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The problem of spatial vibrations, both aperiodically forced and free vibrations, of an arch with an arbitrary distribution of material
and geometric parameters is considered. Approximation with Chebyshev series was used to solve a conjugated system of partial
differential equations describing the problem. The system of differential equations was solved using an algorithm generating a
recursive infinite system of equations, developed by S. Paszkowski in “Numerical applications of Chebyshev polynomials” (in
Polish),Warsaw PWN, 1975. Since the coefficients of the obtained system of equations are defined by closed analytical formulas they
can be directly used to solve any nonprismatic arch,without it being necessary to solve again the considered problem.The algorithm
is highly accurate; i.e., already at a small approximation base it yields results agreeing with exact analytical solutions (obviously for
problems in the case of which such solutions can be derived). In order to demonstrate this the eigenfrequencies and eigenvectors
obtained for a circular prismatic arch were compared with their precise values determined from the exact analytical solutions. The
results yielded by the proposedmethodwere also compared with the results obtained by other methods and by other authors. As an
illustration, the proposed method was used to solve a more complex problem, i.e., the problem of the free and aperiodically forced
vibrations of a nonprismatic arch with its axis described by a catenary curve. In the example the effect of the lack of cross-sectional
symmetry of the arch on the form of the system’s spatial free and forced vibrations was analysed.

1. Introduction

Since curved beams are often used in civil, mechanical,
and aerospace engineering applications, the analysis of their
vibrations is of great practical importance. Being described by
a conjugated system of partial differential equations with four
or six (when the effect of shearing forces is taken into account)
unknown functions, the spatial arch vibration problem is
quite complicated. It is particularly difficult to solve when all
the system parameters, such as curvature and geometric and
material characteristics, are variable.

The arch vibration problem has been investigated by
many researchers, as evidenced by the abundant literature on
this subject. Most of this literature concerns planar systems
in which only in-plane or out-of-plane vibrations occur or
spatial systems with separated in-plane and out-of-plane

vibrations (vibrations are separated when the “generalized”
cross-sectional moment of deviation equals zero). The prob-
lem of the free vibration of prismatic arches was examined
by, among others, Chidamparam and Leissa [2] and Lee et
al. [3]. In Chidamparam and Leissa’s paper [2] the problem
was solved analytically with and without axial deformability
taken into account. Also the effect of a static axial force
on the eigenproblem solution by the Galerkin method was
examined there. Circular archeswith different opening angles
were considered, but only to determine the natural frequen-
cies. In paper [3] by Lee et al. the natural vibrations of a
rotating curved beam with elastically restrained root were
analysed. The differential equations describing the problem
were derived using the Hamilton principle. The fundamental
solution of the system of the differential equations was
obtained using the power series method.
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The problem of the free vibration of arches with stepped
cross sections was solved, using different methods, by, among
others, Huang at al. [4], Kawakami et al. [5], Liu and Wu
[1], Shin et al. [6], and Tong et al. [7]. Huang et al. [4]
analysed arches with any curvature and any cross section and
employed the Frobenius method combined with the dynamic
stiffness method to solve the problem.The same method was
used by Huang et al. in [8] to solve the free vibration-and-
stability problemwith shape deformation taken into account.
Kawakami et al. in paper [5] solved the eigenproblem using
the discrete Green function. Liu and Wu [1] applied the
generalized differential quadrature rule (GDQR) to solve the
eigenproblem, assuming the arch axis to be inextensible.
The numerical examples presented in [1] concerned circular
arches with different opening angles and with a constant
and stepwise or linearly varying cross section. The obtained
nondimensional natural frequencies were compared with the
ones determined by other methods by other researchers. The
generalized differential quadrature method (GDQM) and the
differential transformation method (DTM) were employed
by Shin et al. [6]. In paper [7] by Tong et al. a circular arch
was analysed and a solution for a prismatic arch was derived,
whichwas thenused to solve an arch (considered as a physical
approximation) with stepped cross sections. Besides the
eigenproblemalso the harmonically forced vibration problem
was solved there. Karami and Malekzadeh in paper [9] used
the differential quadrature method (DQM) to analyse the
free vibrations of a circular arch with stepped cross sections.
Nieh et al. [10] analytically determined (by the power series
method) a stiffness matrix for a prismatic arch, which was
then used to solve the free vibration-and-stability problem
for an elliptical arch. Eftekhari [11] analysed the vibration of a
circular arch with a varying cross-sectional height, applying
DQM and Fourier series approximation to solve problems of
the free and forced vibrations induced by a moving force.

In many papers the finite element method has been used
to analyse vibrations. Krishnan et al. [12] using three different
types of finite elements (differing in their number of degrees
of freedom) solved the eigenproblem, but for only the first
natural frequency. In Raveendranath et al. [13], various types
of elements, differing in the degrees of the power polynomials
used to approximate the shape function, were developed.
The elements were used to solve the vibration problem
for a circular prismatic arch. Yang et al. in [14] developed
two types of elements, corresponding to two arch models.
One of the models took into account the effect of shape
deformability and rotary inertia, whereas the other did not,
assuming that the arch axis did not deform axially. The shape
functions were approximated with power polynomials. The
defined finite elements were used to solve many numerical
examples (including arches with variable parameters) in
which eigenfrequencies and eigenforms were determined.
Öztürk et al. [15], using the assumption about arch axial
nondeformability and assuming the shape functions in the
form of a combination of trigonometric functions and clas-
sical polynomials, developed a finite element and employed
it to solve the free vibration-and-dynamic stability problem
for the arch. An element developed using exact (for the
static problem) shape functions (Litewka and Rakowski [16])

was employed in Litewka and Rakowski [17]. The functions,
being combinations of trigonometric functions, were further
transformed by replacing the trigonometric functions with
their expansions into power series and rejecting the higher-
order terms. The finite element was used to solve the free
vibration problem. Also Zhu and Meguid [18] worked on
developing a finite element for the curved beam. A three-
node element was defined and used to analyse free vibrations.
The results were compared with experimental results. An
interesting approach to the solution of the free vibration
problem for an arch with discontinuities (additional elastic
constraints, mass elements, and stepwise change in curva-
ture), based on wave propagation techniques was presented
in Kang et al. [19] and Riedel and Kang [20]. In the latter
paper only the discontinuities arising from additional elastic
constraints were taken into account. Using the coupled
displacement fieldmethodology and coupled shape functions
derived from the static equilibrium consideration Ishaquddin
et al. [21] developed a curvilinear beam finite element for
the Euler-Bernoulli beam and the Timoshenko beam. The
designed element is resistant to shear, flexure, and torsion
locking. The element was used in an analysis of the circular
arch eigenproblem.The computed out-of-plane free vibration
frequencies were compared with the analytical solution.

Curved laminated composite beams with constant cur-
vature were considered by Jafari-Taookolaei et al. [22], who
analytically solved the eigenproblem, taking delamination
into account, and developed a curvilinear finite element. Li et
Geudes Soares [23] developed a spectral finite element model
based on shear deformation theory. The exact solution of the
governing homogeneous differential equations was used as
the shape functions.The eigenproblemof a circular laminated
arch with a constant cross section was analysed and natural
frequencies and eigenforms were determined. Laminated
composite and sandwich beams with constant and varying
(circular, elliptical, and parabolic) curvature were analysed
by Ye, Jin, and Su [24]. A spectral-sampling surface method
was developed and applied to the eigenproblem of the curved
laminated beam. Sadeghpour et al. [25] analysed a debonded
curved sandwich beam. Relevant equations of motion were
derived from the Lagrange equation. The Rayleigh-Ritz
method was used to discretize the system. The eigenproblem
was solved using the Lanczos algorithm. The determined
natural frequencies and eigenforms were compared with the
results yielded by the finite element method.

Most of the above works on laminated beams focused
on the analysis of the effect of lamination on the system’s
response. The considerations were limited to arches with
constant curvature and a cross section invariable along their
length.

The work by Yu et al. [26] is an example of an analysis
of more complex models, including curved spatial systems.
A spatial beam model based on Washizu’s static model
was analysed. The model was used to investigate the in-
plane and out-of-plane vibrations of a circular arch with a
triangular cross section. Also the spatial problem was solved
and the eigenfrequencies of a helical cylindrical spring were
determined. The spatial free vibrations of circular planar
arches were analysed in work [27] by Caliò, assuming the
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Figure 1: Local coordinate system, external forces, displacements, and internal forces.

differential equations describing the in-plane and out-of-
plane vibrations of the arch to be separated. Caliò introduced
dynamic stiffness matrices for an arch and a curved-in-plane
girder. He solved the eigenproblem using the Wittrick and
Williams method.The results obtained as part of a numerical
example illustrating the analysis of the vibrations of a spatial
system consisting of arch elements were compared with the
results yielded by FEM.

The above survey of literature covers papers published in
the last ten-twenty years, and so it is obviously incomplete.
A wide survey of the earlier papers can be found in, e.g., the
review study byAuciello andDeRosa [28].Nevertheless, even
this brief survey of literature shows that most of the research
on the vibrations of arches has been limited to solving the
eigenproblem and only a few of the papers are devoted to the
problem of (usually harmonically) forced vibrations.

The problem was solved using the method previously
applied to solve the free vibration problem for the Euler beam
in the author’s papers [29, 30] and for the Timoshenko beam
in [31]. The method is based on the way of approximately
solving ordinary linear differential equations by means of
Chebyshev series, presented in themonograph byPaszkowski
[32]. The way referred to makes it possible to reduce the
differential equations to a system of algebraic equations.
Unfortunately, the coefficients of the latter equations are
combinations of the linear coefficients in the expansions of
the initial functions (occurring in the differential equations)
and their higher derivatives. An effective algorithm can be
developed by transforming the coefficients so that they will
contain only the terms of the expansions of the initial func-
tions and not their derivatives. Because of their length and
the limited confines of this paper the transformations are not
included here. It should be noted that the final solution for the
given form of differential equations has a general character
and enables ones to solve a system with any geometric and
material parameters.Moreover, as demonstrated in this paper
and in the earlier papers by the author, the proposed method
makes it possible (within the adoptedmodel) to obtain highly
accurate solutions.

The use of Chebyshev series to solve structural mechanics
problems (and other problems) is a known fact.The series are
used owing to, among other things, their good approximation
properties. However, to the present authors’ knowledge there
have been no other works in which the recursive algorithm
(see Paszkowski [32]) employed in this paper was used to
generate equations enabling the direct determination of the
expansion coefficients of the sought functions.

In order to verify the derived formulas, the algorithm was
applied to solve two examples. The first one was taken from
papers by other authors and used to compare the obtained
results with the ones determined by other methods. The
eigenproblem was solved in this example. In the second
example the problem of the aperiodically forced vibrations of
an arch with a varying cross section was analysed. Since in
this example the eigentransformation method was employed
to solve the aperiodically forced vibration problem, the
eigenproblem was solved in the first step. A rectangular pulse
and a nonstationary harmonic excitation were assumed as the
aperiodic excitation.

2. Problem Formulation

A nonprismatic arch, described in accordance with the
Bernoulli-Euler theory, is analysed.

The arch is subjected to time-variable force loads𝑃𝑥(𝑆, 𝑡), 𝑃𝑦(𝑆, 𝑡), 𝑃𝑧(𝑆, 𝑡) and moment loads 𝑀𝑥(𝑆, 𝑡),𝑀𝑦(𝑆, 𝑡), 𝑀𝑧(𝑆, 𝑡) (Figure 1). The axis of the arch is a plane
curve having length 2𝑎, defined by parametric equation r(𝑠),
where 𝑠 ∈ ⟨−𝑎, 𝑎⟩.

If the nondimensional variables and functions 𝑥 = 𝑋/𝑎,𝑦 = 𝑌/𝑎, 𝑧 = 𝑍/𝑎, 𝑠 = 𝑆/𝑎, 𝑢(𝑠, 𝑡) = 𝑈(𝑆, 𝑡)/𝑎, V(𝑠, 𝑡) =𝑉(𝑆, 𝑡)/𝑎, 𝑤(𝑠, 𝑡) = 𝑊(𝑆, 𝑡)/𝑎, and 𝜗(𝑠, 𝑡) = Θ(𝑆, 𝑡)/𝑎 are
introduced, the following system of fourth-order partial dif-
ferential equations describing the arch vibrations is obtained:

𝑑𝐸𝐴𝜕2𝑢𝜕𝑠2 + 𝑑𝜕𝐸𝐴𝜕𝑠 𝜕𝑢𝜕𝑠 − (𝜕𝜅𝜕𝑠 )
2 𝐸𝐼𝑧𝑢 − 𝜕𝜅𝜕𝑠 𝐸𝐼𝑧 𝜕

2V𝜕𝑠2
− 𝑑𝜅𝐸𝐴𝜕V𝜕𝑠 − (𝑑 𝜕𝜕𝑠 (𝜅𝐸𝐴) + 𝜕𝜅𝜕𝑠 𝜅2𝐸𝐼𝑧) V

− 𝜕𝜅𝜕𝑠 𝐸𝐼𝑦𝑧 𝜕
2𝑤𝜕𝑠2 + 𝜅𝜕𝜅𝜕𝑠 𝐸𝐼𝑦𝑧𝜗 = −𝑓 (𝑝𝑥 + 𝜅𝑚𝑧)

+ 𝑔𝜌𝜕2𝑢𝜕𝑡2 ,

(1a)

− 𝜕𝜅𝜕𝑠 𝐸𝐼𝑧 𝜕
2𝑢𝜕𝑠2 + (𝑑𝜅𝐸𝐴 − 2 𝜕𝜕𝑠 (𝜕𝜅𝜕𝑠 𝐸𝐼𝑧)) 𝜕𝑢𝜕𝑠

− ( 𝜕2𝜕𝑠2 (𝜕𝜅𝜕𝑠 𝐸𝐼𝑧) + 𝜕𝜅𝜕𝑠 𝜅2𝐸𝐼𝑧)𝑢 − 𝐸𝐼𝑧 𝜕
4V𝜕𝑠4

− 2𝜕𝐸𝐼𝑧𝜕𝑠 𝜕3V𝜕𝑠3 − (𝜕
2𝐸𝐼𝑧𝜕𝑠2 + 2𝜕2𝜅𝜕𝑠2 𝐸𝐼𝑧) 𝜕2V𝜕𝑠2
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− 2𝜅𝐸𝐼𝑧 𝜕V𝜕𝑠 − (𝑑𝜅2𝐸𝐴 + 𝜕2𝜕𝑠2 (𝜅2𝐸𝐼𝑧) + 𝜅4𝐸𝐼𝑧) V

− 𝐸𝐼𝑦𝑧 𝜕4𝑤𝜕𝑠4 − 2
𝜕𝐸𝐼𝑦𝑧𝜕𝑠 𝜕3𝑤𝜕𝑠3

− (𝜕2𝐸𝐼𝑦𝑧𝜕𝑠2 + 𝜅2𝐸𝐼𝑦𝑧) 𝜕2𝑤𝜕𝑠2 + 𝜅𝐸𝐼𝑦𝑧 𝜕
2𝜗𝜕𝑠2

+ 2 𝜕𝜕𝑠 (𝜅𝐸𝐼𝑦𝑧) 𝜕𝜗𝜕𝑠 + 𝜕2𝜕𝑠2 (𝜅3𝐸𝐼𝑦𝑧 + 𝜅
𝜕2𝐸𝐼𝑦𝑧𝜕𝑠2 )𝜗

= −𝑓(𝑝𝑦 + 𝜕𝑚𝑧𝜕𝑠 ) + 𝑔𝜌𝜕
2V𝜕𝑡2 ,

(1b)

− 𝜕𝜅𝜕𝑠 𝐸𝐼𝑦𝑧 𝜕
2𝑢𝜕𝑠2 − 2 𝜕𝜕𝑠 (𝜕𝜅𝜕𝑠 𝐸𝐼𝑦𝑧) 𝜕𝑢𝜕𝑠

− 𝜕2𝜕𝑠2 (𝜕𝜅𝜕𝑠 𝐸𝐼𝑦𝑧)𝑢 − 𝐸𝐼𝑦𝑧 𝜕
4V𝜕𝑠4 − 2

𝜕𝐸𝐼𝑦𝑧𝜕𝑠 𝜕3V𝜕𝑠3
− (𝜅2𝐸𝐼𝑦𝑧 + 𝜕2𝐸𝐼𝑦𝑧𝜕𝑠2 ) 𝜕2V𝜕𝑠2 − 2 𝜕𝜕𝑠 (𝜅2𝐸𝐼𝑦𝑧) 𝜕V𝜕𝑠
− 𝜕2𝜕𝑠2 (𝜅2𝐸𝐼𝑦𝑧) V − 𝐸𝐼𝑦 𝜕

4𝑤𝜕𝑠4 − 2
𝜕𝐸𝐼𝑦𝜕𝑠 𝜕3𝑤𝜕𝑠3

+ (𝜅2𝐺𝐽𝑠 − 𝜕2𝐸𝐼𝑦𝜕𝑠2 ) 𝜕2𝑤𝜕𝑠2 + 𝜕𝜕𝑠 (𝜅2𝐺𝐽𝑠) 𝜕𝑤𝜕𝑠
+ (𝜅𝐺𝐽𝑠 + 𝐾𝐸𝐼𝑦) 𝜕2𝜗𝜕𝑠2
+ ( 𝜕𝜕𝑠 (𝜅𝐺𝐽𝑠) + 2 𝜕𝜕𝑠 (𝜅𝐸𝐼𝑦)) 𝜕𝜗𝜕𝑠
= −𝑓(𝑞𝑧 + 𝜕𝑚𝑦𝜕𝑠 ) + 𝑔𝜌𝜕

2𝑤𝜕𝑡2 ,

(1c)

𝜕𝜅𝜕𝑠 𝜅𝐸𝐼𝑦𝑧𝑢 + 𝜅𝐸𝐼𝑦𝑧 𝜕
2V𝜕𝑠2 + 𝜅3𝐸𝐼𝑦𝑧V

+ (𝜅𝐺𝐽𝑠 + 𝜅𝐸𝐼𝑦) 𝜕2𝑤𝜕𝑠2 + 𝜕𝜕𝑠 (𝜅𝐺𝐽𝑠) 𝜕𝑤𝜕𝑠 + 𝐺𝐽𝑠 𝜕
2𝜗𝜕𝑠2

+ 𝜕𝐺𝐽𝑠𝜕𝑠 𝜕𝜗𝜕𝑠 − 𝜅2𝐸𝐼𝑦𝜗 = −𝑓𝑚𝑥 + 𝑔𝐽𝑚𝑠 𝜕
2𝜗𝜕𝑡2 ,

(1d)

and the nondimensional internal forces are defined by the
following formulas:

(i) the axial forces

𝑛 = 𝑁𝑃0 =
1𝑓 (𝑑𝐸𝐴(𝜕𝑢𝜕𝑠 − 𝜅V)

− 𝐸𝐼𝑧𝜅(𝜕2V𝜕𝑠2 + 𝜅2V + 𝜕𝜅𝜕𝑠 𝑢)
+ 𝐸𝐼𝑦𝑧𝐾(−𝜕2𝑤𝜕𝑠2 + 𝜅𝜗)) ,

(2)

(ii) the bending moments

𝑚 = 𝑀𝑃0𝑎 =
1𝑓 (𝐸𝐼𝑧(𝜕

2V𝜕𝑠2 + 𝜅2V + 𝜕𝜅𝜕𝑠 𝑢)

+ 𝐸𝐼𝑦𝑧(𝜕2𝑤𝜕𝑠2 − 𝜅𝜗)) ,
(3)

𝑚𝑛 = 𝑀𝑦𝑃0𝑎 =
1𝑓 (𝐸𝐼𝑦 (−𝜕

2𝑤𝜕𝑠2 + 𝜅𝜗)
− 𝐸𝐼𝑦𝑧(𝜕2V𝜕𝑠2 + 𝜅𝜕𝑢𝜕𝑠 + 𝜕𝜅𝜕𝑠 𝑢)) ,

(4)

(iii) the shearing forces

𝑞 = 𝑄𝑃0 = −
1𝑓 𝜕𝜕𝑠 (𝐸𝐼𝑧(𝜕

2V𝜕𝑠2 + 𝜅2V + 𝜕𝜅𝜕𝑠 𝑢)) + 𝑚𝑧. (5)

𝑡 = 𝑇𝑃0
= 1𝑓 𝜕𝜕𝑠 (𝐸𝐼𝑦 (−𝜕

2𝑤𝜕𝑠2 + 𝜅𝜗))
+ 1𝑓𝜅(𝐺𝐽𝑠 (𝜅𝜕𝑤𝜕𝑠 + 𝜕𝜗𝜕𝑠 )) + 𝑚𝑛

(6)

(iv) the torsional moment

𝑚𝑠 = 𝑀𝑥𝑃0𝑎 =
1𝑓 (𝐺𝐽𝑠 (𝜅𝜕𝑤𝜕𝑠 + 𝜕𝜗𝜕𝑠 )) , (7)

where 𝑢 = 𝑢(𝑠, 𝑡) is a nondimensional displacement tangent
to the arch axis, V = V(𝑠, 𝑡) and 𝑤 = 𝑤(𝑠, 𝑡) are nondi-
mensional displacements perpendicular to the arch axis, 𝜗 =𝜗(𝑠, 𝑡) is the angle of twist, 𝜅 = 𝜅(𝑠) is the nondimensional
arch curvature, 𝑝𝑥(𝑠, 𝑡) = 𝑃𝑥(𝑆, 𝑡)/𝑃0, 𝑝𝑦(𝑠, 𝑡) = 𝑃𝑦(𝑆, 𝑡)/𝑃0 ,𝑝𝑧(𝑠, 𝑡) = 𝑃𝑧(𝑆, 𝑡)/𝑃0, 𝑚𝑥(𝑠, 𝑡) = 𝑀𝑥(𝑆, 𝑡)/𝑃0𝑎, 𝑚𝑦(𝑠, 𝑡) =𝑀𝑦(𝑆, 𝑡)/𝑃0𝑎 𝑚𝑧(𝑠, 𝑡) = 𝑀𝑧(𝑆, 𝑡)/𝑃0𝑎 are nondimensional
external forces, and the nondimensional material and geo-
metric characteristics are 𝜌 = 𝜌/𝜌0, density per unit length,𝐸𝐴 = 𝐸𝐴/𝐸𝐴0, axial stiffness, 𝐸𝐼𝑦 = 𝐸𝐼𝑦/𝐸𝐼0, 𝐸𝐼𝑧 = 𝐸𝐼𝑧/𝐸𝐼0,
flexural stiffness, 𝐸, Young’s modulus, 𝐴 = 𝐴(𝑆), the cross-
sectional area, and 𝐼𝑦 = 𝐼𝑦(𝑆), 𝐼𝑧 = 𝐼𝑧(𝑆), 𝐼𝑦𝑧 = 𝐼𝑦𝑧(𝑆), the
generalized moments of inertia, expressed by the formulas:

𝐼𝑦 = ∫
𝐴

𝑍21 − 𝐾 (𝑆) 𝑌𝑑𝐴
𝐼𝑧 = ∫

𝐴

𝑌21 − 𝐾 (𝑆) 𝑌𝑑𝐴
𝐼𝑦𝑧 = ∫

𝐴

𝑌𝑍1 − 𝐾 (𝑆) 𝑌𝑑𝐴
(8)

The constants in formulas ((1a), (1b), (1c), and (1d))–(7) are

𝑓 = 𝑃0𝑎2𝐸𝐼0 ,
𝑑 = 𝑎2𝐸𝐴0𝐸𝐼0 ,
𝑓 = 𝑎4𝜌0𝐸𝐼0 ,

(9)

where parameters 𝜌0, 𝐸𝐴0, 𝐸𝐼0, 𝑃0 are reference quantities.
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3. Problem Solution

The solution of differential equations system ((1a), (1b), (1c),
and (1d)) is sought in the form of Chebyshev series of the first
kind

𝑢 (𝑥, 𝑡) = ∞∑
𝑙=0

󸀠 𝑎𝑙 [𝑢]T𝑙 (𝑥) = ∞∑
𝑙=0

󸀠 𝑢𝑙 (𝑡)T𝑙 (𝑥) ,
V (𝑥, 𝑡) = ∞∑

𝑙=0

󸀠 𝑎𝑙 [V]T𝑙 (𝑥) = ∞∑
𝑙=0

󸀠
V𝑙 (𝑡)T𝑙 (𝑥) ,

𝑤 (𝑥, 𝑡) = ∞∑
𝑙=0

󸀠 𝑎𝑙 [𝑤]T𝑙 (𝑥) = ∞∑
𝑙=0

󸀠 𝑤𝑙 (𝑡)T𝑙 (𝑥) ,
𝜗 (𝑥, 𝑡) = ∞∑

𝑙=0

󸀠 𝑎𝑙 [𝜗]T𝑙 (𝑥) = ∞∑
𝑙=0

󸀠 𝜗𝑙 (𝑡)T𝑙 (𝑥) ,
(10)

where T𝑙(𝑥) is the 𝑙-th Chebyshev polynomial of the 1st kind
and 𝑎𝑙[𝑢], 𝑎𝑙[V], 𝑎𝑙[𝑤], and 𝑎𝑙[𝜗] are unknown coefficients
of the expansion of displacement functions 𝑢, V, 𝑤, 𝜗 into
Chebyshev series, hereafter denoted as 𝑢𝑙, V𝑙, 𝑤𝑙, 𝜗𝑙.

The method presented in Appendix A and in the author’s
papers [29–31] will be used to solve the problem. In this

method the system of ordinary differential equations is
reduced to a recursive infinite system of algebraic equations.
If the initial equations are partial differential equations, a
system of ordinary differential equation is obtained.

The characteristic feature of this method is that the
coefficients of the obtained infinite system of equations are
in an analytical form whereby the equations derived in this
paper can be used to solve any arch, without it being necessary
to transform the initial equations. The high accuracy of the
results yielded by proposed method, demonstrated in this
paper, is comparable with that of the exact closed analytical
solutions.

In order to apply this method to the considered problem
let us reduce the system of equations to the matrix form

P̂0 (𝑠) f(4) (𝑠, 𝑡) + P̂1 (𝑠) f(3) (𝑠, 𝑡) + P̂2 (𝑠) f(2) (𝑠, 𝑡)+ P̂3 (𝑠) f(1) (𝑠, 𝑡) + P̂4 (𝑠) f (𝑠, 𝑡)= P̂ (𝑠, 𝑡) + R̂4 (𝑠) ̈f (𝑠, 𝑡) ,
(11)

where matrix functions P̂𝑚(𝑠), 𝑚 = 0, 1, 2, 3, 4; R̂4(𝑠) and
vector P̂(𝑠, 𝑡) are expressed by the formulas (a simplified form
of derivative 𝑓(𝑝)(𝑠) = 𝜕𝑝𝑓(𝑠)/𝜕𝑠𝑝 is used to shorten the
notation)

P̂0 =
[[[[[
[

0 0 0 0
0 −𝐸𝐼𝑧 −𝐸𝐼𝑦𝑧 00 −𝐸𝐼𝑦𝑧 −𝐸𝐼𝑦 0
0 0 0 0

]]]]]
]
, (12a)

P̂1 =
[[[[[[[
[

0 0 0 0
0 −2 (𝐸𝐼𝑧)(1) −2 (𝐸𝐼𝑦𝑧)(1) 0
0 −2 (𝐸𝐼𝑦𝑧)(1) −2 (𝐸𝐼𝑦)(1) 00 0 0 0

]]]]]]]
]
, (12b)

P̂2 =
[[[[[[[
[

𝑑𝐸𝐴 −𝜅(1)𝐸𝐼𝑧 −𝜅(1)𝐸𝐼𝑦𝑧 0
−𝜅(1)𝐸𝐼𝑧 − (𝐸𝐼𝑧)(2) − 2𝜅2𝐸𝐼𝑧 −𝜅2𝐸𝐼𝑦𝑧 − (𝐸𝐼𝑦𝑧)(2) 𝜅𝐸𝐼𝑦𝑧
−𝜅(1)𝐸𝐼𝑦𝑧 −𝜅2𝐸𝐼𝑦𝑧 − (𝐸𝐼𝑦𝑧)(2) 𝜅2𝐺𝐽𝑠 − (𝐸𝐼𝑦)(2) 𝜅𝐺𝐽𝑠 + 𝜅𝐸𝐼𝑦0 𝜅𝐸𝐼𝑦𝑧 𝜅𝐺𝐽𝑠 + 𝜅𝐸𝐼𝑦 𝐺𝐽𝑠

]]]]]]]
]
, (12c)

P̂3 =
[[[[[[[
[

𝑑 (𝐸𝐴)(1) −𝑑𝜅𝐸𝐴 0 0
𝑑𝜅𝐸𝐴 − 2 (𝜅(1)𝐸𝐼𝑧)(1) −2 (𝜅2𝐸𝐼𝑧)(1) 0 2 (𝜅𝐸𝐼𝑦𝑧)(1)
−2 (𝜅(1)𝐸𝐼𝑦𝑧)(1) −2 (𝜅2𝐸𝐼𝑦𝑧)(1) (𝜅2𝐺𝐽𝑠)(1) (𝜅𝐺𝐽𝑠)(1) + 2 (𝜅𝐸𝐼𝑦)(1)

0 0 (𝜅𝐺𝐽𝑠)(1) (𝐺𝐽𝑠)(1)

]]]]]]]
]
, (12d)

P̂4 =
[[[[[[[[
[

− (𝜅(1))2 𝐸𝐼𝑧 −𝑑 (𝜅𝐸𝐴)(1) − 𝜅(1)𝜅2𝐸𝐼𝑧 0 𝜅(1)𝜅𝐸𝐼𝑦𝑧
− (𝜅(1)𝐸𝐼𝑧)(2) − 𝜅(1)𝜅2𝐸𝐼𝑧 −𝑑𝜅2𝐸𝐴 − (𝜅2𝐸𝐼𝑧)(2) − 𝜅4𝐸𝐼𝑧 0 (𝜅𝐸𝐼𝑦𝑧)(2) + 𝜅3𝐸𝐼𝑦𝑧

− (𝜅(1)𝐸𝐼𝑦𝑧)(2) − (𝜅2𝐸𝐼𝑦𝑧)(2) 0 (𝜅𝐸𝐼𝑦)(2)𝜅(1)𝜅𝐸𝐼𝑦𝑧 𝜅3𝐸𝐼𝑦𝑧 0 −𝜅2𝐸𝐼𝑦

]]]]]]]]
]
, (12e)
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R̂4 =
[[[[[
[

𝑔𝜌 0 0 0
0 𝑔𝜌 0 0
0 0 𝑔𝜌 0
0 0 0 𝑔𝐽𝑚𝑠

]]]]]
]
, (12f)

P̂ = −𝑓
[[[[[[
[

𝑝𝑥 + 𝜅𝑚𝑧
𝑝𝑦 + (𝑚𝑧)(1)
𝑞𝑧 + (𝑚𝑦)(1)𝑚𝑥

]]]]]]
]
. (13)

Having determined matrix functions Q𝑚 and S𝑚 (S𝑚 is
calculated similarly as Q𝑚 by substituting functions R̂𝑚 for
functions P̂𝑚 in formula (A.10)) from formula (A.10) and
expanded them and functions (13) into Chebyshev series and
substituted the calculated series coefficients into (A.9), one
gets the infinite system of ordinary differential equations

∞∑
𝑙=0

󸀠
[[[[[
[

𝑘11 (𝑘, 𝑙) 𝑘12 (𝑘, 𝑙) 𝑘13 (𝑘, 𝑙) 𝑘14 (𝑘, 𝑙)𝑘21 (𝑘, 𝑙) 𝑘22 (𝑘, 𝑙) 𝑘23 (𝑘, 𝑙) 𝑘24 (𝑘, 𝑙)𝑘31 (𝑘, 𝑙) 𝑘32 (𝑘, 𝑙) 𝑘33 (𝑘, 𝑙) 𝑘34 (𝑘, 𝑙)𝑘41 (𝑘, 𝑙) 𝑘42 (𝑘, 𝑙) 𝑘43 (𝑘, 𝑙) 𝑘44 (𝑘, 𝑙)
]]]]]
]

[[[[[
[

𝑢𝑙
V𝑙𝑤𝑙𝜗𝑙

]]]]]
]

= [[[[[
[

𝑃1 (𝑘)𝑃2 (𝑘)𝑃3 (𝑘)𝑃4 (𝑘)
]]]]]
]

+ ∞∑
𝑙=0

󸀠
[[[[[
[

𝑏11 (𝑘, 𝑙) 0 0 0
0 𝑏22 (𝑘, 𝑙) 0 0
0 0 𝑏33 (𝑘, 𝑙) 0
0 0 0 𝑏44 (𝑘, 𝑙)

]]]]]
]

[[[[[
[

𝑢̈𝑙
V̈𝑙𝑤̈𝑙̈𝜗𝑙

]]]]]
]
,

𝑘 = 0, 1, 2, 3, . . . .

(14)

At this stage of the solution the 𝑘𝑖𝑗(𝑘, 𝑙), 𝑖, 𝑗 = 1, 2, 3, 4,
elements in system of (14) are a linear combination of the
coefficients of expansion of the “input functions” and the
coefficients of expansion of their first and second derivatives.

The term “input functions” applies to the products of the
functions described in formula (B.4) (see Appendix B). After
complex transformations involving the use of relation 𝑎𝑙 =(𝑎(1)
𝑙−1

− 𝑎(1)
𝑙+1
)/2𝑙, 𝑙 ̸= 0, where 𝑎𝑙 = 𝑎𝑙[𝑓] and 𝑎(𝑝)

𝑙
=𝑎𝑙[𝜕𝑝𝑓/𝜕𝑥𝑝], coefficients 𝑘𝑖𝑗(𝑘, 𝑙) become a linear combi-

nation of only the coefficients of expansion of the “input
functions”. A detailed description of the transformations
can be found in the author’s paper [29] in which the Euler
beam vibration problem was analysed. The ultimate form
of coefficients 𝑘𝑖𝑗(𝑘, 𝑙), 𝑏𝑖𝑖(𝑘, 𝑙), and 𝑃𝑖(𝑘) is presented in
Appendix B.

The first blocks of (14) – 𝑘 = 0, 1, 2, 3 (i.e., sixteen
equations) are satisfied identitywise (0=0).The equations are
replaced with the twelve boundary conditions which have
not been used so far. The number of the conditions follows
from the order of the equations in system ((1a), (1b), (1c), and
(1d)). In the formulation of the equations stemming from the
boundary conditions at the arch’s ends (𝑠 = ∓1) one uses the
expansions of displacement functions (6), formulas (2)-(7)
for internal forces, and the following formulas for calculating
the Chebyshev polynomials at points 𝑠 = ∓1

𝑇(𝑚)𝑛 (1) = {{{{{{{
1 for 𝑚 = 0,

𝑛(2𝑚 − 1)!!
𝑚−1∏
𝑘=−𝑚+1

(𝑛 + 𝑘) for 𝑚 > 0,
𝑇(𝑚)𝑛 (−1) = (−1)𝑛−𝑚 𝑇(𝑚)𝑛 (1) .

(15)

Exemplary equations for the two main ways of fixing the arch
are expressed by the formulas:

(i) clamped end (respectively on the left and right end of
the arch)

𝑢 (−1, 𝑡) = ∞∑
𝑙=0

󸀠 (−1)𝑙𝑢𝑙 = 0, 𝑢 (1, 𝑡) = ∞∑
𝑙=0

󸀠 𝑢𝑙 = 0,
V (−1, 𝑡) = ∞∑

𝑙=0

󸀠 (−1)𝑙V𝑙 = 0, V (1, 𝑡) = ∞∑
𝑙=0

󸀠
V𝑙 = 0,

𝜗 (−1, 𝑡) = ∞∑
𝑙=0

󸀠 (−1)𝑙𝜗𝑙 = 0, 𝜗 (1, 𝑡) = ∞∑
𝑙=0

󸀠 𝜗𝑙 = 0,
𝑤 (−1, 𝑡) = ∞∑

𝑙=0

󸀠 (−1)𝑙𝑤𝑙 = 0, 𝑤 (1, 𝑡) = ∞∑
𝑙=0

󸀠 𝑤𝑙 = 0,
𝜕V (−1, 𝑡)𝜕𝑠 + 𝜅𝑢 (−1, 𝑡) = −∞∑

𝑙=0

󸀠 (−1)𝑙𝑙2V𝑙 = 0, 𝜕V (1, 𝑡)𝜕𝑠 + 𝜅𝑢 (1, 𝑡) = ∞∑
𝑙=0

󸀠 𝑙2V𝑙 = 0,
𝜕𝑤 (−1, 𝑡)𝜕𝑠 = −∞∑

𝑙=0

󸀠 (−1)𝑙𝑙2𝑤𝑙 = 0, 𝜕𝑤 (1, 𝑡)𝜕𝑠 = ∞∑
𝑙=0

󸀠 𝑙2𝑤𝑙 = 0,

(16)
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(ii) hinged end
the first five equations are identical as (16)1,2,3,4,6,
whereas the sixth equation stems from the condition𝑚(−1, 𝑡) = 0,𝑚(1, 𝑡) = 0 and has the form

𝜕2V (−1, 𝑡)𝜕𝑠2 = 13
∞∑
𝑙=0

󸀠 (−1)𝑙𝑙2 (𝑙2 − 1) V𝑙 = 0,
𝜕2V (1, 𝑡)𝜕𝑠2 = 13

∞∑
𝑙=0

󸀠 𝑙2 (𝑙2 − 1) V𝑙 = 0.
(17)

In order to solve the modified system of (14) it was
reduced to the finite system of equations𝑁 = 4(𝑚+1).This is
tantamount to the assumption that each of the displacement
functions in formula (10) is approximated by a finite series
with 𝑚 + 1 terms. When the order of the terms is changed,
the system is expressed by the formula

Kq (𝑡) + 𝑔Bq̈ (𝑡) = F (𝑡) , (18)

where q(𝑡) = [u(𝑡) k(𝑡) w(𝑡) 𝜃(𝑡)]T, a u = [𝑢0, 𝑢1, 𝑢2, . . . ,𝑢𝑚]T, k = [V0, V1, V2, . . . , V𝑚]T, w = [𝑤0, 𝑤1, 𝑤2, . . . , 𝑤𝑚]T,
and 𝜃 = [𝜗0, 𝜗1, 𝜗2, . . . , 𝜗𝑚]T.

System of (18) is further transformed. After left mul-
tiplying (18) by K−1 and using the theorem presented in
Appendix C, matrix K−1B was reduced to the Jordan form.
For the analysed system the solution of the eigenproblem

(𝑔K−1B − 𝜆I) q = 0 (19)

leads to single eigenvalues 𝜆, the transformation matrix has
the form S = W−1, where W is an eigenmatrix obtained
by solving eigenproblem (19), and the matrix J = {𝜆} =
diag[𝜆1, 𝜆2, . . . , 𝜆𝑛] becomes a diagonal matrix.

After substituting q(𝑡) = S−1r(𝑡) = Wr(𝑡), introducing
nondimensional time 𝜏 = 𝑡/√𝑔 = 𝑡√𝐸𝐼0/𝑎4𝜌0, adding
a component describing the dumping, and making some
simple transformations, system (18) was reduced to the
system of separated equations

{𝜆} ̈r (𝜏) + {2𝛼√𝜆} ̇r (𝜏) + r (𝜏) =W−1K−1F = f (𝜏) (20)

In order to reduce the computing time and eliminate
the vibration forms encumbered with a large error (the
eigenforms corresponding to the higher complex vibrational
frequencies), the incorrect (inessential) eigenforms should be
rejected. In this case, 𝑘 < 𝑁 eigenforms are considered and
transformation matrices W andW−1 then become rectangu-
lar matrices with, respectively, 𝑁 × 𝑘 and 𝑘 × 𝑁 dimensions
(Kleiber et al. [33], p.128), and vector r = [𝑟1, 𝑟2, . . . , 𝑟𝑘]T.

The ℎ𝑗(𝜏) solution of the single equation from system of
separated equations (20), when the function describing the
load has the form 𝑓𝑗(𝜏) = 1𝛿(𝜏) (the Green function), is
described by the formula

ℎ𝑗 (𝜏) = 𝜔𝑗
√1 − 𝛼2𝑗 exp (−𝛼𝑗𝜔𝑗𝜏) sin𝜔

󸀠
𝑗𝜏, (21)

where 𝜔𝑗 = 1/√𝜆𝑗, 𝜔󸀠𝑗 = 𝜔𝑗√1 − 𝛼2𝑗 . In the case of the
load described by any function, the solution was obtained
by calculating the convolution of the load and the Green
function.

𝑟𝑗 (𝜏) = 𝜔𝑗
√1 − 𝛼2𝑗

⋅ ∫𝜏
0
𝑓𝑗 (𝑠) exp (−𝛼𝑗𝜔𝑗 (𝜏 − 𝑠)) sin𝜔󸀠𝑗 (𝜏 − 𝑠) 𝑑𝑠.

(22)

After all the components of vector r(𝑡) had been calculated,
the sought vector q(𝑡) = [u(𝑡) k(𝑡) w(𝑡) 𝜃(𝑡)]T = Wr(𝑡)
was determined.

4. Numerical Examples

In order to check the correctness and effectiveness of the
proposed algorithm two examples are considered. In the first
of the examples, systems taken from other authors’ papers are
solved with an aim of comparing the results obtained by the
proposed method with the ones obtained by other methods.
Example 2 shows how the method can be used to solve a
more complex system, i.e., one with an arbitrarily variable
curvature and cross section, subjected to any aperiodic load.
In the examples the parameter defining the size of the
approximation base amounts to m=20. The computations
were performed using the WolframMathematica� 7 software
[34].

Example 1. A circular arch with length 2𝑎 = 𝑅𝜋/3, where 𝑅
is the radius and 𝜋/3 is the opening angle (𝜑 ∈ ⟨−𝜋/6, 𝜋/6⟩),
and a constant square (𝑏/ℎ = 1) cross section was analysed.

In the case of in-plane vibrations, two variants of arch
clamping, stiff clamping at both ends (C-C) and hinged
fixing (H-H), are assumed. In the case of out-of-plane
vibrations, stiff clamping at both ends (C-C) is considered.
The determined natural frequencies are nondimensional and
defined by the formula 𝜆 = 𝜔𝑅2√𝜌/𝐸𝐼, where 𝑅 is the
arch curvature radius. The calculations were performed for
different values of parameter 𝑘2 = 𝐼/𝐴𝑅2 = (ℎ/𝑅)2/12,
assuming ℎ/𝑅 = 0.01 and ℎ/𝑅 = 0.1. It is apparent from the
definition of parameter 𝑘 that it indirectly defines the ratio of
the beam’s flexural stiffness to its axial stiffness.

The following methods were used to solve the eigenprob-
lem:

(i) the method presented in this paper,

(ii) the analytical method, a close solution was obtained
usingMathematica� [34],

(iii) the finite element method, where 3D nonprismatic
(tapered) beam elements with six degrees of freedom
in each node were used (Cosmos/M),
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31.7849 31.9414 31.8006 31.7849 31.7868 31.8250 31.8265
33.4824 33.3856 33.4959 33.4824 32.9924 32.9670 32.9663
80.0006 79.9723 80.0067 80.0240 77.5473 77.5392 77.5398
107.549 107.592 107.550 107.523 107.324 107.187 107.182
143.444 - 143.447 136.019 136.022 136.024
208.494 - 208.494 C 202.019 201.568 201.553
225.319 - 225.321 C 214.369 213.864 213.846
311.376 - 311.376 C 285.610 285.251 285.244
324.594 - 324.596 C 317.177 314.476 314.370

375.847 375.273 375.266
416.206 - 416.206 C 424.336 417.776 417.517
440.240 - 440.242 C
520.547 - 520.547 C 520.547 521.585 521.078
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Analytical �is paper ClassicAnalyticala FEM FEM FEM

＃∗

； the results obtained by Chidamparam and Leissa [1]
∗ C denotes complex values

Figure 2: Nondimensional in-plane free vibration frequencies of H-H circular arch for ℎ/𝑅 = 0.1.

(iv) the approximation method based on classic power
polynomials (Taylor series), where the sought dis-
placements and rotation angles are described by the
formulas

𝑓 (𝑠) = ∞∑
𝑘=0

𝑓𝑘 𝑠𝑘𝑘! ,
𝑓(𝑝) (𝑠) = ∞∑

𝑘=0

𝑓𝑘+𝑝 𝑠𝑘𝑘! ,
where 𝑓 = 𝑢, V, 𝑤, 𝜗.

(23)

In the case of numerical approximation method calcu-
lations, each of the functions 𝑢, V, 𝑤, 𝜗 was approximated
with 30 terms of the series, whereas for FEM the system
was divided into 20 finite elements. Such a number of finite
elements (20) were selected that the number of parameters
in FEM and the number of parameters in the approximation
methods were equal or almost equal. In the case of the
approximation methods, 120 parameters were defined (four
functions x 30 terms of the series), while in FEM there were
126 generalized coordinates (21 nodes x 6 coordinates) minus
the coordinates eliminated from the calculations due to the
assumed boundary conditions. The reason why “only” 20
elements were used was to compare the effectiveness of the
two types of approximation (the approximation presented in
this paper and the FEM approximation) as applied to the
considered problem. In order to verify the convergence of
the solutions obtained by FEM the calculations were also
performed for amuchdenser finite element grid – by dividing
the arch into respectively 100 and 500 finite elements. To
ensure that the comparisons were made for the same systems
the values of all the geometric characteristics defining the
arch’s cross section were directly input into the Cosmos/M
program.

The results yielded by the approximate methods were
compared with the exact analytical solution.

The first twelve eigenfrequencies were compared for each
of the considered cases, where at the adopted approximation
base numerical computations yielded complex values already
for the third eigenfrequency or higher eigenfrequencies
(depending on the case). The calculated frequencies (units
rad/s) are shown in Figures 2, 3, 4, 5, 6, and 7.

The frequencies connected with “the same” eigenform
are given in the same row in the tables. Some eigenforms
determined using FEM are “transposed”. For example, to the
eigenform connectedwith eigenfrequency𝜔11=440.240 rad/s
(the analytical solution) corresponds frequency 375.266 rad/s
in the FEM solution, which is frequency no. 10 in the latter. To
the eigenform connected with eigenfrequency 𝜔10=416.206
rad/s (the analytical solution) corresponds frequency 417.517
rad/s in FEM, which is frequency no. 11 in the latter. In such
cases, the frequencies corresponding to “the same” eigenform
are connected with an arrow.

For comparison, also the natural frequencies obtained by
other authors are included there. The results taken from Liu
and Wu [1] (Figures 4 and 5) are for 𝑘 = 0, i.e., for a model
with neglected arch axial deformability.

In order to compare the eigenforms relative error func-
tions were calculated from the formula

𝐸 (𝑓) = 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠) − 𝑓 (𝑠)󵄨󵄨󵄨󵄨󵄨󵄩󵄩󵄩󵄩𝑓 (𝑠)󵄩󵄩󵄩󵄩 , (24)

where 𝑓(𝑠) is the close analytical solution, 𝑓(𝑠) is the
approximate solution, and ‖𝑓(𝑠)‖ = sup−1≤𝑠≤1|𝑓(𝑠)|.

The analytically determined eigenforms were normalized
so that the maximum value of displacement 𝑢, V(𝑤, 𝜗) was
equal to one. Considering that the eigenforms were deter-
mined with an accuracy to a constant multiplier, the other
solutions were normalized so that the mean-square error was
minimum

∫1
−1
(𝑓 − 𝑓)2 𝑑𝑠 = min. (25)
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Figure 3: Nondimensional in-plane free vibration frequencies of C-C circular arch for ℎ/𝑅 = 0.1.
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33.6248 33.6239 33.6261 33.6385 33.6248 33.6430 33.6179 33.6173
74.8447 74.8387 75.0806 74.8513 74.8449 74.9703 74.8026 74.7967
141.568 141.565 - 141.572 C 141.601 141.481 141.478
216.419 216.394 - C 216.973 216.269 216.244
321.501 - - C 321.485 321.072 321.065
335.415 - - C 334.446 335.437 335.475
444.467 - - C 443.232 443.641 443.680
573.280 - - C 573.339 571.922 571.906
728.210 - - C 727.905 726.001 726.005
896.013 - - C 897.392 892.745 892.698
1087.50 - - C 1089.08 1082.61 1082.60
1092.20 - -

216.421 
321.503 
335.417 
444.469 
573.281 
728.208 
896.003 
1087.89
1092.20 C 1091.86 1092.12 1092.13

＜ＮＢ？ results obtained by Liu and Wu [1].
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Figure 4: Nondimensional in-plane free vibration frequencies of H-H circular arch for ℎ/𝑅 = 0.01.
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179.316 179.314 - 179.319 187.677 179.280 179.193 179.192
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377.008 - - C 376.863 376.471 376.470
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646.318 - - C 646.264 644.720 644.716
811.869 - - C 812.168 809.319 809.312
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Figure 5: Nondimensional in-plane free vibration frequencies of C-C circular arch for ℎ/𝑅 = 0.01.
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Figure 6: Nondimensional out-of-plane free vibration frequencies of C-C circular arch for ℎ/𝑅 = 0.1.
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Figure 7: Nondimensional out-of-plane free vibration frequencies of C-C circular arch for ℎ/𝑅 = 0.01.

Graphs of relative error functions (24) on the logarithmic
scale, for selected eigenforms 1, 4, 8, and 12, are shown in
Figures 8–10.

The relative error (relative to the exact analytical solution)
of the first 12 eigenfrequencies determined using the pro-
posed method is below 4.9 ⋅ 10−4 for arch in-plane vibrations
and below 7.4⋅10−5 for arch out-of-plane vibrations. Although
the classic series approximation yielded slightly more accu-
rate results (the relative error of 2 ⋅ 10−6) for the first two
eigenfrequencies, the next eigenfrequencies are encumbered
with an increasingly larger error (ranging from 1.4 ⋅ 10−3 to5.4 ⋅ 10−2 in the case of arch ℎ/𝑅 = 0.01 and from 4.7 ⋅ 10−2
to 3.3 ⋅ 10−1 in the case of arch ℎ/𝑅 = 0.1), whereas the
complex numbers obtained for eigenfrequencies 3-5 in the
case of the hinge-supported arch and for eigenfrequencies 6-
8 in the case of the stiff clamping were incommensurable. In
the analysed interval of eigenfrequencies FEM yields results
whose accuracy ranges from 5.0 ⋅ 10−5 to 9.7 ⋅ 10−2 for the

H-H arch and from 1.2 ⋅ 10−4 to 1.4 ⋅ 10−1 for the C-C arch in
the case of the eigenfrequencies describing the arch in-plane
vibrations and from 7.5⋅10−3 to 1.7 ⋅10−1 (4.5⋅10−1 in isolated
cases) in the case of the eigenfrequencies describing the arch
out-of-plane vibrations.

An analysis of the obtained eigenvalues (Figures 2, 3, 4,
5, 6, 7) and the graphs of the relative errors (Figures 8–10)
shows that the results yielded by the proposed method are
considerably more precise than the ones obtained using the
other methods.

In the case of eigenfrequencies, the relative error is
smaller by several orders of magnitude than the errors of
the other solution methods. Only the power series method
yielded similarly accurate results for the first eigenforms. No
further eigenforms were analysed because of the complex
eigenfrequency values corresponding to them.

For the considered cases also the relative errors of the
eigenforms were analysed at h/R = 0.1. The differences
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between the analytically determined eigenforms and the ones
calculated using the proposed method for h/R = 0.01 were by
2-3 orders of magnitude smaller than the results discussed
above for h/R = 0.1.

If one analyses the results presented in Figures 2, 3, 4, 5,
6, and 7, it becomes apparent that the “transposition” of the
eigenforms in the case of the solutions obtained using FEM
occurs mostly for out-of-plane vibration. Another observed
regularity is the more frequent occurrence of “transpositions”
for systems with h/R = 0.1 than for systems with h/R =
0.01 (“transpositions” occur more often in “stocky” systems).
“Transpositions” are particularly numerous in Figure 6 (out-
of-plane vibration and h/R = 0.1). All the “transpositions”
occurring in Figures 6 and 7 concern “nearly pure” torsional

modes, i.e., eigenforms in which the angle of cross section
rotation 𝜗 is 2-3 orders higher than displacement 𝑤.

A comparison of the eigenfrequencies yielded by the
proposed method (at the approximation base of 30 series
terms) with the analytically determined eigenfrequencies
shows that they are practically identical (in the adopted range
of accuracy) or only slightly different.

Example 2. The algorithm is used here to solve the eigen-
problem and the aperiodically forced vibration problem
of a catenary nonprismatic arch. Two kinds of arch fix-
ing: clamped-clamped (C-C) and hinged-hinged (H-H) are
assumed. Static schemes of these arches are shown in Figures
11 and 12.
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Figure 11: Clamped-clamped (C-C) arch system.
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Figure 12: Hinged-hinged (H-H) arch system.

The parametric equations for the arch, as a function of its
length, are as follows:

𝑋 = 𝐴 arcsinh 𝑆𝐴 ,
𝑌 = 𝐻 + 𝐴 − √𝐴2 + 𝑆2,

(26)

where𝐻 = 𝐴(cosh 𝐿/𝐴 − 1) is the height and 2𝐿 is the span
of the arch. Parameter 𝐴 in formula (26) is a function of the

assumed𝐻/𝐿 ratio. The curvature of the arch is expressed by
the formula

𝐾(𝑆) = 𝐴(𝐴2 + 𝑆2) . (27)

𝐻/𝐿 = 3/4 is assumed. Hence parameter 𝐴 in formulas (26)
and (27) is equal to 0.585874.

The cross section’s height is described by the formulas
(i) for the clamped-clamped (C-C) arch

ℎ (𝑠) = 𝑏 + 𝑥 (𝑠) = 𝑏 + 2𝑏𝑠2 (28)
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Figure 13: (a) Symmetric cross section (T). (b) Asymmetric cross section (L).

Table 1: Comparison of nondimensional natural frequencies for C-C arch.

T cross section L cross section
this paper FEM this paper FEM

𝜔1 12.8422 12.8357 14.4076 14.3977
𝜔2 21.7808 21.5418 20.4538 20.2170
𝜔3 35.456 35.3940 38.5603 38.4733
𝜔4 43.0735 42.8782 41.0721 40.9014
𝜔5 71.9845 71.6488 69.5107 69.2230
𝜔6 73.4635 73.2456 77.2990 77.1129
𝜔7 106.763 105.734 105.528 104.525
𝜔8 125.614 124.971 125.176 124.907
𝜔9 149.329 148.075 155.660 153.881
𝜔10 181.214 188.195 171.785 174.332

Table 2: Comparison of nondimensional natural frequencies for H-H arch.

T cross section L cross section
this paper FEM this paper FEM

𝜔1 10.4339 10.4356 10.7314 10.7423
𝜔2 16.1250 15.3052 15.3797 14.4755
𝜔3 31.4425 31.4089 32.3181 32.3079
𝜔4 41.4795 41.6023 38.7676 38.8465
𝜔5 67.2877 67.1519 69.6218 69.5147
𝜔6 77.8042 77.6857 73.0771 72.9532
𝜔7 116.683 116.216 117.562 116.972
𝜔8 122.193 121.738 118.982 118.508
𝜔9 176.450 176.338 172.057 171.707
𝜔10 177.627 177.575 176.415 175.082

(ii) for the hinged-hinged (H-H) arch

ℎ (𝑠) = 𝑏 + 𝑥 (𝑠) = 3𝑏 − 2𝑏𝑠2, (29)

where 𝑠 = 𝑆/𝑎.
Two cross sections, a T cross section symmetric to the𝑦 axis and an asymmetric L cross section, were considered

(see Figure 13) in each of the static schemes. Such shapes and
dimensions of the cross sections were selected that the latter’s
areas and moments of inertia relative to the 𝑧 axis were equal
in both arch versions. The cross sections only differed in the
moments of inertia relative to the 𝑦 axis and in themoment of
deviation (equal to zero for the T cross section and different
from zero for the L cross section).

The eigenproblemwas solved using the proposedmethod.
Four cases, an arch with the symmetric T cross section and
an arch with the asymmetric L cross section for each of the
two arch clamping versions, were considered. Twenty terms
of the series were used for approximation (𝑚 = 19).The same
problem was solved using the FE method and forty finite
elements with six degrees of freedom and a linearly variable
cross section.

As a result of solving the eigenproblem, nondimensional
natural frequencies 𝜔 = Ω𝑎2√𝜌0/𝐸𝐼0 were obtained, where𝜌0 = 𝜌(0), 𝐸𝐼0 = 𝐸𝐼(0) for the C-C arch and 𝜌0 = 𝜌(−1) =𝜌(1), 𝐸𝐼0 = 𝐸𝐼(−1) = 𝐸𝐼(1) for the H-H arch. The first ten
eigenfrequencies are presented in Tables 1 and 2.
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Figure 14: Graphs ofH-H archdisplacements 𝑢, V, 𝑤, 𝜗 for eigenforms nos. 1, 2, and 3, obtained using proposedmethod (—) and FEM (∙∙∙∙∙);
black colour, cross section T and grey colour, cross section L.

A comparison of the results obtained in this example
shows high agreement between the natural frequencies cal-
culated by the proposed method and the values yielded by
FEM. In the case of the C-C arch, the maximum relative
error between FEM and the proposedmethod for the first ten
natural frequencies amounts to 3.709% and 1.461% for the T
cross section and the L cross section, respectively. In the case
of the H-H arch with the L cross section, the relative errors
do not exceed 0.761%, except for the 𝜔2 frequency, for which
the error amounts to 6.246%. Slightly better results were

obtained in the case of the H-H arch with the T cross section,
where as regards the first ten frequencies the maximum
difference between the FEM results and the results yielded by
the proposed method amounted to 0.402%, except for the 𝜔2
frequency, for which the relative error was 5.356%.

The first ten eigenforms were also compared for each of
the arch clamping versions. The eigenforms nos. 1, 2, and 3
obtained by, respectively, the proposed method and the FE
method are shown in Figures 14 and 15 (others eigenforms
are not presented here due to the confines of this paper).
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Figure 15: Graphs of C-C arch displacements 𝑢, V, 𝑤, 𝜗 for eigenforms nos. 1, 2, and 3, denotations as in Figure 14.

Figures 14 and 15 show good agreement between the
eigenforms determined using the proposed method and the
ones yielded by FEM. Up to eigenform 7 for the stiff clamping
and up to eigenform 8 for the hinged fixing the graphs
are practically identical. Single divergences appear at higher
eigenforms (the latter are not presented here due to the
confines of this paper).

By comparing the eigenfrequencies obtained for the
systems with symmetric cross section T and asymmetric
cross section L, the maximum differences between the

eigenfrequencies were determined. The differences amount
to 12.2% and 6.5% for, respectively, the C-C system and the
H-H system.

In order to verify the convergence of the method the
eigenproblem was solved for different approximation base
sizes, i.e., 𝑚 + 1 = 10, 20, 30, 40, 50 (formula (18)). The
obtained results are shown in Tables 3 and 4.

Tables 3 and 4 show that the frequencies determined
by the proposed method are convergent. It is also apparent
that in the considered problems (20)-(30) terms of the series
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Table 3: Nondimensional free vibration frequencies of H-H catenary arch (L cross section) for different approximation base sizes.

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

𝜔
6

m=10 10.6144 16.0092 32.0385 41.3351 72.7893 78.4554
m=20 10.7314 15.3797 32.3181 38.7676 69.6218 73.0771
m=30 10.7319 15.3489 32.3171 38.8423 69.6606 73.1144
m=40 10.7319 15.3495 32.3171 38.8412 69.6606 73.1136
m=50 10.7319 15.3495 32.3171 38.8412 69.6606 73.1136

Table 4: Nondimensional free vibration frequencies of H-H catenary arch (T cross section) for different approximation base sizes.

𝜔
1

𝜔
2

𝜔
3

𝜔
4

𝜔
5

𝜔
6

m=10 10.1918 17.0051 30.8936 46.0632 72.2621 80.5428
m=20 10.4339 16.1250 31.4425 41.4795 67.2877 77.8042
m=30 10.4325 16.1013 31.4395 41.5974 67.3048 77.8800
m=40 10.4325 16.1019 31.4395 41.5959 67.3047 77.8794
m=50 10.4325 16.1019 31.4395 41.5959 67.3047 77.8794

Y

q

P

H

X

LL

Figure 16: Analysed loading configurations.

need to be used for the approximation in order to obtain
sufficiently accurate results.

As regards the aperiodically forced vibration problem,
the vibrations of the hinged-hinged arch loaded in the plane
of its axis were analysed. The problem was solved for two
cases differing in the spatial distribution of the load. In the
first case, the load with intensity 𝑄(𝑆) = 𝑞 was uniformly
distributed as shown in Figure 16. In the second case the
arch was loaded with concentrated force 𝑄(𝑆) = 𝑃𝛿(𝑆 − 𝑆0),
where 𝑆0 = 0.5𝑎, perpendicular to the arch (Figure 16).
The force values were 𝑞 = 1000N/m, 𝑃 = 1000N.
Calculations were performed assuming the following arch
geometry parameters: b=0.01 m (Figure 13), 𝐻/𝐿 = 3/4
(Figure 16). The parameters of the material properties were𝐸 = 205.0 × 109N/m2, 𝜌𝑉 = 7860 kg/m3, and 𝛼𝑗 = 𝛼 =0.015.

Also two different cases of the time distribution of the
load were considered. In the first case, the time distribution
of the load had the form of a rectangular pulse and the load
defining functions are expressed by

𝑃 (𝑋, 𝑡) = 𝑄 (𝑆) (H (𝑡) −H (𝑡 − Δ)) , (30)

where H(𝑡) is the Heaviside function and Δ = 0.04 s is the
pulse duration. In the second case, the time distribution had
the form of the harmonic function

𝑃 (𝑋, 𝑡) = 𝑄 (𝑆)H (𝑡) sin𝑝𝑡 (31)

The following functions of harmonic excitation 𝑝 were
assumed:

𝑝1 = 𝜔𝐿1 = 158.346 rad/s,
𝑝2 = 𝜔𝑇1 = 153.910 rad/s,
𝑝3 = (𝜔𝐿1 + 𝜔𝑇1 )2 = 156.128 rad/s

(32)

where 𝜔𝐿1 is the first natural frequency of the arch with
the L cross section; 𝜔𝑇1 is the first natural frequency of the
arch with the T cross section. The out-of-plane vibrations
correspond with frequency 𝜔𝑇1 , whereas the coupled spatial
vibrations, where displacements 𝑤 and cross section rotation𝜗 are one order of magnitude higher than displacements 𝑢, V,
correspond with frequency 𝜔𝐿1 .
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Figure 17: Graphs of displacements 𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡), 𝜗(0.5, 𝑡) induced by load 𝑃(𝑋, 𝑡) = 𝑃𝛿(𝑆 − 0.5𝑎) (H(𝑡) − H(𝑡 − Δ)).
Denotations: the black continuous line represents the solution for the arch with asymmetric cross section L while the grey dotted line denotes
the solution for the arch with symmetric cross section T.
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Figure 18: Graphs of displacements 𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡), 𝜗(0.5, 𝑡) induced by load 𝑃(𝑋, 𝑡) = 𝑃𝛿(𝑆 − 0.5𝑎) H(𝑡) sin𝑝1𝑡). Denotations
as in Figure 17.
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Figure 19: Graphs of displacements 𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡), 𝜗(0.5, 𝑡) induced by load 𝑃(𝑋, 𝑡) = 𝑃𝛿(𝑆 − 0.5𝑎) H(𝑡) sin𝑝2𝑡). Denotations
as in Figure 17.

The results in the form of the displacement functions𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡) and rotation function 𝜗(0.5, 𝑡) for
point 𝑠 = 0.5 are shown in Figures 17–24.

An analysis of the above results shows that when the
system is loaded with a concentrated force, the system’s
responses (the three displacements and the rotation) in the

investigated point are of the same order of magnitude. The
exception are the vibrations induced by load pulses, where
displacements 𝑤 are by one order of magnitude smaller than
displacements V. Moreover, in the case of the nonstationary
vibrations induced by the harmonic load, displacements 𝑢
are several times smaller than displacements V and 𝑤. In
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Figure 20: Graphs of displacements 𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡), 𝜗(0.5, 𝑡) induced by load 𝑃(𝑋, 𝑡) = 𝑃𝛿(𝑆 − 0.5𝑎) H(𝑡) sin 𝑝3𝑡). Deno-
tations as in Figure 17.
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Figure 21: Graphs of displacements 𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡), 𝜗(0.5, 𝑡) induced by load 𝑃(𝑋, 𝑡) = 𝑞 (H(𝑡) −H(𝑡 − Δ)). Denotations as in
Figure 17.
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Figure 22: Graphs of displacements 𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡), 𝜗(0.5, 𝑡) induced by load 𝑃(𝑋, 𝑡) = 𝑞 H(𝑡) sin𝑝1𝑡). Denotations as in
Figure 17.

the case of the vibrations induced by the load applied at
a constant rate, all the displacements and the rotation are
of the same order of magnitude, irrespective of the type of
excitation (pulse or harmonic). In the case of the nonstation-
ary vibrations of the L system, induced by the harmonic load,
vibration amplifications (increases in vibration over time) are
visible. Besides displacements 𝑢, V, also displacement 𝑤 and

rotation 𝜗 are amplified, despite the fact that the load acts
in the plane of the arch. The occurrence of displacements
characteristic of out-of-plane arch vibrations is due to the
appearance of conjugating elements 𝑘𝑖𝑗(𝑘, 𝑙), 𝑘𝑗𝑖(𝑘, 𝑙), where𝑖 = 1, 2; 𝑗 = 3, 4, in system of (14). The amplification of
the values of functions 𝑤 and 𝜗 is due to the amplification of
vibrations in the resonance zone since excitation frequency
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Figure 23: Graphs of displacements 𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡), 𝜗(0.5, 𝑡) induced by load 𝑃(𝑋, 𝑡) = 𝑞 H(𝑡) sin𝑝2𝑡). Denotations as in
Figure 17.
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Figure 24: Graphs of displacements 𝑢(0.5, 𝑡), V(0.5, 𝑡), 𝑤(0.5, 𝑡), 𝜗(0.5, 𝑡) induced by load 𝑃(𝑋, 𝑡) = 𝑞 H(𝑡) sin𝑝3𝑡). Denotations as in
Figure 17.

𝜔𝐿1 is the eigenfrequency of the out-of-plane arch vibrations.
Because of the separation of the equations describing the arch
in-plane and out-of-plane vibrations (𝑘𝑖𝑗(𝑘, 𝑙) = 0, 𝑘𝑗𝑖(𝑘, 𝑙) =0, where 𝑖 = 1, 2; 𝑗 = 3, 4) and the direction of the load (in
the plane of the arch), no displacements characteristic of arch
out-of-plane vibrations appears: 𝑤(0.5, 𝑡) = 0, 𝜗(0.5, 𝑡) =0.
5. Conclusion

The following general conclusions emerge from an analysis of
the results obtained in the examples:

(i) The derived final equations (enabling one to directly
calculate the coefficients of expansion of the sought
functions) have a general character stemming from
the analytical form of the coefficients of the equa-
tions. Owing to this the vibration problem can be
solved for any arch, described in accordance with the
Bernoulli-Euler theory, without it being necessary to
derive the equations again.

(ii) The results obtained using the solution method pro-
posed in this paper agree with the results obtained by
other authors.

(iii) The comparison of the results obtained by the dif-
ferent methods (FEM, the approximation method
based on the classic power series, and the proposed
method) with the analytical results has shown that
results yielded by the proposed method are much
more accurate than the ones obtained by the other
methods.

(iv) The method is highly accurate: already 30-power
series element approximation yields results agreeing
with the analytical solution results.

(v) The examples show that the proposed method is fast
convergent (Tables 3 and 4). When the size of the
approximation base is increased to 𝑚 = 30, 40, and
50, the accuracy of the results increases only slightly in
comparison with the accuracy of the results obtained
when𝑚 = 20.

The following detailed conclusions can be drawn from the
analysis of the effect of cross section asymmetry on the form
the spatial vibrations of the arch:

(i) In the case of asymmetric cross sections, coupled
vibrations are generated (arch in-plane vibrations
are accompanied by out-of-plane vibrations and vice
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versa). When displacements connected with out-of-
plane vibrations dominate, the accompanying cou-
pled in-plane vibrations are relatively small. Whereas
when displacements connected with in-plane vibra-
tions dominate, the coupled out-of-plane vibrations
arising in the system are of the same order of mag-
nitude as the dominant vibrations. This regularity is
observed in the case of free vibrations (Figures 14 and
15).

(ii) The coupling of vibrations also occurs in the case
of forced vibrations, especially when the vibrations
are forced by a harmonically variable load. In the
examples, even though the harmonic load acts in
the plane of the arch, the out-of-plane vibrations
are of the same order of magnitude as the in-plane
vibrations. Since the excitation frequencies assume
the resonant value or values close to those of the
resonant frequencies, the characteristic increment
in vibrations over time is visible in the vibration
diagram.

Appendix

A. Approximation Method of
Solving Differential Equations with
Variable Coefficients

In this paper, in order to solve the system of differential equa-
tions a generalization of the following theorem concerning
ordinary differential equations ([32] p. 231) is used.

�eorem A.1. If function 𝑓 satisfies a linear equation with
order 𝑛 > 0

𝑛∑
𝑚=0

𝑃̂𝑚 (𝑥) 𝑓(𝑛−𝑚) (𝑥) = 𝑃̂ (𝑥) , (A.1)

𝑄𝑚 (𝑥) = 𝑚∑
𝑗=0

(−1)𝑚+𝑗 (𝑛 − 𝑗𝑚 − 𝑗) 𝑃̂(𝑚−𝑗)𝑗 (𝑥) , 𝑚 = 0, 1, . . . , 𝑛 (A.2)

where ( 𝑛𝑚 ) = 𝑛!/𝑚!(𝑛−𝑚)! and functions (𝑄0𝑓)(𝑛), (𝑄1𝑓)(𝑛−1),. . . , 𝑄𝑛𝑓, 𝑃̂ have determinable coefficients of the Chebyshev
series, then for each integer 𝑘 the following identity holds:

𝑛∑
𝑚=0

2𝑛−𝑚 𝑚∑
𝑗=0

𝑏𝑛𝑚𝑗 (𝑘) 𝑎𝑘−𝑚+2𝑗 [𝑄𝑚 (𝑥) 𝑓 (𝑥)]
= 𝑛∑
𝑗=0

𝑏𝑛𝑛𝑗 (𝑘) 𝑎𝑘−𝑛+2𝑗 [𝑃̂ (𝑥)] ,
(A.3)

where 𝑏𝑛𝑚𝑗(𝑘) are polynomials of integer 𝑘
𝑏𝑛𝑚𝑗 (𝑘) = (−1)𝑗 (𝑚𝑗 ) (𝑘 − 𝑛)𝑛−𝑚+𝑗 (𝑘 − 𝑚 + 2𝑗)
⋅ (𝑘 + 𝑗 + 1)𝑛−𝑗 (𝑘2 − 𝑛2)−1 ,

𝑚 = 0, 1, . . . , 𝑛; 𝑗 = 0, 1, . . . , 𝑚.
(A.4)

(𝑘)𝑛
= {{{

1 for 𝑛 = 0,
𝑘 (𝑘 + 1) (𝑘 + 2) . . . (𝑘 + 𝑛 − 1) for 𝑛 = 1, 2, 3, . . . ,

(A.5)

and 𝑎𝑘[ℎ] is the 𝑘-th coefficient of expansion of function ℎ(𝑥)
into a Chebyshev series relative to Chebyshev polynomials of
the 1st kind (the proof of this theorem can be found in [32] pp.
231-234).

The generalization of the theorem consists in the trans-
ference of the differential equation approximate solution
method (described by the theorem) onto systems of linear
differential equations (see [32] p. 323). In such a case,
system of 𝑁 equations can be presented in this matrix
form

𝑛∑
𝑚=0

P̂m (𝑥) f(n−m) (𝑥) = P̂ (𝑥) , (A.6)

where coefficients P̂m(𝑥) are square matrices of degree𝑁 and
f(𝑥) and P̂(𝑥) are 𝑁-element vectors. The differentiation of
the vector means the differentiation of each of its compo-
nents. If vector function f(𝑥) satisfies system of (A.6) and the
theorem’s assumptions hold good, then for each integer 𝑘 the
following identity is true:

𝑛∑
𝑚=0

2𝑛−𝑚 𝑚∑
𝑗=0

𝑏𝑛𝑚𝑗 (𝑘) 𝑎𝑘−𝑚+2𝑗 [Qm (𝑥) f (𝑥)]

= 𝑛∑
𝑗=0

𝑏𝑛𝑛𝑗 (𝑘) 𝑎𝑘−𝑛+2𝑗 [P̂ (𝑥)]
(A.7)

FunctionsQm(𝑥) in the formula are matrix equivalents of the
functions defined by formula (A.2)

Qm (𝑥) = 𝑚∑
𝑗=0

(−1)𝑚+𝑗 (𝑛 − 𝑗𝑚 − 𝑗) P̂j
(m−j) (𝑥) ,
𝑚 = 0, 1, . . . , 𝑛,

(A.8)

and 𝑎𝑙[Qm(𝑥)f(𝑥)] stands for a vector whose elements are
the 𝑙-th coefficients of the Chebyshev expansion of the
components of vector Qm(𝑥)f(𝑥).

In a special case, when system of (A.6) is a 4th-order
(𝑛 = 4) system, the sought coefficients 𝑎𝑙[f] of the Chebyshev
expansion of vector function f satisfy the following infinite
system of algebraic equations:
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∞∑
𝑙=0

󸀠 {8 (𝑘2 − 9) (𝑘2 − 4) (𝑘2 − 1) 𝑘 (𝑎𝑘−𝑙 [Q0] + 𝑎𝑘+𝑙 [Q0])
+ 4 (𝑘2 − 9) (𝑘2 − 4) (𝑘2 − 1) (𝑎𝑘−𝑙−1 [Q1] + 𝑎𝑘+𝑙−1 [Q1] − 𝑎𝑘−𝑙+1 [Q1] − 𝑎𝑘+𝑙+1 [Q1])
+ 2 (𝑘2 − 9) (𝑘2 − 4) ((𝑘 + 1) (𝑎𝑘−𝑙−2 [Q2] + 𝑎𝑘+𝑙−2 [Q2]) − 2𝑘 (𝑎𝑘−𝑙 [Q2] + 𝑎𝑘+𝑙 [Q2])
+ (𝑘 − 1) (𝑎𝑘−𝑙+2 [Q2] + 𝑎𝑘+𝑙+2 [Q2]))
+ (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) (𝑎𝑘−𝑙−3 [Q3] + 𝑎𝑘+𝑙−3 [Q3]) − 3 (𝑘 − 1) (𝑘 + 2) (𝑎𝑘−𝑙−1 [Q3] + 𝑎𝑘+𝑙−1 [Q3])
+3 (𝑘 + 1) (𝑘 − 2) (𝑎𝑘−𝑙+1 [Q3] + 𝑎𝑘+𝑙+1 [Q3]) − (𝑘 − 1) (𝑘 − 2) (𝑎𝑘−𝑙+3 [Q3] + 𝑎𝑘+𝑙+3 [Q3]))
+ 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝑎𝑘−𝑙−4 [Q4] + 𝑎𝑘+𝑙−4 [Q4]) − 4 (𝑘 + 3) (𝑘2 − 4) (𝑎𝑘−𝑙−2 [Q4] + 𝑎𝑘+𝑙−2 [Q4])
+ 6𝑘 (𝑘2 − 9) (𝑎𝑘−𝑙 [Q4] + 𝑎𝑘+𝑙 [Q4]) − 4 (𝑘 − 3) (𝑘2 − 4) (𝑎𝑘−𝑙+2 [Q4] + 𝑎𝑘+𝑙+2 [Q4])
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝑎𝑘−𝑙+4 [Q4] + 𝑎𝑘+𝑙+4 [Q4]))} 𝑎𝑙 [𝑓]
= (𝑘 + 1) (𝑘 + 2) (𝑘 + 3) 𝑎𝑘−4 [P̂] − 4 (𝑘 + 3) (𝑘2 − 4) 𝑎𝑘−2 [P̂] + 6𝑘 (𝑘2 − 9) 𝑎𝑘 [P̂]
− 4 (𝑘 − 3) (𝑘2 − 4) 𝑎𝑘+2 [P̂] + (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) 𝑎𝑘+4 [P̂] ,

0, 1, 2, 3, . . .

(A.9)

where
Q0 = P̂0,
Q1 = −4P̂0(1) + P̂1,
Q2 = 6P̂0(2) − 3P̂1(1) + P̂2,
Q3 = −4P̂0(3) + 3P̂1(2) − 2P̂2(1) + P̂3,
Q4 = P̂0

(4) − P̂1
(3) + P̂2

(2) − P̂3
(1) + P̂3,

(A.10)

The general form of the theorems can be found in
the cited above work and in the author’s papers [30,
31].

B. The Elements of Matrix Equation of Motion

The elements of matrix equation of motion (14) are expressed
as follows:

𝑘11 (𝑘, 𝑙) = 2𝑑 (𝑘2 − 9) 𝑙 ((𝑘 + 1) (𝑘 + 2) (𝑎𝑘−𝑙−2 − 𝑎𝑘+𝑙−2)
−2 (𝑘2 − 4) (𝑎𝑘−𝑙 − 𝑎𝑘+𝑙) + (𝑘 − 1) (𝑘 − 2) (𝑎𝑘−𝑙+2 − 𝑎𝑘+𝑙+2))
− 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅02𝑒𝑙𝑘−𝑙−4 + 𝜅02𝑒𝑙𝑘+𝑙−4)
− 4 (𝑘 + 3) (𝑘2 − 4) (𝜅02𝑒𝑙𝑘−𝑙−2 + 𝜅02𝑒𝑙𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅02𝑒𝑙𝑘−𝑙 + 𝜅02𝑒𝑙𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅02𝑒𝑙𝑘−𝑙+2 + 𝜅02𝑒𝑙𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅02𝑒𝑙𝑘−𝑙+4 + 𝜅02𝑒𝑙𝑘+𝑙+4))

(B.1a)

𝑘12 (𝑘, 𝑙) = − 2𝑙 [[ (𝑘 + 1) (𝑘 + 2) (𝑘 + 3) ((𝑙 − 1) 𝜅
0
1𝑒𝑙𝑘−𝑙−2 + (𝑙 + 1) 𝜅01𝑒𝑙𝑘+𝑙−2)

− 2 ((𝑘 − 2) (𝑘 − 3) (6 + (𝑘 + 5) 𝑙) 𝜅01𝑒𝑙𝑘−𝑙 + (𝑘 + 2) (𝑘 + 3) (6 − (𝑘 − 5) 𝑙) 𝜅01𝑒𝑙𝑘+𝑙)
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+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) ((𝑙 − 1) 𝜅01𝑒𝑙𝑘−𝑙+2 + (𝑙 + 1) 𝜅01𝑒𝑙𝑘+𝑙+2)
−120 𝑙∑
𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝜅01𝑒𝑙𝑘+2𝑗−𝑙]]
− 2𝑑 (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) (𝜅1𝑎𝑘−𝑙−3 + 𝜅1𝑎𝑘+𝑙−3) − 3 (𝑘 − 1) (𝑘 + 2) (𝜅1𝑎𝑘−𝑙−1 + 𝜅1𝑎𝑘+𝑙−1)
+3 (𝑘 + 1) (𝑘 − 2) (𝜅1𝑎𝑘−𝑙+1 + 𝜅1𝑎𝑘+𝑙+1) + (𝑘 − 1) (𝑘 − 2) (𝜅1𝑎𝑘−𝑙+3 + 𝜅1𝑎𝑘+𝑙+3))
− 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅21𝑒𝑙𝑘−𝑙−4 + 𝜅21𝑒𝑙𝑘+𝑙−4) − 4 (𝑘 + 3) (𝑘2 − 4) (𝜅21𝑒𝑙𝑘−𝑙−2 + 𝜅21𝑒𝑙𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅21𝑒𝑙𝑘−𝑙 + 𝜅21𝑒𝑙𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅21𝑒𝑙𝑘−𝑙+2 + 𝜅21𝑒𝑙𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅21𝑒𝑙𝑘−𝑙+4 + 𝜅21𝑒𝑙𝑘+𝑙+4))

(B.1b)

𝑘13 (𝑘, 𝑙) = − 2𝑙 [[ (𝑘 + 1) (𝑘 + 2) (𝑘 + 3) ((𝑙 − 1) 𝜅
0
1𝑒𝑠𝑘−𝑙−2 + (𝑙 + 1) 𝜅01𝑒𝑠𝑘+𝑙−2)

− 2 ((𝑘 − 2) (𝑘 − 3) (6 + (𝑘 + 5) 𝑙) 𝜅01𝑒𝑠𝑘−𝑙 + (𝑘 + 2) (𝑘 + 3) (6 − (𝑘 − 5) 𝑙) 𝜅01𝑒𝑠𝑘+𝑙)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) ((𝑙 − 1) 𝜅01𝑒𝑠𝑘−𝑙+2 + (𝑙 + 1) 𝜅01𝑒𝑠𝑘+𝑙+2)
−120 𝑙∑
𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝜅01𝑒𝑠𝑘+2𝑗−𝑙]]

(B.1c)

𝑘14 (𝑘, 𝑙) = + 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅11𝑒𝑠𝑘−𝑙−4 + 𝜅11𝑒𝑠𝑘+𝑙−4) − 4 (𝑘 + 3) (𝑘2 − 4) (𝜅11𝑒𝑠𝑘−𝑙−2 + 𝜅11𝑒𝑠𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅11𝑒𝑠𝑘−𝑙 + 𝜅11𝑒𝑠𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅11𝑒𝑠𝑘−𝑙+2 + 𝜅11𝑒𝑠𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅11𝑒𝑠𝑘−𝑙+4 + 𝜅11𝑒𝑠𝑘+𝑙+4))

(B.1d)

𝑘21 (𝑘, 𝑙) = 𝑑𝑙 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅1𝑎𝑘−𝑙−3 − 𝜅1𝑎𝑘+𝑙−3) − 3 (𝑘 + 2) (𝑘2 − 9) (𝜅1𝑎𝑘−𝑙−1 − 𝜅1𝑎𝑘+𝑙−1)
+3 (𝑘 − 2) (𝑘2 − 9) (𝜅1𝑎𝑘−𝑙+1 − 𝜅1𝑎𝑘+𝑙+1) + (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅1𝑎𝑘−𝑙+3 − 𝜅1𝑎𝑘+𝑙+3))
− 2 (𝑘2 − 9) (𝑘2 − 4) ((𝑘 + 1) (𝜅01𝑒𝑙𝑘−𝑙−2 + 𝜅01𝑒𝑙𝑘+𝑙−2)
−2𝑘 (𝜅01𝑒𝑙𝑘−𝑙 + 𝜅01𝑒𝑙𝑘+𝑙) + (𝑘 − 1) (𝜅01𝑒𝑙𝑘−𝑙+2 + 𝜅01𝑒𝑙𝑘+𝑙+2))
− 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅21𝑒𝑙𝑘−𝑙−4 + 𝜅21𝑒𝑙𝑘+𝑙−4) − 4 (𝑘 + 3) (𝑘2 − 4) (𝜅21𝑒𝑙𝑘−𝑙−2 + 𝜅21𝑒𝑙𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅21𝑒𝑙𝑘−𝑙 + 𝜅21𝑒𝑙𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅21𝑒𝑙𝑘−𝑙+2 + 𝜅21𝑒𝑙𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅21𝑒𝑙𝑘−𝑙+4 + 𝜅21𝑒𝑙𝑘+𝑙+4))

(B.1e)

𝑘22 (𝑘, 𝑙) = − 8𝑙 (𝑘2 − 9) (𝑘2 − 4)((𝑘 − 1) (𝑙 + 1) 𝑒𝑙𝑘−𝑙 − 2 𝑙∑
𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝑒𝑙𝑘+2𝑗−𝑙 + (𝑘 + 1) (𝑙 + 1) 𝑒𝑙𝑘+𝑙)

− 2( (𝑘 + 1) (𝑘 + 2) (𝑘 + 3) ((𝑘 (𝑘 − 5) + 6 + 𝑙 (𝑙 − 1)) 𝜅20𝑒𝑙𝑘−𝑙−2 + (𝑘 (𝑘 − 5) + 6 + 𝑙 (𝑙 + 1)) 𝜅20𝑒𝑙𝑘+𝑙−2)
− 2 (𝑘 − 2) (𝑘 − 3) (𝑘 (𝑘 + 2) (𝑘 + 3) + 6𝑙 + 𝑙2 (𝑘 + 5) 𝜅20𝑒𝑙𝑘−𝑙
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− 2 (𝑘 + 2) (𝑘 + 3) (𝑘 (𝑘 − 2) (𝑘 − 3) − 6𝑙 + 𝑙2 (𝑘 − 5) 𝜅20𝑒𝑙𝑘+𝑙
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) ((𝑘 (𝑘 + 5) + 6 + 𝑙 (𝑙 + 1)) 𝜅20𝑒𝑙𝑘−𝑙−2 + (𝑘 (𝑘 + 5) + 6 + 𝑙 (𝑙 − 1)) 𝜅20𝑒𝑙𝑘+𝑙−2)
−120𝑙 𝑙∑

𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝜅20𝑒𝑙𝑘+2𝑗−𝑙)
− 12𝑑 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅20𝑎𝑘−𝑙−4 + 𝜅20𝑎𝑘+𝑙−4) − 4 (𝑘 + 3) (𝑘2 − 4) (𝜅2𝑎𝑘−𝑙−2 + 𝜅2𝑎𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅2𝑎𝑘−𝑙 + 𝜅2𝑎𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅2𝑎𝑘−𝑙+2 + 𝜅2𝑎𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅2𝑎𝑘−𝑙+4 + 𝜅2𝑎𝑘+𝑙+4))
− 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅40𝑒𝑙𝑘−𝑙−4 + 𝜅40𝑒𝑙𝑘+𝑙−4) − 4 (𝑘 + 3) (𝑘2 − 4) (𝜅40𝑒𝑙𝑘−𝑙−2 + 𝜅40𝑒𝑙𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅40𝑒𝑙𝑘−𝑙 + 𝜅40𝑒𝑙𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅40𝑒𝑙𝑘−𝑙+2 + 𝜅40𝑒𝑙𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅40𝑒𝑙𝑘−𝑙+4 + 𝜅40𝑒𝑙𝑘+𝑙+4))

(B.1f)

𝑘23 (𝑘, 𝑙) = − 8𝑙 (𝑘2 − 9) (𝑘2 − 4)((𝑘 − 1) (𝑙 + 1) 𝑒𝑠𝑘−𝑙 − 2 𝑙∑
𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝑒𝑠𝑘+2𝑗−𝑙 + (𝑘 + 1) (𝑙 + 1) 𝑒𝑠𝑘+𝑙)

− 2𝑙[[ (𝑘 + 1) (𝑘 + 2) (𝑘 + 3) ((𝑙 − 1) 𝜅
2
0𝑒𝑠𝑘−𝑙−2 + (𝑙 + 1) 𝜅20𝑒𝑠𝑘+𝑙−2)

− 2 ((𝑘 − 2) (𝑘 − 3) (6 + (𝑘 + 5) 𝑙) 𝜅20𝑒𝑠𝑘−𝑙 + (𝑘 + 2) (𝑘 + 3) (6 − (𝑘 − 5) 𝑙) 𝜅20𝑒𝑠𝑘+𝑙)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) ((𝑙 − 1) 𝜅20𝑒𝑠𝑘−𝑙+2 + (𝑙 + 1) 𝜅20𝑒𝑠𝑘+𝑙+2)
−120 𝑙∑
𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝜅20𝑒𝑠𝑘+2𝑗−𝑙]]

(B.1g)

𝑘24 (𝑘, 𝑙) = 2 (𝑘2 − 9) (𝑘2 − 4) ((𝑘 + 1) (𝜅10𝑒𝑠𝑘−𝑙−2 + 𝜅10𝑒𝑠𝑘+𝑙−2)
−2𝑘 (𝜅10𝑒𝑠𝑘−𝑙 + 𝜅10𝑒𝑠𝑘+𝑙) + (𝑘 − 1) (𝜅10𝑒𝑠𝑘−𝑙+2 + 𝜅10𝑒𝑠𝑘+𝑙+2))
+ 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅30𝑒𝑠𝑘−𝑙−4 + 𝜅30𝑒𝑠𝑘+𝑙−4) − 4 (𝑘 + 3) (𝑘2 − 4) (𝜅30𝑒𝑠𝑘−𝑙−2 + 𝜅30𝑒𝑠𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅30𝑒𝑠𝑘−𝑙 + 𝜅30𝑒𝑠𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅30𝑒𝑠𝑘−𝑙+2 + 𝜅30𝑒𝑠𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅30𝑒𝑠𝑘−𝑙+4 + 𝜅30𝑒𝑠𝑘+𝑙+4))

(B.1h)

𝑘31 (𝑘, 𝑙) = − 2 (𝑘2 − 9) (𝑘2 − 4) ((𝑘 + 1) (𝜅01𝑒𝑠𝑘−𝑙−2 + 𝜅01𝑒𝑠𝑘+𝑙−2)
−2𝑘 (𝜅01𝑒𝑠𝑘−𝑙 + 𝜅01𝑒𝑠𝑘+𝑙) + (𝑘 − 1) (𝜅01𝑒𝑠𝑘−𝑙+2 + 𝜅01𝑒𝑠𝑘+𝑙+2)) (B.1i)

𝑘32 (𝑘, 𝑙) = − 8 (𝑘2 − 9) (𝑘2 − 4) 𝑙((𝑙 + 1) ((𝑘 − 1) 𝑒𝑠𝑘−𝑙 + (𝑘 + 1) 𝑒𝑠𝑘+𝑙) − 2 𝑙∑
𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝑒𝑠𝑘+2𝑗−𝑙)
+ 2𝑙 (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) (𝜅2𝑒𝑠𝑘−𝑙−2 − 𝜅2𝑒𝑠𝑘+𝑙−2) − 2 (𝑘2 − 4) (𝜅2𝑒𝑠𝑘−𝑙 − 𝜅2𝑒𝑠𝑘+𝑙)
+ (𝑘 − 1) (𝑘 − 2) (𝜅2𝑒𝑠𝑘−𝑙−2 − 𝜅2𝑒𝑠𝑘+𝑙−2))

(B.1j)
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𝑘33 (𝑘, 𝑙) = − 8 (𝑘2 − 9) (𝑘2 − 4) 𝑙((𝑙 + 1) ((𝑘 − 1) 𝑒𝑑𝑘−𝑙 + (𝑘 + 1) 𝑒𝑑𝑘+𝑙) − 2 𝑙∑
𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝑒𝑑𝑘+2𝑗−𝑙)
+ 2𝑙 (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) (𝜅2𝑔𝑘−𝑙−2 − 𝜅2𝑔𝑘+𝑙−2) − 2 (𝑘2 − 4) (𝜅2𝑔𝑘−𝑙 − 𝜅2𝑔𝑘+𝑙)
+ (𝑘 − 1) (𝑘 − 2) (𝜅2𝑔𝑘−𝑙−2 − 𝜅2𝑔𝑘+𝑙−2))

(B.1k)

𝑘34 (𝑘, 𝑙) = 2𝑙 (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) (𝜅1𝑔𝑘−𝑙−2 − 𝜅1𝑔𝑘+𝑙−2) − 2 (𝑘2 − 4) (𝜅1𝑔𝑘−𝑙 − 𝜅1𝑔𝑘+𝑙)
+ (𝑘 − 1) (𝑘 − 2) (𝜅1𝑔𝑘−𝑙+2 − 𝜅1𝑔𝑘+𝑙+2))
+ 2 (𝑘2 − 9) (𝑘2 − 4) ((𝑘 + 1) (𝜅1𝑒𝑑𝑘−𝑙−2 + 𝜅1𝑒𝑑𝑘+𝑙−2) − 2𝑘 (𝜅1𝑒𝑑𝑘−𝑙 + 𝜅1𝑒𝑑𝑘+𝑙)
+ (𝑘 − 1) (𝜅1𝑒𝑑𝑘−𝑙+2 + 𝜅1𝑒𝑑𝑘+𝑙+2))

(B.1l)

𝑘41 (𝑘, 𝑙) = + 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅11𝑒𝑠𝑘−𝑙−4 + 𝜅11𝑒𝑠𝑘+𝑙−4) − 4 (𝑘 + 3) (𝑘2 − 4) (𝜅11𝑒𝑠𝑘−𝑙−2 + 𝜅11𝑒𝑠𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅11𝑒𝑠𝑘−𝑙 + 𝜅11𝑒𝑠𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅11𝑒𝑠𝑘−𝑙+2 + 𝜅11𝑒𝑠𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅11𝑒𝑠𝑘−𝑙+4 + 𝜅11𝑒𝑠𝑘+𝑙+4))

(B.1m)

𝑘42 (𝑘, 𝑙) = − 2𝑙 [[ (𝑘 + 1) (𝑘 + 2) (𝑘 + 3) ((𝑙 − 1) 𝜅
1
0𝑒𝑠𝑘−𝑙−2 + (𝑙 + 1) 𝜅10𝑒𝑠𝑘+𝑙−2)

− 2 ((𝑘 − 2) (𝑘 − 3) (6 + (𝑘 + 5) 𝑙) 𝜅10𝑒𝑠𝑘−𝑙 + (𝑘 + 2) (𝑘 + 3) (6 − (𝑘 − 5) 𝑙) 𝜅10𝑒𝑠𝑘+𝑙)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) ((𝑙 − 1) 𝜅10𝑒𝑠𝑘−𝑙+2 + (𝑙 + 1) 𝜅10𝑒𝑠𝑘+𝑙+2)
−120 𝑙∑
𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝜅10𝑒𝑠𝑘+2𝑗−𝑙]]

(B.1n)

𝑘43 (𝑘, 𝑙) = 2𝑙( (𝑘 + 1) (𝑘 + 2) (𝑘 + 3) ((𝑙 − 1) 𝜅1𝑒𝑑𝑘−𝑙−2 + (𝑙 + 1) 𝜅1𝑒𝑑𝑘+𝑙−2)
− (2 (𝑘 − 2) (𝑘 − 3) ((𝑘 + 5) 𝑙 + 6) 𝜅1𝑒𝑑𝑘−𝑙 + 2 (𝑘 + 2) (𝑘 + 3) ((𝑘 − 5) 𝑙 − 6) 𝜅1𝑒𝑑𝑘+𝑙)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) ((𝑙 + 1) 𝜅1𝑒𝑑𝑘−𝑙+2 + (𝑙 − 1) 𝜅1𝑒𝑑𝑘+𝑙+2) − 120 𝑙∑

𝑗=0

(𝑘 + 2𝑗 − 𝑙) 𝜅1𝑒𝑑𝑘+2𝑗−𝑙)
− 2𝑙 (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) (𝜅1𝑔𝑘−𝑙−2 − 𝜅1𝑔𝑘+𝑙−2) − 2 (𝑘2 − 4) (𝜅1𝑔𝑘−𝑙 − 𝜅1𝑔𝑘+𝑙)
+ (𝑘 − 1) (𝑘 − 2) (𝜅1𝑔𝑘−𝑙+2 − 𝜅1𝑔𝑘+𝑙+2))

(B.1o)

𝑘44 (𝑘, 𝑙) = 2𝑙 (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) (𝑔𝑘−𝑙−2 − 𝑔𝑘+𝑙+2)
−2 (𝑘2 − 4) (𝑔𝑘−𝑙 − 𝑔𝑘+𝑙) + (𝑘 − 1) (𝑘 − 2) (𝑔𝑘−𝑙+2 − 𝑔𝑘+𝑙+2))
− 12 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜅2𝑒𝑑𝑘−𝑙−4 + 𝜅2𝑒𝑑𝑘+𝑙−4) − 4 (𝑘 + 3) (𝑘2 − 4) (𝜅2𝑒𝑑𝑘−𝑙−2 + 𝜅2𝑒𝑑𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜅2𝑒𝑑𝑘−𝑙 + 𝜅2𝑒𝑑𝑘+𝑙) − 4 (𝑘 − 3) (𝑘2 − 4) (𝜅2𝑒𝑑𝑘−𝑙+2 + 𝜅2𝑒𝑑𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜅2𝑒𝑑𝑘−𝑙+4 + 𝜅2𝑒𝑑𝑘+𝑙+4))

(B.1p)
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𝑏11 (𝑘, 𝑙) = 𝑏22 (𝑘, 𝑙) = 𝑏33 (𝑘, 𝑙)
= 12𝑔 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝜌𝑘−𝑙−4 + 𝜌𝑘+𝑙−4) − 4 (𝑘2 − 4) (𝑘 + 3) (𝑘2 − 4) (𝜌𝑘−𝑙−2 + 𝜌𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝜌𝑘−𝑙 + 𝜌𝑘+𝑙) − 4 (𝑘2 − 4) (𝑘 − 3) (𝑘2 − 4) (𝜌𝑘−𝑙+2 + 𝜌𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝜌𝑘−𝑙+4 + 𝜌𝑘+𝑙+4))

𝑏44 (𝑘, 𝑙) = 12𝑔 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) (𝑖𝑘−𝑙−4 + 𝑖𝑘+𝑙−4) − 4 (𝑘2 − 4) (𝑘 + 3) (𝑘2 − 4) (𝑖𝑘−𝑙−2 + 𝑖𝑘+𝑙−2)
+ 6𝑘 (𝑘2 − 9) (𝑖𝑘−𝑙 + 𝑖𝑘+𝑙) − 4 (𝑘2 − 4) (𝑘 − 3) (𝑘2 − 4) (𝑖𝑘−𝑙+2 + 𝑖𝑘+𝑙+2)
+ (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) (𝑖𝑘−𝑙+4 + 𝑖𝑘+𝑙+4))

(B.2)

𝑃1 (𝑘, 𝑙) = − 𝑓 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) 𝑝𝑘−4 − 4 (𝑘 + 3) (𝑘2 − 4) 𝑝𝑘−2
+6𝑘 (𝑘2 − 9)𝑝𝑘 − 4 (𝑘 − 3) (𝑘2 − 4) 𝑝𝑘+2 + (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) 𝑝𝑘+4)
− ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) 𝜅𝑚𝑘−4 − 4 (𝑘 + 3) (𝑘2 − 4) 𝜅𝑚𝑘−2
+6𝑘 (𝑘2 − 9) 𝜅𝑚𝑘 − 4 (𝑘 − 3) (𝑘2 − 4) 𝜅𝑚𝑘+2 + (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) 𝜅𝑚𝑘+4) ,

𝑃2 (𝑘, 𝑙) = − 𝑓 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) 𝑟𝑘−4 − 4 (𝑘 + 3) (𝑘2 − 4) 𝑟𝑘−2
+6𝑘 (𝑘2 − 9) 𝑟𝑘 − 4 (𝑘 − 3) (𝑘2 − 4) 𝑟𝑘+2 + (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) 𝑟𝑘+4)
− (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) 𝜅𝑚𝑘−3 − 3 (𝑘 − 1) (𝑘 + 2) (𝑘2 − 4) 𝜅𝑚𝑘−1
+3 (𝑘 + 1) (𝑘 − 2) 𝜅𝑚𝑘+1 − (𝑘 − 1) (𝑘 − 2) 𝜅𝑚𝑘+3) ,

𝑃3 (𝑘, 𝑙) = − 𝑓 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) 𝑞𝑘−4 − 4 (𝑘 + 3) (𝑘2 − 4) 𝑞𝑘−2
+6𝑘 (𝑘2 − 9) 𝑞𝑘 − 4 (𝑘 − 3) (𝑘2 − 4) 𝑞𝑘+2 + (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) 𝑞𝑘+4)
− (𝑘2 − 9) ((𝑘 + 1) (𝑘 + 2) 𝑛𝑘−3 − 3 (𝑘 − 1) (𝑘 + 2) (𝑘2 − 4) 𝑛𝑘−1
+3 (𝑘 + 1) (𝑘 − 2) 𝑛𝑘+1 − (𝑘 − 1) (𝑘 − 2) 𝑛𝑘+3) ,

𝑃4 (𝑘, 𝑙) = − 𝑓 ((𝑘 + 1) (𝑘 + 2) (𝑘 + 3) 𝑡𝑘−4 − 4 (𝑘 + 3) (𝑘2 − 4) 𝑡𝑘−2
+6𝑘 (𝑘2 − 9) 𝑡𝑘 − 4 (𝑘 − 3) (𝑘2 − 4) 𝑡𝑘+2 + (𝑘 − 1) (𝑘 − 2) (𝑘 − 3) 𝑡𝑘+4) ,

(B.3)

where the coefficients in formulas (B.1a)–(B.3) are the
coefficients of expansion of the following functions into a
Chebyshev series:

𝑒𝑑𝑙 = 𝑎𝑙 [𝐸𝐼𝑦] , 𝜅𝑝𝑒𝑑𝑙 = 𝑎𝑙 [𝜅𝑝𝐸𝐼𝑦] ,
𝑒𝑙𝑙 = 𝑎𝑙 [𝐸𝐼𝑧] , 𝜅𝑝𝑞 𝑒𝑙𝑙 = 𝑎𝑙 [(𝜅(1))𝑞 𝜅𝑝𝐸𝐼𝑧] ,
𝑒𝑠𝑙 = 𝑎𝑙 [𝐸𝐼𝑦𝑧] , 𝜅𝑝𝑞 𝑒𝑠𝑙 = 𝑎𝑙 [(𝜅(1))𝑞 𝜅𝑝𝐸𝐼𝑦𝑧] ,
𝑎𝑙 = 𝑎𝑙 [𝐸𝐴] , 𝜅𝑝𝑎𝑙 = 𝑎𝑙 [𝜅𝑝𝐸𝐴] ,
𝑔𝑙 = 𝑎𝑙 [𝐺𝐽𝑠] , 𝜅𝑝𝑔𝑙 = 𝑎𝑙 [𝜅𝑝𝐺𝐽𝑠] ,
𝜌𝑙 = 𝑎𝑙 [𝜌] , 𝑖𝑙 = 𝑎𝑙 [𝐽𝑚𝑠 ] ,

𝑝𝑙 = 𝑎𝑙 [𝑝𝑥] , 𝑟𝑙 = 𝑎𝑙 [𝑝𝑦] , 𝑞𝑙 = 𝑎𝑙 [𝑞𝑧] ,
𝑡𝑙 = 𝑎𝑙 [𝑚𝑥] , 𝑛𝑙 = 𝑎𝑙 [𝑚𝑦] , 𝑚𝑙 = 𝑎𝑙 [𝑚𝑧] ,𝜅𝑚𝑙 = 𝑎𝑙 [𝜅𝑚𝑧] .

(B.4)

C. Reduction of Matrix to Jordan
Canonical Form

In the paper the following theorem is used.

�eoremC.1. For each squarematrixA of𝑛 degree there exists
nonsingular matrix S reducing matrix A to a certain matrix

J = SAS−1, (det S ̸= 0) (C.1)
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having this Jordan form

J = diag [J1 (𝜆1) , J2 (𝜆2) , . . . , J𝑚 (𝜆𝑚)] , 𝑚 ≤ 𝑛, (C.2)

where 𝜆1, 𝜆2, . . . , 𝜆𝑚 are different eigenvalues of matrix A,

J𝑘 (𝜆𝑘) = diag [J(1)𝑘 (𝜆𝑘) , J(2)𝑘 (𝜆𝑘) , . . . , J(𝑟)𝑘 (𝜆𝑘)] ,
𝑟 = 𝑟 (𝑘) , (C.3)

J(𝑖)𝑘 (𝜆𝑘) =
[[[[[[[[
[

𝜆𝑘 1 0 . . . 0
0 𝜆𝑘 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 𝜆𝑘

]]]]]]]]
]
,

𝑖 = 1, 2, . . . , 𝑟 (𝑘) , 𝑘 = 1, 2, . . . , 𝑚, dim [J(𝑖)𝑘 (𝜆𝑘)] = 𝑒(𝑖)𝑘 × 𝑒(𝑖)𝑘

(C.4)

is the so-called Jordan cage corresponding to eigenvalue 𝜆𝑘,
with one or several Jordan cages of 𝑒(𝑖)

𝑘
degree, where 𝑒(1)

𝑘
+ 𝑒(2)
𝑘+ ⋅ ⋅ ⋅ + 𝑒(𝑟)

𝑘
= 𝛼𝑘, 𝑟 = 𝑟(𝑘), 𝑘 = 1, 2, . . . , 𝑚, and 𝛼1 + 𝛼2 + ⋅ ⋅ ⋅ +𝛼𝑚 = 𝑛, corresponding to each eigenvalue 𝜆𝑘 of matrix A, with

multiplicity 𝛼𝑘.
In a special case when all the eigenvalues of matrix A are

single, all the Jordan cages corresponding to 𝜆𝑘 get reduced
to simple one-element cages J(𝑖)

𝑘
(𝜆𝑘) = [𝜆𝑘]. In the considered

case

J = {𝜆} = diag [𝜆1, 𝜆2, . . . , 𝜆𝑛] , (C.5)

and transformation matrix S = W−1 is the inverse of
eigenmatrix W, i.e., a matrix satisfying the equation AW =
W{𝜆}.
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