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The research of gravity solitarywavesmovement is of great significance to the study of ocean and atmosphere. Baroclinic atmosphere
is a complex atmosphere, and it is closer to the real atmosphere. Thus, the study of gravity waves in complex atmosphere
motion is becoming increasingly essential. Deriving fractional partial differential equation models to describe various waves in
the atmosphere and ocean can open up a new window for us to understand the fluid movement more deeply. Generally, the
time fractional equations are obtained to reflect the nonlinear waves and few space-time fractional equations are involved. In this
paper, using multiscale analysis and perturbation method, from the basic dynamic multivariable equations under the baroclinic
atmosphere, the integer order mKdV equation is derived to describe the gravity solitary waves which occur in the baroclinic
atmosphere.Next, employing the semi-inverse and variationalmethod, we get a newmodel under the Riemann-Liouville derivative
definition, i.e., space-time fractional mKdV (STFmKdV) equation. Furthermore, the symmetry analysis and the nonlinear self-
adjointness of STFmKdV equation are carried out and the conservation laws are analyzed. Finally, adopting the exp(−Φ(𝜉))method,
we obtain five different solutions of STFmKdV equation by considering the different cases of the parameters (𝜂, 𝜎). Particularly, we
study the formation and evolution of gravity solitary waves by considering the fractional derivatives of nonlinear terms.

1. Introduction

With the intercross and penetration of different knowledge,
Rossby solitary waves have been applied to many fields
successfully, such as physical oceanography, atmospheric
science, hydraulic engineering, and communication engi-
neering. Particularly, Rossby solitary waves have important
theoretical significance and research value in marine atmo-
spheric science. They have largely determined the impact
of the oceans on the atmosphere and other climate change.
On the time scale, the energy of Rossby waves determines
the ocean energy spectrum, which makes the energy spread
from east to west to form and maintain a strong ocean
boundary flow, such as Kuroshio, Gulfstream, and East
Australian flow. Great achievements have been made in this
regard.

As we know, Rossby solitary waves in the westerly shear
flowwere first found by Long [1]. He found that the amplitude

of the Rossby waves satisfied KdV equation by the 𝛽-plane
approximation

𝑢𝑡 + 𝜇𝑢𝑢𝑥 + 𝛿𝑢𝑥𝑥𝑥 = 0. (1)

With the development of Rossby waves theory, Wadati [2]
derived the modified KdV equation

𝑢𝑡 + 𝜇𝑢2𝑢𝑥 + 𝛿𝑢𝑥𝑥𝑥 = 0. (2)

In view of the barotropic fluid and stratified fluid model,
the KdV model and the mKdV model are also generated
to describe the generation and evolution of Rossby solitary
waves by Redekopp [3]. Apart from the KdV model and
the mKdV model, for other initial disturbance, employing
a different time and space stretching transform, Boussinesq
equation was derived by Meng and Lv [4]. Afterwards, the
Rossby parameters 𝛽 along with the changes of latitude were
discussed by Luo [5] and generalized 𝛽-plane approximation
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was obtained. In recent years, in the theoretical study of
Rossby waves, many new wave equations were obtained
to describe the generation and evolution of various types
of fluctuations in the ocean [6, 7], such as NLS equation,
ILW-Burgers equation, and ZK-Burgers equation. In the
past, predecessors studied wave equations in the barotropic
atmospheric environment by using the 𝛽-plane approxima-
tion. But we know that the basic dynamic equations for
describing the baroclinic atmospheric movement are more
in line with the actual situation and are very complicated.
And the baroclinic problem in real atmosphere is inevitable
[8]. In this paper, starting with the basic equations adopting
the Bousinesq approximation [9] and under the baroclinic
atmospheric environment, using multiscale analysis and
turbulence method, we get a new model (mKdV) to describe
the Rossby solitary waves. The advantages of basic equations
are as follows:(1) The equations are multivariate, and the physical
meaning of each variable is clear;(2) The baroclinic atmosphere problem is considered to
help us understand the generation and evolution of isolated
waves in the ocean.

In recent years, the study of integer partial differential
equations has yielded many brilliant achievements [10–15].
Simultaneously, it has been found that fractional order partial
differential equations also play an important role in many
fields [16–22]. The fractional differentiation calculus [23, 24]
was first developed by Liouville primary. Liouville expands
the function into an exponential form and defines the 𝑞-
order derivatives of this expanded form term by term.
Afterwards, Riemann proposed a different definition that can
be implemented to a power series with a negative power
term. Finally, Ross and Oldham [25, 26] unified the two
definitions, so that the application of fractional differential
was further developed. Subsequently, a version of the Euler-
Lagrange equations for problems of calculus of variation with
fractional derivatives was formulated by Riewe in 1990s [27,
28]. Recently, Agrawal [29, 30] studied the fractional Euler-
Lagrange equation deeper and a series of new methods have
been put forward in his research, which provide a new idea
for us to study fractional partial differential equations [31, 32].
The fact has shown that the new fractional equation is more
suitable than the integer order equation due to the precise
description of the nonlinear phenomena[33, 34]. At the same
time, in the field of oceanography, the fractional partial
differential equation can better describe the generation and
evolution of solitary waves, which is more favorable for us to
study the theory of fluctuation.

Similar to the study of integer order differential equation,
the conservation laws of the fractional differential equation
are an important branch. As we know, if the fractional
differential equation is an Euler-Lagrange equation, then
conservation laws can be found using Noethem’s theorem by
variational Lie point symmetries of this equation [35–37]. Lie
symmetry analysis was proposed by Sophus Lie. The main
idea of this method is that the infinitesimal transformation
keeps the solution set of the partial differential equation
unchanged. The Lie symmetry analysis offers an efficient and
powerful tool for the study of conservation laws of fractional

partial differential equation [38–42]. For this reason, the
researchers are very interested in studying the symmetry
analysis of fractional differential equations. As far as we
know, in the past, the symmetric method was only used for
time fraction partial differential equations (TFPDE), but has
not been used to analyze space and time fraction partial
differential equations (STFPDE) [43, 44]. In this paper, the
Lie symmetry analysis was used to study the conservation law
of the STFmKdV equation [45, 46].

By studying the work of predecessors, we can find that
several methods have been used to solve nonlinear partial
differential equations, such as the trial equation method [47,
48], Hirota bilinear method [49], binary nonlinearization
method [50], Darboux transformation method [51], Jacobi
iteration method [52], (𝐺󸀠/𝐺)-expansion method [53–55],
exp-function method [48], sub-equation method [56], and
others [57, 58]. Therefore, it is an important task to find
an accurate and effective method to solve the fractional
differential equation.

This paper is organized as follows: In Section 2, using
multiscale analysis and turbulence method, from the basic
dynamic multivariable equations under the baroclinic atmo-
sphere [59, 60], the integer order mKdV equation is derived.
In Section 3, we use the semi-inverse method to derive
the Lagrangian form of the mKdV equation [61, 62] firstly.
Then the Lagrangian space and time operator of the mKdV
equation have been transformed into the fractional domain
of the left Riemann-Liouville fractional differential operator.
Finally, applying the variational method, we derive the
STFmKdV from this Euler-Lagrangian equation. In Section 4,
we first study the symmetry analysis of the fractional equation
to obtain the corresponding infinitesimal generator of the
equation. Then we discuss the nonlinear self-adjointness of
the STFmKdV equation and finally get the conservation
vectors of the equation. In Section 5, based on the STFmKdV
equation, employing the exp(−Φ(𝜉)) method, and consider-
ing the different cases of the parameters(𝜂, 𝜎), we obtain five
different solutions of the equation.

2. Derivation of the mKdV Equation

Using the sum of disturbance pressure gradient force and
buoyancy force expressing the vertical pressure gradient force
and gravity force, and adopting the Bousinesq approximation
[60], the dimensionless basic dynamic equations of atmo-
spheric motion are as follows [59]:

𝜕𝑢󸀠𝜕𝑡󸀠 + 𝑈𝑓𝐿 (𝑢󸀠 𝜕𝑢󸀠𝜕𝑥󸀠 + V󸀠
𝜕𝑢󸀠𝜕𝑦󸀠 + 𝑤󸀠 𝜕𝑢󸀠𝜕𝑧󸀠 ) = − 1𝜌𝑠

𝜕𝑝󸀠𝜕𝑥󸀠 + V󸀠,
𝜕V󸀠𝜕𝑡󸀠 + 𝑈𝑓𝐿 (𝑢󸀠 𝜕V󸀠𝜕𝑥󸀠 + V󸀠

𝜕V󸀠𝜕𝑦󸀠 + 𝑤󸀠 𝜕V󸀠𝜕𝑧󸀠) = − 1𝜌𝑠
𝜕𝑝󸀠𝜕𝑦󸀠 − 𝑢󸀠,

𝜕𝑤󸀠𝜕𝑡󸀠 + 𝑈𝑓𝐿 (𝑢󸀠 𝜕𝑤󸀠𝜕𝑥󸀠 + V󸀠
𝜕𝑤󸀠𝜕𝑦󸀠 + 𝑤󸀠 𝜕𝑤󸀠𝜕𝑧󸀠 )

= 𝑔𝐿𝛿𝜃𝐷𝑓𝑈𝜃0 (− 1𝜌𝑠
𝜕𝑝󸀠𝜕𝑧󸀠 + 𝜃󸀠) ,
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𝜕𝜃󸀠𝜕𝑡󸀠 + 𝑈𝑓𝐿 (𝑢󸀠 𝜕𝜃󸀠𝜕𝑥󸀠 + V󸀠
𝜕𝜃󸀠𝜕𝑦󸀠) + 𝜎𝑈𝐷𝑓𝐿𝛿𝜃𝑤󸀠 = 0,

𝜕 (𝜌𝑠𝑢󸀠)𝜕𝑥󸀠 + 𝜕 (𝜌𝑠V󸀠)𝜕𝑦󸀠 + 𝜕 (𝜌𝑠𝑤󸀠)𝜕𝑧󸀠 = 0.
(3)

where 𝑢󸀠, V󸀠 are the level of the air speed, 𝑤󸀠 is the vertical
velocity, 𝑝󸀠 is the atmospheric pressure, 𝜃 is the temperature
field, and 𝑓 is the Coriolis parameter. 𝜃0 is the potential of
environmental flow field and 𝜌𝑠 is the density of environmen-
tal flow field; they are both the height functions.

Because the second term of the fourth formula in the left
side is lesser, we get the following approximation:

𝛿𝜃 ∼ 𝜎𝑈𝐷𝑓𝐿 ,
𝑈𝑓𝐿 ∼ 𝑜 (1) . (4)

Let the parameter 𝜀 = 𝑓2/𝑁2(𝜀 ≪ 1), 𝑁2 = 𝑔𝜎/𝜃0. By
varying, (3) transforms to

𝜕𝑢󸀠𝜕𝑡󸀠 + 𝑢󸀠 𝜕𝑢󸀠𝜕𝑥󸀠 + V󸀠
𝜕𝑢󸀠𝜕𝑦󸀠 + 𝑤󸀠 𝜕𝑢󸀠𝜕𝑧󸀠 = − 1𝜌𝑠

𝜕𝑝󸀠𝜕𝑥󸀠 + V󸀠,
𝜕V󸀠𝜕𝑡󸀠 + 𝑢󸀠 𝜕V󸀠𝜕𝑥󸀠 + V󸀠

𝜕V󸀠𝜕𝑦󸀠 + 𝑤󸀠 𝜕V󸀠𝜕𝑧󸀠 = − 1𝜌𝑠
𝜕𝑝󸀠𝜕𝑦󸀠 − 𝑢󸀠,

𝜕𝑤󸀠𝜕𝑡󸀠 + 𝑢󸀠 𝜕𝑤󸀠𝜕𝑥󸀠 + V󸀠
𝜕𝑤󸀠𝜕𝑦󸀠 + 𝑤󸀠 𝜕𝑤󸀠𝜕𝑧󸀠

= 𝜀−1 (− 1𝜌𝑠
𝜕𝑝󸀠𝜕𝑥󸀠 + 𝜃󸀠) ,

𝜕𝜃󸀠𝜕𝑡󸀠 + 𝑢󸀠 𝜕𝜃󸀠𝜕𝑥󸀠 + V󸀠
𝜕𝜃󸀠𝜕𝑦󸀠 + 𝑤󸀠 = 0,

𝜕 (𝜌𝑠𝑢󸀠)𝜕𝑥󸀠 + 𝜕 (𝜌𝑠V󸀠)𝜕𝑦󸀠 + 𝜕 (𝜌𝑠𝑤󸀠)𝜕𝑧󸀠 = 0.

(5)

We introduce the multiscale variables (omitting the sign
at the top right corner of the variables)

𝑡 = 𝜀3/2𝑡󸀠,
𝑥 = 𝜀1/2𝑥󸀠,
𝑦 = 𝑦󸀠,
𝑧 = 𝑧󸀠,

(6)

so long time and space scales are defined as

𝜕𝜕𝑡 = 𝜀3/2 𝜕𝜕𝑡󸀠 ,
𝜕𝜕𝑥 = 𝜀1/2 𝜕𝜕𝑥󸀠 ,

𝜕𝜕𝑦 = 𝜕𝜕𝑦󸀠 ,
𝜕𝜕𝑧 = 𝜕𝜕𝑧󸀠 .

(7)

Further, according to the small parameter 𝜀, 𝑢󸀠, V󸀠, 𝑤󸀠, 𝑝󸀠, 𝜃󸀠
in (5) can be expended:

𝑢󸀠 = −∫𝑦
0
(𝑈 (𝜍, 𝑧) − 𝑐 + 𝜀𝜆) 𝑑𝜍 + 𝜀1/2𝑢0 + 𝜀𝑢1

+ 𝜀3/2𝑢2 + 𝜀2𝑢3 + ⋅ ⋅ ⋅ ,
V󸀠 = 𝜀V0 + 𝜀3/2V1 + 𝜀2V2 + 𝜀5/2V3 + ⋅ ⋅ ⋅ ,
𝑤󸀠 = 𝜀𝑤0 + 𝜀3/2𝑤1 + 𝜀2𝑤2 + 𝜀5/2𝑤3 + ⋅ ⋅ ⋅ ,
𝜃󸀠 = Θ (𝑦, 𝑧) + 𝜀1/2𝜃0 + 𝜀𝜃1 + 𝜀3/2𝜃2 + 𝜀2𝜃3 + ⋅ ⋅ ⋅ ,
𝑝󸀠 = 𝑃 (𝑦, 𝑧) + 𝜀1/2𝑝0 + 𝜀𝑝1 + 𝜀3/2𝑝2 + 𝜀2𝑝3 + ⋅ ⋅ ⋅ ,

(8)

where 𝑈, 𝑃, Θ are the function of 𝑦, 𝑧. 𝑈 is the speed of the
basic flow,𝑃 is the air pressure, andΘ is the temperature field.
Obviously, the zonal flow is in the following forms:

𝑈 = {{{
𝑈𝑦 = 0, as 0 ≤ 𝑦 < 𝑦0,
costant, as 𝑦 ≥ 𝑦0, (9)

and the boundary conditions of (3) are

𝑝󸀠 = 0,
as 𝑦 = 0,
𝑝󸀠 󳨀→ 0,

as 𝑦 󳨀→ ∞.
(10)

Substituting (7) and (8) into (3), we get each order form for 𝜀
as follows:

𝑂(𝜖0) : {{{{{{{

1𝜌𝑠
𝜕𝑝𝜕𝑦 − ∫𝑦

0
(𝑈 − 𝑐) 𝑑𝜍 = 0,

1𝜌𝑠
𝜕𝑝𝜕𝑧 − Θ = 0. (11)

Assuming |1/𝜌2𝑠 | ≪ 1, we have
𝜕𝜕𝑧 (∫𝑦
0

𝑈𝑑𝜍) = Θ𝑦. (12)

Next, wewrite the first-, second-, and third-order approxima-
tion for 𝜀 as the following form:

∫𝑦
0
(𝑈 − 𝑐) 𝑑𝜍𝜕𝑢𝑖𝜕𝑥 + (𝑈 − 𝑐 + 1) V𝑖 + Θ𝑦𝑤𝑖 − 1𝜌𝑠

𝜕𝑝𝑖𝜕𝑥
= 𝐴𝑢𝑖,
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1𝜌𝑠
𝜕𝑝𝑖𝜕𝑦 + 𝑢𝑖 = 𝐴V𝑖,

1𝜌𝑠
𝜕𝑝𝑖𝜕𝑧 − 𝜃𝑖 = 𝐴𝑤𝑖,

∫𝑦
0
(𝑈 − 𝑐) 𝑑𝜍𝜕𝜃𝑖𝜕𝑥 − Θ𝑦V𝑖 − 𝑤𝑖 = 𝐴𝜃𝑖,

𝜕𝜌𝑠𝑢𝑖𝜕𝑥 + 𝜕𝜌𝑠V𝑖𝜕𝑦 + 𝜕𝜌𝑠𝑤𝑖𝜕𝑧 = 0,
𝑖 = 0, 1, 2, 3 ⋅ ⋅ ⋅

(13)

where

𝐴𝑢0 = 𝐴V0 = 𝐴𝑤0 = 𝐴𝜃0 = 0. (14)

By eliminating 𝑢0,V0,𝑤0,𝜃0 in (13), we can obtain the equation
for 𝑝0

𝐿𝑦,𝑧 (𝜕𝑝0𝜕𝑥 ) = 0, (15)

where

Ω = 𝑈𝑦 − 1 + 𝑈2𝑧 ,
Ω𝑦 = 𝜕Ω𝜕𝑦 ,
Ω𝑧 = 𝜕Ω𝜕𝑧 ,

𝐿𝑦,𝑧 = 𝜕2𝜕𝑦2 − (𝑈𝑦 − 1) 𝜕2𝜕𝑧2 + 2𝑈𝑧 𝜕2𝜕𝑦𝜕𝑧
+ [𝑈𝑧𝑧 − Ω𝑦Ω − 𝑈𝑧Ω𝑧Ω ] 𝜕𝜕𝑦
+ [(𝑈𝑦 − 1) Ω𝑧Ω − 𝑈𝑧Ω𝑦Ω ] 𝜕𝜕𝑧
− 1𝑈 [𝑈𝑧𝑧 − Ω𝑦Ω − 𝑈𝑧Ω𝑧Ω ] .

(16)

Clearly, (15) is a variable separable equation. Assume its
solution is

𝑝0 = 𝑝0 (𝑦, 𝑧) 𝐴 (𝑡, 𝑥) , (17)

and under a certain definite solution condition, we can get𝑝0.
Further, all the solutions of (15) can be obtained:

𝑢0 = 𝑢0 (𝑦, 𝑧) 𝐴 (𝑡, 𝑥) ,
V0 = Ṽ0 (𝑦, 𝑧) 𝐴𝑥 (𝑡, 𝑥) ,
𝑤0 = 𝑤0 (𝑦, 𝑧) 𝐴𝑥 (𝑡, 𝑥) ,
𝜃0 = 𝜃0 (𝑦, 𝑧) 𝐴 (𝑡, 𝑥) .

(18)

Further, we know that

𝐴𝑢1 = 𝑢0 𝜕𝑢0𝜕𝑥 + V0
𝜕𝑢0𝜕𝑦 + 𝑤0 𝜕𝑢0𝜕𝑧 ,

𝐴V1 = 0,
𝐴𝑤1 = 0,
𝐴𝜃1 = 𝑢0 𝜕𝜃0𝜕𝑥 + V0

𝜕𝜃0𝜕𝑦 .
(19)

Similarly, we cannot get the equation for 𝐴(𝑥, 𝑡). So, we
eliminate 𝑢1,V1,𝑤1,𝜃1 in (13) and (19), and we can obtain the
equation of 𝑝1

𝐿𝑦,𝑧 (𝜕𝑝1𝜕𝑥 ) = ℓ1𝑦,𝑧 (𝐴𝑢1) + ℓ2𝑦,𝑧 (𝐴𝜃1) , (20)

where

ℓ1𝑦,𝑧 = −[− 𝜕𝜕𝑦 − 𝑈𝑧𝑧 − 𝑈𝑧 𝜕𝜕𝑧 − 1𝑈 − 𝑐
− 1△ (△𝑦 + 𝑈𝑧△𝑧)] ,

ℓ2𝑦,𝑧 = −1𝑈 − 𝑐 [ 𝜕𝜕𝑦 + 𝑈𝑧𝑧 + 𝑈𝑧 𝜕𝜕𝑧
− 1△ (△𝑦 + 𝑈𝑧△𝑧)]

(21)

Substituting (19) into (20) and observing both ends of (20),
we can get the solutions for the variables as follows:

𝑢1 = 𝑢1 (𝑦, 𝑧) 𝐴2 (𝑡, 𝑥) ,
V1 = Ṽ1 (𝑦, 𝑧) 𝐴 (𝑡, 𝑥) 𝐴𝑥 (𝑡, 𝑥) ,
𝑤1 = 𝑤1 (𝑦, 𝑧) 𝐴 (𝑥, 𝑡) 𝐴𝑥 (𝑡, 𝑥) ,
𝜃1 = 𝜃1 (𝑦, 𝑧) 𝐴2 (𝑡, 𝑥) ,
𝑝1 = 𝑝1 (𝑦, 𝑧) 𝐴2 (𝑡, 𝑥) .

(22)

Next, we have a further discussion,

𝐴𝑢2 = 𝜕𝑢0𝜕𝑡 + 𝛼𝜕𝑢0𝜕𝑥 + 𝑢0 𝜕𝑢1𝜕𝑥 + 𝑢1 𝜕𝑢0𝜕𝑥 + V0
𝜕𝑢1𝜕𝑦

+ V1
𝜕𝑢0𝜕𝑦 + 𝑤0 𝜕𝑢1𝜕𝑧 + 𝑤1 𝜕𝑢0𝜕𝑧 ,

𝐴V2 = ∫𝑦
0

(𝑈 − 𝑐) 𝑑𝜍𝜕V0𝜕𝑥 ,
𝐴𝑤2 = 0,
𝐴𝜃2 = 𝜕𝜃0𝜕𝑡 + 𝑢0 𝜕𝜃1𝜕𝑥 + 𝑢1 𝜕𝜃2𝜕𝑥 + V0

𝜕𝜃1𝜕𝑦 + V1
𝜕𝜃0𝜕𝑦 ,

(23)
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Simplify (13) and (23) to the following form:

𝐿𝑦,𝑧 (𝜕𝑝2𝜕𝑥 ) ≡ ℓ3𝑦,𝑧 (𝜕𝐴V2𝜕𝑥 ) + ℓ1𝑦,𝑧 (𝐴𝑢2)
+ ℓ2𝑦,𝑧 (𝐴𝜃2) ,

(24)

where

ℓ1𝑦,𝑧 = −[− 𝜕𝜕𝑦 − 𝑈𝑧𝑧 − 𝑈𝑧 𝜕𝜕𝑧 − 1𝑈 − 𝑐
− 1△ (△𝑦 + 𝑈𝑧△𝑧)]

ℓ2𝑦,𝑧 = −1𝑈 − 𝑐 [ 𝜕𝜕𝑦 + 𝑈𝑧𝑧 + 𝑈𝑧 𝜕𝜕𝑧
− 1△ (△𝑦 + 𝑈𝑧△𝑧)]

ℓ3𝑦,𝑧 = −1𝑈 − 𝑐 [−𝑈𝑧 𝜕𝜕𝑦 + (𝑈𝑦 − 1) 𝜕𝜕𝑧
+ 1△ (𝑈𝑧△𝑦 + (𝑈𝑦 − 1)△𝑧)] .

(25)

We know that the homogeneous part in (24) is the same
as (15). Substituting (18) and (22) into (19) and (23), and
according to (13)×𝜕𝑝0/𝜕𝑥-(20)×𝜕𝑝2/𝜕𝑥, we can get

𝐴𝑢2 = 𝑢0𝐴 𝑡 + 𝜆𝐴𝑥 + (3𝑢0𝑢1 + Ṽ0𝑢1𝑦 + Ṽ1𝑢0𝑦
+ 𝑤0𝑢1𝑧 + 𝑤1𝑢0𝑧)𝐴2𝐴𝑥,

𝐴V2 = ∫𝑦
0
(𝑈 − 𝑐) 𝑑𝜍Ṽ0𝐴𝑥𝑥,

𝐴𝑤2 = 0,
𝐴𝜃2 = 𝜃0𝐴 𝑡 + (2𝑢0𝜃1 + 𝑢1𝜃0 + Ṽ0𝜃1𝑦 + Ṽ1𝜃0𝑦)𝐴2𝐴𝑥,

(26)

𝑑𝑑𝑦 [𝜕𝑝2𝜕𝑥 𝑑𝑝0𝑑𝑦 − 𝑝0 𝑑𝑑𝑦 (𝜕𝑝2𝜕𝑥 )] − [𝐿𝑦,𝑧 (𝑝0) 𝜕𝑝2𝜕𝑥
− 𝐿𝑦,𝑧 (𝜕𝑝2𝜕𝑥 ) 𝑝0] = −𝑝0 {[ℓ1𝑦,𝑧 (𝑢0) + ℓ2𝑦,𝑧 (𝜃0)]
⋅ 𝐴 𝑡 + ℓ1𝑦,𝑧𝜆𝐴𝑥 + [ℓ1𝑦,𝑧 (3𝑢0𝑢1 + Ṽ0𝑢1𝑦 + Ṽ1𝑢0𝑦
+ 𝑤0𝑢1𝑧 + 𝑤1𝑢0𝑧) + ℓ2𝑦,𝑧 (2𝑢0𝜃1 + 𝑢1𝜃0 + Ṽ0𝜃1𝑦
+ Ṽ1𝜃0𝑦)]𝐴2𝐴𝑥 + [ℓ3𝑦,𝑧 (𝑈 − 𝑐) Ṽ0] 𝐴𝑥𝑥𝑥} .

(27)

Integrating (27) over the domain [0, 𝑦0) leads to

∫[𝑝0 (𝑦0, 𝑧) 𝑑𝑑𝑦 (𝜕𝑝2𝜕𝑥 ) − (𝜕𝑝2𝜕𝑥 ) 𝑑𝑝0 (𝑦0, 𝑧)𝑑𝑦 ]𝑑𝑧 + ∫∫𝑦0
0

[𝐿 (𝑝0 (𝑦0, 𝑧)) (𝜕𝑝2𝜕𝑥 ) − 𝐿(𝜕𝑝2𝜕𝑥 ) 𝑝0 (𝑦0, 𝑧)] 𝑑𝑦𝑑𝑧
= ∫∫𝑦0
0

−𝑝0 {[ℓ1𝑦,𝑧 (𝑢0) + ℓ2𝑦,𝑧 (𝜃0)]𝐴 𝑡 + ℓ1𝑦,𝑧 (𝑢0) 𝜆𝐴𝑥
+ [ℓ1𝑦,𝑧 (3𝑢0𝑢1 + Ṽ0𝑢1𝑦 + Ṽ1𝑢0𝑦 + 𝑤0𝑢1𝑧 + 𝑤1𝑢0𝑧) + ℓ2𝑦,𝑧 (2𝑢0𝜃1 + 𝑢1𝜃0 + Ṽ0𝜃1𝑦 + Ṽ1𝜃0𝑦)]𝐴2𝐴𝑥
+ [ℓ3𝑦,𝑧 (𝑈 − 𝑐) Ṽ0] 𝐴𝑥𝑥𝑥} 𝑑𝑦𝑑𝑧.

(28)

We know that the two ends of (28) are identically zero, so we
can write the simple form as the following form:

𝐴 𝑡 + 𝑎0𝜆𝐴𝑥 + 𝑎1𝐴2𝐴𝑥 + 𝑎2𝐴𝑥𝑥𝑥 = 0, (29)

where

𝑎0 = ℓ1𝑦,𝑧 (𝑢0)ℓ1𝑦,𝑧 (𝑢0) + ℓ2𝑦,𝑧 (𝜃0) ,
𝑎1 = ℓ1𝑦,𝑧 (3𝑢0𝑢1 + Ṽ0𝑢1𝑦 + Ṽ1𝑢0𝑦 + 𝑤0𝑢1𝑧 + 𝑤1𝑢0𝑧) + ℓ2𝑦,𝑧 (2𝑢0𝜃1 + 𝑢1𝜃0 + Ṽ0𝜃1𝑦 + Ṽ1𝜃0𝑦)ℓ1𝑦,𝑧 (𝑢0) + ℓ2𝑦,𝑧 (𝜃0) ,
𝑎2 = ℓ3𝑦,𝑧 (𝑈 − 𝑐) Ṽ0ℓ1𝑦,𝑧 (𝑢0) + ℓ2𝑦,𝑧 (𝜃0)

(30)

Remark. According to the above study, we obtain a new
model in baroclinic atmosphere. Based on the nonlinear

term 𝐴2𝐴𝑥, the new model is called the generalized mKdV
equation. Compared to the model which is obtained in the
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barotropic atmosphere, the new mKdV equation is more
likely to describe the movement of solitary waves.

3. Formulation of the STFmKdV Equation

First we introduce the definition of Riemann-Liouville frac-
tional derivatives and Caputo fractional derivatives[41, 63].

Definition 1 (Riemann-Liouville fractional derivative [41,
63]). 𝑓(𝑡) is a function defined in the [𝑎, 𝑏], for any nonneg-
ative real 𝛼, satisfying 𝑛 − 1 ≤ 𝛼 < 𝑛,
𝑅
𝑎𝐷𝛼𝑡 𝑓 (𝑡) fl 𝐷𝑛 𝑅𝑎𝐷𝛼−𝑛𝑡 𝑓 (𝑡)

= 1Γ (𝑛 − 𝛼) 𝑑𝑛𝑑𝑡𝑛 ∫
𝑡

𝑎

𝑓 (𝜏)(𝑡 − 𝜏)𝛼+1−𝑛𝑑𝜏,
∀𝑡 ∈ [𝑎, 𝑏] ,

(31)

and this formula is called the 𝛼-order left Riemann-Liouville
fractional derivative. And
𝑅
𝑡 𝐷𝛼𝑏𝑓 (𝑡) fl (−1)𝑛𝐷𝑛 𝑅𝑡 𝐷𝛼−𝑛𝑏 𝑓 (𝑡)

= (−1𝑛)Γ (𝑛 − 𝛼) 𝑑𝑛𝑑𝑡𝑛 ∫
𝑏

𝑡

𝑓 (𝜏)(𝜏 − 𝑡)𝛼+1−𝑛𝑑𝜏,
∀𝑡 ∈ [𝑎, 𝑏] ,

(32)

and this formula is the 𝛼-order right Riemann-Liouville
fractional derivative.

Remark 2. We note that if the function 𝑓(𝑡) is 𝑛-order
continuous derivable on the interval of [𝑎, 𝑏], when 𝛼 tends
to 𝑛, the left fractional derivative is the traditional 𝑛-order
derivative. In addition, if the function 𝑓(𝑡) is 𝑛-order con-
tinuous derivable on the interval of [𝑎, 𝑏], when 𝛼 tends to 𝑛,
the right fractional derivative is the traditional 𝑛(𝑛−1)-order
derivative multiplied by (−1)𝑛.
Definition 3 (Caputo fractional derivative [41, 63]). 𝑓(𝑡) is
a function defined in the [𝑎, 𝑏], for any nonnegative real 𝛼,
satisfying 𝑛 − 1 ≤ 𝛼 < 𝑛,
𝐶
𝑎𝐷𝛼𝑡 𝑓 (𝑡) fl 𝑅𝑎𝐷𝛼−𝑛𝑡 𝐷𝑛𝑓 (𝑡)

= 1Γ (𝑛 − 𝛼) ∫𝑡
𝑎

𝑓(𝑛) (𝜏)(𝑡 − 𝜏)𝛼+1−𝑛𝑑𝜏,
∀𝑡 ∈ [𝑎, 𝑏] ,

(33)

and this formula is the 𝛼-order left Caputo fractional deriva-
tive.
𝐶
𝑡 𝐷𝛼𝑏𝑓 (𝑡) fl (−1)𝑛 𝑅𝑡 𝐷(𝛼−𝑛)𝑏 𝐷𝑛𝑓 (𝑡)

= (−1)𝑛Γ (𝑛 − 𝛼) ∫𝑏
𝑡

𝑓(𝑛) (𝜏)(𝜏 − 𝑡)𝛼+1−𝑛𝑑𝜏,
∀𝑡 ∈ [𝑎, 𝑏] ,

(34)

and this formula is the 𝛼-order right Caputo fractional
derivative.

Lemma 4 (see [61, 62]). Riemann-Liouville fractional deriva-
tive and Caputo fractional derivative have the following rela-
tionship:

𝑅
𝑎𝐷𝛼𝑡 𝑓 (𝑡) = 𝐶𝑎𝐷𝛼𝑡 𝑓 (𝑡) + 𝑛−1∑

𝑗=0

𝑓𝑖 (𝑎) (𝑡 − 𝑎)𝑖−𝛼Γ (1 + 𝑖 − 𝛼) . (35)

In this section, based on the generalized mKdV equation
obtained in Section 2, we use semi-inverse method and vari-
ational method[63] to construct the generalized STFmKdV
equation under the Riemann-Liouville derivative definition.
Let 𝑎0,3 = 1, so that (29) transforms to the following form:

𝐴 𝑡 + 𝜆𝐴𝑥 + 𝑎1𝐴2𝐴𝑥 + 𝑎2𝐴𝑥𝑥𝑥 = 0, (36)

where 𝑎1, 𝑎2 are arbitrary constants, 𝐴(𝑥, 𝑡) denotes the
amplitude of the Rossby waves, 𝑥 ∈ 𝑅 is the space variable
in the propagation of the field, and 𝑡 ∈ 𝑇(= [0, 𝑇0]) is the
time variable. The main steps are arranged as follows[62].

First of all, we introduce 𝑢(𝑥, 𝑡) as a potential function.
Let 𝐴(𝑥, 𝑡) = 𝑢𝑥(𝑥, 𝑡), so that (36) can be written as

𝑢𝑥𝑡 + 𝜆𝑢𝑥𝑥 + 𝑎1𝑢2𝑥𝑢𝑥𝑥 + 𝑎2𝑢𝑥𝑥𝑥 = 0. (37)

The Lagrangian form of (36) can be defined using the semi-
inverse method. 𝜇𝐴 is considered as a fixed function. The
functional of the potential equation (37) can be represented
by

𝐽 (𝑢) = ∫
𝑅
𝑑𝑥∫
𝑇
𝑑𝑡 {𝑢 (𝑥, 𝑡)

⋅ [𝑐1𝑢𝑥𝑡 + 𝑐2𝜆𝑢𝑥𝑥 + 𝑐3𝑎1𝑢2𝑥𝑢𝑥𝑥 + 𝑐4𝑎2𝑢𝑥𝑥𝑥𝑥]} ,
(38)

where 𝑐1, 𝑐2, 𝑐3, and 𝑐4 are Lagrangian multipliers to be
determined later. Integrating (38) by parts and taking 𝑢𝑡|𝑅 =𝑢𝑥|𝑅 = 𝑢𝑥|𝑇 = 𝑢𝑥𝑥|𝑅 = 𝑢𝑥𝑥𝑥|𝑅 = 0 lead to

𝐽 (𝑢) = ∫
𝑅
𝑑𝑥∫
𝑇
𝑑𝑡 {−𝑐1𝑢𝑥𝑢𝑡 − 𝑐2𝜆𝑢2𝑥 − 13𝑐3𝑎1𝑢4𝑥

+ 𝑐4𝑎2𝑢2𝑥𝑥} . (39)

Secondly, by applying the variation of this functional
with respect to 𝑢(𝑥, 𝑡), and integrating each term by parts,
optimizing the variation 𝛿𝐽(𝑢) = 0, we have

2𝑐1𝑢𝑥𝑡 + 2𝑐2𝜆𝑢𝑥𝑥 + 4𝑐3𝑎1𝑢2𝑥𝑢𝑥𝑥 + 2𝑐4𝑎2𝑢𝑥𝑥𝑥𝑥 = 0. (40)

Equation (40) is equivalent to (37), so we can get

𝑐1 = 12 ,
𝑐2 = 12 ,
𝑐3 = 14 ,
𝑐4 = 12 .

(41)
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A functional relation (39) is given to produce the direct
Lagrange form of the mKdV equation.

𝐿 (𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥, ⋅ ⋅ ⋅) = −12𝑢𝑥𝑢𝑡 − 12𝜆𝑢2𝑥 − 112𝑎1𝑢4𝑥
+ 12𝑎2𝑢2𝑥𝑥.

(42)

Thirdly, according to the Lagrangian form of the integer
order, we can obtain the Lagrangian form of the space-time
fractional order similarly.

𝐹 (𝐷𝛼𝑡 ∗ 𝐷𝛽𝑥𝑢,𝐷𝛽𝑥𝑢,𝐷2𝛽𝑥 𝑢, ⋅ ⋅ ⋅)
= −12𝐷𝛼𝑡 𝑢 ∗ 𝐷𝛽𝑥𝑢 − 12𝜆 (𝐷𝛽𝑥𝑢)2 − 112𝑎1 (𝐷𝛽𝑥𝑢)4

+ 12𝑎2 (𝐷2𝛽𝑥 𝑢)2 ,
(43)

where 0 ≤ 𝛼, 𝛽 < 1. The fractional derivative 𝐷𝛼𝑡 𝑢(𝑥, 𝑡) or𝐷𝛽𝑥𝑢(𝑥, 𝑡) in terms of the left Riemann-Liouville fractional
derivative is defined by

𝐷𝛾𝜍𝑓 (𝜍) = 1Γ (𝑘 − 𝛾) 𝑑𝑘𝑑𝜍𝑘 [∫𝑑𝑠 (𝜍 − 𝑠)𝑘−𝛾−1 𝑓 (𝑠)] ,
𝑘 − 1 ≤ 𝛾 ≤ 𝑘, 𝜍 = 𝜍 (𝑡, 𝑥) .

(44)

Then, the STFmKdV-Burgers equation takes the follow-
ing form:

𝐽𝐹 (𝑢)
= ∫
𝑅
(𝑑𝑥)𝛽 ∫

𝑇
(𝑑𝑡)𝛼 𝐹∗ (𝐷𝛼𝑡 ∗ 𝐷𝛽𝑥𝑢,𝐷𝛽𝑥𝑢,𝐷2𝛽𝑥 𝑢) . (45)

The variation of (45) with respect to 𝑢(𝑥, 𝑡) leads to
𝛿𝐽𝐹 (𝑢) = ∫

𝑅
(𝑑𝑥)𝛽 ∫

𝑇
(𝑑𝑡)𝛼 [𝜕𝐹∗𝜕𝑢 𝛿𝑢 + 𝜕𝐹∗𝜕𝐷𝛼𝑡 𝑢𝛿𝐷𝛼𝑡 𝑢

+ 𝜕𝐹∗
𝜕𝐷𝛽𝑥𝑢𝛿𝐷𝛽𝑥𝑢 + 𝜕𝐹∗

𝜕𝐷2𝛽𝑥 𝑢𝛿𝐷2𝛽𝑥 𝑢] .
(46)

Adopting the fractional integration rule and the right
Riemann-Liouville fractional derivative, 𝛿𝐽𝐹∗(𝑢) is written as

𝛿𝐽𝐹 (𝑢) = ∫
𝑅
(𝑑𝑥)𝛽 ∫

𝑇
(𝑑𝑡)𝛼 [𝜕𝐹𝜕𝑢 − 𝐷𝛼𝑡 ( 𝜕𝐹𝜕𝐷𝛼𝑡 𝑢)

− 𝐷𝛽𝑥 ( 𝜕𝐹
𝜕𝐷𝛽𝑥𝑢) + 𝐷2𝛽𝑥 ( 𝜕𝐹

𝜕𝐷2𝛽𝑥 𝑢)]𝛿𝑢.
(47)

Optimizing the variation of the functional, i.e., 𝛿𝐽𝐹∗(𝑢) =0, the Euler-Lagrange form for the STFmKdV equation leads
to

𝜕𝐹𝜕𝑢 − 𝐷𝛼𝑡 ( 𝜕𝐹𝜕𝐷𝛼𝑡 𝑢) − 𝐷𝛽𝑥 ( 𝜕𝐹
𝜕𝐷𝛽𝑥𝑢) + 𝐷2𝛽𝑥 ( 𝜕𝐹

𝜕𝐷2𝛽𝑥 𝑢)
= 0.

(48)

Substituting (43) into (48), we have

𝐷𝛼𝑡𝐷𝛽𝑥𝑢 + 𝜆𝐷𝛽𝑥 (𝐷𝛽𝑥𝑢) + 𝑎1 (𝐷𝛽𝑥𝑢)2𝐷2𝛽𝑥 𝑢
+ 𝑎2𝐷2𝛽𝑥 (𝐷2𝛽𝑥 𝑢) = 0. (49)

Substituting 𝐷𝛽𝑥𝑢(𝑥, 𝑡) = 𝐴(𝑥, 𝑡) into (49), we have the
STFmKdV equation

𝐷𝛼𝑡 𝐴 + 𝜆𝐷𝛽𝑥𝐴 + 𝑎1𝐴2𝐷𝛽𝑥𝐴 + 𝑎2𝐷3𝛽𝑥 𝐴 = 0. (50)

In this paper, in order to make the content more complete,
then we will study the conservation laws and the solutions of
the STFmKdV equation.

4. Lie Symmetry Analysis and Conservation
Laws of the STFmKdV Equation

In this section, we employ Lie symmetry analysis to discuss
the conservation laws[64, 65] of STFmKdV equaiton which
does not contain dissipation item. The details are as follows.

4.1. Lie Symmetry Analysis. TheSTFPDE of a function𝑓(𝑥, 𝑡)
with two independent variables considered in the Riemann-
Liouville sense is defined as the following form:

𝐷𝛼𝑡 𝑢 = 𝜕𝛼𝑢𝜕𝑡𝛼

= {{{{{{{

1Γ (𝑛 − 𝛼) 𝜕𝑛𝜕𝑡𝑛 ∫
𝑡

0
(𝑡 − 𝑠)𝑛−𝛼−1𝑓 (𝑥, 𝑠) 𝑑𝑠, 𝑛 − 1 < 𝛼 < 𝑛 ∈ 𝑁,

𝜕𝑛𝑓 (𝑥, 𝑡)𝜕𝑡𝑛 , 𝛼 = 𝑛 ∈ 𝑁.
(51)

First, we define a Lie group of point transformations under
one parameter

𝑥∗ = 𝑥 + 𝜀𝜉 (𝑥, 𝑡, 𝐴) + 𝑜 (𝜀2) ,
𝑡∗ = 𝑡 + 𝜀𝜏 (𝑥, 𝑡, 𝐴) + 𝑜 (𝜀2) ,
𝑢∗ = 𝑢 + 𝜀𝜂 (𝑥, 𝑡, 𝐴) + 𝑜 (𝜀2) ,

(52)

where 𝜉, 𝜏, 𝜂 are infinitesimal functions and 𝜀 is a small
continuous parameter. The associated Lie algebra is spanned
by

𝑋 = 𝜉 (𝑥, 𝑡, 𝐴) 𝜕𝛽𝜕𝑥𝛽 + 𝜏 (𝑥, 𝑡, 𝐴) 𝜕𝛼𝜕𝑡𝛼 + 𝜂 (𝑥, 𝑡, 𝐴) 𝜕𝜕𝐴. (53)

The prolonged generator can be defined

𝑃𝑟(𝛼,𝛽,2)𝑋 = 𝜉 (𝑥, 𝑡, 𝐴) 𝜕𝛽𝜕𝑥𝛽 + 𝜏 (𝑥, 𝑡, 𝐴) 𝜕𝛼𝜕𝑡𝛼
+ 𝜂 (𝑥, 𝑡, 𝐴) 𝜕𝜕𝐴 + 𝜂𝛼,𝑡 𝜕𝜕 (𝐷𝛼𝑡𝐴)
+ 𝜂𝛽,𝑥 𝜕

𝜕 (𝐷𝛽𝑥𝐴) + 𝜂𝛽,𝑥𝑥 𝜕
𝜕 (𝐷2𝛽𝑥 𝐴) .

(54)
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On the basis of the infinitesimal invariance criterion, one can
get

𝑃𝑟(𝑛)𝑋[𝐹]󵄨󵄨󵄨󵄨󵄨𝐹=0 = 0, (55)

where

𝐹 = 𝐷𝛼𝑡 𝐴 + 𝜆𝐷𝛽𝑥𝐴 + 𝑎1𝐴2𝐷𝛽𝑥𝐴 + 𝑎2𝐷3𝛽𝑥 𝐴. (56)

The operators 𝜂𝛼,𝑡, 𝜂𝛽,𝑥, 𝜂𝛽,𝑥𝑥 are fractional extended symme-
try operators defined as follows[64]:

𝜂𝛼,𝑡 = 𝐷𝛼𝑡 (𝜂) + 𝜉𝐷𝛼𝑡 (𝐴𝑥) − 𝐷𝛼𝑡 (𝜉𝐴𝑥)
+ 𝐷𝛼𝑡 (𝐴 (𝐷𝑡𝜏)) − 𝐷𝛼+1𝑡 (𝜏𝐴) + 𝜏𝐷𝛼+1𝑡 𝐴,

𝜂𝛽,𝑥 = 𝐷𝛽𝑥 (𝜂) + 𝐷𝛽𝑥 (𝐴 (𝐷𝑥𝜉)) − 𝐷𝛽+1𝑥 (𝜉𝐴)
+ 𝜉𝐷𝛽+1𝑥 (𝐴) + 𝜏𝐷𝛽𝑥 (𝐴 𝑡) − 𝐷𝛽𝑥 (𝜏𝐴 𝑡) ,

𝜂𝛽,𝑥𝑥 = 𝐷𝛽𝑥 (𝜂𝛽,𝑥) − 𝐴𝑥𝑥𝐷𝛽𝑥 (𝜉) − 𝐴𝑥𝑡𝐷𝛽𝑥 (𝜏) ,

(57)

where the symbols 𝐷𝑡, 𝐷𝑥 represent the total derivative
operators defined by

𝐷𝑡 = 𝜕𝑡 + 𝐴 𝑡𝜕𝐴 + 𝐴 𝑡𝑡𝜕𝐴𝑡 + 𝐴𝑥𝑡𝜕𝐴𝑥 + ⋅ ⋅ ⋅ ,
𝐷𝑥 = 𝜕𝑥 + 𝐴𝑥𝜕𝐴 + 𝐴𝑥𝑥𝜕𝐴𝑥 + 𝐴𝑥𝑡𝜕𝐴𝑡 + ⋅ ⋅ ⋅ . (58)

Second, the conserved vectors of the STFmKdV equation
are investigated as follows. Applying the second prolongation𝑃𝑟(𝛼,𝛽,2)𝑋, we get

𝜂𝛼,𝑡 + 𝜆𝜂𝛽,𝑥 + 2𝑎1𝐴𝜂𝐷𝛽𝑥𝐴 + 𝑎1𝐴2𝜂𝛽,𝑥 + 𝑎2𝜂𝛽,𝑥𝑥𝑥 = 0 (59)

Substituting (57) and (58) into (59), and equating the coef-
ficients of alike partial derivatives of 𝑢, we can obtain the
determining equations

𝜉𝑡 = 𝜉𝐴 = 𝜏𝑥 = 𝜏𝐴 = 𝜂𝐴𝐴 = 0,
𝛼𝜏𝑡 − 3𝛽𝜉𝑥 = 0,
(𝛼
𝑛) 𝜕𝛼𝑡 𝜂𝐴 − ( 𝛼

𝑛 + 1)𝐷𝑛+1𝑡 𝜏 = 0,
(𝛽
𝑛) 𝜕𝛽𝑥𝜂𝐴 − ( 𝛽

𝑛 + 1)𝐷𝑛+1𝑡 𝜉 = 0,
𝜕𝛼𝑡 𝜂 − 𝐴𝜕𝛼𝑡 𝜂𝐴 + 𝜆 (𝜕𝛼𝑡 𝜂 − 𝐴) 𝜕𝛼𝑡 𝜂𝐴 + 𝑎0𝐴2𝜂𝑥 + 𝑎1𝜂𝑥𝑥𝑥

= 0.

(60)

Solving these equations, the infinitesimals can be derived in
the following form:

𝜉 = 𝑐1𝛽 𝑥 + 𝑐2,
𝜏 = 3𝑐1𝛼 𝑡 + 𝑐3,
𝜂 = 3𝑐1 (𝛽 − 1)𝛽 𝐴.

(61)

where 𝑐1, 𝑐2, 𝑐3 are arbitrary constants. Thus, the correspond-
ing infinitesimal generator can be written

𝑋 = 𝑥𝛽 𝜕𝜕𝑥 + 3𝑡𝛼 𝜕𝜕𝑡 + 3𝐴 (𝛽 − 1)𝛽 𝜕𝜕𝐴 (62)

4.2. Nonlinear Self-Adjointness. The concept of nonlinear self
adjoint is proposed in the application of new conservation
theorem to the conservation laws of equations. This concept
is extended to the space-time fractional partial differential
equations. The lagrangian form of nondissipative STFmKdV
equation is given by

L = V (𝑥, 𝑡) [𝐷𝛼𝑡𝐴 + 𝜆𝐷𝛽𝑥𝐴 + 𝑎1𝐴2𝐷𝛽𝑥𝐴 + 𝑎2𝐷3𝛽𝑥 𝐴] , (63)

where V(𝑥, 𝑡) is a new dependent variable. The adjoint
equation of the STFmKdV equation is defined by

𝐹∗ ≡ 𝛿L𝛿𝐴 = 0, (64)

where𝛿/𝛿𝐴 is the Euler-Lagrange operator. According to (63)
and (64), the adjoint equation of STFmKdV equation can be
obtained as follows:

𝐹∗ = (𝐷𝛼𝑡 )∗ V + (𝑎1𝐴2 − 𝜆) (𝐷𝛽𝑥)∗ V − 𝑎2 (𝐷3𝛽𝑥 )∗ V
= 0. (65)

Here, (𝐷𝛼𝑡 )∗, (𝐷𝛽𝑥)∗ are the adjoint operators of 𝐷𝛼𝑡 , 𝐷𝛽𝑥. For
the Riemann-Liouville fractional differential operators, the
corresponding adjoint operators[41] have the following form:

(0𝐷𝛼𝑡 )∗ = (−1)𝑛𝑡 𝐼𝑛−𝛼𝑇 (𝐷𝑛𝑡 ) = 𝐶𝑡𝐷𝛼𝑇,
(0𝐷𝛽𝑥)∗ = (−1)𝑚𝑥 𝐼𝑚−𝛽𝑅 (𝐷𝑚𝑥 ) = 𝐶𝑥𝐷𝛽𝑅, (66)

where 𝐼𝑛−𝛼𝑇 , 𝐼𝑚−𝛽𝑅 are the right fractional integral operators of
order 𝑛 − 𝛼,𝑚 − 𝛽, defined by

𝐼𝑛−𝛼𝑇 𝑓 (𝑥, 𝑡) = 1Γ (𝑛 − 𝛼) ∫𝑇
𝑡

𝑓 (𝑥, 𝜏)(𝜏 − 𝑡)𝛼+1−𝑛𝑑𝜏,
𝑛 = [𝛼] + 1,

𝐼𝑚−𝛽𝑅 𝑓 (𝑥, 𝑡) = 1Γ (𝑚 − 𝛽) ∫𝑅
𝑥

𝑓 (𝜍, 𝑡)
(𝜍 − 𝑥)𝛽+1−𝑚 𝑑𝜍,

𝑚 = [𝛽] + 1.

(67)

For nonlinear self-adjointness, let us assume V = 𝜓(𝑥, 𝑡, 𝐴),
where 𝜓(𝑥, 𝑡, 𝐴) ̸= 0.

Substituting V = 𝜓(𝑥, 𝑡, 𝐴) into (65)
(𝐷𝛼𝑡 )∗ 𝜓 + (𝑎1𝐴2 − 𝜆) (𝐷𝛽𝑥)∗ 𝜓 − 𝑎2 [(𝐷3𝛽𝑥 )∗ 𝜓

+ 3 (𝐷2𝛽𝑥 )∗ 𝜓𝐴𝐴𝑥 + 3 (𝐷𝛽𝑥)∗ 𝜓𝐴𝐴 (𝐴𝑥)2
+ 3 (𝐷𝛽𝑥)∗ 𝜓𝐴𝑥𝐴𝑥𝑥 + 3𝜓𝐴𝐴𝐴𝑥𝐴𝑥𝑥 + 𝜓𝐴𝐴𝑥𝑥𝑥
+ 𝜓𝐴𝐴𝐴𝐴𝑥3] ≡ 𝐹∗.

(68)
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By using the method of undetermined coefficients, we obtain
the following cases[64, 65]:

case 1: 0 < 𝛽 < 1,
V (𝑥, 𝑡) = 𝐶0

for 𝐷𝛼𝑡 = 0𝐷𝛼𝑡 ,
case 2: 0 < 𝛽 < 1,

V (𝑥, 𝑡) = 𝐶1𝑥 + 𝐶2
for 𝐷𝛼𝑡 = 𝑐0𝐷𝛼𝑡 .

(69)

Here, 𝐶0, 𝐶1, 𝐶2 are arbitrary constants. These solutions
of V(𝑥, 𝑡) are introduced in the Lagrangian form for the
construction of conserved vectors in the next subsection.

4.3. Conservation Laws. It is well known that 𝐶 = (𝐶𝑡, 𝐶𝑥)
is called the conserved vector that satisfies the conservation
equation

𝐷𝑡 (𝐶𝑡) + 𝐷𝑥 (𝐶𝑥) = 0, (70)

Noether’s theorem iswidely adopted to construct the con-
served vectors. Using this method, the conserved vectors are
obtained by using the Noether operators for the Lagrangian
form. According to[40], the fractional Noether operator for
the variable 𝑥, 𝑡 has been given.

Before constructing the conserved vectors, we should
consider the Lie characteristic function for the Lie symmetry
infinitesimal generator𝑋 = 𝜉(𝜕𝛽/𝜕𝑥𝛽)+𝜏(𝜕𝛼/𝜕𝑡𝛼)+𝜂(𝜕/𝜕𝐴).
The Lie characteristic function is defined by

𝑊 = 𝜂 − 𝜉𝐴𝑥 − 𝜏𝐴 𝑡 = 3𝐴 (𝛽 − 1)𝛽 − 𝑥𝛽𝐴𝑥 − 3𝑡𝛼 𝐴 𝑡, (71)

Then, the fractional Noether operator for 𝑡 of the
STFmKdV-Burgers equation is

𝐶𝑡 = 𝑛−1∑
𝑘=0

(−1)𝑘𝐷𝛼−1−𝑘𝑡 (𝑊)𝐷𝑘𝑡 ( 𝜕𝐹∗𝜕 (𝐷𝛼𝑡𝐴)) , (72)

Similarly, the fractional Noether operator for 𝑥 of the
STFmKdV-Burgers equation is

𝐶𝑥 = 𝑚−1∑
𝑘=0

(−1)𝑘𝐷𝛽−1−𝑘𝑥 (𝑊)𝐷𝑘𝑥( 𝜕𝐹∗
𝜕 (𝐷𝛽𝑥𝐴)) , (73)

Substituting the Lagrangian form (65) and (71) into (72) with
case 1 in (69), let 𝐶0 = 1; the 𝑡-component of the conserved
vectors can be obtained:

𝐶𝑡 = 3 (𝛽 − 1)𝛽 𝐼1−𝛼𝑡 (𝐴) − 𝑥𝛽𝐼1−𝛼𝑡 (𝐴𝑥) − 3𝛼𝐼1−𝛼𝑡 (𝑡𝐴 𝑡) ,
𝑎𝑠 0 < 𝛼 < 1,

(74)

𝐶𝑡 = 3 (𝛽 − 1)𝛽 𝐷𝛼−1𝑡 (𝐴) − 𝑥𝛽𝐷𝛼−1𝑡 (𝐴𝑥)
− 3𝛼𝐷𝛼−1𝑡 (𝑡𝐴 𝑡) , 𝑎𝑠 1 < 𝛼 < 2,

(75)

The 𝑥-component of the conserved vectors is

𝐶𝑥 = [3 (𝛽 − 1)𝛽 𝐷𝛽−1𝑥 (𝐴) − 1𝛽𝐷𝛽−1𝑥 (𝑥𝐴𝑥)
− 3𝑡𝛼 𝐷𝛽−1𝑥 (𝐴 𝑡)] , 𝑎𝑠 1 < 𝛼 < 2,

(76)

In case 2 in (69), let 𝐶1 = 1, 𝐶2 = 0; the 𝑡-component of
the conserved vectors can be obtained as follows:

𝐶𝑡 = 𝑥 × [3 (𝛽 − 1)𝛽 𝐼1−𝛼𝑡 (𝐴) − 𝑥𝛽𝐼1−𝛼𝑡 (𝐴𝑥)
− 3𝛼𝐼1−𝛼𝑡 (𝑡𝐴 𝑡)] , 𝑎𝑠 0 < 𝛼 < 1,

(77)

𝐶𝑡 = 𝑥 × [3 (𝛽 − 1)𝛽 𝐷𝛼−1𝑡 (𝐴) − 𝑥𝛽𝐷𝛼−1𝑡 (𝐴𝑥)
− 3𝛼𝐷𝛼−1𝑡 (𝑡𝐴 𝑡)] , 𝑎𝑠 1 < 𝛼 < 2,

(78)

The 𝑥-component of the conserved vectors is

𝐶𝑥 = 𝑥 × [3 (𝛽 − 1)𝛽 𝐷𝛽−1𝑥 (𝐴) − 1𝛽𝐷𝛽−1𝑥 (𝑥𝐴𝑥)
− 3𝑡𝛼 𝐷𝛽−1𝑥 (𝐴 𝑡)] − [3 (𝛽 − 1)𝛽 𝐼2−𝛽𝑥 (𝐴)
− 1𝛽𝐼2−𝛽𝑥 (𝑥𝐴𝑥) − 3𝑡𝛼 𝐼2−𝛽𝑥 (𝐴 𝑡)] .

(79)

5. The Exact Solutions of
the STFmKdV Equation

In this part, we deal with the exact solutions [66–68] of (50).
Using exp(−Φ(𝜉)) method, the main steps of this method to
solve the space time fractional partial equation can be given
as follows.

Firstly, we introduce the fractional complex transform:

𝐴 (𝑥.𝑡) = 𝑈 (𝜉) ,
𝜉 = 𝑥𝛽Γ (1 + 𝛽) − ]𝑡𝛼Γ (1 + 𝛼) ,

(80)

where ] is the wave speed. Substitute (80) into the STFmKdV
equation as follows:

𝐷𝛼𝑡𝐴 + 𝜆𝐷𝛽𝑥𝐴 + 𝑎1𝐴2𝐷𝛽𝑥𝐴 + 𝑎2𝐷3𝛽𝑥 𝐴 = 0 (81)

Equation (81) transforms to an ordinary differential equation

−]𝑈󸀠 + 𝜆𝑈󸀠 + 𝑎1𝑈2𝑈󸀠 + 𝑎2𝑈󸀠󸀠󸀠 = 0. (82)

Integrating (82) with respect to 𝜉 and setting the integration
constant to zero, we have the following equation:

(−] + 𝜆)𝑈 + 𝑎13 𝑈3 + 𝑎2𝑈󸀠󸀠 = 0. (83)
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Secondly, balancing the highest order derivative term and
the highest order nonlinear term in (83), we get the balancing
number 𝑛 = 1. Thus the solution of (83) takes the form

𝑈 (𝜉) = 𝑘0 + 𝑘1𝑒−Φ(𝜉), (84)

where 𝑘0, 𝑘1 are constants to be determined later. And Φ(𝜉)
satisfies the following auxiliary ordinary differential equation:

Φ󸀠 (𝜉) = exp (−Φ (𝜉)) + 𝜂 exp (Φ (𝜉)) + 𝜎. (85)

Substitute (84) and (81) into (83) and collect all terms
with the same degree of exp(−Φ(𝜉))𝑛 together. Equating each
coefficient of the same degree of exp(−Φ(𝜉))𝑛 to zero, a set of
algebraic equations for 𝑘0, 𝑘1, 𝜂, 𝜎, ] can be obtained.

𝑒0Φ(𝜉): (𝜆 − ]) 𝑎0 + 𝜂𝜎𝑎21 + 𝑎403 = 0,
𝑒−Φ(𝜉): (𝜆 − ]) 𝑎1 + 𝑎30𝑎1 + (𝜎2 + 2𝜂) 𝑎21 = 0,

𝑒−2Φ(𝜉): 𝑎062𝑎21 + 3𝑎21𝜎 = 0,
𝑒−3Φ(𝜉): 𝑎0𝑎313 + 2𝑎21 = 0.

(86)

Solving the algebraic equation system, we can get the solu-
tions. Let 𝜌 = ±√𝜎; the solutions of (86) are expressed by

𝑎0 = √3𝜌,
𝑎1 = 2√3𝜌 ,
] = 𝜆 + √3 (4𝜂 + 𝜌4)

𝜌 ,
(87)

Different solutions of the auxiliary equation (85) have been
given in [68], so we get the solutions of (81). Different cases
are discussed as follows.

Case 1 (hyperbolic function solutions). When 𝜎2 − 4𝜂 >0, 𝜂 ̸= 0,

𝐴1 (𝑥, 𝑡) = √3𝜌 + 2𝜂
√𝜎2 − 4𝜂 tanh {(√𝜎2 − 4𝜂/2) [𝑥𝛽/Γ (1 + 𝛽) − [𝜆 + √3 (4𝜂 + 𝜌4) /𝜌] 𝑡𝛼/Γ (1 + 𝛼) + 𝑐]} + 𝜎 (88)

Case 2 (trigonometric function solutions). When𝜎2−4𝜂 < 0,𝜂 ̸= 0,

𝐴2 (𝑥, 𝑡) = √3𝜌 + 2𝜂
√4𝜂 − 𝜎2tan {(√4𝜂 − 𝜎2/2) [𝑥𝛽/Γ (1 + 𝛽) − [𝜆 + √3 (4𝜂 + 𝜌4) /𝜌] 𝑡𝛼/Γ (1 + 𝛼) + 𝑐]} − 𝜎, (89)

Case 3 (hyperbolic function solutions). When 𝜎2 − 4𝜂 > 0,𝜂 = 0, 𝜎 ̸= 0,

𝐴3 (𝑥, 𝑡) = √3𝜌
+ 𝜎
cosh {𝜎 [𝑥𝛽/Γ (1 + 𝛽) − [𝜆 + √3 (4𝜂 + 𝜌4) /𝜌] 𝑡𝛼/Γ (1 + 𝛼) + 𝑐]} + sinh {𝜎 [𝑥𝛽/Γ (1 + 𝛽) − [𝜆 + √3 (4𝜂 + 𝜌4) /𝜌] 𝑡𝛼/Γ (1 + 𝛼) + 𝑐]} − 1 ,

(90)

Case 4 (rational function solutions). When 𝜎2 − 4𝜂 = 0, 𝜂 ̸=0, 𝜎 ̸= 0,

𝐴4 (𝑥, 𝑡) = √3𝜌 − 𝜎2 {𝑥𝛽/Γ (1 + 𝛽) − [𝜆 + √3 (4𝜂 + 𝜌4) /𝜌] 𝑡𝛼/Γ (1 + 𝛼) + 𝑐}
2𝜎 {𝑥𝛽/Γ (1 + 𝛽) − [𝜆 + √3 (4𝜂 + 𝜌4) /𝜌] 𝑡𝛼/Γ (1 + 𝛼) + 𝑐} + 4 , (91)
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(c) 𝜇 = 0.85, 𝛽 = 0.25

Figure 1: The effect of the variation of the dissipation coefficient on the amplitude if the space and time derivative are determined.

Case 5. When 𝜎2 − 4𝜂 = 0, 𝜂 = 0, 𝜎 = 0,
𝐴5 (𝑥, 𝑡)
= 1𝑥𝛽/Γ (1 + 𝛽) − [𝜆 + √3 (4𝜂 + 𝜌4) /𝜌] 𝑡𝛼/Γ (1 + 𝛼) + 𝑐 .

(92)

We take the solution of Case 1 as an example to discuss
the influence of fractional derivatives 𝛼 and 𝛽 on the wave,
respectively.

Figure 1 shows that when the space and time derivative
are determined, the amplitude of the wave decreases as time
increases.

In Figures 2 and 3, we investigate how the parameters𝛼, 𝛽 affect the nonlinear solitary waves; the corresponding
physical interpretations can be given as follows:(1) From Figure 2, we can see that the amplitude of
solitary wave increases with increase of 𝛽 value, while the
width of the wave decreases.(2) Figure 3 shows that when the values of 𝛼 increase, the
amplitude of solitary waves has an increasing tread; however,
the amplitude of the wave declines more and more quickly.

6. Conclusions

In this paper, using multiscale analysis and turbulence
method, from the basic dynamic multivariable equations
under the baroclinic atmosphere, the integer order mKdV
equation is derived. In Section 3, we use the semi-inverse
method and variational method to derive the STFmKdV
equation under the Riemann-Liouville definition. In Sec-
tion 4, we extend the symmetry analysis of the fractional
equation to obtain the corresponding infinitesimal gener-
ator of the equation. Then we discuss the nonlinear self-
adjointness of the STFmKdV equation and finally get the
conservation vectors of the equation. In Section 5, based on
the STFmKdV equation, employing the exp(−Φ(𝜉))method,
and considering the different cases of the parameters (𝜂, 𝜎),
we obtain five different solutions of the equation.

Note 5. In this paper, we only study the space-time fractional
order equation under the Riemann-Liouville derivative defi-
nition. In future studies, we can also consider the fractional
equation under the Caputo derivative definition.
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Figure 2:The amplitude of solitary wave𝐴(𝑥, 10) at 𝑡 = 10, 𝛽 = 0.5,
for different value of 𝛼.

Note 6. In future studies, we can also consider the conserva-
tion laws of fractional equations under the Caputo derivative
definition.
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