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A set of two-dimensional analytical solutions considering the effects of diffraction and radiation are presented in this study to
investigate the hydrodynamic interaction between an incident linear wave and a proposed floating breakwater system consisting
of a rectangular-shaped body and two attached vertical side porous walls in an infinite fluid domain with finite water depth.
The Matched Eigenfunction Expansion Method (MEEM) for multiple fluid domains is applied to derive theoretically the velocity
potentials and associated unknown coefficients for wave diffraction and body motion induced radiation in each subdomain. Also,
the exciting forces, aswell as the addedmass anddamping coefficients for the floating breakwater systemunder the surge, heave, and
pitching motions, are formulated. The displacements of breakwater motions are determined by solving the equation of motion. As
a verification of the analytical model, the present solutions of the limiting cases in terms of exciting forces, moments, added masses,
and damping coefficients are found to be well matched with other published numerical results. Additionally, the hydrodynamic
performances and the dynamic responses in terms of Response Amplitude Operators (RAOs) of the proposed floating breakwater
system are evaluated versus various dimensionless variables, such as wavelength and porous-effect parameter.The results show that
the attached porous walls with selected porous properties are observed to have the advantages of reducing wave impacts on the
floating breakwater system and at the same time its dynamic responses are also noticeably improved.

1. Introduction

The ocean-oriented activities, such as oil and gas extrac-
tion, aquacultural production, and recreations, have been
identified to generate tremendous values to humans. Pro-
tection of the shoreline structures or offshore production
facilities by degradation of the wave-structure interaction
is therefore a vital issue in the coastal and offshore engi-
neering applications. Various artificial structures have been
designed and optimized for this purpose, of which the
floating breakwaters or barriers are considered as valuable
alternatives to conventional fixed gravity-type breakwaters
[1]. The performance optimization of a breakwater, especially
the type of floating breakwater, has received much attention
with the advantage of energy dissipation [2]. Additionally,
the porous structures may provide an added alternative to
improve the performance of floating breakwaters.

Hydrodynamic analysis is widely applied to examine the
wave-reduction performance of a floating breakwater. Mei
and Black [3] investigated the wave forces acting on the
rectangular floating obstacles by the variational-formulation-
based numerical approach. Later, the wave radiation induced
by small oscillations of a floating body was also studied [4].
A simplified analytical model to estimate the hydrodynamic
performance of a long rectangular floating breakwater was
developed under the assumption of a small gap condition [5].
Also, the diffraction and radiation problem of a rectangular
buoy were analyzed under the conditions of heave oscillation
[6], as well as in three dimensional scale, the sway, heave,
and rolling motions [7]. Damping mechanisms of a floating
breakwaterwere investigated numerically and experimentally
considering the cases of a regular pontoon, a regular pontoon
with wing plates attached, and a regular pontoon with
wing plates penetrated [8]. Additionally, the hydrodynamic
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performances of rectangular boxes of fixed single and fixed
double subject to the heave motion were estimated under the
actions of either regular or irregular water waves [9]. Later,
the wave absorbing effectiveness of different types of floating
breakwaters, such as single box, double boxes, or board net,
was also investigated [10].

Due to the advantage of energy dissipation, the water-
wave absorbing phenomena have been observed when waves
pass through a porousmedium; that is, a porous structure can
effectively attenuate both reflected and transmitted waves.
Following the porous wavemaker theory of Chwang [11], con-
siderable studies related to the interaction between porous
structures and water waves were performed theoretically and
experimentally, especially the porous barriers or the porous
structures attached to the floating breakwaters. The wave
energy dissipation of thin permeable wall was verified by
conducting sets of experiments [12]. Analytical approaches
have been carried out by Manam and Sivanesan [13] and
Chwang and Dong [14], as well as Zhu and Chwang [15], to
study the reflection and transmission problem of water waves
propagating past vertical porous barriers. The hydroelastic
issues between gravity waves and a submerged horizontal
flexible porous plate were investigated by Behera and Sahoo
[16]. The studies of perforated wall breakwaters and dual
submerged horizontal porous plates were given in [17, 18],
respectively. In order to examine the effectiveness of wave
absorption by porous plates, the interactions between dif-
ferent types of porous plates and oblique monochromatic
waves were investigated by Cho and Kim [19]. The concept
of porous barrier was extended by Wang and Ren [20, 21]
to analytically study the interaction between water waves
and a flexible porous breakwater or, in a three-dimensional
domain, a concentric porous cylinder system.The diffraction
problems of either a circular porous plate submerged hori-
zontally or a system with dual circular porous plates were
investigated based on the linear potential flow theory [22,
23]. Recently, the scattering of water waves by a rectangular
floating body that attached with two vertically porous walls
was investigated analytically and experimentally by Qiao et
al. [24]. In practices, the types of porous structure are various
depending on the requirements of engineering problem;
however, single or several vertical porous plates (including
barrier and circular) and porous cylinder are the most
common in engineering field.The vertical porous plates were
often employed to absorb waves to protect coastal [25, 26];
furthermore, a set of porous plates were placed at the bottom
of a wave tank to absorb waves [27].The porous cylinder was
employed to protect structure in Trafalgar offshore windfarm
[28]; almost for the same purpose, a concentric two-cylinder
system, involving an interior impermeable cylinder and
external porous cylinder, was designed for Ekofisk gravity
offshore structure in the North Sea [29]; then, the concept
of single-layered porous cylinder was extended to double-
layered perforated cylinder by Xiao et al. [30], and the
experimentswere conducted to investigate the hydrodynamic
performances.

To achieve the combination of the advantages of a floating
body and porous wall features, a new breakwater system
that consists of a partially submerged pontoon-like body

and two attached porous side walls is proposed in this
study to provide a protected region sheltering from wave
action. The results of wave reflection/transmission and wave
induced hydrodynamic loads under the condition that the
breakwater system is in a fixed position were given in Qiao
et al. [24]. The investigation of wave interactions with the
breakwater system is further extended to include the effect
of the induced motions of the floating breakwater system,
the so-called radiation problem. Under the assumptions of
linear incident waves and small translational and rotational
motions of surge, heave, and pitch, this study focuses on the
investigation of hydrodynamic coefficients, such as the added
mass and damping coefficient, and the dynamic responses
of the floating breakwater system through developing an
analytical model with solutions of diffracted and radiated
waves and the equation of motion which is formulated and
solved. The solutions of the velocity potentials in the defined
regions, including the diffraction and radiation velocity
potentials, are obtained by solving the formulated governing
equations as well as the boundary and matching conditions.
To verify the analytical solutions derived from this study,
some limited numerical results published in literatures were
adopted for comparisons. Additionally, the effects of the
incident wave parameters and porous walls conditions on the
hydrodynamic coefficients and RAOs (Response Amplitude
Operators) are examined and discussed.

2. Theoretical Formulations and Solutions

The problem statement as illustrated in Figure 1 shows
a train of right-going, small-amplitude, Airy waves with
the frequency 𝜔, wave height H, and wave length 𝜆 to
interact normally with a floating breakwater system that
consists of a partially submerged rectangular structure and
two attached fully submerged side porous walls. Subject
to the wave induced hydrodynamic loads, the breakwater
system responds with two translational motions and one
rotational motion, i.e., surge, heave, and pitching motions.
The Cartesian coordinates system is employed to define
this two-dimensional boundary value problem. The x-axis
is along the still water surface, where 𝑥 = 0 is set at the
center of the floating breakwater system, and the z-axis points
vertically upwards with an origin located at the still water
surface. The rectangular structure with a length of 2a and
a submergence of s is initially positioned in a domain with
undisturbed constant water depth h. Both of the thin porous
walls have a length of d-s.

In this study, the fluid is assumed to be incompressible
and inviscid and the motion irrational. Subsequently, the
potential flow theory, providing that the velocity potential
satisfies the Laplace Equation, with the defined boundary
conditions could be applied to solve thewaves and breakwater
interaction problem. As shown in Figure 1, the entire fluid
domain is divided into three subdomains, namely, regions I,
II, and III, respectively. Region I is the subdomain upstream
of the breakwater system (𝑥 ≤ 𝑎, −ℎ ≤ 𝑧 ≤ 0); region II is the
subdomain between the two porous walls (−𝑎 ≤ 𝑥 ≤ 𝑎, −𝑑 ≤𝑧 ≤ −𝑠); and region III is the subdomain downstream of the
breakwater system (𝑎 ≤ 𝑥, −ℎ ≤ 𝑧 ≤ 0). In the fluid domain,
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Figure 1: Schematic diagram of a floating body with attached two porous walls under the action of an incident wave and forced surge, heave,
and pitching motions.

the Laplace equation of a complete velocity potential serves
as the basic equation to describe the fluid motion, namely,

∇2𝜙 = 0; (1)

The fluid velocity potential 𝜙 includes three components,
incident wave potential 𝜙𝐼, diffracted wave potential 𝜙𝐷, and
the radiated wave potential Φ𝑅, which covers the induced
motions of the floating breakwater system. In this study,
the dynamic motions of surge, heave, and pitching are
considered. Thus, the velocity potential 𝜙 can be expressed
as

𝜙 = 𝜙𝐼 + 𝜙𝐷 + 3∑
𝑗=1

Φ(𝐿)𝑅 (2)

where the subscript L = 1, 2, 3 donates the surge, heave,
and pitching motions of the breakwater system, respectively.
In this study, the incident wave potential is given as

𝜙𝐼 = −i𝑔𝐻2𝜔 𝑒i𝑘0(𝑥+𝑎) cosh 𝑘0 (𝑧 + ℎ)
cosh 𝑘0ℎ 𝑒−i𝜔𝑡 (3)

where 𝑘0 is the wave number,𝜔 is the wave frequency, and𝑔 is the gravitational acceleration. Here, 𝑘0 and 𝜔 satisfy the
usual dispersion relation

𝜔2 = 𝑔𝑘0 tanh (𝑘0ℎ) (4)

2.1. �eoretical Formulations and Solutions of the Incident
and Diffracted Velocity Potentials. To solve the wave radi-
ation problem in a linear wave system, the wave induced
hydrodynamic forces and moment according to the wave
diffraction approach by assuming the body is in a fixed
position are required to be determined priorly. The wave
diffraction solutions for the proposed breakwater systemwith
two attached porous walls have been obtained in a previous
study given inQiao et al. [24] and Yip and Chwang [31]. Here,
only limited formulations and solutions are summarized
below. Let us define the wave diffraction potentials as 𝜙𝐷𝑖;𝑖 = 1, 2, 3 stands for the subdomains I, II, and III, respectively.
The Laplace equations of 𝜙𝐷𝑖 can be solved with the uses of
the linearized kinematic and dynamic free surface boundary
condition, bottom boundary condition, no flow condition at

the body surface, andmatching conditions at the interfaces of
porous wall locations, including the porous flow conditions
expressed as (Chwang [11])

𝜕𝜙𝐷1𝜕𝑥 = 𝜕𝜙𝐷2𝜕𝑥 = 𝑏1𝜇 (𝑝𝐷1 − 𝑝𝐷2)
𝑎𝑡 𝑥 = −𝑎, −𝑑 ≤ 𝑧 ≤ −𝑠

(5)

𝜕𝜙𝐷3𝜕𝑥 = 𝜕𝜙𝐷2𝜕𝑥 = 𝑏2𝜇 (𝑝𝐷2 − 𝑝𝐷3)
𝑎𝑡 𝑥 = −𝑎, −𝑑 ≤ 𝑧 ≤ −𝑠

(6)

where 𝑏1 and 𝑏2, having the dimension of length, are,
respectively, material constants for the porous walls A and
B, 𝑝𝐷𝑖 (i=1, 2, 3) are the dynamic pressures induced by
the incident and diffracted velocity potentials, and 𝜇 is the
dynamic viscosity of the fluid. The wave diffraction solutions
are derived as

𝜙𝐷1 = ∞∑
𝑚=0

[𝐼𝑚𝑒̃𝑘𝑚(𝑥+𝑎) + 𝐹𝑚𝑒−̃𝑘𝑚(𝑥+𝑎)] cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ

⋅ 𝑒−i𝜔𝑡
(7)

𝜙𝐷2 = (𝐶0𝑥 + 𝐸0) 𝑒−i𝜔𝑡
+ ∞∑
𝑚=1

[𝐶𝑚 cosh (𝑟𝑚𝑥)
cosh (𝑟𝑚𝑎) + 𝐸𝑚 sinh (𝑟𝑚𝑥)

sinh (𝑟𝑚𝑎) ]
⋅ cos 𝑟𝑚 (𝑧 + ℎ) 𝑒−i𝜔𝑡

(8)

𝜙𝐷3 = ∞∑
m=0

[𝑇𝑚𝑒̃𝑘𝑚(𝑥−𝑎)] cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ 𝑒−i𝜔𝑡 (9)

where 𝐹𝑚, 𝐶𝑚, 𝐸𝑚, and 𝑇𝑚 (𝑚 = 0, 1, 2, 3, . . .) are
unknown complex coefficients to be determined. 𝐼𝑚, �̃�𝑚, and𝑟𝑚 (𝑚 = 0, 1, 2, 3, . . .) are expressed separately as

𝐼𝑚 = {−i𝑔𝐻2𝜔 , 0, 0, 0, . . . . . .} (10)

�̃�𝑚 = {i𝑘0, −𝑘1, −𝑘2, −𝑘3, . . . . . . , −𝑘𝑚, . . . . . .} (11)

𝑟𝑚 = 𝑚𝜋ℎ − 𝑠 (12)
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Here, 𝑘𝑚 can be calculated from

𝜔2 = −𝑔𝑘𝑚 tanh (𝑘𝑚ℎ) (13)

Substituting (7), (8), and (9) into the following derived
matching equations

∫0
−ℎ

𝜕𝜙𝐷1𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜕𝜙𝐷2𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧;
𝑥 = −𝑎 (𝑛 = 0, 1, 2, 3, . . .)

(14)

∫0
−ℎ

𝜕𝜙𝐷3𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜕𝜙𝐷2𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧;
𝑥 = −𝑎 (𝑛 = 0, 1, 2, 3, . . .)

(15)

∫−𝑑
−ℎ

𝜙𝐷1 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧 + ∫−𝑠
−𝑑

�̃�𝐷1 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜙𝐷2 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧;
𝑥 = −𝑎, (𝑛 = 0, 1, 2 . . .)

(16)

∫−𝑑
−ℎ

𝜙𝐷3 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧 + ∫−𝑠
−𝑑

�̃�𝐷3 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜙𝐷2 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧;
𝑥 = −𝑎, (𝑛 = 0, 1, 2 . . .)

(17)

and utilizing the orthogonality properties of solution
eigenfunctions, the unknown coefficients 𝐶𝑛, 𝐷𝑛, 𝑅𝑛, 𝑇𝑛 (𝑛 =0, 1, 2, 3, . . . , 𝑀) for the diffraction potentials can be deter-
mined by solving the 4(M+1) system of algebraic equations.
Here, the terms with summation of infinite series are approx-
imated by a large but finite number of M terms. In (16) and
(17), �̃�𝐷1 and �̃�𝐷3 are given as

�̃�𝐷1 = ∞∑
𝑚=0

[(𝐼𝑚 + 𝐹𝑚) − �̃�𝑚
i𝐺01𝑘0 (𝐼𝑚 − 𝐹𝑚)]

⋅ cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ

(18)

�̃�𝐷3 = ∞∑
𝑚=0

(1 + �̃�𝑚
i𝐺01𝑘0) 𝑇𝑚 cos �̃�𝑚 (𝑧 + ℎ)

cos �̃�𝑚ℎ (19)

where 𝐺01 = 𝜌𝜔𝑏1/(𝜇𝑘0) and 𝐺02 = 𝜌𝜔𝑏2/(𝜇𝑘0) are
dimensionless parameters defined according to Chwang [11]
to represent the porous effect parameters of porous walls A
and B, respectively.

2.2. �eoretical Formulations of the Radiated Velocity Poten-
tials. For the radiation problem, the displacements of the
floating breakwater system in motion are given as

𝑋𝑗 = 𝑋0𝑗𝑒−i𝜔𝑡 𝑗 = 1, 2, 3 (20)

where 𝑋𝑜𝑗 (𝑗 = 1, 2, 3) are the amplitudes of surge, heave,
and pitching motions, respectively. Let 𝜙(𝐿)𝑅𝑖 (𝐿 = 1, 2, 3; 𝑖 =1, 2, 3) be the spatial radiated potentials describing the small-
amplitude oscillations, where 𝐿𝑡ℎ indices denote, respectively,
the induced surge, heave, and pitching motions while the 𝑖𝑡ℎ
indices represent the subdomains of I, II, and III, respectively.
Then, the total radiated potentials in any of the flow domains
can be expressed as

Φ(𝐿)𝑅 = 𝑋𝑗𝜙(𝐿)𝑅 = Re [−i𝜔𝑋0𝑗𝜙(𝐿)𝑅 (𝑥, 𝑧) 𝑒−i𝜔𝑡] (21)

As the velocity potentials𝜙(𝐿)𝑅 satisfy the Laplace equation,
we have

∇2𝜙(𝐿)𝑅𝑖 = 0 (𝐿 = 1, 2, 3; 𝑖 = 1, 2, 3) (22)

The boundary conditions, including the free surface
boundary conditions, bottom boundary conditions, and the
body surface conditions, for the surge, heave, and pitching
oscillations, are listed as follows, respectively.

𝜕𝜙(1)𝑅𝑖𝜕𝑧 = 0 (𝑖 = 1, 2, 3) , 𝑧 = ℎ
𝜕2𝜙(1)𝑅𝑖𝜕𝑡2 + 𝜕𝜙(1)𝑅𝑖𝜕𝑧 = 0 (𝑖 = 1, 3) , 𝑧 = 0, |𝑥| ≥ 𝑎

𝜕𝜙(1)𝑅2𝜕𝑧 = 0 𝑧 = −𝑠, |𝑥| ≤ 𝑎
(23)

𝜕𝜙(2)𝑅𝑖𝜕𝑧 = 0 (𝑖 = 1, 2, 3) , 𝑧 = ℎ
𝜕2𝜙(2)𝑅𝑖𝜕𝑡2 + 𝑔 𝜕𝜙(2)𝑅𝑖𝜕𝑧 = 0 (𝑖 = 1, 3) , 𝑧 = 0, |𝑥| ≥ 𝑎

𝜕𝜙(2)𝑅2𝜕𝑧 = 1 𝑧 = −𝑠, |𝑥| ≤ 𝑎
(24)

𝜕𝜙(3)𝑅𝑖𝜕𝑧 = 0 (𝑖 = 1, 2, 3) , 𝑧 = ℎ
𝜕2𝜙(3)𝑅𝑖𝜕𝑡2 + 𝑔 𝜕𝜙(1)𝑅𝑖𝜕𝑧 = 0 (𝑖 = 1, 3) , 𝑧 = 0, |𝑥| ≥ 𝑎

𝜕𝜙(3)𝑅𝑖𝜕𝑛 = i𝜔 [(𝑧 − 𝜉𝑧) 𝑛𝑥 − (𝑥 − 𝜉𝑥) 𝑛𝑧]
𝑜𝑛 𝑏𝑜𝑑𝑦 𝑠𝑢𝑟𝑓𝑎𝑐𝑒

(25)

where 𝑛 = (𝑛𝑥, 𝑛𝑧) is the unit normal vector and (𝜉𝑥, 𝜉𝑧)
is the rotational center of the pitching oscillation. With the
assumption that the rotational center is along the z axis, we
can get 𝜉𝑥 = 0.
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2.3. Analytical Solutions of the Radiated Velocity Potentials.
Similar to the derivation of the solutions of the diffracted
velocity potentials, the application of the method of sepa-
ration variables to the governing equation (22) under the
boundary conditions (23), (24), and (25) yields the radiated
velocity potentials as follows:

𝜙(𝐿)𝑅1 = ∞∑
𝑚=0

𝐴(𝐿)𝑚 𝑒−̃𝑘𝑚(𝑥+𝑎) cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ 𝑒−i𝜔𝑡 (26)

𝜙(1)𝑅2 = (𝐶(1)0 𝑥 + 𝐸(1)0 ) 𝑒−i𝜔𝑡
+ ∞∑
𝑚=1

[𝐶(1)𝑚 cosh (𝑟𝑚𝑥)
cosh (𝑟𝑎𝑥) + 𝐸(1)𝑚 sinh (𝑟𝑚𝑥)

sinh (𝑟𝑎𝑥) ]
⋅ cos 𝑟𝑚 (𝑧 + ℎ) 𝑒−i𝜔𝑡

(27)

𝜙(2)𝑅2 = (𝑧 + ℎ)2 − 𝑥22 (ℎ − 𝑠) + (𝐶(2)0 𝑥 + 𝐸(2)0 ) 𝑒−i𝜔𝑡

+ ∞∑
𝑚=1

[𝐶(2)𝑚 cosh (𝑟𝑚𝑥)
cosh (𝑟𝑎𝑥) + 𝐸(2)𝑚 sinh (𝑟𝑚𝑥)

sinh (𝑟𝑎𝑥) ]
⋅ cos 𝑟𝑚 (𝑧 + ℎ) 𝑒−i𝜔𝑡

(28)

𝜙(3)𝑅2 = ∞∑
𝑚=1

𝜀 cos [𝛾𝑚 (𝑥 − 𝑎)] cosh [𝛾𝑚 (𝑧 + ℎ)]
+ (𝐶(3)0 𝑥 + 𝐸(3)0 ) 𝑒−i𝜔𝑡
+ ∞∑
𝑚=1

[𝐶(3)𝑚 cosh (𝑟𝑚𝑥)
cosh (𝑟𝑎𝑥) + 𝐸(3)𝑚 sinh (𝑟𝑚𝑥)

sinh (𝑟𝑎𝑥) ]
⋅ cos 𝑟𝑚 (𝑧 + ℎ) 𝑒−i𝜔𝑡

(29)

𝜙(𝐿)𝑅3 = ∞∑
𝑚=0

𝐵(𝐿)𝑚 𝑒̃𝑘𝑚(𝑥−𝑎) cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ 𝑒−i𝜔𝑡 (30)

where

𝛾𝑚 = 𝑚𝜋2𝑎 (𝑚 = 1, 2, 3, . . .) (31)

Combining the floating body surface condition at 𝑧 = −𝑠,−𝑎 ≤ 𝑥 ≤ 𝑎 and the orthogonality of cos[𝛾𝑚(𝑥 − 𝑎)] over the
integral interval of −𝑎 ≤ 𝑥 ≤ 𝑎, the expression of 𝜀 can be
derived as

𝜀 = cos 2𝑎𝛾𝑚
sinh [𝛾𝑚 (ℎ − 𝑠)] 𝑎𝛾𝑚3 (32)

2.4. Determination of theUnknownCoefficients�atAppeared
in the Solutions of Radiated Velocity Potentials. The solutions
of the unknown coefficients that appeared in the radiation
potentials can be again obtained by utilizing the matching
conditions at 𝑥 = ±𝑎 under the principle of continuous
pressure and normal velocity. We have the following.

(a) Matching Conditions for the Surge-Induced Potential

𝜙(1)𝑅2 = {{{
𝜙(1)𝑅1 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
𝜙(1)𝑅3 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = 𝑎 (33a)

𝜕𝜙(1)𝑅1𝜕𝑥 = {{{{{
𝜕𝜙(1)𝑅2𝜕𝑥 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
1, −𝑠 ≤ 𝑧 ≤ 0, 𝑥 = 𝑎 (33b)

𝜕𝜙(1)𝑅3𝜕𝑥 = {{{{{
𝜕𝜙(1)𝑅2𝜕𝑥 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
1, −𝑠 ≤ 𝑧 ≤ 0, 𝑥 = 𝑎 (33c)

(b) Matching Conditions for the Heave-Induced Potential

𝜙(2)𝑅2 = {{{
𝜙(2)𝑅1 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
𝜙(2)𝑅3 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = 𝑎 (34a)

𝜕𝜙(2)𝑅1𝜕𝑥 = {{{{{
𝜕𝜙(2)𝑅2𝜕𝑥 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
1, −𝑠 ≤ 𝑧 ≤ 0, 𝑥 = 𝑎 (34b)

𝜕𝜙(2)𝑅3𝜕𝑥 = {{{{{
𝜕𝜙(2)𝑅2𝜕𝑥 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
1, −𝑠 ≤ 𝑧 ≤ 0, 𝑥 = 𝑎 (34c)

(c) Matching Conditions for the Pitching-Induced Potential

𝜙(3)𝑅2 = {{{
𝜙(3)𝑅1 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
𝜙(3)𝑅3 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = 𝑎 (35a)

𝜕𝜙(3)𝑅1𝜕𝑥 = {{{{{
𝜕𝜙(3)𝑅2𝜕𝑥 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
𝑧 − 𝜉𝑧, −𝑠 ≤ 𝑧 ≤ 0, 𝑥 = 𝑎 (35b)

𝜕𝜙(3)𝑅3𝜕𝑥 = {{{{{
𝜕𝜙(3)𝑅2𝜕𝑥 −ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎
𝑧 − 𝜉𝑧, −𝑠 ≤ 𝑧 ≤ 0, 𝑥 = 𝑎 (35c)

For the porous walls A and B at the boundaries 𝑥 =±𝑎, the condition of continuity of normal velocity for flows
passing through the porous walls A and B leads to

𝜕𝜙(𝐿)𝑅1𝜕𝑥 = 𝜕𝜙(𝐿)𝑅2𝜕𝑥 = 𝑊𝐴 (𝑧, 𝑡)
𝐿 = (1, 2, 3) − ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎

(36a)

𝜕𝜙(𝐿)𝑅3𝜕𝑥 = 𝜕𝜙(𝐿)𝑅2𝜕𝑥 = 𝑊𝐵 (𝑧, 𝑡)
𝐿 = (1, 2, 3) − ℎ ≤ 𝑧 ≤ −𝑑, 𝑥 = −𝑎

(36b)

where the porous flow velocities 𝑊𝐴(𝑧, 𝑡) and 𝑊𝐵(𝑧, 𝑡) are
assumed to obey Darcy's law; that is, they are linearly pro-
portional to the pressure difference induced by the radiated
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motions across their corresponding porous wall (Chwang
[11]). With the application of the linearized Bernoulli equa-
tion, we have

𝑊𝐴 (𝑧, 𝑡) = −𝐺01 [ 𝑘0𝜔 (𝜕𝜙(𝐿)𝑅1𝜕𝑡 − 𝜕𝜙(𝐿)𝑅2𝜕𝑡 )]
(𝐿 = 1, 2, 3) 𝑥 = −𝑎, −𝑑 ≤ 𝑧 ≤ −𝑠

(37a)

𝑊𝐵 (𝑧, 𝑡) = −𝐺02 [ 𝑘0𝜔 (𝜕𝜙(𝐿)𝑅2𝜕𝑡 − 𝜕𝜙(𝐿)𝑅3𝜕𝑡 )]
(𝐿 = 1, 2, 3) 𝑥 = 𝑎, −𝑑 ≤ 𝑧 ≤ −𝑠

(37b)

Utilizing the orthogonality property of eigenfunctions,
cos �̃�𝑛(𝑧 + ℎ), for 𝜙(𝐿)𝑅1 and 𝜙(𝐿)𝑅3 (𝐿 = 1, 2, 3) over the integral
interval of −ℎ ≤ 𝑧 ≤ 0, the following equations can be
formulated by the matching conditions of (33b), (33c), (34b),
(34c), (35b), and (35c) as

∫0
−ℎ

𝜕𝜙(1)𝑅1𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜕𝜙(1)𝑅2𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
+ ∫0
−𝑠

1 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧 (𝑥 = −𝑎)
(38)

∫0
−ℎ

𝜕𝜙(1)𝑅3𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜕𝜙(1)𝑅2𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
+ ∫0
−𝑠

1 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧 (𝑥 = 𝑎)
(39)

∫0
−ℎ

𝜕𝜙(2)𝑅1𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜕𝜙(2)𝑅2𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧 (𝑥 = −𝑎)
(40)

∫0
−ℎ

𝜕𝜙(2)𝑅3𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜕𝜙(2)𝑅2𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧 (𝑥 = 𝑎)
(41)

∫0
−ℎ

𝜕𝜙(3)𝑅1𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑠
−ℎ

𝜕𝜙(3)𝑅2𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
+ ∫0
−𝑠

(𝑧 − 𝜉𝑧) cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧 (𝑥 = −𝑎)
(42)

∫0
−ℎ

𝜕𝜙(3)𝑅3𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧

= ∫−𝑠
−ℎ

𝜕𝜙(3)𝑅2𝜕𝑥 cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧
+ ∫0
−𝑠

(𝑧 − 𝜉𝑧) cos �̃�𝑛 (𝑧 + ℎ) 𝑑𝑧 (𝑥 = 𝑎)

(43)

Additionally, by combining (36a), (36b), (37a), and (37b)
with the matching conditions given in (33a), (34a), and
(35a), respectively, and applying the orthogonality property
of eigenfunctions, cos 𝑟𝑛(𝑧 + ℎ), for 𝜙(𝐿)𝑅2 (L = 1, 2, 3), over the
integral interval of −ℎ ≤ 𝑧 ≤ −𝑠, we have

∫−𝑠
−ℎ

𝜙(𝐿)𝑅2 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑑
−ℎ

𝜙(𝐿)𝑅1 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧
+ ∫−𝑠
−𝑑

�̃�(𝐿)𝑅1 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧
(𝑥 = −𝑎, 𝐿 = 1, 2, 3)

(44)

∫−𝑠
−ℎ

𝜙(𝐿)𝑅2 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧
= ∫−𝑑
−ℎ

𝜙(𝐿)𝑅3 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧
+ ∫−𝑠
−𝑑

�̃�(𝐿)𝑅3 cos 𝑟𝑛 (𝑧 + ℎ) 𝑑𝑧
(𝑥 = 𝑎, 𝐿 = 1, 2, 3)

(45)

where

�̃�(1)𝑅1 = ∞∑
𝑚=0

𝐴(1)𝑚 (1 + �̃�𝑚
i𝐺01𝑘0)

cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ

+ 1
i𝐺01𝑘0

(46)

�̃�(2)𝑅1 = ∞∑
𝑚=0

𝐴(2)𝑚 (1 + �̃�𝑚
i𝐺01𝑘0)

cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ (47)

�̃�(3)𝑅1 = ∞∑
𝑚=0

𝐴(3)𝑚 (1 + �̃�𝑚
i𝐺01𝑘0)

cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ

+ 𝑧
i𝐺01𝑘0

(48)
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�̃�(1)𝑅3 = ∞∑
𝑚=0

𝐵(1)𝑚 (1 + �̃�𝑚
i𝐺02𝑘0)

cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ

− 1
i𝐺02𝑘0

(49)

�̃�(2)𝑅3 = ∞∑
𝑚=0

𝐵(2)𝑚 (1 − �̃�𝑚
i𝐺02𝑘0)

cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ (50)

�̃�(3)𝑅3 = ∞∑
𝑚=0

𝐵(3)𝑚 (1 + �̃�𝑚
i𝐺02𝑘0)

cos �̃�𝑚 (𝑧 + ℎ)
cos �̃�𝑚ℎ

− 𝑧
i𝐺02𝑘0

(51)

Again, the summation of terms with the infinite series
is approximated by a large but finite numbers of terms,
e.g., a total of M terms. Then, the unknown coefficients𝐴(1)𝑚 , 𝐶(1)𝑚 , 𝐸(1)𝑚 , 𝐵(1)𝑚 (𝑚 = 0, 1, 2, . . . , 𝑀) [4(M+1) unknowns
totally] can be determined by solving the 4(M+1) sys-
tem of algebraic equations formulated in (38), (39), (44),
and (45) (for L=1). Similarly, the unknown coefficients𝐴(2)𝑚 , 𝐶(2)𝑚 , 𝐸(2)𝑚 , 𝐵(2)𝑚 (𝑚 = 0, 1, 2, . . . , 𝑀) can be calculated
from the 4(M+1) system of algebraic equations expressed
in (40), (41), (44), and (45) (for L=2) while the coefficients𝐴(3)𝑚 , 𝐶(3)𝑚 , 𝐸(3)𝑚 , 𝐵(3)𝑚 (𝑚 = 0, 1, 2, . . . , 𝑀) can be evaluated by
solving the 4(M+1) system of algebraic equations formulated
in (42), (43), (44), and (45) (for L=3). After the determination
of the above unknown coefficients, a series of engineering
properties important to practical applications could be cal-
culated, for example, the hydrodynamic coefficients and the
motion induced dynamic responses of the breakwater system.

3. Exciting Forces and
Hydrodynamic Coefficients

3.1. Exciting Forces. To determine the hydrodynamic coeffi-
cients related to the inducedmotions of the floating breakwa-
ter system, the exciting forces and moment of the combined
incident and diffracted waves on the breakwater need to
be computed as inputs for solving the equation of motion.
By integrating the dynamic pressures with the use of the
velocity potentials of incident and diffracted waves (see (7)-
(9)) over the wet surface, the hydrodynamic forces along
the x direction (𝐹𝐷1) and along the z direction (𝐹𝐷2) can be
formulated, respectively, as (Qiao et al. [24])

𝐹𝐷1
= i𝜌𝜔 ∞∑

𝑚=0

(𝐼𝑚 + 𝐹𝑚 − 𝑇𝑚) [sin �̃�𝑚ℎ − sin �̃�𝑚 (ℎ − 𝑑)]
�̃�𝑚 cos �̃�𝑚ℎ

⋅ 𝑒−i𝜔𝑡 + i𝜌𝜔 ∗ 2𝑎 (𝑑 − 𝑠) 𝐶0𝑒−i𝜔𝑡
− i𝜌𝜔 ∞∑

𝑚=0

2𝐸𝑚𝑟𝑚 sin 𝑟𝑚 (ℎ − 𝑑) 𝑒−i𝜔𝑡
(52)

𝐹𝐷2 = i𝜔𝜌 [2𝑎𝐸0 + 2 ∞∑
𝑚=1

𝐶𝑚𝑟𝑚 tanh (𝑟𝑚𝑎) cos 𝑟𝑚 (ℎ − 𝑠)]
⋅ 𝑒−i𝜔𝑡

(53)

Also, the wave exciting moment (𝐹𝐷3) that is referenced
to a rotational center (0,𝜉𝑧) can be derived as

𝐹𝐷3 = i𝜌𝜔
{{{{{{{{{{{

(𝐼𝑚 + 𝐹𝑚 − 𝑇𝑚)

⋅ [[[[[
[

𝑑 sin �̃�𝑚 (ℎ − 𝑑) − 𝜉𝑧 sin �̃�𝑚ℎ + 𝜉𝑧 sin �̃�𝑚 (ℎ − 𝑑)
�̃�𝑚 cos �̃�𝑚ℎ

+cos �̃�𝑚ℎ − cos �̃�𝑚 (ℎ − 𝑑)
�̃�𝑚2 cos �̃�𝑚ℎ

]]]]]
]

}}}}}}}}}}}
⋅ 𝑒−i𝜔𝑡 + i𝜌𝜔 {𝑎𝐶0 (𝑑2 − 𝑠2)

− ∞∑
𝑚=1

2𝐸𝑚𝑟𝑚 [𝑑 sin 𝑟𝑚 (ℎ − 𝑑)

+ cos 𝑟𝑚 (ℎ − 𝑠) − cos 𝑟𝑚 (ℎ − 𝑑)𝑟𝑚 ]} 𝑒−i𝜔𝑡

+ i𝜌𝜔 [2𝑎𝐶0𝜉𝑧 (𝑑 − 𝑠) − ∞∑
𝑚=1

2𝐸𝑚𝜉𝑧𝑟𝑚 sin 𝑟𝑚 (ℎ − 𝑑)]

⋅ 𝑒−i𝜔𝑡 − i𝜌𝜔 {2𝐶0𝑎33 + ∞∑
𝑚=1

[ 2𝑎𝐸𝑚 cos 𝑟𝑚 (ℎ − 𝑠)𝑟𝑚 tanh (𝑟𝑚𝑎)
− 2𝐸𝑚 cos 𝑟𝑚 (ℎ − 𝑠)𝑟𝑚2 ]} 𝑒−i𝜔𝑡

(54)

3.2. Hydrodynamic Coefficients. The radiation forces induced
by the translational and rotational motions of the floating
breakwater system can be calculated from the derived radi-
ation potentials utilizing the linearized Bernoulli equation as

𝐹𝐿,𝑘 = i𝜌𝜔 ∫
Γ

Φ(𝐿)𝑅𝑘 𝑒−i𝜔𝑡𝑛𝑗𝑑Γ
= 𝜌𝜔2𝑋0𝑗 ∫

Γ
𝜙(𝐿)𝑅𝑘 𝑒−i𝜔𝑡𝑛𝑗𝑑Γ

= 𝜔2𝑋0𝑗𝑚𝐿,𝑘𝑒−i𝜔𝑡 + i𝜔𝑋0𝑗𝑑𝐿,𝑘𝑒−i𝜔𝑡
(55)

where 𝑚𝐿,𝑘 is the radiation-induced added mass and the𝑑𝐿,𝑘 denotes the radiation damping. The expressions are,
respectively,

𝑚𝐿,𝑘 = Re(𝜌 ∫
Γ

𝜙(𝐿)𝑅𝑘𝑛𝑗𝑑Γ) = Re (𝜌�̃�𝐿,𝑘) (56)

𝑑𝐿,𝑘 = Im (𝜌𝜔 ∫
Γ

𝜙(𝐿)𝑅𝑘𝑛𝑗𝑑Γ) = Im (𝜌𝜔�̃�𝐿,𝑘) (57)



8 Mathematical Problems in Engineering

�̃�𝐿,𝑘 can be computed with formulations given below

�̃�1,1 = (∫0
−𝑑

𝜙(1)𝑅1 𝑥=−𝑎 𝑑𝑧 − ∫0
−𝑑

𝜙(1)𝑅3 𝑥=𝑎 𝑑𝑧)
+ (∫−𝑠
−𝑑

𝜙(1)𝑅2 𝑥=−𝑎 𝑑𝑧 − ∫−𝑠
−𝑑

𝜙(1)𝑅2 𝑥=𝑎 𝑑𝑧)
= 𝑀∑
𝑚=1

𝐴(1)𝑚 − 𝐵(1)𝑚�̃�𝑚 cos �̃�𝑚ℎ [sin �̃�𝑚ℎ − sin �̃�𝑚 (ℎ − 𝑑)]
+ 2𝑎𝐶(1)0 (𝑑 − 𝑠) + 𝑀∑

𝑚=1

2𝐸(1)𝑚𝑟𝑚 [sin𝑚𝜋
− sin 𝑟𝑚 (ℎ − 𝑑)]

(58)

�̃�2,2 = ∫𝑎
−𝑎

𝜙(2)𝑅2 𝑧=−𝑥 𝑑𝑥 = 2𝑎𝐸(2)0
+ 𝑀∑
𝑚=1

2𝐶(2)𝑚𝑟𝑚 tanh (𝑟𝑚𝑎) cos 𝑟𝑚 (ℎ − 𝑠) + 𝑎 (ℎ − 𝑠)
− 𝑎33 (ℎ − 𝑠)

(59)

�̃�3,3 = ∫0
−𝑑

( 𝜙(3)𝑅1 𝑥=−𝑎 − 𝜙(3)𝑅3 𝑥=𝑎) (𝑧 − 𝜉𝑧) 𝑑𝑧
+ ∫−𝑠
−𝑑

(𝜙(3)𝑅2 𝑥=−𝑎 − 𝜙(3)𝑅2 𝑥=𝑎) (𝑧 − 𝜉𝑧) 𝑑𝑧
− ∫𝑎
−𝑎

𝜙(3)𝑅2 𝑥=−𝑠 𝑥 𝑑𝑥 = 𝑀∑
𝑚=0

{(𝐴(3)𝑚 − 𝐵(3)𝑚 )

⋅ [𝑑 sin �̃�𝑚 (ℎ − 𝑑) − 𝜉𝑧 sin �̃�𝑚 (ℎ − 𝑑)
�̃�𝑚 cos �̃�𝑚ℎ

+ cos �̃�𝑚ℎ − cos �̃�𝑚 (ℎ − 𝑑)
�̃�𝑚2 cos �̃�𝑚ℎ ]} + 𝑎𝐶(3)0 (𝑑2 − 𝑠2)

− 𝑀∑
𝑚=1

2𝐸(3)𝑚𝑟𝑚 [𝑑 sin �̃�𝑚 (ℎ − 𝑑)
+ cos 𝑟𝑚 (ℎ − 𝑠) − cos 𝑟𝑚 (ℎ − 𝑑)𝑟𝑚 ] + 2𝑎𝐶(3)0 𝜉𝑧 (𝑑
− 𝑠) − 𝑀∑

𝑚=1

2𝐸(3)𝑚 𝜉𝑧𝑟𝑚 sin 𝑟𝑚 (ℎ − 𝑑) − 23 𝐶(3)0 𝑎3 − 𝑀∑
𝑚=1

𝜀
⋅ cosh 𝛾𝑚 (ℎ − 𝑠) 1 − cos 2𝑎𝛾𝑚𝛾𝑚2 + 𝑀∑

𝑚=1

{(𝜀 cos𝑚𝜋
− 𝜀) [ 𝑑 sinh 𝛾𝑚 (ℎ − 𝑑) − 𝑠 sinh 𝛾𝑚 (ℎ − 𝑠)𝛾𝑚
− cosh 𝛾𝑚 (ℎ − 𝑠) − cosh 𝛾𝑚 (ℎ − 𝑑)𝛾𝑚2 ]}
− 𝑀∑
𝑚=1

𝐸(3)𝑚 cos 𝑟𝑚 (h − s)𝑟𝑚 sinh 𝑟𝑚𝑎 (2𝑎 cosh 𝑟𝑚𝑎
− 2 sinh 𝑟𝑚𝑎𝑟𝑚 )

(60)

�̃�3,1 = �̃�1,3 = ∫0
−𝑑

( 𝜙(3)𝑅1 𝑥=−𝑎 − 𝜙(3)𝑅3 𝑥=𝑎) 𝑑𝑧
+ ∫−𝑠
−𝑑

( 𝜙(3)𝑅2 𝑥=−𝑎 − 𝜙(3)𝑅2 𝑥=𝑎) 𝑑𝑧 = 𝑀∑
𝑚=0

(𝐴(3)𝑚
− 𝐵(3)𝑚 ) sin �̃�𝑚ℎ − sin �̃�𝑚 (ℎ − 𝑑)

�̃�𝑚 cos �̃�𝑚ℎ − 2 (ℎ − 𝑠)
⋅ [ 𝑎36 (ℎ − 𝑠) + 𝑎𝐶(3)0 ] + 𝑎 (ℎ − 𝑠)3 − 𝑎 (ℎ − 𝑑)33 (ℎ − 𝑠)
+ 𝑀∑
𝑚=1

2𝐸(3)𝑚𝑟𝑚 sin 𝑟𝑚 (ℎ − 𝑑)

(61)

3.3. Equation of Motion and RAOs. The derived solutions for
the diffraction and radiation problems could now be inte-
grated with the equation of motion of the floating breakwater
system to analyze the dynamic responses of the structural
system. We have

{−𝜔2 [𝑀 + 𝑚] − i𝜔 [𝑑] + [𝑠]} [𝑋0] = [𝐹0] (62)

where [𝑋0] = [𝑋01, 𝑋02, 𝑋03]𝑇 and are vectors indicating
the motion amplitudes and the wave exciting forces, respec-
tively. [𝑚] and [𝑑] are addedmass and dampingmatrices, [𝑀]
is the mass matrix, and [𝑆] denotes the hydrostatic restoring
force matrix; they can be expressed as

[𝑀] = [[
[

𝑚0 0 −𝑚0𝑍𝐺0 𝑚0 0−𝑚0𝑍𝐺 0 1
]]
]

(63)

[𝑆] = [[
[

0 0 00 2𝜌𝑔𝑎 0
0 0 𝑚0𝑔𝐺𝑀

]]
]

(64)

Here 𝑚0 is the mass per unit length of the floating
breakwater and 𝑧𝐺 is the z-coordinate of the center of gravity.
The mass moment of inertia about y-axis I can be computed
by 𝐼 = 𝑚0𝑟𝐺2, in which 𝑟𝐺 is the radius of gyration in pitching
oscillation and 𝐺𝑀 is the metacentric height of the floating
breakwater system. Once 𝑋0𝑗 (j=1, 2, 3) are determined by
solving (62), the RAOs (Response Amplitude Operators) of
the breakwater system can be calculated as

𝑅𝐴𝑂𝑗 = 𝑋0𝑗𝐻𝑗 (𝑗 = 1, 2, 3) (65)

4. Results and Discussion

The validation of the wave diffraction solutions in terms of
reflection/transmission coefficients and hydrodynamic loads
for a train of monochromatic wave propagating through
the proposed floating breakwater system that consists of a
partially submerged rectangular body and with or without
the attached two porous side walls has been carried out
in a previous study (Qiao et al. [24]). Here, additional
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Figure 2: Comparison of the dimensionless wave exciting forces and moment versus 𝑘0𝑠 for ℎ/𝑠 = 2.0, 𝑎/𝑠 = 3.0, 𝐺01 = 𝐺02 → ∞: (a)
dimensionless horizontal exciting force; (b) dimensionless vertical exciting force; (c) dimensionless exciting moment about the rotational
center of (0, 0).

comparisons of wave diffraction results with other published
numerical solutions for the limiting case of neglecting the
effect of two porous walls are again presented. For the
wave radiation problem, the motion induced hydrodynamic
coefficients, such as added mass and damping coefficient, are
also investigated for their variations with changes of wave
parameters. As a validation, those results for the caseswithout
porous walls are compared with limited numerical solutions
published in literatures. Subsequently, the effects of various
dimensionless parameters, for example, porous properties,
incident wave conditions, and the geometry of floating body,
to wave-induced hydrodynamic forces, hydrodynamic coeffi-
cients, and RAOs were also examined. In our computations,
the first 40 terms in the infinite series of the diffraction
potentials and radiation potentials are taken, the same as [7];
namely, M=40.

As an example showing the results comparisons for the
diffraction problem, Figure 2 illustrates the variations of
the dimensionless exciting forces in horizontal and vertical
directions versus dimensionless wavelength, 𝑘0𝑠, for the case
of ℎ/𝑠 = 2.0, 𝑎/𝑠 = 1.0, 𝐺01 = 𝐺02 → ∞. The exciting
moments with reference to the rotational center of (0,0) are

also presented in Figure 2. Here, 𝐺01 = 𝐺02 → ∞ represents
the case of a floating breakwater system without dual porous
side walls. The numerical results computed by Black et al. [4]
are also plotted in Figure 2. The comparisons indicate that
the exciting forces and moments are well predicted by the
present analytical model. Both the analytical solutions and
the numerical results reveal that the horizontal exciting forces
and the exciting moments show rapidly increasing trend
initially until a peak value is reached and, then, are followed
by a gradual decrease of the values with the further increase
of 𝑘0𝑠. However, the vertical forces as shown in Figure 2(b)
decrease continuously with an increase in 𝑘0𝑠. According to
the results given in the previous study by Qiao et al. [24], it
indicated that the effectiveness of the porous walls is reflected
with the reduction of the vertical hydrodynamic forces and
when the breakwater system is rotated with reference to the
bottom center of the body, the induced moment can also be
reduced. However, due to the added additional length of the
porous walls, the horizontal forces are slightly greater than
those without porous walls.

Figure 3 presents the variations of the dimensionless
added mass and damping coefficients in surge only motion
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Figure 3: Variation of the dimensionless surge-surge hydrodynamic coefficients ((a) for the added mass and (b) for the radiation damping)
versus 𝑘0ℎ under the conditions of different porous-effect parameters for 𝑠/ℎ = 1/3, 𝑑/ℎ = 1/2, 𝑎/ℎ = 1/6.
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Figure 4: Variation of the dimensionless heave-heave hydrodynamic coefficients ((a) for the added mass and (b) for the radiation damping)
versus 𝑘0ℎ under the conditions of different porous-effect parameters for 𝑠/ℎ = 1/3, 𝑑/ℎ = 1/2, 𝑎/ℎ = 1/6.

versus 𝑘0ℎ for the setting of 𝑠/ℎ = 1/3, 𝑑/ℎ = 1/2, and 𝑎/ℎ =1/6under the conditions of various porous-effect parameters.
When 𝐺01 = 𝐺02 = ∞, it represents the case without
considering the effect of dual porous walls. The present
analytical solutions for this limiting case can be adopted to
compare to the limited numerical results available in the
study of [7]. The comparison plot is shown in Figure 4 where
the nearly identical matches between the present analytical
solutions and the numerical results of [7] can be observed.
The results shown in Figure 4 suggest that the addition of
porous walls tends to enhance the added mass and damping
coefficients. In general, with a decrease of porous effect
parameter, the addedmass and damping coefficients increase.
For the variation of addedmass coefficient, with porouswalls,

it can be seen that a peak value occurred at a long wave (small𝑘0ℎ value) condition. However, for the radiation damping
coefficient, it is shown to increase rapidly to its maximum
value with an increase of 𝑘0ℎ; then, a gradual decrease trend
is followed by a further increase of 𝑘0ℎ.

The dimensionless heave-heave added mass (𝑚22/2𝜌𝑎𝑠)
and radiation damping coefficient (𝑑22/2𝜌𝜔𝑎𝑠) versus 𝑘0ℎ
under various 𝐺01 and 𝐺02 values for the case of 𝑠/ℎ =1/3, 𝑑/ℎ = 1/2, 𝑎/ℎ = 1/6 are presented in Figure 4.
Under the limiting condition of 𝐺01 = 𝐺02 = ∞ (without
porous walls), the numerical results produced by the study of
[7] are also plotted for comparison. Again, good agreements
between the present analytical solutions and the published
numerical results can be noticed. The results in Figure 4(a)
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Figure 5: Variation of the dimensionless pitch-pitch hydrodynamic coefficients ((a) for the added mass and (b) for the radiation damping)
versus 𝑘0ℎ under the conditions of different porous-effect parameters for 𝑠/ℎ = 1/3, 𝑑/ℎ = 1/2, 𝑎/ℎ = 1/6 with the rotational center set at (0,
0).

suggest that the variations of added mass for the shorter
wavelength waves (large 𝑘0ℎ values) are less sensitive to the
change of porous parameters. The presence of dual porous
walls increases the heave-heave added mass, which tends to
reach its maximum value at the long wave extreme. Also,
a decrease in porous parameters results in an increase in
heave induced added mass. As shown in Figure 4(b), the
heave-heave damping coefficients decrease rapidly when 𝑘0ℎ
increases initially. Then, a gradual changing trend is followed
by a further increase in 𝑘0ℎ. Additionally, the presence of
dual porous walls tends to reduce the values of heave-heave
damping coefficients.

For the pitching induced added mass and damping
coefficients, the results are plotted against 𝑘0ℎ in Figure 5
for various porous-effect parameters, 𝐺01 and 𝐺02, and under
the settings of 𝑠/ℎ = 1/3, 𝑑/ℎ = 1/2, 𝑎/ℎ = 1/6. When
the rotational center is set at (0,0), as shown in Figure 5, the
present analytical solutions match well with the published
numerical results [7] for the limiting case of no porous
wall (i.e., 𝐺01 = 𝐺02 = ∞). It can be observed that
the pitching oscillation induced added mass and damping
coefficients for the floating breakwater system with dual
porous side walls are greater than those without porous walls.
With decrease of the porous effect parameters, the added
mass and damping coefficients increase. For the added mass
coefficients, it is found that the variations trends are more
complex for waves with relatively smaller 𝑘0ℎ under the
conditions of different porous-effect parameters. Generally,
in cases of weaker porous-effect (for example, 𝐺01 = 𝐺02 ≤ 2
as shown in Figure 5(a)), the value of added mass coefficient
tends to approach 1.4 under the case considered. For the
variations of damping coefficient as shown in Figure 5(b), the
varying trends are similar to those of damping coefficient in
surge motion.

The results presented in Figure 6 are the variations of
the dimensionless surge-pitch added mass and damping

coefficients versus 𝑘0ℎ for varying 𝐺01 and 𝐺02. The case is
for 𝑠/ℎ = 1/3, 𝑑/ℎ = 1/2, 𝑎/ℎ = 1/6 with reference
to the rotational center of (0,0). Clearly, the added mass
and damping coefficients are shown to increase with an
increase in the porous-effect parameters of both porous
walls A and B, while the damping coefficients reach their
absolute maximum values when 𝑘0ℎ is within the range
of 1 and 2. The magnitude of surge-pitch hydrodynamic
coefficients, especially the damping, is greatly influenced by
the permeability of the dual porous walls compared to the
situation with surge or pitching motion only.

The analytical solutions for the Response Amplitude
Operators (RAOs) of the floating breakwater system pro-
posed in this study are illustrated in Figure 7 as a function
of dimensionless wavelength 𝑘0ℎ for various porous-effect
parameters with the conditions of 𝑠/ℎ = 0.3, 𝑑/ℎ = 0.5,𝑎/ℎ = 0.25, 𝑟𝐺/𝑎 = 0.9, and 𝐺𝑀/𝑎 = 0.1, where the
rotational center is located at (0,0). It is found that the varying
trends of surge RAOs are similar to those of pitching RAOs,
although the peak values of surge RAOs are smaller than
those of pitching RAOs. When the porous-effect parameters
decrease, the main peak values of either surge or pitching
RAOs that occurred are shifted to the wave conditions with
shorter wavelength. Furthermore, for the heave RAO, it
experiences a typical damped response for the case of single
degree of freedom system and its maximum values of RAO
would move to the lower frequency wave region when the
porous-effect parameters decrease.

5. Summary and Conclusions

The hydrodynamic performance investigations, including
the hydrodynamic loads, radiation induced added mass
and damping coefficients, and dynamic responses related
RAOs, are critical to the study that is associated with the
problems of wave and structure interactions. In this study, the



12 Mathematical Problems in Engineering

G=G=∞

G=G=

G=G=

G=G=

963 100 87521 114
kh

−4

−3

−2

−1

0

1

m



/2


a
s

(a) Added mass

G=G=∞

G=G=

G=G=

G=G=

963 100 87521 114
kh

−3

−2.5

−2

−1.5

−1

−0.5

0

d 


/2



a
s

(b) Radiation damping

Figure 6: Variation of the dimensionless surge-pitch hydrodynamic coefficients ((a) for the added mass and (b) for the radiation damping)
versus 𝑘0ℎ under the conditions of different porous-effect parameters for 𝑠/ℎ = 1/3, 𝑑/ℎ = 1/2, 𝑎/ℎ = 1/6 with the rotational center set at
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hydrodynamic problems considering a floating breakwater
system that consists of a rectangular body and two vertical
attached porous walls are investigated analytically based on
the two-dimensional potential flow theory. The expressions
of the diffraction and radiation based velocity potentials and
the associated unknown coefficients for each subdomain are
derived by the MEEM approach. Subsequently, the exciting
hydrodynamic forces, added mass and radiation damping
coefficients in terms of surge, heave and pitching motions,
and the equation ofmotion for the floating breakwater system
are formulated and calculated for various case scenarios
by varying the wave conditions and porous effect param-
eters. Considering the limiting case without porous walls,
good agreements between the present analytical solutions
and published numerical results are achieved. This suggests
that the present analytical model is demonstrated to be a
reliable engineering tool to provide reasonable estimations
for the hydrodynamic performances of a floating breakwater
system with dual side porous walls. It is worthy to notice
that the wave loads on the floating structures, especially
the moments when referenced to the rotational center of
bottom center, would be reduced with an increase in the
porous-effect parameters of the porous walls. Additionally,
the existence of the dual porous walls could move the peaks
of surge and pitching RAOs to the waves of higher frequency
when the porous effect parameters decrease. Overall, it can
be concluded that a properly adopted porous-wall system
when attached to a floating body can effectively improve
its hydrodynamic performance as a breakwater. The analyt-
ical approach developed in this study can also be further
extended to assist the theoretical analysis for other similar but
improved floating breakwater systems.
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