
Research Article
Optimizing Job Coscheduling by Adaptive
Deadlock-Free Scheduler

Zhishuo Zheng ,1,2 Deyu Qi,1 Mincong Yu,1 XinyangWang ,1

Naqin Zhou,3 Yang Shen,1 and Jing Guo1

1School of Computer Science and Engineer, South China University of Technology, Guangzhou, China
2Department of Physics and Information Engineering, Guangdong University of Education, Guangzhou, China
3Cyberspace Institute of Advanced technology, Guangzhou University, Guangzhou 510006, Guangdong, China

Correspondence should be addressed to Zhishuo Zheng; z.zhishuo@mail.scut.edu.cn

Received 20 January 2018; Revised 3 July 2018; Accepted 26 July 2018; Published 15 August 2018

Academic Editor: Emilio Insfran Pelozo

Copyright © 2018 Zhishuo Zheng et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is ubiquitous thatmultiple jobs coexist on the samemachine, because tens or hundreds of cores are able to reside on the same chip.
To runmultiple jobs efficiently, the schedulers should provide flexible scheduling logic. Besides, corunning jobsmay compete for the
shared resources, whichmay lead to performance degradation.Whilemany scheduling algorithms have been proposed for support-
ing different scheduling logic schemes and alleviating this contention, job coscheduling without performance degradation on the
same machine remains a challenging problem. In this paper, we propose a novel adaptive deadlock-free scheduler, which provides
flexible scheduling logic schemes and adopts optimistic lock control mechanism to coordinate resource competition among corun-
ning jobs. This scheduler exposes all underlying resource information to corunning jobs and gives them necessary utensils to make
use of that information to compete resource in a free-for-all manner. To further relieve performance degradation of coscheduling,
this scheduler enables the automated control over the number of active utensils when frequent conflict becomes the performance
bottleneck.We justify our adaptive deadlock-free scheduling and present simulation results for synthetic and real-world workloads,
in which we compare our proposed scheduler with two prevalent schedulers. It indicates that our proposed approach outperforms
the compared schedulers in scheduling efficiency and scalability. Our results also manifest that the adaptive deadlock-free control
facilitates significant improvements on the parallelism of node-level scheduling and the performance for workloads.

1. Introduction

In recent years, the great rapid growth of sensors devices,
high-speed search engines, and social networks has produced
huge amount of data. Additionally, many scientific simula-
tions in critical areas, such as climate sciences, astrophysics,
computational chemistry, computational biology, and high-
energy physics, are becoming increasingly data intensive [1].
The above applicationsmanipulate a large amount of data that
is compared with the amount of computation they perform
and often transfer large volume of data to or from storage
systems. Because the value of these applications is determined
by the data quantity and the speed of producing results,
a number of Data-Intensive Scalable Computing (DISC)
[2] systems have been developed. These DISC systems are
enabling IT solutions for different fields because of their great

potential in reducing the operating expenses and manage-
ment overheads; i.e., DISC systems provide a shared elastic
computing infrastructure to accommodate multiple applica-
tions. Although these systems are scalable, DISC systems fail
to take full advantage of these resources, which leads to the
requirement for larger clusters to improve performance. Such
poor efficiency results in the energy inefficient problem that
increases DISC system providers’ budget and CO2 footprint
[3]. As a result, the efficiency of resource utilization in data
centers has drawn much attention in recent years.

It is noteworthy that each node has already utilized
large scale processors cores, multilane high-speed cards,
hundreds of gigabytes of memory, and terabytes of disks [4].
In a nutshell, a single node in DISC systems is increasing
reminiscent of a networked distributed system.The key issue
is that the traditional node-level operating systems have not

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 1438792, 18 pages
https://doi.org/10.1155/2018/1438792

http://orcid.org/0000-0002-2834-2569
http://orcid.org/0000-0001-9555-373X
https://doi.org/10.1155/2018/1438792

2 Mathematical Problems in Engineering

been designed with current hardware trends in minds and
they fail to make good use of underlying hardware resources.
As a consequence, the individual nodes in the data center
tend to run far below their peak performance capabilities [5],
which contribute to the poor efficiency of resource usage in
DISC systems. Previous study [6] points out that corunning
different job together is capable of improving resource uti-
lization and therefore reduces hardware quantity requirement
for applications. For example, the current winner of the
Indy GraySort sorting benchmark is Tencent Sort [7] that
has adopted fewer nodes than previous winners. This sort
achieves CPU utilization peak at 70% by overlapping sort
and networking stages. Its result has shown that although the
CPU utilization typically ranges from 10 to 30% in most of
time (similar results have also been demonstrated in other
data centers [8]), it is able to achieve better CPU utilization
by allowing multiple jobs to coexist on the same node. But
coexisting jobs will produce different issues. On one hand,
resource sharing among different jobs on the same node will
make the node-level scheduling problem more complicated:
a wider range of requirements and policies have to be taken
into account, as servers terminate user requests or provide
infrastructure services like storage, naming, or locking. On
the other hand, corunning jobs may compete for the shared
resources, which may result in performance degradation.

Existing approaches to address the above issues mainly
fall into two categories: (1) architectural-level solutions to
provide isolation among applications [9–11] and (2) system-
level solutions to partition underlying resources among jobs
and provide flexible scheduling logic schemes to accom-
modate the dynamics of application resource demand [12–
17]. Within these two categories, architectural-level solutions
remain under development by hardware vendors and the
modifications to hardware require many changes to system-
level software and therefore incur high implementation cost.
The second approach, developing a scheduler to facilitate
coscheduling, is regarded as a lightweight approach and
has therefore attracted considerable research attention. Our
research work mainly focuses on the second category.

Themost general choice for a node-level operating system
for DISC systems is Linux. Its scheduler applies multipath
monolithic scheduling, which schedules a job once a time
and supports different scheduling logic schemes by providing
multiple code paths. This scheduler runs separate scheduling
logic schemes for different task types. It is a tough job
to add new policies and specialized implementations to
multipath monolithic schedulers. Some researchers advocate
that two-level schedulers will be a good choice to support
flexible scheduling logic schemes. This type of schedulers
has a central coordinator (first-level scheduler) to decide
howmany underlying resources can be distributed or offered
to multiple parallel user-level schedulers (i.e., second-level
scheduler that is able to implement distinct scheduling logic
independently), as in Tessellation [16, 18] and Akaros [19].
These schedulers allow the allocation of resources to different
user-level schedulers dynamically. Two-level schedulers do
appear to support flexible scheduling policies. However, each
user-level scheduler can only perceive limited resources.
Moreover, if multiple user-level schedulers compete for the

same shared resources, the two-level scheduling will resolve
it with traditional locking concurrency control that is easy
to produce deadlock without careful treatment. All the above
conditions make two-level approaches hard to place jobs that
are difficult to schedule or make decisions that need to access
the entire underlying resources. The fact is that resource
utilizations (especially for CPU) are still low most of the time
[20] and it is reported that one-third of the available CPU
cycles remain idle [21].

To support flexible scheduling logic schemes and address
competition for the shared resources without performance
degradation, we present a novel approach that applies an
adaptive optimistic lock mechanism built on shared state of
underlying hardware resources. This approach offers both
flexibility and parallelism.

Our contributions in this study include the following:
(i) We propose a deadlock-free scheduling for a DISC

node. To make it adaptive, we enable the proposed scheduler
to periodically adjust the number of running tools for differ-
ent jobs when frequent conflicts take place. The adjustment
provides a trade-off between adaptability and stability;

(ii) We evaluate our scheduling via simulation using
synthetic and real-world workloads and compare it with
multiple-path monolithic and two-level schedulers;

(iii) We show that our approach comprehensively outper-
forms these other common schedulers and the simulation
results show that the adaptive deadlock-free scheduling
performing well in most experimental scenarios.

We structure the remainder of the paper as follows.
Section 2 describes related research. Section 3 introduces the
design of adaptive deadlock-free scheduling and discusses
how its design attacks scalability problems without perfor-
mance degradation. Section 4 addresses the assumptions and
parameters that are used in simulators and explains metrics
and workloads for evaluating different schedulers mentioned
in Section 1, and Section 5 presents the results through
comparatives diagrams. Section 6 concludes the paper with
a summary of our results and provides an outlook for future
work.

2. Related Work

As reviewed in the previous section, many-core systems have
been extensively adopted and the underlying of a node is
muchmore similar to a distributed system than before [4, 22].
Multiple jobs with diverse scheduling objectives are likely to
corun on the same node [6, 16, 19]. To run these corunning
jobs efficiently, this requires schedulers to provide flexible
scheduling policies and to cope with the competition among
the shared resources, which are hard to meet with traditional
single-path monolithic schedulers that only have a single
scheduling logic.

To address the above issues, different schedulers, such
as multipath monolithic and two-level schedulers, have been
proposed. The relative merits of these approaches have been
discussed in Section 1. Our solution is to provide an adaptive
deadlock-free scheduler and it builds on many prior ideas.
Our deadlock-free approach is an example of optimistic con-
currency control mechanism.Thismechanism has previously

Mathematical Problems in Engineering 3

been studied in the database community for a long time.
Recently, it is considered as a new parallel programming
mechanism in the transaction memory community [23, 24].
Conventional programming models that apply lock-based
concurrency control are known for their conceptual difficulty
[25, 26]. In particular, any programming errors that are pro-
duced by programmers can easily result in local or distributed
deadlock. This places a great burden on programmers, which
makes the parallel programming a nightmare. To address
such a tough issue, transactional memory programming
model has been proposed. This programming model applies
a lock-free synchronization that is intended to eliminate the
deadlock and make parallel programming easy and efficient.
A transaction is a finite sequence of instructions that are
executed by a single process and satisfy two properties:
serializability and atomicity. When a transaction completes, it
will either be committed, making its changes visible to other
processes instantaneously, or be aborted, causing its changes
to be discarded [25].

Besides, we concur with the principles of Exokernel
[27, 28] to expose sufficient information about underlying
hardware resource to jobs but suggest that the coordination
for competitions of underlying hardware resources should be
left to user-level schedulers rather than application writers.
Therefore, the adaptive deadlock-free model will expose
the entire state to all user-level schedulers and they will
implement scheduling by shared state. This will be further
discussed in the following sections.

3. Adaptive Deadlock-Free Scheduling

Some researchers advocate revealing very little about the
state of the overall system to applications and avoiding a
knowledge of the existence of other applications in the system
by virtual machine (VM) technology. Parallel applications are
sensitive to the underlying state of the system and require
information exposure that includes details of the underlying
system and the actual resource usage. VMs have been able to
meet severe performance penalties [19, 29–31]. Consequently,
Exokernel suggests exposing information about the underly-
ing system to the application writers to allow them to make
the best decisions, i.e., permitting the application writers
to write the application’s own scheduling logic to suit the
application’s needs with the help of library operating system
(lib-os for short) [27, 28]. The main problem in Exokernel
is that it exposes too much detail, leaving the coordination
of resource competition to the application writers, which
stresses application writers and diminishes its advantages.

Therefore, we target a node and assume that each type
of applications will be submitted to user-level schedulers
and implemented in its own VM [19, 32] that is built
by a user-level scheduler with the help of lib-os. We use
physical names of underlying resources so that each user-level
scheduler is capable of organizing resource lists for a node.
However in contrast to Exokernel, each user-level scheduler
will include a shared state list recording the current state of all
underlying resources rather than the resources it owns; thus,
the coordination of resource competition can be left to user-
level schedulers rather to application writers.

Global Processor
Core Information

Physical cores

task for task for

replica resource state for Scheduler Si

gray block
represents a core

Each Si stands for a
user–level scheduler

Si

Scheduler ３0 Scheduler ３1

３0 ３1

Figure 1: Schematic overview of deadlock-free scheduler.

Based on the above premises, we begin with a deadlock-
free scheduling and later equip it with an adaptive con-
trol. Our goal is twofold: first, to develop a scheduler that
addresses the scalability problem and, second, to deliver good
scheduling performance. The proposed schedulers support
multiple user-level schedulers in a composable way and
allow them to compete for underlying hardware resources
in an uncoordinated way. Our hope is that the resulting
performance degradation caused by uncoordinated user-level
schedulers will be compensated for by the benefits introduced
by adaptive control.

3.1. Deadlock-Free Scheduling. Our proposed scheduler
is deadlock-free because it is based on the shared state
approach.We grant each user-level scheduler full access to the
entire node and allow them to compete in a free-for-all man-
ner. This approach utilizes optimistic concurrency control to
mediate conflicts when user-level schedulers update the state.
As shown in Figure 1, each user-level scheduler (Si) is given
a resilient master copy of the resources allocation, which is
called the resource state and maintained by user-level sched-
ulers. At this stage, we assume that resources represent CPU
cores; later, they can be extended to physical memory pages,
I/O bandwidth, and network. Each user-level scheduler
makes its own scheduling decision based on its resource state.
Therefore, user-level schedulers have complete autonomy to
claim any available resources, or even ones that have been
acquired by another scheduler, provided they have the appro-
priate permissions and priority. This approach thus immedi-
ately removes two issues in the two-level scheduler approach:
limited parallelism due to pessimistic concurrency control
and restricted visibility of resources in a user-level sched-
uler.

4 Mathematical Problems in Engineering

As mentioned above, once a user-level scheduler makes
a placement decision, the shared copy of the resource state
is updated in an atomic commit similar to the transactional
memory mechanism. In reality, the time between resource
state synchronization and the commit attempt is a transac-
tion defined in the transactional memory mechanism. This
transaction could fail because another user-level scheduler
simultaneously made a conflicting change. The conflict res-
olution mechanism of transactional memory guarantees that
at most one of these commits will succeed if a conflict occurs.
Whether or not the transaction succeeds, each user-level
scheduler will resynchronize its local copy of the resource
state and then try to run its scheduling algorithm again. This
repetition of work can weaken the advantages produced by
using optimistic locking.

3.2. Adaptive Control for Deadlock-Free Scheduler. The re-
source state is frequently updated by each user-level scheduler,
which makes a local placement decision and attempts to
commit changes back to the shared copy with an atomic
commit. Where there are conflicting updates, the scheduler’s
transaction will be aborted and the scheduler must retry with
a new resource state.

If conflicts and synchronizing the resource state among all
the user-level schedulers form a bottleneck, the performance
of the deadlock-free schedulerwill dramatically degrade.This
situation is liable to occur when the numbers of running
user-level schedulers increase rapidly. The number of user-
level schedulers will increase with the types and numbers
of jobs. This increase causes the average number of cores
that can be allocated by a user-level scheduler to decrease;
i.e., there is a decrease in the exploitable parallelism that a
node can provide for each user-level scheduler. A similar
issue has been reported and studied in SoftwareTransactional
Memory (STM) [26, 33, 34]. The performance of a trans-
actional system can be strongly affected by the conflict rate
of transactions running concurrently, because a high degree
of transactional concurrency may lead to an unacceptably
high rate of aborts. The resolution of the above issues falls
into two categories: performance model-based approaches
[26, 35–37] and heuristic-based schemes [34, 38–40], which
are summarized in Table 1.

Different from the above approaches from Table 1, our
proposed scheduler tries to apply heuristic-based methods to
the case of resource acquisition for their straightforward and
easiness. We optimize the scheduling phase and throughput
on the basis of dynamically increasing or decreasing the
number of concurrent user-level schedulers in response to the
fluctuating exploitable parallelism.

Our proposed scheduler should improve resource usage
when exploitable parallelism is low and improve execution
time when exploitable parallelism is high. We investigate the
Transaction Conflict Fraction (TCF) as a suitable measure of
exploitable parallelism; the TCF is the percentage of aborted
scheduler’s transactions out of the total number of all sched-
uler’s transactions in a sample period. The TCF increases
during phases with high contention, thus suggesting that the
number of active user-level schedulers can be reduced and
vice versa.

Based on the above idea, we apply proportional control
to improve our deadlock-free scheduler; this concept has
been applied in a diverse range of fields to maintain some
variable within a bounded range. According to control theory
terminology, the objective of our proportional control is to
maintain the process variable TCF at a set point, despite
unmeasured disturbance from the fluctuating exploitable
parallelism restricted by the available hardware resources.
The TCF is defined as follows:

𝑇𝐶𝐹 =
∑𝑛−1𝑖=0 𝐴 𝑖
∑𝑛−1𝑖=0 𝑇𝑖

(1)

The symbol Ai denotes the number of aborted transac-
tions for user-level scheduler Si, and Ti is the total number
of transactions executed over a sample period for Si. These
data range between 0.0 (no conflicting transactions) and 1.0
(all conflicting transactions) and will be used to determine
whether the number of active user-level schedulers (i.e.,
numActiveULS) should be increased or decreased.

To realize control of the number of user-level schedulers
that can be run concurrently in responsive to automatic
changes in TCF, we define the control algorithm as fol-
lows:

𝑓 (𝑡) =
{{{
{{{
{

𝑛𝑢𝑚𝐴𝑐𝑡𝑖ve𝑈𝐿𝑆 + 𝑛𝑢𝑚𝑂𝑓𝑈𝐿𝑆 × Δ𝑇𝐶𝐹
order of magnitude for 𝑛𝑢𝑚𝑂𝑓𝑈𝐿𝑆, Δ𝑇𝐶𝐹 ≤ 0,

𝑛𝑢𝑚𝐴𝑐𝑡𝑖V𝑒𝑈𝐿𝑆 − 𝑛𝑢𝑚𝑂𝑓𝑈𝐿𝑆 × Δ𝑇𝐶𝐹
order of magnitude for 𝑛𝑢𝑚𝑂𝑓𝑈𝐿𝑆, Δ𝑇𝐶𝐹 > 0

(2)

where Δ𝑇𝐶𝐹 = 𝑇𝐶𝐹 – SP and SP denotes a user-defined
set point that is a target TCF that our deadlock-free scheduler
tries to maintain. If the TCF falls below SP due to an increase
in the number of transactions being committed, our model
will activate user-level schedulers that have been deactivated
and improve the parallelism of the deadlock-free scheduler
by attempting to execute more user-schedulers concurrently.
If the TCF increases above SP due to an increase in the

number of aborted user-level scheduler (ULS) transactions,
our scheduler will deactivate some active ULSs, reducing the
number of concurrent ULSs competing for the underlying
resources. The parameter 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑢𝑛𝑛𝑖𝑛𝑔𝑈𝐿𝑆 denotes
the number of ULSs that have been developed in the
deadlock-free scheduler. Algorithm 1 shows the process of
adaptive control for the number of actively running ULSs for
short).

Mathematical Problems in Engineering 5

Ta
bl
e
1:
C
om

pa
ris

on
sb

et
we

en
di
ffe
re
nt

sc
he
du

lin
g
sc
he
m
es
in

ST
M
.

Sc
he
m
es

D
efi
ni
tio

ns
St
re
ng

th
s

D
ra
w
ba
ck

pe
rfo

rm
an
ce

m
od

el
-b
as
ed

de
sc
rib

et
he

sy
ste

m
pe
rfo

rm
an
ce

as
af
un

ct
io
n
of

th
e

de
gr
ee

of
co
nc
ur
re
nc
ya

m
on

g
tr
an
sa
ct
io
ns

Ac
cu
ra
te
an
d
be

am
or
e

ge
ne
ra
lo
ne

re
qu

iri
ng

off
-li
ne

wo
rk
lo
ad

pr
ofi

lin
g
of

th
es

ys
te
m

fo
r

co
lle
ct
in
g
m
ea
su
re
m
en
ts
an
d
pa
ra
m
et
er

va
lu
es

to
in
sta

nt
ia
te
th
ep

er
fo
rm

an
ce

m
od

el

he
ur
ist
ic
-b
as
ed

m
et
ho

ds
re
qu

ire
th
eu

se
rt
o
co
nfi

gu
re

sc
he
du

le
rp

ar
am

et
er
s,

su
ch

as
co
nfl

ic
tr
at
et
hr
es
ho

ld
s

Si
m
pl
ea

nd
str

ai
gh

tfo
rw

ar
d

Th
es

ch
ed
ul
er

pa
ra
m
et
er
so

fh
eu
ris

tic
-b
as
ed

on
es

ar
e

re
qu

ire
d
to

be
co
nfi

gu
re
d
by

th
eu

se
rs
.I
ti
sh

ar
d
to

gu
ar
an
te
ec

on
ve
rg
en
ce

to
th
eo

pt
im

al
so
lu
tio

n

6 Mathematical Problems in Engineering

The constant SP determines how conservatively adaptive
control treats resource usage efficiency. A low SP, e.g.,
10%, will rapidly reduce the number of active ULSs when
TCF increases but will cause a slower response to sudden
large decreases in TCF and vice versa. The evaluation in
Section 6 demonstrates that a low SP of 30% will not result
in performance degradation.

Conversely, the controller of our deadlock-free scheduler
calculates Δ𝑈𝐿𝑆 using the relative gain formula described
in Steps 12, 16, and 17 (together, these steps are equivalent
to (2)), which allows SP to be a value, rather than a range.
Moreover, samplePeriod is determined based on the overhead
of executing the control loop.

4. Experiment Setups and
Parameter Assumptions

We compare our proposed schedulers with two commonly
used node-level schedulers, multipath monolithic and two-
level. To understand the tradeoffs between the multipath
monolithic, two-level, deadlock-free, and adaptive deadlock-
free schedulers, we construct a simulator that is based on
a many-core system. This simulator is driven by synthetic
workloads, and its parameters are drawn from empirical
workload distributions [41–44]. We use this approach to
compare the behavior of four schedulers under the same
conditions with identical workloads. The remainder of this
section describes the assumptions and parameters that are
used in our simulators and explains the metrics and work-
loads we use to evaluate the schedulers.

4.1. Model Assumption. Various scheduling algorithms have
been proposed to permit node sharing between jobs. Many-
core systems are used extensively, making the underlying
operation of a node much more similar to a distributed sys-
tem than it was previously [4]. In other words, different types
of jobs are likely to share the same node [45]. This sharing
amounts to the realization of supporting multiple scheduling
logic schemes at the node level.Themost common technique
used in current node-level scheduling is multipath mono-
lithic scheduling. It lacks parallelism and supports a large
number of scheduling logic schemes at the price of adding a
large amount of extra code. Because of these problems, some
studies have advocated using a two-level scheduling, which
lacks control of the underlying resources and loses the global
knowledge of a node for determining priority. In this work,
we opt for supporting multiple scheduling logic schemes in a
composable and uncoordinated manner, which is enabled by
Exokernel, user-level schedulers, and our proposed resource
state. We anticipate that this approach will address the
problems of a monolithic scheduler without suffering from
the known drawbacks of the multipath monolithic and two-
level schedulers.

System Overview and Job Models. Because modern machines
that can easily apply 48 or more CPU cores to process
a 100-GB dataset entirely in memory are already used in
many practical applications, we assume that each node
is a system with multilane high-speed networking cards,

Table 2: Design issues in single-path and multipath monolithic,
two-level, and adaptive deadlock-free scheduling.

Synthetic
workload

Real-life
workload

CPU architecture many-core many-core
Cores and memory request
size sampled actual data

Initial cores and memory
state sampled actual data

Tasks per job sampled actual data
Job arrival rate 𝜆𝑗𝑜𝑏 sampled actual data
Task duration sampled actual data

hundreds of gigabytes ofmemory, and terabytes of disk space.
As discussed in previous studies [6, 46], jobs with different
resource demands and distinct scheduling logic schemes tend
to coexist on the same node. Each job consists of one or
more tasks to be executed in parallel. Our goal is to design
a reasonable mechanism for implementing rapid and sound
resource allocation at the node-level.

As the trend of BIG DATA that are reported in studies
[47, 48], we target a mixture of two different types of
workloads in this work: HPC and data-intensive, which will
be discussed detailedly in Section 5.3. HPCworkloads mostly
comprise regular parallel applications, which are mainly
compute-bound. Data-intensive workloads are dominated by
I/O bound applications. As studied in literature [49], most
large distributed scientific applications fall under the Single
ProgramMultiple Data (SPMD) programming model, which
consists of multiple identical or nearly identical tasks that
make very similar demands on the system. We suppose that
all tasks in a job have the same memory requirements and
CPUs need and that they must progress at the same rate. The
memory and CPU requirements for a task are expressed as
a fraction of the total node memory and a fraction of the
available CPU cores for a node that allows the task to run at
maximum speed. For instance, a task might require 30% of
a node’s memory and use 50% of the node’s CPU resources
in dedicated mode.We also assume that such proportions are
publicly known andwill not be changed throughout the entire
job execution process.

4.2. Discrete-Event Simulator. We have developed a discrete-
event simulator that implements five schedulers, including
the following types: single-path monolithic, two prevalent
schedulers: single-path monolithic, the two most common
schedulers (multipath monolithic and two-level), deadlock-
free, and adaptive deadlock-free scheduler. Our simulator
primarily accepts a list of jobs as the input that is likely
to be scheduled on the same node. Each job is described
by a submit time, a required number of tasks, one CPU
requirement, one memory requirement specification, and an
execution time.

Our simulator incorporates some simplification for the
targeted schedulers that are summarized in Table 2, allowing
us to include a broad range of operating points within a rea-
sonable runtime. Thus, we are able to compare the behavior

Mathematical Problems in Engineering 7

1. If currentTime – lastSampleTime < samplePeriod then
2. goto Step 1
3. Sampling number of existing ULS, numOfULS = sampling
//miniULS is the minimum number of user-level scheduler, for this paper one

4. while numOfULS <= miniULS
5. goto Step 1
6. endwhile
7. if numOfULS >miniULS then
8. Calcualte TCF = numAborteds/numTransactions ×100
9. CalculateΔ𝑇𝐶𝐹 = TCF – SP
10. Get the number of active ULS, numActiveULS = getActiveULS()
11. Calculate the order of magnitude for numOfULS, order = log10(numOfULS)
12. CalculateΔ𝑈𝐿𝑆 = Δ𝑇𝐶𝐹×(numOfULS/order)
13. while Δ𝑈𝐿𝑆 < 0
14. activateULS(ULS[numActiveULS])
15. numActiveULS = numActiveULS + 1
16. Δ𝑈𝐿𝑆 = Δ𝑈𝐿𝑆 + 1
17. endwhile
18. while Δ𝑈𝐿𝑆 > 0
19. deactivateULS(ULS[numActiveULS])
20. numActiveULS = numActiveULS – 1
21. Δ𝑈𝐿𝑆 = Δ𝑈𝐿𝑆 - 1
22. endwhile
23. end if

Algorithm 1: Process of adaptive controlling active user-level schedulers (ULS).

of all these schedulers under the same conditions and with
identical workloads. The rest of this section describes our
simulators.

Parameters for Simulation. The scheduler decision time
(𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛) for assigning cores andmemory pages in a user-level
scheduler is modeled as a linear function as follows:

𝑡𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑜𝑗𝑜𝑏 + 𝑜𝑡𝑎𝑠𝑘 × tasks per job (3)

where ojob represents the per-job overhead due to the coordi-
nation needs of cores and memory pages [50, 51] and otask is
the incremental cost to place each task.The values for ojob and
otask are based on estimates from real-world data-intensive
workloads in the real world: ojob = 0.1m s and otask = 50ns.

Since the dominant application in data-intensive work-
loads is compute-bound, we are interested in how the added
I/O bound applications will influence the performance of
DISC node. Our experiments in Section 5 will explore the
effects of varying ojob (I/O bound) for I/O bound user-
level scheduler, which aims to investigate how the proposed
deadlock-free and adaptive deadlock-free schedulers will be
affected by the longer decision times needed for a more
complicated placement algorithm for I/O applications.

Poisson distribution has been adopted to simulate job
arrival rate at the node level, denoted as 𝜆𝑗𝑜𝑏. We also vary
the job arrival rate to a 32-cores node to evaluate how it affects
scheduling performance.

Metrics in Simulation. In this paper, we implement our
evaluation at two levels: first we compare different schedulers
and then we compare our proposed schedulers.

At the first level, we primarily use three metrics to
evaluate the efficiency and scalability of different schedulers:
per-job wait time speedup, job execution time speedup, and
busyness of scheduler.Thesemetrics are defined and explained
below.

The perceived quality of resource allocation is evaluated
by the per-job wait time and job runtime to completion. The
per-job wait time is defined as the time until jobs begin
running, i.e., the difference between the submission time of a
job and the beginning of the job’s first scheduling attempt.The
job runtime to completion is defined as the difference between
the beginning of the job’s first runtime and its completion
time. We assume that each scheduler can process one request
at a time, so a busy scheduler will cause a delay in the jobs that
want to queue. Consequently, the per-job wait timemeasures
the depth of scheduler queues and will increase as the
scheduler becomes busy, either because it receives more jobs
or because its jobs take longer to schedule. Compared with
single-path monolithic scheduler, the multipath monolithic,
two-level, and our deadlock-free and adaptive deadlock-free
schedulers achieve higher job throughput by parallelizing the
process of resource allocation in different ways and executing
multiple jobs in parallel if there are sufficient resources.
According to Amdahl’s law, we must use the speedup in per-
job wait time and job runtime to completion to compare the
multipath monolithic, two-level, and our deadlock-free and
adaptive deadlock-free schedulers.

More notable is that per-job wait time depends upon the
busyness of scheduler, which is the amount of time that the
scheduler is busy making scheduling decisions. This metric
increases with the per-job decision time (i.e., 𝑜𝑗𝑜𝑏).Thus, it will
also be used to evaluate different schedulers.

8 Mathematical Problems in Engineering

Several second-level metrics are used to evaluate our pro-
posed schedulers: the deadlock-free and adaptive deadlock-
free schedulers. The busyness of scheduler for the proposed
schedulers will also increase if scheduling work must be
redone because of conflicts in the deadlock-free approaches.
To evaluate the occurrence probability of the latter, we utilize
two more metrics. One is the average number of conflicts per
overall committed transactions, called the fraction of conflict.
A value of 0 for the fraction of conflict means no conflicts
occurred, whereas a value of 3 indicates that the average
workloads experienced three conflicts and thus requires four
scheduling attempts. Another metric that we will evaluate is
waste time in the busyness of scheduler, which is the fraction
of time during which the scheduler is rescheduling a redo job
or becomes idle. Obviously, as these two values increase, the
performance of the scheduler decreases.

The values for the busyness of scheduler and the fraction of
conflict are the medians of the generated traces. These traces
will be described in Section 4.3. In addition, the values for
per-job wait time speedup and waste time in the busyness of
scheduler are overall averages. In the following experiments,
the error bars for the busyness of scheduler or the fraction of
conflict show the median absolute deviation (MAD) from the
median value of the per-trace averages.

4.3.Workloads. Workload heterogeneity [42, 45] is common-
place in current data-intensive workloads. Since the data-
intensive applications will converge with HPC applications
in the future, our simulators aim at two main applications:
data-intensive ones and traditional MPI ones [48]. There are
many approaches to partitioning workloads among clusters
[42, 43, 52, 53]. To simplify and obtain the critical behavior
characteristics of different schedulers, we select a simple two-
way split on top of our simulators between I/O bound jobs
that provide end-user operations (e.g., web services), internal
infrastructure services (e.g., BigTable), and compute-bound
jobs that perform a computation.

We adopt synthetic workloads for part of the study, using
parameters drawn from empirical workload distributions
from previous studies [43, 45].There are a number of reasons
to use synthetic workloads. Real workloads are often of poor
quality and may not contain all information that we require.
In addition, real workloads are for specific systems, while
synthetic workloads are generated using a model instantiated
from multiple systems and thus can be more representa-
tive.

Through the use of Exokernel, page coloring [10, 54, 55],
and other techniques, CPU cores and memory pages of a
many-core node can be precisely shared, partitioned, and
distributed to different applications. Thus, the total amount
of allocated CPU resources in a node is constrained not
to exceed 100%. CPU resource utilization of 100% can only
be reached by a single job if that job is CPU-intensive
and implemented using multiple threads. A CPU-intensive
sequential job can only use 100/𝑛% of the node’s CPU
resources, where n is the number of processor cores for
that node. In our synthetic trace experiments, we arbitrarily
assume a 64-core node, which means that a sequential task
would use at most 2% of the node’s CPU resource.

As discussed [52, 53], we assume that all tasks of jobs from
HPCworkloads areCPU-intensive and the tasks in a one-task
job are sequential. For data-intensive jobs [43], we assume
that a job is made up of one or more tasks (occasionally
thousands of tasks), which aremostly CPU-intensive (> 80%)
but with a fast turnaround, whereas the rest are I/O-intensive
(< 20%) and consume the majority of resources. The latter
typically run formuch longer and have fewer tasks thanCPU-
intensive jobs.

One thousand distinct traces of 2000 jobs were generated
according to parameters drawn from an empirical distribu-
tion of workloads [43, 45] and annotated with CPU and
memory requirements as described. The generated traces
assume a 64-core node and thus contain jobs with between
1 and 64 tasks. Suppose that all the jobs only submit to the
64-core node.

Also, real workloads [56] from Google cluster have also
been used to test our simulator.The information of workloads
is collected during a 29-day period in the month of May
2011 in one of Google’s production cluster cell. The cell size
is more than 12,477 distinct machines, including 55,272 jobs
and 1,405,572 tasks. Many jobs have a small number of tasks
(less than 100); in fact, a very large number of jobs have
a single task. A few jobs have over 2000 tasks, which is
consistent with our assumptions for synthetic workloads.

In summary, our experiments require a scheduling that
can accommodate both types of jobs, flexibly support job-
specific policies, and scale to an ever-growing amount of
scheduling work.

5. Experiment Result Comparison
and Evaluation

In this section, we construct simulators and compare the
behavior of all schedulers (single-path monolithic, multipath
monolithic, two-level scheduling, deadlock-free, and adap-
tive deadlock-free scheduling), under the same conditions
and with identical workloads, as described in Section 4. Our
simulator runs on a laptop with an Intel processor i7 4710MQ
with 4 physical cores (8 logic cores) and 8GB memory. Each
core has a dedicated 256KB L1 cache and a dedicated 1024KB
L2 cache. There is a 6 MB L3 cache shared by four cores.

Our baseline for comparison is a single-path monolithic
scheduler. Its successor is a multipath monolithic scheduler
with a fast code path for CPU-intensive jobs; we refer to this
scheduler as a multipath monolithic scheduler because it still
schedules only one job at a time.

The two-level scheduling is modeled on the offer-based
design. We simulate a first-level scheduler that can distribute
CPU cores and memory pages to user-level schedulers, one
for CPU-intensive jobs and one for I/O-intensive jobs. For
simplicity, we assume that a user-level schedulers can only
manage the set of resources available to it when it begins a
scheduling attempt for a job. Subsequently, any offers that
arrive during the attempt are ignored. Resources unused
at the end of a job-scheduling activity are returned to the
first-level scheduler; they can be reoffered if the user-level
scheduler is the furthest one below its fair share. The gang

Mathematical Problems in Engineering 9

1ms 10ms 100ms 1s 10s
0

100

200

300

400

500

Multi-path(CPU intensive)
Multi-path(I/O intensive)
Deadlock-free(CPU intensive)
Deadlock-free(I/O intensive)
Two-level(CPU intensive)
Two-level(I/O intensive)

M
ea

n
pe

r-
jo

b
w

ai
t t

im
e s

pe
ed

up

100s
Ojob(I/O intensive) (sec;log10)

(a) Schedulers’ per-job wait time

1ms 10ms 100ms 1s 10s
0.0

0.2

0.4

0.6

0.8

1.0

Multi-path monolithic
Deadlock-free
Two-level

Bu
sy

ne
ss

 o
f t

he
 S

ch
ed

ul
er

100s
Ojob (I/O intensive) (sec;log10)

(b) The busyness of scheduler

0.8

1.2

1.6

2.0

2.4

2.8

jo
b

ru
nt

im
e t

o
co

m
pl

et
io

n
sp

ee
du

p

Number of Submitted jobs

Multi-path
Deadlock-free
Two-level

102 103 104 105 106

(c) Schedulers’ job execution time speedup

Figure 2:The performance of schedulers.

scheduling used in this first-level scheduling is very efficient.
Thus, we assume that it takes 100 ns to make a resource offer.

We use the simulator to explore our adaptive deadlock-
free approach. First, however, we begin with its predecessor,
the deadlock-free approach. We again simulate two user-
level schedulers, one addressing CPU-intensive job and the
other handling I/O-intensive jobs. Each user-level scheduler
is given a private, local, frequently updated copy, i.e., the
resource state. Once a user-level schedulermakes a scheduling
decision for a job, it will refresh its local copy of the resource
state and synchronize it with the states of other user-level
schedulers. We define the operation of updating a resource

state as a transaction. If there are no conflicts, then the entire
transaction is accepted; otherwise, only those changes that
do not result in an overcommitted core or memory page are
accepted. All these changes materialize the resource state in
a single core for a computing node; the resource state in our
deadlock-free scheduling can be set to read or write and the
scheduling transactions are submitted directly to the different
cores. The cores themselves check for conflicts and accept
or reject the changes. This checking allows our deadlock-
free scheduler to make progress even when the shared state
is temporarily unavailable. A problem arises because we use
resource-fit in our deadlock-free scheduling. Obviously, if

10 Mathematical Problems in Engineering

1ms 10ms 100ms 1s 10s
0

10

20

30

40

50

60

Jo
b

ab
an

do
ne

d

100s
OＤＩ＜ (I/O intensive) (sec;log10)

Figure 3: Two-level approach: unscheduled job while varying o𝑗𝑜𝑏 (I/O-intensive).

／ ＤＩ＜
(I/O

 intensive)

／ＤＩ＜

1E-3
1E-4

0.01
0.1

1

Th
e b

us
yn

es
s o

f s
ch

ed
ul

er

／ Ｎ；Ｍ
Ｅ

0.1

1E-4
1E-3

0.0
1

1E-5

／
Ｎ；ＭＥ (I/O intensive)

1.0

0.8

0.6

0.4

0.2

0.0

(a) Multipath monolithic

／ ＤＩ＜
(I/O

 intensive)

／ＤＩ＜

1E-3
1E-4

0.01

0.1
1

Th
e b

us
yn

es
s o

f s
ch

ed
ul

er

／ Ｎ；Ｍ
Ｅ

0.1

1E-4E-5

1E-3
0.0

1／
Ｎ；ＭＥ (I/O intensive)

1.0

0.8

0.6

0.4

0.2

0.0

(b) Two-level

／ ＤＩ＜
(I/O

 intensive)

／
ＤＩ＜

1E-31E-4

0.01

0.1

1

Th
e b

us
yn

es
s o

f s
ch

ed
ul

er

／ Ｎ；Ｍ
Ｅ0.1

1E-4
1E-3

0.0
1

1E-5

／
Ｎ；ＭＥ (I/O intensive)

1.0

0.8

0.6

0.4

0.2

0.0

(c) Lock-free

Figure 4: Impact of varying the job overhead ojob(I/O-intensive) (right axis) and cost to place task otask (I/O-intensive) (left axis) on scheduler
busyness (z-axis) in different scheduling schemes. Red shading of a 3D graph means that part of the jobs remained unscheduled.

Mathematical Problems in Engineering 11

1ms

100ms

10s

1ks

per-job wait time(CPU intensive)
per-job wait time(I/O intensive)

1x 2x 4x 6x 8x 10x

M
ea

n
pe

r-j
ob

 w
ai

t t
ie

m
 (m

s)

Relative job

10s

(a) Per-job wait time

0.0

0.2

0.4

0.6

0.8

1.0

Th
e b

us
yn

es
s o

f s
ch

ed
ul

er

CPU intensive
I/O intensive

1x 2x 4x 6x 8x 10x
Relative job

(b) Scheduler busyness

Figure 5: Performance of deadlock-free scheduling by varying the arrival rate for the CPU-intensive job 𝜆𝑗𝑜𝑏 (CPU-intensive).

there is no feedback control, the conflict fraction is likely
to rapidly increase with an increasing number of user-level
schedulers. The situation could worsen because starvation
might occur. To overcome this problem with deadlock-free
scheduling, we use the global TCF (discussed in Section 4.2)
as an index to control the number of running user-level
schedulers. This approach will be further explored in the
Section 5.2.

Because all the schedulers support two scheduling logic
schemes, CPU-intensive and I/O-intensive, we divide the
jobs into CPU-intensive and I/O-intensive throughout the
experiments.

5.1. Comparison by Varying Parameters. In this experiment,
we keep the decision time for the CPU-intensive user-
level scheduler constant and vary the decision time for
the I/O-intensive user-level scheduler by adjusting 𝑜job(I/O-
intensive). Figure 2 shows the performance of the multipath
monolithic, two-level and deadlock-free schedulers.

Multipath Monolithic Model. With a fast path for CPU-
intensive jobs in the multipath monolithic model, both the
average per-job wait time and the busyness of scheduler
increase significantly even with long decision times for I/O-
intensive jobs. Although the majority of jobs are CPU-
intensive, these jobs can still become stuck in a queue behind
the slow-to-schedule I/O-intensive jobs or face head-of-
line blocking. Scalability remains limited by the processing
capacity of the multipath monolithic scheduler (Figures 2(a)
and 2(b)). Parallel processing is required to mitigate this
limitation.

Two-Level Model. Figure 2(b) illustrates that the busyness
of the CPU-intensive user-level scheduler is much higher
than in the monolithic multipath case. This difference is a

consequence of the interaction between the offer-based two-
levelmodel and the I/Ouser-level scheduler’s long scheduling
decision time. The offer-based two-level model achieves
fairness by alternately offering all the available computing
resources to different user-level schedulers, predicated on the
assumptions that resources will become available frequently,
and scheduler decisions will be rapid. Thus, a long scheduler
decision time indicates that nearly all many-core resources
have been in use for a long time, making them inaccessible to
other user-level schedulers. These resources are often insuffi-
cient to schedule CPU-intensive job of above-average size,
thus, the CPU-intensive user-level scheduler will not make
progress, while the I/O-intensive user-level scheduler will
hold an offer.The I/O-intensive user-level scheduler will keep
trying; consequently, a number of tasks will be abandoned
because they were not scheduled before the retry limit
defined in Section 4.2 in the offer-based two-level mode case
(Figure 3).

This problem occurs because of the two-level scheduler’s
assumption of quick scheduling decisions, small tasks, and
sufficient resources, which does not hold for I/O-intensive
jobs. The two-level scheduler could be extended to make
only fair-share offers; this would complicate the first-level
scheduler logic. In reality, each user-level scheduler can only
perceive a small fraction of the available resources, and the
quality of the placement decisions for large or fastidious jobs
might decrease.

Deadlock-Free. In the deadlock-free approach, the speedup in
the average per-job wait time (Figure 2(b)) and the schedulers’
job execution time (Figure 2(c)) is comparable to the times
for the multipath monolithic and two-level schedulers. This
similarity suggests that conflicts and interference are com-
paratively rare. This suggestion is confirmed by the graph of
the busyness of scheduler (Figure 2(b)). Unlike the offer-based

12 Mathematical Problems in Engineering

0.0

0.2

0.4

0.6

0.8

1.0

1x 2x 4x 6x 8x 10x

1 scheduler
2 schedulers
4 schedulers

8 schedulers
16 schedulers
32 schedulers

M
ea

n
co

nfl
ic

t f
ra

ct
io

n

Relative job

(a) Mean conflict fraction

1 scheduler
2 schedulers
4 schedulers

8 schedulers
16 schedulers
32 schedulers

0.0

0.2

0.4

0.6

0.8

1.0

1x 2x 4x 6x 8x 10x

M
ea

n
bu

sy
ne

ss
 o

f s
ch

ed
ul

er

Relative job

(b) Mean scheduler busyness

2 4 8 16 32

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
W

as
te

 ti
m

e i
n

Sc
he

du
le

r B
us

yn
es

s

Number of Schedulers
(c) Mean Waste time in scheduler busyness

Figure 6: Additional metrics to evaluate deadlock-free scheduling by varying the arrival rate for the CPU-intensive job, 𝜆𝑗𝑜𝑏 (CPU-
intensive)(1.0 is the default rate.).

two-level mode (Figure 3), the deadlock-free scheduler
manages to schedule all tasks in the job. Furthermore, this
scheduler does not suffer from the head-of-line blocking that
occurs in monolithic multipath implementation; the lines for
CPU-intensive and I/O-intensive jobs are independent.

We also evaluate the effect of scaling o𝑡𝑎𝑠𝑘 as an additional
dimension, and the results are shown in Figure 4. The results
demonstrate that the multipath monolithic scheduler is not
scalable. Even when adding the multipath feature to support
multiple scheduling logic schemes, head-of-line blocking
remains a problem for CPU-intensive jobs. In other words,
a multipath monolithic scheduling might not be able to scale
to the workloads that we project for large nodes. Composable
scheduler implementations are supported by the offer-based
two-level scheduler, but the advantages of this technique are

diminished by its use of a pessimistic concurrency control
mechanism, which fails to handle jobs with long decision
times. Therefore, the scheduler could not handle much of the
heterogeneous load offered to it.

The deadlock-free approach offers competitive, scalable
performance, supports independent scheduler implementa-
tions, and exposes all allocation state to the schedulers. Our
results indicate that the deadlock-free approach can scale to
tens of user-level schedulers and to challenging workloads,
which will be further discussed in the following Section 5.2.

5.2. Scalability Exploration for Adaptive Deadlock-Free
Scheduling. In this section, we examine how the deadlock-
free model scales as the workload changes. For this purpose,
we increase the job arrival rate 𝜆𝑗𝑜𝑏 of the CPU-intensive

Mathematical Problems in Engineering 13

�e number of running user-level schedulers n=4, 8, 16, 32

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

fra
ct

io
n

of
 co

nfl
ic

t

Deadlock-free
Adaptive Lock-free

n=4
0.0

0.2

0.4

0.6

0.8

1.0

Deadlock-free
Adaptive Deadlock-free

n=8

0.0

0.2

0.4

0.6

0.8

1.0

n=16

M
ea

n
fra

ct
io

n
of

 co
nfl

ic
t

Deadlock Free
Adaptive Deadlock-free

0.0

0.2

0.4

0.6

0.8

1.0

Deadlock-free
Adaptive Deadlock-free

n= 32
1x 2x 4x 6x 8x 10x 1x 2x 4x 6x 8x 10x

Relative job Relative job

Figure 7: Comparison of fraction of conflict between adaptive deadlock-free scheduling andDeadlock-free scheduling by varying the arrival
rate for the CPU-intensive job, 𝜆𝑗𝑜𝑏 (CPU-intensive) (1.0 is the default rate.).

schedulers. As demonstrated in Figure 5, both the per-job
wait time and the busyness of scheduler increase. In the
CPU-intensive case, this is due to the higher job arrival rate,
whereas in the I/O-intensive case, it is due to additional
conflicts.

There are two parameters of our adaptive schemes needed
to be set: sample interval and target TCF range. Through
experimentation these were set to a sample interval of 10
seconds, with lower TCF threshold of 40% and upper thresh-
old of 70%. Because the CPU-intensive user-level scheduler
represents the main scalability bottleneck, we repeat the
same scaling experiment with multiple CPU-intensive user-
level schedulers in order to test the ability of the deadlock-
free model to scale to larger loads. The CPU-intensive
scheduling work is load-balanced across the schedulers using

a simple hashing function. As expected, the fraction of conflict
increases with the number of user-level schedulers, because a
greater possibility of conflict exists (Figure 6(a)). However,
the busyness of scheduler decreases with the addition of more
user-level schedulers (Figure 6(b)), which is not an encour-
aging. By exploring the wasted time in scheduler busyness
shown in Figure 6(c), we infer that the decreased busyness of
the scheduler observed in Figure 6(b) might result from the
high conflict fraction, which leaves some of the schedulers
idle, awaiting sufficient resources for the next schedule.

Therefore, we attempt to improve the deadlock-free
model with automated control, as described in Section 4.
The resulting adaptive deadlock-free scheduling can not only
scale to highly CPU-intensive jobs but also provide good
behavior for I/O-intensive jobs. We repeat the same input

14 Mathematical Problems in Engineering

�e number of running user-level schedulers n=4, 8, 16, 32

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Bu

sy
ne

ss
 o

f S
ch

ed
ul

er

Deadlock-free
Adaptive Deadlock-free

n=16

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n

Bu
sy

ne
ss

 o
f S

ch
ed

ul
er

Deadlock-free
Adaptive Lock-free

n=4
0.0

0.2

0.4

0.6

0.8

1.0

Deadlock-free
Adaptive Deadlock-free

n=8

0.0

0.2

0.4

0.6

0.8

1.0

Deadlock-free
Adaptive Deadlock-free

n=32

Figure 8: Comparison of busyness of scheduler between adaptive deadlock-free scheduling and deadlock-free scheduling by varying the
arrival rate for the CPU-intensive job, 𝜆𝑗𝑜𝑏 (CPU-intensive) (1.0 is the default rate.).

2 4 8 16 32

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
W

as
te

 ti
m

e i
n

Sc
he

du
le

r B
us

yn
es

s

Number of Schedulers

Figure 9: Mean waste time in scheduler busyness.

Mathematical Problems in Engineering 15

1m

1x 2x 4x 6x 8x 10x

100m

10

1k

100k

CPU-intensive
/O intensive

M
ea

n
pe

r-
jo

b
w

ai
t t

im
e (

se
c;l

og
10

)

10

Relative job

(a) Per-job wait time

0.0

0.2

0.4

0.6

0.8

1.0

Th
e b

us
yn

es
s o

f s
ch

ed
ul

er

1x 2x 4x 6x 8x 10x

CPU intensive
I/O intensive

Relative job

(b) Mean busyness of Scheduler

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
fr

ac
tio

n
of

 co
nfl

ic
t

1x 2x 4x 6x 8x 10x
Relative job

(c) Mean fraction of conflict

Figure 10: Results for usage of real-life workload to evaluate adaptive deadlock-free scheduling.

for adaptive deadlock-free scheduling, and the results are
shown in Figures 7, 8, and 9. Encouragingly, these results
demonstrate a large improvement in the fraction of conflict,
while moderate busyness of scheduler is maintained, which is
consistent with our assumptions. Compared to Figure 6(c),
the mean waste time in scheduler busyness shown in Figure 9
is greatly reduced. Importantly, these results suggest that the
adaptive deadlock-free approach can scale to tens or even
hundreds of user-level schedulers and to more challenging
workloads.

5.3. Improvement to Deadlock-Free Scheduling with Auto-
mated Control. Having compared the different schedulers
using the simulator with synthetic workload, we use real-life
workload to test our adaptive deadlock-free scheduling
approach.

We repeat the process similar to that described in Sec-
tion 5.2 with the real-life workload. Similar results to those
shown in Figure 10 were produced which gives us confidence
in our deadlock-free scheduling method.

6. Conclusion and Future Work

In this study, we proposed a novel adaptive deadlock-free
scheduling that can be applied to a single node in a DISC sys-
tem.This proposed scheduling solves the scalability problem
for current node-level schedules through adaptive optimistic
locking control. We compared the adaptive deadlock-free
model and its predecessor with two commonly used node-
level schedulers,multipathmonolithic and two-level schedul-
ing, using both synthetic and real-world workloads. In our
simulations, all the targeted schedulers were simplified to

16 Mathematical Problems in Engineering

examine abroad range of operating points within a reasonable
runtime, allowing us to compare the behavior of all the
targeted schedulers under the same conditions and with
identical workloads.

The results show that our approach outperforms the
other schedulers with the respect to scheduling efficiency and
scalability without performance degradation. Our approach
also results in large improvements in the parallelism and scal-
ability of the node-level scheduling, because providing the
independent scheduler implementations with a knowledge of
the underlying resource allows them to compete for resources
in an uncoordinated manner and adjusts active scheduler
implementations dynamically when conflicts occur.

Our future work will fall into three categories. First,
we will focus on approaches that provide global guarantees
(fairness, starvation avoidance, etc.) in the adaptive deadlock-
free scheduler. Second, our current approach simply uses
the global TCF as an indicator to adjust the deadlock-free
scheduling, which will randomly deactivate any user-level
scheduler.Therefore, as a next step, our works will investigate
more complex indicators to ascertain how they influence our
adaptive deadlock-free approach. Finally, it is not easy to
set the optimal parameter configuration that may depend
on both workload and system-level settings. Our proposed
heuristic-based approach is hard to guarantee convergence to
the optimal solution for relieving performance degradation
of coscheduling. We will explore and implement different
approaches to optimize the scheduling phase of our pro-
posed scheduler in the future study, such as the Markov
Chain method proposed by previous study [26] and machine
learning-based approach proposed by study [35].

Data Availability

(1) The original data used to support the findings of this
study have been deposited in the baidu yunpan repository
https://pan.baidu.com/s/1GQx u0jAjB hJgTy9S5Q. (2) The
simulator used to support the findings of this study is avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the Foundation of China
(Grant nos. 61402183 and 61070015), the Guangdong
Provincial Science and Technology Projects (Grant nos.
2014B010110004, 2014B010117001, 2014A010103022, and
2014A010103008), and the Foundation of Guangdong (Grant
no. 10351806001000000),and Guangzhoumajor research col-
laborative innovation projects (Grant no. 201604016074).

Supplementary Materials

The specific data for Figures 2–5 is available free of charge.
(Supplementary Materials)

References

[1] Y. Chen, C. Chen, Y. Yin, X. Sun, R. Thakur, and W. Gropp,
“Rethinking High performance computing system architecture
for scientific big data applications,” in Proceedings of the 2016
IEEE Trustcom/BigDataSE/ISPA, pp. 1605–1612, Tianjin, China,
August 2016.

[2] E. Anderson and J. Tucek, “Efficiency matters!,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 1, p. 40, 2010.

[3] B. Wadhwa and A. Verma, “Energy and carbon efficient VM
placement and migration technique for green cloud datacen-
ters,” in Proceedings of the 2014 7th International Conference on
Contemporary Computing, IC3 2014, pp. 189–193, India, August
2014.

[4] A. Baumann, S. Peter, A. Singhania, T. Roscoe, P. Barham, and
R. Isaacs, “Your computer is already a distributed system. why
isn’t your OS?” in Proceedings of the in Conference on Hot Topics
in Operating Systems, pp. 12-12, 2009.

[5] A. Rasmussen, G. Porter, M. Conley et al., “TritonSort: a bal-
anced large-scale sorting system,” in Proceedings of the Usenix
Conference on Networked Systems Design and Implementation,
pp. 29–42, 2011.

[6] A.D. Breslow, L. Porter, A. Tiwari et al., “The case for colocation
of high performance computing workloads,” Concurrency and
Computation: Practice and Experience, vol. 00, pp. 1–20, 2012.

[7] J. Gray, “Sort benchmark home page,” http://sortbenchmark
.org/.

[8] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient
and QoS-aware cluster management,” in Proceedings of the 19th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2014, pp. 127–
143, USA, March 2014.

[9] J. R. Santos, Y. Turner, G. Janakiraman, and I. Pratt, “Bridging
the gap between software and hardware techniques for i/o vir-
tualization,” in Proceedings of the Usenix Technical Conference,
pp. 29–42, Boston, MA, USA, 2010.

[10] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in Proceedings
of the the fourth ACM european conference, p. 89, Nuremberg,
Germany, April 2009.

[11] J. Shafer, D.Carr, A.Menon, S. Rixner, A. L.Cox,W.Zwaenepoel
et al., “Concurrent direct network access for virtual machine
monitors,” in Proceedings of the IEEE International Symposium
on High Performance Computer Architecture, pp. 306–317, 2007.

[12] D.Wentzlaff andA.Agarwal, “Factoredoperating systems (fos):
the case for a scalable operating system for multicores,” ACM
Sigops Operating Systems Review, vol. 43, pp. 76–85, 2009.

[13] H. Pan, B. Hindman, and K. Asanovic, “Lithe: enabling efficient
composition of parallel libraries,” in Proceedings of the Hotpar,
pp. 11-11, 2009.

[14] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
and R. Morris, “Corey: an operating system for many cores,”
in Proceedings of the Usenix Symposium on Operating Systems
Design and Implementation, OSDI 2008, pp. 43–57, San Diego,
Calif, USA, 2008.

[15] G. Zellweger, S. Gerber, K. Kourtis, and T. Roscoe, “Decoupling
cores, kernels, and operating systems,” in Proceedings of the in
Usenix Conference on Operating Systems Design and Implemen-
tation, pp. 17–31, 2014.

https://pan.baidu.com/s/1GQx__u0jAjB_hJgTy9S5Q.%202
http://downloads.hindawi.com/journals/mpe/2018/1438792.f1.doc
http://sortbenchmark.org/
http://sortbenchmark.org/

Mathematical Problems in Engineering 17

[16] T. Harris, M. Maas, and V. J. Marathe, “Callisto: co-scheduling
parallel runtime systems,” in Proceedings of the 9th ACM Euro-
pean Conference on Computer Systems, EuroSys 2014, Nether-
lands, April 2014.

[17] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A.
Fedorova, “The linux scheduler: a decade of wasted cores,”
in Proceedings of the 11th European Conference on Computer
Systems, EuroSys 2016, UK, April 2016.

[18] J. A. Colmenares, S. Bird, H. Cook, P. Pearce, D. Zhu, J. Shalf et
al., “Resource management in the tessellationmanycore OS,” in
Proceedings of the UsenixWorkshop on Hot Topics in Parallelism,
2010.

[19] B. Rhoden, K. Klues, D. Zhu, and E. Brewer, “Improving per-
node efficiency in the datacenter with new OS abstractions,” in
Proceedings of the 2nd ACM Symposium on Cloud Computing,
SOCC 2011, Portugal, October 2011.

[20] X. Sun, N. Ansari, and R. Wang, “Optimizing resource utiliza-
tion of a data center,” IEEE Communications Surveys & Tutori-
als, vol. 18, no. 4, pp. 2822–2846, 2016.

[21] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” The Computer Journal, vol. 40, no. 12, pp. 33–37,
2007.

[22] A. Fedorova, J. C. Saez, D. Shelepov, andM. Prieto, “Maximizing
power efficiency with asymmetric multicore systems,” Commu-
nications of the ACM, vol. 52, no. 12, p. 48, 2009.

[23] M. Herlihy and J. E. Moss, “Transactional memory,” ACM
SIGARCH Computer Architecture News, vol. 21, no. 2, pp. 289–
300, 1993.

[24] N. Shavit and D. Touitou, “Software transactional memory,”
Distributed Computing, vol. 10, no. 2, pp. 99–116, 1997.

[25] K. Asanovic, B. Author, and J. Demmel,The Parallel Computing
Laboratory at U.C. Berkeley: A Research Agenda Based on the
Berkeley View, 2008.

[26] P. D. Sanzo, M. Sannicandro, B. Ciciani, and F. Quaglia,
“Markov chain-based adaptive scheduling in software transac-
tional memory,” in Proceedings of the 30th IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2016, pp.
373–382, USA, May 2016.

[27] D. R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel,” ACM
SIGOPS Operating Systems Review, vol. 29, no. 5, pp. 251–266,
1995.

[28] Chen and Benjie, “Multiprocessing with the exokernel operat-
ing system,” Massachusetts Institute of Technology, vol. 13, pp.
18–24, 2000.

[29] I. Pietri and R. Sakellariou, “Mapping virtual machines onto
physical machines in cloud computing: a survey,” ACM Com-
puting Surveys, vol. 49, no. 3, 2016.

[30] R. J. Creasy, “Origin of the VM/370 time-sharing system,” IBM
Journal of Research andDevelopment, vol. 25, no. 5, pp. 483–490,
1981.

[31] R. P. Goldberg, “Survey of virtual machine research,”The Com-
puter Journal, vol. 7, no. 6, pp. 34–45, 1974.

[32] V. Uhlig, “The mechanics of in-kernel synchronization for a
scalable microkernel,” ACM Sigops Operating Systems Review,
vol. 41, pp. 49–58, 2007.

[33] I.Watson, C. Kirkham, andM. Lujan, “A study of a transactional
parallel routing algorithm,” in Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation Tech-
niques (PACT 2007), pp. 388–400, Brasov, Romania, September
2007.

[34] M. Ansari, C. Kotselidis, K. Jarvis, C. Kirkham, and I. Wat-
son, “Advanced concurrency control for transactional memory
using transaction commit rate,” in Proceedings of the Interna-
tional Euro-Par Conference on Parallel Processing, pp. 719–728,
2008.

[35] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia, “Machine
learning-based self-adjusting concurrency in software transac-
tional memory systems,” in Proceedings of the 2012 IEEE 20th
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, MASCOTS 2012,
pp. 278–285, USA, August 2012.

[36] A. Dragojevic and R. Guerraoui, “Predicting the scalability of
an STM: a pragmatic approach,” in Proceedings of the 5th ACM
SIGPLANWorkshop on Transactional Computing, 2010.

[37] P. D. Sanzo, F. D. Re, D. Rughetti, B. Ciciani, and F. Quaglia,
“Regulating concurrency in software transactional memory:
an effective model-based approach,” in Proceedings of the 2013
IEEE 7th International Conference on Self-Adaptive and Self-
Organizing Systems, SASO 2013, pp. 31–40, USA, September
2013.

[38] R. M. Yoo and H.-H. S. Lee, “Adaptive transaction scheduling
for transactional memory systems,” in Proceedings of the 20th
ACMSymposium on Parallelism inAlgorithms andArchitectures,
SPAA’08, pp. 169–178, Germany, June 2008.

[39] D. Didona, P. Felber, D. Harmanci, P. Romano, and J. Schenker,
“Identifying the optimal level of parallelism in transactional
memory applications,” in Proceedings of the Revised Selected
Papers of the First International Conference on Networked
Systems, pp. 233–247, 2013.

[40] A. Dragojevi, R. Guerraoui, A. V. Singh, and V. Singh, “Prevent-
ing versus curing: avoiding conflicts in transactionalmemories,”
in Proceedings of the 28th ACM Symposium on Principles of
Distributed Computing, pp. 7–16, 2009.

[41] S. Di, D. Kondo, andW. Cirne, “Characterization and Compari-
son of Google Cloud Load versus Grids,” http://hal.archives-
ouvertes.fr/hal-00705858, 2012.

[42] M. Alam, K. A. Shakil, and S. Sethi, “Analysis and clustering of
workload in google cluster trace based on resource usage,” in
Proceedings of the 2016 IEEE Intl Conference on Computational
Science and Engineering (CSE) and IEEE Intl Conference on
Embedded and Ubiquitous Computing (EUC) and 15th Intl Sym-
posium on Distributed Computing and Applications for Business
Engineering (DCABES), pp. 740–747, Paris, France,August 2016.

[43] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J.
Wilkes, “Omega: flexible, scalable schedulers for large compute
clusters,” in Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys 2013, pp. 351–364, Czech Republic,
April 2013.

[44] H. Li, D. Groep, and L. Wolters, “Workload characteristics of a
multi-cluster supercomputer,” inProceedings of the International
Conference on Job Scheduling Strategies for Parallel Processing,
pp. 176–193, 2004.

[45] G. P. Rodrigo, P.-O. Östberg, E. Elmroth, K. Antypas, R. Gerber,
and L. Ramakrishnan, “Towards understanding HPC users
and systems: A NERSC case study,” Journal of Parallel and
Distributed Computing, vol. 111, pp. 206–221, 2018.

[46] N. Fallenbeck, H.-J. Picht, M. Smith, and B. Freisleben, “Xen
and the art of cluster scheduling,” in Proceedings of the VTDC
2006—2nd International Workshop on Virtualization Technol-
ogy in Distributed Computing; Held in Conjunction with SC06,
USA, November 2006.

http://hal.archives-ouvertes.fr/hal-00705858
http://hal.archives-ouvertes.fr/hal-00705858

18 Mathematical Problems in Engineering

[47] D. A. Reed and J. Dongarra, “Exascale computing and big data,”
Communications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[48] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and S. Kamburugamuve,
“Big data, simulations and HPC convergence,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics): Preface, vol.
10044, pp. 3–17, 2016.

[49] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, and R. Katz, “Mesos: a platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th
USENIX conference on Networked systems design and implemen-
tation, pp. 429–483, 2011.

[50] J. T. Havill, W. Mao, and V. Dimitrov, “Improved parallel job
scheduling with overhead,” in Proceedings of the in Joint Con-
ference on Information Sciences, 2008.

[51] D. Akhmetova, G. Kestor, R. Gioiosa, S. Markidis, and E. Laure,
“On the application task granularity and the interplay with the
scheduling overhead in many-core shared memory systems,”
in Proceedings of the IEEE International Conference on Cluster
Computing, CLUSTER 2015, pp. 428–437, USA, September 2015.

[52] H. You and H. Zhang, “Comprehensive workload analysis and
modeling of a petascale supercomputer,” in Job Scheduling
Strategies for Parallel Processing, vol. 7698 of Lecture Notes in
Computer Science, pp. 253–271, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[53] J. Emeras, S. Varrette, M. Guzek, and P. Bouvry, “Evalix: clas-
sification and prediction of job resource consumption on HPC
platforms,” in Proceedings of the Intl. Workshop on Job Sched-
uling Strategies for Parallel Processing (JSSPP 15), pp. 102–122,
2015.

[54] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-
aware scheduling on multicore systems,” ACM Transactions on
Computer Systems, vol. 28, no. 4, 2010.

[55] S. Ahrndt, J. Fähndrich, and S. Albayrak, “Cache-hierarchy con-
tention-aware scheduling in CMPs,” IEEE Transactions on
Parallel & Distributed Systems, vol. 25, pp. 581–590, 2014.

[56] “Traces of Google workloads,” http://code.google.com/p/
googleclusterdata/.

http://code.google.com/p/googleclusterdata/
http://code.google.com/p/googleclusterdata/

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

