governing differential equations are
expressed as− 𝜕𝜕𝑥 [𝑘𝐺𝐴(𝜕𝑧 (𝑥, 𝑡)𝜕𝑥 − 𝜑 (𝑥, 𝑡))] + 𝜌𝐴𝜕2𝑧 (𝑥, 𝑡)𝜕𝑡2+ 𝐽0∑

𝐽=1

𝑘𝑠𝐽 [𝑧 (𝑥, 𝑡) 𝛿 (𝑥 − 𝑥𝐽)] = 𝐹𝑝 (𝑥, 𝑡) , (4a)

− 𝜕𝜕𝑥 (𝐸𝐼𝜕𝜑 (𝑥, 𝑡)𝜕𝑥 ) − 𝑘𝐺𝐴(𝜕𝑧 (𝑥, 𝑡)𝜕𝑥 − 𝜑 (𝑥, 𝑡))
+ 𝜌𝐼𝜕2𝜑 (𝑥, 𝑡)𝜕𝑡2+ 𝐽0∑
𝐽=1

𝑘𝑡𝐽 [𝜑 (𝑥, 𝑡) 𝛿 (𝑥 − 𝑥𝐽)] = 𝐹𝑚 (𝑥, 𝑡) .
(4b)

For unification, we nondimensionalize (4a) and (4b) by
introducing 𝑋 = 𝑥/𝐿, 𝑍 = 𝑧/𝐿, 𝜆 = √𝑘𝐺/𝐸, 𝐿𝑟 = 𝐿/𝑟, 𝑡 =𝜏/𝑤0, 𝑤0 = √√𝑘𝐺𝐸/𝜌𝐿2, 𝐹∗𝑝 (𝑋, 𝜏) = 𝐹𝑝|𝑥=𝑋𝐿,𝑡=𝜏/𝑤0/𝜌𝐴𝐿𝑤02,𝐹∗𝑚(𝑋, 𝜏) = 𝐹𝑚|𝑥=𝑋𝐿,𝑡=𝜏/𝑤0/𝜌𝐼𝑤02, 𝑘∗𝑠𝐽 = 𝑘𝑠𝐽/𝜌𝐴𝐿𝑤02, and𝑘∗𝑡𝐽 = 𝑘𝑡𝐽/𝜌𝐼𝐿𝑤02. Thus, (4a) and (4b) are rewritten as�̈� − 𝜆𝑍 + 𝜆𝜑 + 𝐽0∑

𝐽=1

𝑘∗𝑠𝐽𝑍𝛿 (𝑋 − 𝑋𝐽) = 𝐹∗𝑝 , (5a)

�̈� − 1𝜆𝜑 + 𝜆𝐿𝑟2𝜑 − 𝜆𝐿𝑟2𝑍 + 𝐽0∑
𝐽=1

𝑘∗𝑡𝐽𝜑𝛿 (𝑋 − 𝑋𝐽)= 𝐹∗𝑚, (5b)

where symbols ,̈ ,̇ , and  are employed to denote 𝜕2/𝜕𝜏2,𝜕/𝜕𝜏, 𝜕2/𝜕𝑋2, and 𝜕/𝜕𝑋, respectively.

3. Derivations of Solution

3.1. Analytical Method (A-Method) through Segmented Strat-
egy. Considering the big challenges in obtaining the analyt-
ical solution of this multiple systems with plenty different
BCs, we observe, owning to the segmented geometries, one
can solve the vibrational issues via (A.3) for each subdivided
part. This inspiration seems falling in between the range of
the matrix-transforming method and the FEM [29], but it is
generally different from both of them. On the one hand, the
arbitrary internal BCs will result in various transfer matrices.
On the other hand, it is similar to the solving process of FEM
but without any assumptive approximation. Therefore, the
strategy to solve this multisystem with𝑁 segments proposed
here is that (the numbers of BCs are 𝑁 + 1 and we use 𝑖 =(0, 1, 2, . . . , 𝑁) to express it) we use the fundamental solution
shown in Appendix A to solve 𝐶𝑖 = ( 𝐶𝑖1 𝐶𝑖2 𝐶𝑖3 𝐶𝑖4𝑘𝑖2𝐶𝑖2 𝑘𝑖1𝐶𝑖1 𝑘𝑖4𝐶𝑖4 𝑘𝑖3𝐶𝑖3

)
first and connect them in sequence via physical boundary
relations, by which we are able to get the nature frequency𝑤𝑗 and its modal shape Φ𝑗 through eigenanalysis. Herein, a
classified discussion about different BCs is listed as follows
due to the arbitrariness of the BCs.

At first, a series of dimensionless transformations in
localised coordinates are made here. For segment 𝑖, we
introduce 𝐿𝑟𝑖 = (𝑋𝑖 − 𝑋𝑖−1)𝐿𝑟,X𝑖 = (𝑋 − 𝑋𝑖−1)/(𝑋𝑖 − 𝑋𝑖−1),
Z𝑖 = 𝑍/(𝑋𝑖 − 𝑋𝑖−1), and 𝜆𝑖 = 𝜆 to guarantee a uniform 𝑤
throughout the segments, and as a ripple effect, 𝛼𝑖 and 𝛽𝑖 in
each fundamental solutions are changed into𝛼𝑖 = 1√2𝐿𝑟𝑖 (−1 − 1𝜆2

+ [(1 − 1𝜆2 )2 + 4𝐿𝑟𝑖2𝜆𝑤2 (𝑋𝑖 − 𝑋𝑖−1)2]1/2)1/2 ,
(6a)

𝛽𝑖 = 1√2𝐿𝑟𝑖 (1 + 1𝜆2
+ [(1 − 1𝜆2 )2 + 4𝐿𝑟𝑖2𝜆𝑤2 (𝑋𝑖 − 𝑋𝑖−1)2]1/2)1/2 .

(6b)

Hence, the shape function of segment 𝑖 naturally holdsΦ𝑖 (X𝑖) = 𝐶𝑖𝑃𝑖. (7)

In which 𝑃𝑖𝑇 = (cosh(𝑏𝑖𝛼𝑖𝑋), sinh(𝑏𝑖𝛼𝑖𝑋), cos(𝑏𝑖𝛽𝑖𝑋),
sin(𝑏𝑖𝛽𝑖𝑋)). To get the specific Φ𝑖(X𝑖), each 𝐶𝑖 is to be
determined. In view of the dissimilarity of BCs at 𝑋𝑖, we
generate the following:

(1) When 𝑖 = 0 (BC at 𝑋 = 0), we enumerate the
decompositions of the BCs as follows:

(a) For free BC Φ1 (2, 1)|X1=0 = 0,Φ1 (1, 1)|X1=0 − Φ1 (2, 1)|X1=0 = 0, (8a)

𝐵𝐼100 𝑃1X1=0 = (0) , (8b)
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(b) For simply supported BCΦ1 (1, 1)|X1=0 = 0,Φ1 (2, 1)|X1=0 = 0, (9a)

𝐵𝐼200 𝑃1X1=0 = (0) . (9b)

(c) For clamped BCΦ1 (1, 1)|X1=0 = 0,Φ1 (2, 1)|X1=0 = 0, (10a)

𝐵𝐼300 𝑃1X1=0 = (0) . (10b)

(d) For elastic BC𝜆 [Φ1 (1, 1) − Φ1 (2, 1)]X1=0= 𝑘∗𝑠0Φ1 (1, 1)X1=0𝑋1,1𝜆𝑋1Φ1 (2, 1)X1=0 = 𝑘∗𝑡0Φ1 (2, 1)X1=0 ,
(11a)

𝐵𝐼400 𝑃1X1=0 = (0) . (11b)

(2) When 0 < 𝑖 < 𝑁, the free constraint disappears, but
the hinge-joint BC is added.

(a) For simply supported BCΦ𝑖+1 (1, 1)X𝑖+1=0 = 0,Φ𝑖 (1, 1)X𝑖=1 = 0, (12a)

Φ𝑖+1 (2, 1)X𝑖+1=0 = Φ𝑖 (2, 1)X𝑖=1 , (12b)Φ𝑖+1 (2, 1)X𝑖+1=0(𝑋𝑖+1 − 𝑋𝑖) = Φ𝑖 (2, 1)X𝑖=1(𝑋𝑖 − 𝑋𝑖−1) , (12c)

𝐵1𝑖 ( 𝑃𝑖X𝑖=1𝑃𝑖+1X𝑖+1=0) = (0) . (12d)

(b) For hinge-joint BCΦ𝑖 (1, 1)X𝑖=1 (𝑋𝑖 − 𝑋𝑖−1)= Φ𝑖+1 (1, 1)X𝑖+1=0 (𝑋𝑖+1 − 𝑋𝑖) , (13a)

Φ𝑖 (2, 1)|X𝑖=1 = 0,Φ𝑖+1 (2, 1)X𝑖+1=0 = 0, (13b)

[Φ𝑖 (1, 1) − Φ𝑖 (2, 1)]X𝑖=1= [Φ𝑖+1 (1, 1) − Φ𝑖+1 (2, 1)]X𝑖+1=0 , (13c)

𝐵2𝑖 ( 𝑃𝑖X𝑖=1𝑃𝑖+1X𝑖+1=0) = (0) . (13d)

(c) For clamped BCΦ𝑖+1 (1, 1)X𝑖+1=0 = 0,Φ𝑖+1 (2, 1)X𝑖+1=0 = 0, (14a)

Φ𝑖 (1, 1)X𝑖=1 = 0,Φ𝑖 (2, 1)X𝑖=1 = 0, (14b)

𝐵3𝑖 ( 𝑃𝑖X𝑖=1𝑃𝑖+1X𝑖+1=0) = (0) . (14c)

(d) For elastic BCΦ𝑖 (1, 1)X𝑖=1 (𝑋𝑖 − 𝑋𝑖−1) = Φ𝑖+1 (1, 1)X𝑖+1=0 (𝑋𝑖+1− 𝑋𝑖) , (15a)

Φ𝑖 (2, 1)X𝑖=1 = Φ𝑖+1 (2, 1)X𝑖+1=0 , (15b)𝜆 {[Φ𝑖+1 (1, 1) − Φ𝑖+1 (2, 1)]X𝑖+1=0− [Φ𝑖 (1, 1) − Φ𝑖 (2, 1)]X𝑖=1}= 𝑘∗𝑠𝑖Φ𝑖+1 (1, 1)X𝑖+1=0 (𝑋𝑖+1− 𝑋𝑖) or 𝑘∗𝑠𝑖Φ𝑖 (1, 1)X𝑖=1 (𝑋𝑖 − 𝑋𝑖−1) ,
(15c)

1𝜆 [[ Φ𝑖+1 (2, 1)
X𝑖+1=0(𝑋𝑖+1 − 𝑋𝑖) − Φ𝑖 (2, 1)X𝑖=1(𝑋𝑖 − 𝑋𝑖−1) ]]= 𝑘∗𝑡𝑖Φ𝑖+1 (2, 1)X𝑖+1=0 or 𝑘∗𝑡𝑖Φ𝑖 (2, 1)X𝑖=1 , (15d)

𝐵4𝑖 ( 𝑃𝑖X𝑖=1𝑃𝑖+1X𝑖+1=0) = (0) . (15e)

(3) When 𝑖 = 𝑁, accordingly one has the following:
(a) For free BC Φ𝑁 (2, 1)X𝑁=1 = 0,Φ𝑁 (1, 1)X𝑁=1 − Φ𝑁 (2, 1)X𝑁=1 = 0, (16a)

𝐵𝐼11𝑁 𝑃𝑁X𝑁=1 = (0) (16b)

(b) For simply supported BCΦ𝑁 (𝑁, 1)X𝑁=1 = 0,Φ𝑁 (2, 1)X𝑁=1 = 0, (17a)

𝐵𝐼21𝑁 𝑃𝑁X𝑁=1 = (0) . (17b)
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(c) For clamped BCΦ𝑁 (𝑁, 1)X𝑁=1 = 0,Φ𝑁 (2, 1)X𝑁=0 = 0, (18a)

𝐵𝐼31𝑁 𝑃𝑁X𝑁=1 = (0) . (18b)

(d) For elastic BC𝜆 [Φ𝑁 (1, 1) − Φ𝑁 (2, 1)]X𝑁=1= 𝑘∗𝑠𝑁Φ𝑁 (1, 1)X1=1 (𝑋𝑁 − 𝑋𝑁−1) , (19a)

1𝜆 (𝑋𝑁 − 𝑋𝑁−1)Φ𝑁 (2, 1)X𝑁=1= 𝑘∗𝑡𝑁Φ𝑁 (2, 1)X𝑁=1 , (19b)

𝐵𝐼41𝑁 𝑃𝑁X𝑁=1 = (0) . (19c)

In conclusion, all mentioned expressions have generated
two linear equations at two edge nodes and four linear equa-
tions at inner nodes about C (detailed information is shown
in Appendix B), which constitute 4 × 𝑁 linear equations of𝑁 nodes in total denoted by C𝑇 = (𝐶1,1, 𝐶1,2, 𝐶1,3, 𝐶1,4, . . . ,𝐶𝑁1, 𝐶𝑁,2, 𝐶𝑁,3, 𝐶𝑁,4). That is,

BC = 0|4𝑁×1 , (20)

where the coefficient matrixB just involves the independent
unknown variable 𝑤. We further define the characteristic
function as Δ 1 = det (B) . (21)

By which we can obtain each 𝑤𝑗 in sequence after solving
this super sophisticated transcendental equation Δ 1 = 0.
Meanwhile,C𝑗 andΦ𝑗𝑖 (X𝑖) are available to obtain through

B|𝑤=𝑤𝑗 C𝑗 = 0. (22)

Ultimately, for 𝑋𝑖−1 ≤ 𝑋 ≤ 𝑋𝑖, through coordinate
transformation, we generateΦ𝑗 (𝑋) = 𝐿𝑟𝑖𝐿𝑟 Φ𝑗𝑖 X𝑖=(𝑋−𝑋𝑖−1)/(𝑋𝑖−𝑋𝑖−1)= (𝑋𝑖 − 𝑋𝑖−1)Φ𝑗𝑖 X𝑖=(𝑋−𝑋𝑖−1)/(𝑋𝑖−𝑋𝑖−1) . (23)

3.2. Numerical Solution Based on Galerkin Method (G-
Method). Albeit the achievement in analytical method, the
explicit Δ 1 is far more complex and costly in actual computa-
tion, especially when𝑁 becomes larger. Actually, in allusion
to the practicability, the static and dynamic properties of
the multisystem, in many circumstances, are determined by
the lower modes (𝑗 = 1, 2). Based on such consideration,
the numerical solution, as an alternative way, may probably

provide credible results with avoiding massive computing
costs. Hence, the objective of this part is the derivations about
numerical G-method.

Based on G-method, the residual functions of the entire
system are

L̃ (Φ) − 𝐹∗ = 0, 𝑋 ̸= 𝑋𝑖, (24a)𝐵 (Φ) − 𝑔∗ = 0, 𝑋 = 𝑋𝑖, (24b)

where L̃ and𝐵 are all differential operators about the physical
residual and the natural residual. 𝐹∗ and 𝑔∗ separately, as the
external forces and the physical constraints of BC, stand for
the given restricting equations independent on the unknown
function Φ. Herein, 𝑔∗ = 0 is naturally satisfied. In general,
the trail functions possess

Φtrial (𝑋, 𝜏) = ( 𝑁1∑𝑖1=1G1𝑖1 (𝑋)Q1𝑖1 (𝜏)𝑁2∑
𝑖2=1

G2𝑖2 (𝑋)Q2𝑖2 (𝜏)) . (25)

Accordingly, the functions of residual errors are𝑅𝐼 = L̃ (Φtrial) − 𝐹∗, 𝑋 ̸= 𝑋𝑖, (26a)𝑅𝐵 = 𝐵 (Φtrial) , 𝑋 = 𝑋𝑖. (26b)

To reduce the complexity, 𝑅𝐵 = 0 is usually satisfied
in advance [11, 22, 25], which implies that all G1𝑖1(𝑋)
and G1𝑖2(𝑋) should be constructed at first. According to
Appendix C, the explicitG1𝑖1 andG1𝑖2 for free BCs are hard to
work out because of the coupling in (C.1) about displacement
and rotation from shear component. Nevertheless, if we
reduce the demands, that is, to decouple (C.1) and replace it
by a weaker Euler-Bernoulli condition in (27), not only will
the difficulty be solved, but also the inner beam maintains
Timoshenko precision

G
𝐼10
2𝑖2

𝑋=0 = G
𝐼11
2𝑖2

𝑋=1 = 0. (27)

To guarantee an entire 𝑅𝐵 = 0, the polynomials are
employed to structure the fundamental trial functions and a
series of G1𝑖1 and G1𝑖2 are proposed by expanding previous
result respectively via polynomial, Legendre orthogonal poly-
nomials, Chebyshenv orthogonal polynomials, and trigono-
metric functions, which is regarded as the explorations
of preferable Φtrial. Here, we have given the exact nature
conditions in Appendix C that the trial functions should
hold. Further, if the system has not clamped BCs in 0 < 𝑖 < 𝑁
(actually, if clamped BCs exist in inner nodes, the total system
can be divided into several individual beams), a set of explicit
trial functions can be proposed as

G1𝑖1 = [[if exist∏
𝐼20

(𝑋) if exist∏
𝐼21

(𝑋 − 1) if exist,𝐽1∏
𝑗1=1

(𝑋 − 𝑋𝑗1)
⋅ if exist,𝐽3∏
𝑗3=1

(𝑋 − 𝑋𝑗3)]]F𝑖1 (𝑋) ,
(28a)



6 Mathematical Problems in Engineering

G2𝑖2 = ∫[if exist∏
𝐼10

(𝑋)2 if exist∏
𝐼11

(𝑋 − 1)2]
⋅ [if exist∏
𝐼20

(𝑋) if exist∏
𝐼21

(𝑋 − 1)]
⋅ [[if exist,𝐽2∏
𝑗2=1

(𝑋 − 𝑋𝑗2)]]F𝑖2 (𝑋) 𝑑𝑋+ Constant,
(28b)

which include four kinds ofF𝑖:

(1) Polynomial form (P-method)

F
P
𝑗 (𝑋) = 𝑋𝑗−1, 𝑗 ≥ 1, (29)

(2) Chebyshev form (C-method)

F
C
1 = 1, (30a)

F
C
2 = 2𝑋 − 1, (30b)

F
C
𝑗+1 = 2 (2𝑋 − 1)FC

𝑗 −FC
𝑗−1, 𝑗 ≥ 2. (30c)

(3) Legendre form (L-method)

F
L
1 = 1, (31a)

F
L
𝑗 = 14𝑗𝑗! 𝑑𝑗𝑑𝑋𝑗 [((2𝑋 − 1)2 − 1)𝑗] , 𝑗 ≥ 2. (31b)

(4) Trigonometric form (T-method)

F
T
𝑗 (𝑋) = cos [(𝑗 − 1) (𝑋 + 1)] , 𝑗 ≥ 1. (32)

With the explicit Φtrial(𝑋), the final derivation is obtain-
able, and we conduct

G
𝑇 = (G11 G12 ⋅ ⋅ ⋅ G1𝑁1 0 0 ⋅ ⋅ ⋅ 00 0 ⋅ ⋅ ⋅ 0 G21 G22 ⋅ ⋅ ⋅ G2𝑁1) . (33)

and make ∫1
0
G𝑅𝐼𝑑𝑋 = 0 (34)

After substituting the specific expressions to (34) and a
group of integrations [11, 12] (detailed in Appendix D), the
special variables are vanished, leaving behind a time domain
equation denoted as 𝑀Q̈ + 𝐾Q = 𝐹. (35)

The characteristic equation can be easily carried out
throughΔ 2 = det(−𝑤2𝑀+𝐾), bywhich it is capable of getting
the approximate frequencies through Δ 2 = 0. According to

(−𝑤𝑗2𝑀 + 𝐾)Q𝑗 = 0 (here Q = Q𝑗𝑞(𝜏)), the corresponding
eigenvector can be solved and consequently described as

Φ𝑗 =( 𝑁1∑𝑖1=1G1𝑖1 (𝑋)Q𝑗 (𝑖1, 1)𝑁2∑
𝑖2=1

G2𝑖2 (𝑋)Q𝑗 (𝑖2, 1)) . (36)

4. The Optimization of BCs

Under external loads, the positions of BCs will determine
the dynamic performance of the whole system, wherein a
reasonable distribution about these nodes may improve the
loading capacity and its stable margin [23]. Based on the
work in Section 3, it is capable of acquiring the optimal BCs.
For mode 𝑗, through a series of modal transformations as
reported in [30], we have− 𝜆𝑍𝑗 + 𝜆𝜑𝑗 + 𝐽0∑

𝐽=1

𝑘∗𝑠𝐽𝑍𝛿 (𝑋 − 𝑋𝐽) = 𝑤2𝑗𝑍𝑗, (37a)

− 1𝜆𝜑𝑗 + 𝜆𝐿𝑟2𝜑𝑗 − 𝜆𝐿𝑟2𝑍𝑗 + 𝐽0∑
𝐽=1

𝑘∗𝑡𝐽𝜑𝛿 (𝑋 − 𝑋𝐽)= 𝑤𝑗2𝜑𝑗. (37b)

Under certain loads, we write Φ𝑗(𝑋, 𝜏) = ( 𝑍𝑗(𝑋)𝜑𝑗(𝑋) ) 𝑞𝑗(𝜏),
in modal superposition manner; (37a) and (37b) satisfy

∞∑
𝑗=1

𝑍𝑗 ( ̈𝑞𝑗 + 𝑤𝑗2𝑞𝑗) = 𝐹∗𝑝 , (38a)

∞∑
𝑗=1

𝜑𝑗 ( ̈𝑞𝑗 + 𝑤𝑗2𝑞𝑗) = 𝐹∗𝑚. (38b)

Based on modal orthogonality, we obtain̈𝑞𝑗 + 𝑤𝑗2𝑞𝑗 = 𝐹∗𝑗 , (39a)

𝐹∗𝑗 (𝜏) = ∫10 𝑍𝑗𝐹∗𝑝𝑑𝑥 + ∫10 𝜑𝑗𝐹∗𝑚𝑑𝑥∫1
0
[𝑍𝑗 (𝑋)2 + 𝜑𝑗 (𝑋)2] 𝑑𝑥 . (39b)

To examine the quantitative performance, we further
define the total absorbed energy of the whole system asΘ = ∫𝑇0

0

∞∑
𝑗=1

𝐹∗𝑗 ̇𝑞𝑗𝑑𝜏. (40)

Hence, to achieve the minimum energy absorption,
(40) must yield Θ = Θmin. In virtue of the derivations
in Section 3, we get 𝐹∗𝑗 = 𝐹∗𝑗 (𝜏, 𝑋1, 𝑋2, . . . , 𝑋𝑁−1) and𝑤𝑗 = 𝑤𝑗(𝑋1, 𝑋2, . . . , 𝑋𝑁−1), all of which are the functions
of (𝑋1, 𝑋2, . . . , 𝑋𝑁−1). Herein, we suppose the beam without
initial disturbance and, after Duhamel integration, get the
modal response as𝑞𝑗 = 1𝑤𝑗 ∫𝜏0 𝐹∗𝑗 (𝜏 = 𝜉) sin [𝑤𝑗 (𝜏 − 𝜉)] 𝑑𝜉. (41)
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Case 1: free-hinged joint
Case 2: fixed-hinged joint

Case 1: free-hinged joint
Case 2: fixed-hinged joint

10000 nodes 10000 nodes 10000 nodes

Case 1: elastic BC
Case 2: free BC

Case 1: elastic BC
Case 2: free BC

x = 0.3 (or 0.4) x = 0.6 (or 0.7)

Edge Edge
le� right

Figure 2: Configurations of the multibeam system in case studies.

After substituting it to (40), we obtainΘ(𝑋1, 𝑋2, . . . , 𝑋𝑁−1)= ∞∑
𝑗=1

∫𝑇0
0
∫𝜏
0
𝐹∗𝑗 (𝜏) 𝐹∗𝑗 (𝜉) cos [𝑤𝑗 (𝜏 − 𝜉)] 𝑑𝜉 𝑑𝜏. (42)

Particularly for time-invariant loads, it is relatively easy
to calculate the absorbed energy when system reaches into
equilibrium state (𝑤 = 0), which holdsΘstatic (𝑋1, 𝑋2, . . . , 𝑋𝑁−1) = ∞∑

𝑗=1

𝐹∗2𝑗𝑤𝑗2 . (43)

Further, to derive the optimal layout, (42) and (43) must
satisfy (44), which comes down to a minimization issue𝜕Θ𝜕𝑋𝑖 = 0,𝜕2Θ𝜕𝑋𝑖2 ≥ 0. (44)

By which the optimal (𝑋1, 𝑋2, . . . , 𝑋𝑁−1) can be worked out.

5. Numerical Verification

To demonstrate the validity of the proposed solutions and
make comparisons each other, we conduct 2 typical numeri-
cal examples illustrated in Figure 2 named as case 1 and case
2, respectively, in which different BCs are investigated and
inherent variables are concerned, for example, the slender
ratio 𝐿𝑟 and the BC positions 𝑋𝑖. For the purpose of
evaluation, the results of FEM are generated through Abaqus
6.13, whereby the verification is demonstrated and complete
comparisons are made. Further, based on the effectiveness
of Section 5.2, case 2 is chosen to carry out a further
optimization study in Section 5.3.

5.1. Considerations during Computations. Before the numer-
ations, several considerations are declared to obtain more
reliable consequences. (1) Strategy of algorithm: since the
numerations in such issues involve massive matrix compu-
tations, Matlab programs are utilized. Whereas in special
situations, for example, 𝑋1 = 0.01 or 𝑋2 = 0.02, the

bad condition-numbers of 𝑀 or 𝐾 may exist and distort
the precision. Based on that, an examination and repairing
step is incorporated during the calculation. Additionally, we
reserve the real part of det(B) to solve some big eigenma-
trices and acquire the eigenvalues and eigenvectors, holding
real(det (B)) = 0 which is proved with pretty effectiveness.(2) “Mirror verification” (interpreted as algorithm flexibility
analysis): for a set of symmetrical BCs, for example, 𝑋1 =0.3, 𝑋2 = 0.6 and 𝑋1 = 0.4, 𝑋2 = 0.7, the results
of mode frequencies and mode shapes in each pair should
be theoretically identical and symmetrical. This principle
is regarded as a measurement about algorithm stability for
different methods, whereby we call the “mirror verification.”(3) Gridding scheme in FEM: basically, the accuracy of the
FEM mostly depends on the mesh and the grid number, and
hence the distributions of meshes as depicted in Figure 2
guarantee that no matter how long the proportion in each
part, as sufficient as 10000 nodes are generated for each
segment to improve the reliability of FEM.

5.2. Cases Studies. As shown in Figure 2, a beam with two
elastic edges and two internal hinged joints are considered
in case 1, while in case 2 a beam with two free BCs and
two simply supported internal constrains are investigated.
Apparently, the rotational deformation in case 1 shows
discontinuity, while case 2 is continuous as the opposite
situation. Based on above specific configurations, it is able to
construct the definite governingmatricesB according to (8a)
to (19c) and (28a) and (28b). Herein, 𝑁 = 3 is employed in
the study.

For A-method, theB holds

(1) case 1
B =(𝐵𝐼400 0 0𝐵211 𝐵212 00 𝐵221 𝐵2220 0 𝐵𝐼413 ), (45)

(2) case 2
B =(𝐵𝐼100 0 0𝐵111 𝐵112 00 𝐵121 𝐵1220 0 𝐵𝐼113 ). (46)

And for G-method, it holds

(1) case 1
G1𝑖1 = F𝑖1 (𝑋) , (47a)

G2𝑖2 = [[∫ 2∏𝑗2=1 (𝑋 − 𝑋𝑗1)F𝑖2 (𝑋) 𝑑𝑋 + 1]] , (47b)
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Figure 3: Frequency curves of FEM and A-method at𝑋1 = 0.3,𝑋2 = 0.6 condition.
(2) case 2

G1𝑖1 = [[ 2∏𝑗1=1 (𝑋 − 𝑋𝑗1)]]F𝑖1 (𝑋) , (48a)

G2𝑖2 = [∫ (𝑋)2 (𝑋 − 1)2F𝑖2 (𝑋) 𝑑𝑋 + 1] . (48b)

During actual computations, (21) and (23) are applied to
get modal frequencies and modal shapes. To solve the big12 × 12 eigenmatrix of (22), the proposed algorithm strategy
is applied. Meanwhile, the gridding scheme is also applied to
the FEM.

As presented in Figure 3, the frequency plots of FEM
and A-method at 𝑋1 = 0.3 and 𝑋2 = 0.6 are depicted,
respectively, in which three slender ratios are incorporated
as the representatives of general short to long beams [1].
Results show that, no matter in case 1 or case 2, A-method
shares same tendencies with FEM in which high coherence
is observed in various 𝐿𝑟. Figure 4 gives the corresponding
modal shapes through normalization in each dimension,
where only the natural displacement components are illus-
trated. It is observed that perfect coincidence appears except
for the 1st and 3rd modes in case 1, demonstrating the overall
correctness of the A-method.

Although the comparisons with FEM obtain satisfactory
results, the high costs of A-method in computation, where
the computation under 𝑁 = 3 even occupies tremendous
costs, limits its application. Therefore, a total comparison is
made between the G-method and the A-method to explore
the potential substitutability. Figure 5 displays the outcome
of the four G-methods based on polynomial, Chebyshev,
Lagrange, and trigonometric functions, respectively, in which

the computations consider a set of symmetric BC positions
(𝑋1 = 0.3, 𝑋2 = 0.6 and 𝑋1 = 0.4, 𝑋2 = 0.7) and
various 𝑁1 and 𝑁2 are utilized. The comparisons within
case 1, as exhibited in Figures 5(a) and 5(b), show there
exist apparent errors between the A-method and the G-
method. Wherein the 1st frequency generated by G-method
lies between the 2nd and the 3rd modes calculated through
A-method, which can be interpreted as, although the trial
functions used in (13a), (13b), (13c), and (13d) already hold𝐾𝐵 = 0, themodal sectional angles at hinge-joint BCs (𝑋1 and𝑋2) as demonstrated in Figure 6(b) inherit discontinuities,
which exceeds the general ability of (13a), (13b), (13c), and
(13d) and results in imprecise results. In case 2, the results
turn better, as the displacement 𝑧 and the rotation 𝜑 at fix-
hinge BCs transform smoothly (as shown in Figures 6(c) and
6(d)), and the roots of 1st frequency except for T-method fall
in the adjacent range of exact value uniformly as pictured
in Figures 5(c) and 5(d). The quantitative computing effect
of G-method can be further measured through correlation
coefficients relative to A-method [31].

Besides, it is undeniable that the slender ratio is regarded
as an essential parameter in beam system [1, 32]. Hence, a
large-scale variations about 𝐿𝑟 from 1 to 100 are carried out.
Overall, we capture in Figure 7 that the curves of frequencies
present irregular changes due to the discontinuity in case 1,
while the trends are relatively uniform in case 2. Detailed
information observed in Figures 7(a) and 7(b) shows that
the numerical methods show surging changes in the plots
within 𝐿𝑟 < 25, demonstrating the numerical methods
is not absolutely perfect for all slenderness and there still
exist certain algorithm instabilities. For case 2, as illustrated
in Figure 7(d), the C-method shows break-offs when 𝐿𝑟 >26 which indicates the P-method and the L-method are
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(a) 𝐿𝑟 = 1 of case 1
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(d) 𝐿𝑟 = 10 of case 2

Figure 4: Continued.
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Figure 4: The first 12 displacemental modal shapes of A-method and FEM.

more stable than the C-method and the T-method. Actually,
the entire curve tendencies in Figure 7 demonstrate that
the numerical precisions are significantly dependent on 𝐿𝑟,
where bad computing effect occurs within low 𝐿𝑟, while in
large 𝐿𝑟 the consequences of G-methods are fairly acceptable.
Further, the curves inherit closing regions near 𝐿𝑟 = 15 to𝐿𝑟 = 25 in case 1, after which the solving effect of G-methods
slightly decreases. In case 2, although the G-method and the
A-method share the consistent trends, the solving effect is
indeed affected by 𝐿𝑟. On the whole, we conclude the P-
method and the L-method possess higher flexibility. It is also
indicated that the G-methods can be deemed with satisfied
precision compared with the A-method when 𝐿𝑟 > 30.
5.3. BCs’ Optimization Based on Case 2. Since the numerical
method can predict the general frequency tendencies with
reasonable and low-consumedproperties, a further optimiza-
tion based on case 2 is carried out in this part. Actually, the
objective of the optimization conducted here is to obtain the
optimal BCs proposed in Section 4 to achieve the minimum
energy reservation in actual structural design.TheA-method
and the G-method are also applied together as a contrast.
It is undeniable that the explicit expression of (46) is hard
to get even for case 2 with only 2 fixed-hinge BCs. On the
one hand, although the det step performed in (21) can obtain
the characteristic equations with variables 𝑋1 and 𝑋2, to
solve the frequency is almost impossible with two unknown

parameters. On the other hand, the derivations of (46) about𝑋1 and 𝑋2 have introduced a set of implicit characteristic
equations, which are considered to be super complicated.
Thus, a numerical strategy is put forward here on the base
of Section 4.

Algorithm scheme: as shown in Figure 8, we traverse 𝑋1
and 𝑋2 in as small as possible step simultaneously to get
reliable outcome during numerations and form the initial
database. On such basis, a fitting procedure is drawn through
Matlab’s griddata(. . . , “V4” ) function (herein, “V4” means 4
grid points spline functions interpolation). In this process,1000 × 1000mesh grids (1 million combinations in total) are
generated for 𝑋1 and 𝑋2, after which the minimum energy
interpolating point is sought out. Sequentially, the dualistic
algebraic interpolations are expanded at this point within the
chosen grid area denoted asΘ∗ [33]. Afterwards, a procedure
of derivations in (46) about 𝑋1 and 𝑋2 is made and the two-
dimension equations are conducted to get the final optimal
BC values. Actually, excessive integralsmust be solved at each𝑋1 and𝑋2 combination during the traversal process to get the
specific energy, which is considered to be a computationally
expensive procedure. The balance of the traversal step must
be considered due to the massive computing time, especially
for A-method.

To conduct the numeration, we set 𝐹𝑝 = 10−6𝑁/𝑚 and𝐹𝑚 = 0. To evaluate the numerical methods, the reservation
of the first 20 modal energies in A-method is regarded as the
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Figure 5: Frequencies generated by different G-methods with various𝑁1 and𝑁2.
accurate solution. According to the computing performance,
we choose 0.05 in A-method, 0.01 in P-method, 0.05 in C-
method, 0.02 in L-method, and 0.02 in T-method as the
inherent steps for 𝑋1 or 𝑋2, respectively. Figures 9 and 10
are the frequency spectrums and the energy maps of the A-
method and theG-methods, in which the frequencies and the
energy clouds are in keeping with each other. It is found that
the BCs at higher frequencies tend to absorb more external
energies generally in which, although the peaks and troughs
are irregular, the G-methods perform good accordance to a
certain degree. On the whole, we observe from Figures 9 and

10 that the P-method and the L-method present good “Mir-
ror” properties, and the C-method is slightly inferior, while
the T-method performs worse. The final optimal BCs of the
two methods are listed in Table 1 in which the errors indicate
the G-methods can effectively predict the optimal positions,
demonstrating the substitutability of the numerical method.

6. Conclusion

Based on Timoshenko’s beam theory, this paper studies the
vibrational performance of a continuous beam subjected to
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Figure 6: Modal shapes of A-method and G-methods at𝑋1 = 0.3,𝑋2 = 0.6 condition.
Table 1: Optimizing BCs and errors compared with A-method.

Item A-method P-method C-method L-method T-method
X1 0.2311 0.2741 0.1983 0.182 0.2272
X2 0.7829 0.8424 0.742 0.7382 0.7296
Error X1 - 4.30% −3.28% −4.91% −0.39%
Error X2 - 5.95% −4.09% −4.47% −5.33%
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Figure 7: Frequency curves of A-method and G-methods with change of 𝐿 𝑟.
arbitrary types and numbers of constrains. Based on that,
the optimization about boundary conditions, established on
the minimum energy absorbed principle under loading,
is proposed. During the derivations, analytical method is
employed at first based on segmented strategy and the
numerical Galerkin method is also adopted for comparison
and as an alternative approach, in which a new type of
trial functions is constructed. Further, the analytical equa-
tions are derived for boundary optimization considering
the external loads. In case studies, two typical numerical
examples representing the discontinuous and the continuous

situations, respectively, are introduced. The results indicate
that the analytical method is valid compared with the FEM
but costly indeed. The comparisons between the analytical
method and the Galerkin methods demonstrate the preci-
sions of the numerical method are higher in continuous
case, since the discontinuity in mode shapes hinders the
entire simulation accuracy. It is also verified the Galerkin
method is beneficial in the case of 𝐿𝑟 > 30. Further-
more, a practical optimization is conducted based on case
2, in which a suitable computing strategy is put forward
and the effectiveness of the G-methods are compared with
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Figure 9: Frequency spectrums computed through A-method and G-methods.
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Figure 10: Energy maps computed through A-method and G-methods.

A-method, and the optimization is finally demonstrated to be
meaningful.

Appendix

A. Fundamental Solution

Herein, we consider the general solution of the beam with
constraints on both sides, the typical equations are�̈� − 𝜆𝑍 + 𝜆𝜑 = 𝐹∗𝑝 , (A.1a)�̈� − 1𝜆𝜑 + 𝜆𝐿𝑟2𝜑 − 𝜆𝐿𝑟2𝑍 = 𝐹∗𝑚. (A.1b)

For free harmonic vibration of mode 𝑗, the modal response
can write as

Φ𝑗 (𝑋, 𝜏) = (𝑍𝑗 (𝑋)𝜑𝑗 (𝑋)) 𝑒𝑖𝑤𝑗𝜏. (A.2)

Wedirectly give the fundamental solution of (A.1a) and (A.1b)
under 𝑗mode Φ𝑗 (𝑋) = 𝐶𝑗𝑃𝑗. (A.3)

Here𝐶𝑗 = ( 𝐶𝑗1 𝐶𝑗2 𝐶𝑗3 𝐶𝑗4𝑘𝑗2𝐶𝑗2 𝑘𝑗1𝐶𝑗1 𝑘𝑗4𝐶𝑗4 𝑘𝑗3𝐶𝑗3) , (A.4a)𝑃𝑇𝑗 = (cosh (𝑏𝑗𝛼𝑗𝑋) , sinh (𝑏𝑗𝛼𝑗𝑋) , cos (𝑏𝑗𝛽𝑗𝑋) ,
sin (𝑏𝑗𝛽𝑗𝑋)) , (A.4b)

𝑘𝑗1 = 𝑘𝑗2 = [√𝜆𝐿𝑟𝑤𝑗(𝛼𝑗 + 1𝛼𝑗𝜆2𝐿𝑟2)] , (A.5a)

𝑘𝑗3 = −𝑘𝑗4 = −[√𝜆𝐿𝑟𝑤𝑗(𝛽𝑗 − 1𝛽𝑗𝜆2𝐿𝑟2)] , (A.5b)

𝛼𝑗 = 1√2𝐿𝑟 (−1 − 1𝜆2+ [(1 − 1𝜆2 )2 + 4𝐿𝑟2𝜆𝑤𝑗2]1/2)1/2 , (A.5c)

𝛽𝑗 = 1√2𝐿𝑟 (1 + 1𝜆2+ [(1 − 1𝜆2 )2 + 4𝐿𝑟2𝜆𝑤𝑗2]1/2)1/2 . (A.5d)
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B. Explicit Matrixes of Boundary Conditions

(1) 𝑖 = 0
𝐵𝐼100 = ( 𝑏1𝛼1𝑘1,1𝐶1,1 𝑏1𝛼1𝑘1,2𝐶1,2 𝑏1𝛽1𝑘1,3𝐶1,3 −𝑏1𝛽1𝑘1,4𝐶1,4(𝑏1𝛼1 − 𝑘1,2) 𝐶1,2 (𝑏1𝛼1 − 𝑘1,1) 𝐶1,1 (𝑏1𝛽1 − 𝑘1,4) 𝐶1,4 − (𝑏1𝛽1 + 𝑘1,3) 𝐶1,3) ,𝐵𝐼200 = ( 𝐶1,1 𝐶1,2 𝐶1,3 𝐶1,4𝑏1𝛼1𝑘1,1𝐶1,1 𝑏1𝛼1𝑘1,2𝐶1,2 𝑏1𝛽1𝑘1,3𝐶1,3 −𝑏1𝛽1𝑘1,4𝐶1,4) ,𝐵𝐼300 = ( 𝐶1,1 𝐶1,2 𝐶1,3 𝐶1,4𝑘1,2𝐶1,2 𝑘1,1𝐶1,1 𝑘1,4𝐶1,4 𝑘1,3𝐶1,3) ,𝐵𝐼400
= (𝑘∗𝑠0𝐶1,1𝑋1 − 𝜆𝐶1,2 (𝑏1𝛼1 − 𝑘1,2) 𝑘∗𝑠0𝐶1,2𝑋1 − 𝜆𝐶1,1 (𝑏1𝛼1 − 𝑘1,1) 𝑘∗𝑠0𝐶1,3𝑋1 − 𝜆𝐶1,4 (𝑏1𝛽1 − 𝑘1,4) 𝑘∗𝑠0𝐶1,4𝑋1 + 𝜆𝐶1,3 (𝑏1𝛽1 + 𝑘1,3)𝑘∗𝑡0𝑘1,2𝐶1,2 − 𝑏1𝛼1𝑘1,1𝐶1,1𝜆𝑋1 𝑘∗𝑡0𝑘1,1𝐶1,1 − 𝑏1𝛼1𝑘1,2𝐶1,2𝜆𝑋1 𝑘∗𝑡0𝑘1,4𝐶1,4 − 𝑏1𝛽1𝑘1,3𝐶1,3𝜆𝑋1 𝑘∗𝑡0𝑘1,3𝐶1,3 + 𝑏1𝛽1𝑘1,4𝐶1,4𝜆𝑋1 ).

(B.1)

(2) 0 < 𝑖 < 𝑁, 𝐵1𝑖 = (𝐵1𝑖1, 𝐵1𝑖2), 𝐵2𝑖 = (𝐵2𝑖1, 𝐵2𝑖2), 𝐵3𝑖 = (𝐵3𝑖1,𝐵3𝑖2), 𝐵4𝑖 = (𝐵4𝑖1, 𝐵4𝑖2)
𝐵1𝑖1 =((

𝐶𝑖,1 𝐶𝑖,2 𝐶𝑖,3 𝐶𝑖,4𝑘𝑖,2𝐶𝑖,2 𝑘𝑖,1𝐶𝑖,1 𝑘𝑖,4𝐶𝑖,4 𝑘𝑖,3𝐶𝑖,3𝑏𝑖𝛼𝑖𝑘𝑖,1𝐶𝑖,1(𝑋𝑖 − 𝑋𝑖−1) 𝑏𝑖𝛼𝑖𝑘𝑖,2𝐶𝑖,2(𝑋𝑖 − 𝑋𝑖−1) 𝑏𝑖𝛽𝑖𝑘𝑖,3𝐶𝑖,3(𝑋𝑖 − 𝑋𝑖−1) − 𝑏𝑖𝛽𝑖𝑘𝑖,4𝐶𝑖,4(𝑋𝑖 − 𝑋𝑖−1)0 0 0 0 )
)
, (B.2a)

𝐵1𝑖2 =((
0 0 0 0−𝑘𝑖+1,2𝐶𝑖+1,2 −𝑘𝑖+1,1𝐶𝑖+1,1 −𝑘𝑖+1,4𝐶𝑖+1,4 −𝑘𝑖+1,3𝐶𝑖+1,3−𝑏𝑖+1𝛼𝑖+1𝑘𝑖+1,1𝐶𝑖+1,1(𝑋𝑖+1 − 𝑋𝑖) −𝑏𝑖+1𝛼𝑖+1𝑘𝑖+1,2𝐶𝑖+1,2(𝑋𝑖+1 − 𝑋𝑖) −𝑏𝑖+1𝛽𝑖+1𝑘𝑖+1,3𝐶𝑖+1,3(𝑋𝑖+1 − 𝑋𝑖) 𝑏𝑖+1𝛽𝑖+1𝑘𝑖+1,4𝐶𝑖+1,4(𝑋𝑖+1 − 𝑋𝑖)𝐶𝑖+1,1 𝐶𝑖+1,2 𝐶𝑖+1,3 𝐶𝑖+1,4

)
)
, (B.2b)

𝐵2𝑖1 =( 𝑏𝑖𝛼𝑖𝑘𝑖,1𝐶𝑖,1 𝑏𝑖𝛼𝑖𝑘𝑖,2𝐶𝑖,2 𝑏𝑖𝛽𝑖𝑘𝑖,3𝐶𝑖,3 −𝑏𝑖𝛽𝑖𝑘𝑖,4𝐶𝑖,4𝐶𝑖,2 (𝑋𝑖 − 𝑋𝑖−1) 𝐶𝑖,2 (𝑋𝑖 − 𝑋𝑖−1) 𝐶𝑖,3 (𝑋𝑖 − 𝑋𝑖−1) 𝐶𝑖,4 (𝑋𝑖 − 𝑋𝑖−1)(𝑏𝑖𝛼𝑖 − 𝑘𝑖,2) 𝐶𝑖,2 (𝑏𝑖𝛼𝑖 − 𝑘𝑖,1) 𝐶𝑖,1 (𝑏𝑖𝛽𝑖 − 𝑘𝑖,4) 𝐶𝑖,4 − (𝑏𝑖𝛽𝑖 + 𝑘𝑖,3) 𝐶𝑖,30 0 0 0 ), (B.3a)

𝐵2𝑖2 =( 0 0 0 0−𝐶𝑖+1,1 (𝑋𝑖+1 − 𝑋𝑖) −𝐶𝑖+1,2 (𝑋𝑖+1 − 𝑋𝑖) −𝐶𝑖+1,3 (𝑋𝑖+1 − 𝑋𝑖) −𝐶𝑖+1,4 (𝑋𝑖+1 − 𝑋𝑖)(𝑘𝑖+1,2 − 𝑏𝑖+1𝛼𝑖+1) 𝐶𝑖+1,2 (𝑘𝑖+1,1 − 𝑏𝑖+1𝛼𝑖+1) 𝐶𝑖+1,1 (𝑘𝑖+1,4 − 𝑏𝑖+1𝛽𝑖+1) 𝐶𝑖+1,4 (𝑏𝑖+1𝛽𝑖+1 + 𝑘𝑖+1,3) 𝐶𝑖+1,3𝑏𝑖+1𝛼𝑖+1𝑘𝑖+1,1𝐶𝑖+1,1 𝑏𝑖+1𝛼𝑖+1𝑘𝑖+1,2𝐶𝑖+1,2 𝑏𝑖+1𝛽𝑖+1𝑘𝑖+1,3𝐶𝑖+1,3 −𝑏𝑖+1𝛽𝑖+1𝑘𝑖+1,4𝐶𝑖+1,4 ), (B.3b)

𝐵3𝑖1 =( 𝐶𝑖,1 𝐶𝑖,2 𝐶𝑖,3 𝐶𝑖,4𝑘𝑖,2𝐶𝑖,2 𝑘𝑖,1𝐶𝑖,1 𝑘𝑖,4𝐶𝑖,4 𝑘𝑖,3𝐶𝑖,30 0 0 00 0 0 0 ), (B.4a)

𝐵3𝑖2 =( 0 0 0 00 0 0 0𝐶𝑖+1,1 𝐶𝑖+1,2 𝐶𝑖+1,3 𝐶𝑖+1,4𝑘𝑖+1,2𝐶𝑖+1,2 𝑘𝑖+1,1𝐶𝑖+1,1 𝑘𝑖+1,4𝐶𝑖+1,4 𝑘𝑖+1,3𝐶𝑖+1,3), (B.4b)

𝐵4𝑖1 =((
(
𝐶𝑖,1 (𝑋𝑖 − 𝑋𝑖−1) 𝐶𝑖,2 (𝑋𝑖 − 𝑋𝑖−1) 𝐶𝑖,3 (𝑋𝑖 − 𝑋𝑖−1) 𝐶𝑖,4 (𝑋𝑖 − 𝑋𝑖−1)𝑘𝑖,2𝐶𝑖,2 𝑘𝑖,1𝐶𝑖,1 𝑘𝑖,4𝐶𝑖,4 𝑘𝑖,3𝐶𝑖,3𝜆𝐶𝑖,2 (𝑏𝑖𝛼𝑖 − 𝑘𝑖,2) 𝜆𝐶𝑖,1 (𝑏𝑖𝛼𝑖 − 𝑘𝑖,1) 𝜆𝐶𝑖,4 (𝑏𝑖𝛽𝑖 − 𝑘𝑖,4) −𝜆𝐶𝑖,3 (𝑏𝑖𝛽𝑖 + 𝑘𝑖,3)𝑏𝑖𝛼𝑖𝑘𝑖,1𝐶𝑖,1𝜆 (𝑋𝑖 − 𝑋𝑖−1) 𝑏𝑖𝛼𝑖𝑘𝑖,2𝐶𝑖,2𝜆 (𝑋𝑖 − 𝑋𝑖−1) 𝑏𝑖𝛽𝑖𝑘𝑖,3𝐶𝑖,3𝜆 (𝑋𝑖 − 𝑋𝑖−1) − 𝑏𝑖𝛽𝑖𝑘𝑖,4𝐶𝑖,4𝜆 (𝑋𝑖 − 𝑋𝑖−1)

))
)
, (B.5a)

𝐵4𝑖2
=((
(

−𝐶𝑖+1,1 (𝑋𝑖+1 − 𝑋𝑖) −𝐶𝑖+1,2 (𝑋𝑖+1 − 𝑋𝑖) −𝐶𝑖+1,3 (𝑋𝑖+1 − 𝑋𝑖) −𝐶𝑖+1,4 (𝑋𝑖+1 − 𝑋𝑖)−𝑘𝑖+1,2𝐶𝑖+1,2 −𝑘𝑖+1,1𝐶𝑖+1,1 −𝑘𝑖+1,4𝐶𝑖+1,4 −𝑘𝑖+1,3𝐶𝑖+1,3𝑘∗𝑠𝑖𝐶𝑖+1,1 (𝑋𝑖+1 − 𝑋𝑖) − 𝜆𝐶𝑖+1,2 (𝑏𝑖+1𝛼𝑖+1 − 𝑘𝑖+1,2) 𝑘∗𝑠𝑖𝐶𝑖+1,2 (𝑋𝑖+1 − 𝑋𝑖) − 𝜆𝐶𝑖+1,1 (𝑏𝑖+1𝛼𝑖+1 − 𝑘𝑖+1,1) 𝑘∗𝑠𝑖𝐶𝑖+1,3 (𝑋𝑖+1 −𝑋𝑖) − 𝜆𝐶𝑖+1,4 (𝑏𝑖+1𝛽𝑖+1 − 𝑘𝑖+1,4) 𝑘∗𝑠𝑖𝐶𝑖+1,4 (𝑋𝑖+1 −𝑋𝑖) + 𝜆𝐶𝑖+1,3 (𝑏𝑖+1𝛽𝑖+1 + 𝑘𝑖+1,3)𝑘∗𝑡𝑖𝑘𝑖+1,2𝐶𝑖+1,2 − 𝑏𝑖+1𝛼𝑖+1𝑘𝑖+1,1𝐶𝑖+1,1𝜆 (𝑋𝑖+1 − 𝑋𝑖) 𝑘∗𝑡𝑖𝑘𝑖+1,1𝐶𝑖+1,1 − 𝑏𝑖+1𝛼𝑖+1𝑘𝑖+1,2𝐶𝑖+1,2𝜆 (𝑋𝑖+1 − 𝑋𝑖) 𝑘∗𝑡𝑖𝑘𝑖+1,4𝐶𝑖+1,4 − 𝑏𝑖+1𝛽𝑖+1𝑘𝑖+1,3𝐶𝑖+1,3𝜆 (𝑋𝑖+1 − 𝑋𝑖) 𝑘∗𝑡𝑖𝑘𝑖+1,3𝐶𝑖+1,3 + 𝑏𝑖+1𝛽𝑖+1𝑘𝑖+1,4𝐶𝑖+1,4𝜆 (𝑋𝑖+1 − 𝑋𝑖)
))
)
.(B.5b)
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(3) 𝑖 = 𝑁
𝐵𝐼11𝑁 = ( 𝑏𝑁𝛼𝑁𝑘𝑁,1𝐶𝑁,1 𝑏𝑁𝛼𝑁𝑘𝑁,2𝐶𝑁,2 𝑏𝑁𝛽𝑁𝑘𝑁,3𝐶𝑁,3 −𝑏𝑁𝛽𝑁𝑘𝑁,4𝐶𝑁,4(𝑏𝑁𝛼𝑁 − 𝑘𝑁,2) 𝐶𝑁,2 (𝑏𝑁𝛼𝑁 − 𝑘𝑁,1) 𝐶𝑁,1 (𝑏𝑁𝛽𝑁 − 𝑘𝑁,4) 𝐶𝑁,4 − (𝑏𝑁𝛽𝑁 + 𝑘𝑁,3) 𝐶𝑁,3) ,𝐵𝐼21𝑁 = ( 𝐶𝑁,1 𝐶𝑁,2 𝐶𝑁,3 𝐶𝑁,4𝑏𝑁𝛼𝑁𝑘𝑁,1𝐶𝑁,1 𝑏𝑁𝛼𝑁𝑘𝑁,2𝐶𝑁,2 𝑏𝑁𝛽𝑁𝑘𝑁,3𝐶𝑁,3 −𝑏𝑁𝛽𝑁𝑘𝑁,4𝐶N,4) ,𝐵𝐼31𝑁 = ( 𝐶𝑁,1 𝐶𝑁,2 𝐶𝑁,3 𝐶𝑁,4𝑘𝑁,2𝐶𝑁,2 𝑘𝑁,1𝐶𝑁,1 𝑘𝑁,4𝐶𝑁,4 𝑘𝑁,3𝐶𝑁,3) ,𝐵𝐼41𝑁
= (𝑘∗𝑠𝑁𝐶𝑁,1 (𝑋𝑁 − 𝑋𝑁−1) − 𝜆𝐶𝑁,2 (𝑏𝑁𝛼𝑁 − 𝑘𝑁,2) 𝑘∗𝑠𝑁𝐶𝑁,2 (𝑋𝑁 − 𝑋𝑁−1) − 𝜆𝐶𝑁,1 (𝑏𝑁𝛼𝑁 − 𝑘𝑁,1) 𝑘∗𝑠𝑁𝐶𝑁,3 (𝑋𝑁 − 𝑋𝑁−1) − 𝜆𝐶𝑁,4 (𝑏𝑁𝛽𝑁 − 𝑘𝑁,4) 𝑘∗𝑠𝑁𝐶𝑁,4 (𝑋𝑁 − 𝑋𝑁−1) + 𝜆𝐶𝑁,3 (𝑏𝑁𝛽𝑁 + 𝑘𝑁,3)𝑘∗𝑡𝑁𝑘𝑁,2𝐶𝑁,2 − 𝑏𝑁𝛼𝑁𝑘𝑁,1𝐶𝑁,1𝜆 (𝑋𝑁 − 𝑋𝑁−1) 𝑘∗𝑡𝑁𝑘𝑁,1𝐶𝑁,1 − 𝑏𝑁𝛼𝑁𝑘𝑁,2𝐶𝑁,2𝜆 (𝑋𝑁 − 𝑋𝑁−1) 𝑘∗𝑡𝑁𝑘𝑁,4𝐶𝑁,4 − 𝑏𝑁𝛽𝑁𝑘𝑁,3𝐶𝑁,3𝜆 (𝑋𝑁 − 𝑋𝑁−1) 𝑘∗𝑡𝑁𝑘𝑁,3𝐶𝑁,3 + 𝑏𝑁𝛽𝑁𝑘𝑁,4𝐶𝑁,4𝜆 (𝑋𝑁 − 𝑋𝑁−1) ) .

(B.6)

C. Boundary Conditions in Trial Functions

The nature conditions of trial functions in Galerkin method
are as follows. For free boundaries (𝑋 = 0 or𝑋 = 1), the trail
functions must yield

G
𝐼10
2𝑖2

𝑋=0 = G
𝐼10
1𝑖1

𝑋=0 − G
𝐼10
2𝑖2

𝑋=0 = 0,
G
𝐼11
2𝑖2

𝑋=1 = G
𝐼11
1𝑖1

𝑋=0 − G
𝐼11
2𝑖2

𝑋=0 = 0. (C.1)

For simply supported boundaries (𝑋 = 0 or𝑋 = 1)
G
𝐼20
1𝑖1

𝑋=0 = G
𝐼20
2𝑖2

𝑋=0 = 0,
G
𝐼21
1𝑖1

𝑋=1 = G
𝐼21
2𝑖2

𝑋=1 = 0. (C.2)

For clamped boundaries (𝑋 = 0 or𝑋 = 1)𝐺(𝐼30)
(1𝑖1)

(𝑋=0) = 𝐺(𝐼30)(2𝑖2) (𝑋=0) = 0,𝐺(𝐼31)
(1𝑖1)

(𝑋=1) = 𝐺(𝐼31)(2𝑖2) (𝑋=1) = 0. (C.3)

For simply supported constraints (0 < 𝑋𝑗1 < 1)
G1𝑖1
𝑋=𝑋𝑗1 = 0. (C.4)

For hinge-joint constraints (0 < 𝑋𝑗1 < 1)
G2𝑖2
𝑋=𝑋𝑗2 = 0. (C.5)

For clamped constraints (0 < 𝑋𝑗1 < 1)
G1𝑖1
𝑋=𝑋𝑗3 = 0,

G2𝑖2
𝑋=𝑋𝑗3 = 0. (C.6)

D. Explicit Matrixes of Time Domain Equation

Here,𝑀 = ( 𝑀11 0𝑁1×𝑁20𝑁2×𝑁1 𝑀22
),𝐾 = 𝐾1 +𝐾2,𝐾1 = ( 𝐾111 𝐾112𝐾121 𝐾

1
22

), and𝐾2 = ( 𝐾211 0|𝑁1×𝑁20|𝑁2×𝑁1 𝐾
2
22

), in which

𝑀11 =((((
(
∫1
0
G11G11𝑑𝑋 ∫1

0
G11G12𝑑𝑋 ⋅ ⋅ ⋅ ∫1

0
G11G1𝑁1𝑑𝑋∫1

0
G12G11𝑑𝑋 ∫1

0
G12G11𝑑𝑋 ⋅ ⋅ ⋅ ∫1

0
G12G1𝑁1𝑑𝑋⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫1

0
G1𝑁1G11𝑑𝑋 ∫1

0
G1𝑁1G11𝑑𝑋 ⋅ ⋅ ⋅ ∫1

0
G1𝑁1G1𝑁1𝑑𝑋

))))
)
, (D.1a)

𝑀22 =((((
(
∫1
0
G21G21𝑑𝑋 ∫1

0
G21G22𝑑𝑋 ⋅ ⋅ ⋅ ∫1

0
G21G2𝑁2𝑑𝑋∫1

0
G22G21𝑑𝑋 ∫1

0
G22G22𝑑𝑋 ⋅ ⋅ ⋅ ∫1

0
G22G2𝑁2𝑑𝑋⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∫1

0
G2𝑁2G11𝑑𝑋 ∫1

0
G2𝑁2G21𝑑𝑋 ⋅ ⋅ ⋅ ∫1

0
G2𝑁2G2𝑁2𝑑𝑋

))))
)
, (D.1b)

𝐾111 =((((
(
−𝜆∫1
0
G11G


11𝑑𝑋 −𝜆∫1

0
G11G


12𝑑𝑋 ⋅ ⋅ ⋅ −𝜆∫1

0
G11G


1𝑁1
𝑑𝑋−𝜆∫1

0
G12G


11𝑑𝑋 −𝜆∫1

0
G12G


12𝑑𝑋 ⋅ ⋅ ⋅ −𝜆∫1

0
G12G


1𝑁1
𝑑𝑋⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅−𝜆∫1

0
G1𝑁1G


11𝑑𝑋 −𝜆∫1

0
G1𝑁1G


12𝑑𝑋 ⋅ ⋅ ⋅ −𝜆∫1

0
G1𝑁1G


1𝑁1
𝑑𝑋
))))
)
, (D.2a)
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𝐾112 =((((
(
𝜆∫1
0
G11G


21𝑑𝑋 𝜆∫1

0
G11G


22𝑑𝑋 ⋅ ⋅ ⋅ 𝜆 ∫1

0
G11G


2𝑁2
𝑑𝑋𝜆∫1

0
G12G


21𝑑𝑋 𝜆∫1

0
G12G


22𝑑𝑋 ⋅ ⋅ ⋅ 𝜆 ∫1

0
G12G


2𝑁2
𝑑𝑋⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝜆 ∫1

0
G1𝑁1G


21𝑑𝑋 𝜆∫1

0
G1𝑁1G


22𝑑𝑋 ⋅ ⋅ ⋅ 𝜆 ∫1

0
G1𝑁1G


2𝑁2
𝑑𝑋
))))
)
, (D.2b)

𝐾121 =((((
(
−𝜆𝐿𝑟2 ∫1

0
G21G


11𝑑𝑋 −𝜆𝐿𝑟2 ∫1

0
G21G


12𝑑𝑋 ⋅ ⋅ ⋅ −𝜆𝐿𝑟2 ∫1

0
G21G


1𝑁1
𝑑𝑋−𝜆𝐿𝑟2 ∫1

0
G22G


11𝑑𝑋 −𝜆𝐿𝑟2 ∫1

0
G22G


12𝑑𝑋 ⋅ ⋅ ⋅ −𝜆𝐿𝑟2 ∫1

0
G22G


1𝑁1
𝑑𝑋⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅−𝜆𝐿𝑟2 ∫1

0
G2𝑁2G


11𝑑𝑋 −𝜆𝐿𝑟2 ∫1

0
G2𝑁2G


12𝑑𝑋 ⋅ ⋅ ⋅ −𝜆𝐿𝑟2 ∫1

0
G2𝑁2G


1𝑁1
𝑑𝑋
))))
)
, (D.2c)

𝐾122
=((((
(

−1𝜆 ∫10 G21G21𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G21G21𝑑𝑋 −1𝜆 ∫10 G21G22𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G21G22𝑑𝑋 ⋅ ⋅ ⋅ − 1𝜆 ∫10 G21G2𝑁2𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G21G2𝑁2𝑑𝑋−1𝜆 ∫10 G22G21𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G22G21𝑑𝑋 −1𝜆 ∫10 G22G22𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G22G22𝑑𝑋 ⋅ ⋅ ⋅ − 1𝜆 ∫10 G22G2𝑁2𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G22G2𝑁2𝑑𝑋⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅− 1𝜆 ∫10 G2𝑁2G21𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G2𝑁2G21𝑑𝑋 −1𝜆 ∫10 G2𝑁2G22𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G2𝑁2G22𝑑𝑋 ⋅ ⋅ ⋅ − 1𝜆 ∫10 G2𝑁2G2𝑁2𝑑𝑋 + 𝜆𝐿𝑟2 ∫10 G2𝑁2G2𝑁2𝑑𝑋
))))
)
,(D.2d)

𝐾211 =(((((((
(

𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺11𝐺11)𝑋=𝑋𝐽 𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺11𝐺12)𝑋=𝑋𝐽 ⋅ ⋅ ⋅ 𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺11𝐺1𝑁1)𝑋=𝑋𝐽
𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺12𝐺11)𝑋=𝑋𝐽 𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺12𝐺12)𝑋=𝑋𝐽 ⋅ ⋅ ⋅ 𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺12𝐺1𝑁1)𝑋=𝑋𝐽⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺1𝑁1𝐺11)𝑋=𝑋𝐽 𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺1𝑁1𝐺12)𝑋=𝑋𝐽 ⋅ ⋅ ⋅ 𝐽0∑
𝐽=1

𝑘∗𝑠𝐽 (𝐺1𝑁1𝐺1𝑁1)𝑋=𝑋𝐽
)))))))
)
, (D.3a)

𝐾222 =(((((((
(

𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺21𝐺21)𝑋=𝑋𝐽 𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺21𝐺22)𝑋=𝑋𝐽 ⋅ ⋅ ⋅ 𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺21𝐺2𝑁2)𝑋=X𝐽
𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺22𝐺21)𝑋=𝑋𝐽 𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺22𝐺22)𝑋=𝑋𝐽 ⋅ ⋅ ⋅ 𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺22𝐺2𝑁2)𝑋=𝑋𝐽⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺2𝑁2𝐺21)𝑋=𝑋𝐽 𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺2𝑁2𝐺22)𝑋=𝑋𝐽 ⋅ ⋅ ⋅ 𝐽0∑
𝐽=1

𝑘∗𝑡𝐽 (𝐺2𝑁2𝐺2𝑁2)𝑋=𝑋𝐽
)))))))
)
. (D.3b)
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