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An extension of the integrated production-delivery lot sizing model with limited production capacity and transportation cost is
investigated. We introduce the factor of overtime work into the model to improve the manufacturer’s production. In addition,
when finishing a lot, the manufacturer has maintenance time to maintain and repair equipment for ensuring that the supply chain
is operating continuously. By analyzing the integrated model, the solution procedure is provided to determine the optimal delivery
and order policy. We conduct a numerical experiment and give sensitive analysis by varying some parameters to illustrate the
problem and its solution procedure.

1. Introduction

One goal of supply chain management is to maximize profit
orminimize cost. Traditionally, the retailer andmanufacturer
trade with each other based on the economic order quantity
(EOQ) or economic production quantity (EPQ) model.
Along with the diversification of marketing pattern, parties
among the supply chain have realized the limitations and
shortages of the EOQ and EPQ models. To satisfy current
market demand, joint economic lot sizing (JELS) inventory
model has been proposed to coordinate the production-
delivery strategy among suppliers, manufacturers, retailers,
and so on.The aim of themodel is to seek optimal production
lot sizing based on integrated cost/profit function, rather than
each party’s individual objectives.

Goyal [1] first analyzed a joint economic lot sizing
(JELS) inventory model with the assumption of an infinite
production rate and obtained the single-vendor and single-
buyer optimal ordering strategy. Banerjee [2] relaxed Goyal’s
[1] model by taking production capacity into consideration
and gave the corresponding optimal lot-for-lot policy. After
that, Goyal [3] developed a more general JELS model in
which the supplier retained a part of inventory in stock

and the buyer received orders at regular time intervals.
Goyal and Gupta [4] and Thomas and Griffin [5] further
conducted related research. Lu [6] found a one-vendor and
multibuyer integrated production-delivery model to coordi-
nate the replenishment of different items. Subsequently, Hill
[7] introduced the geometric growth factor as a decision
variable into the integrated production-delivery model. For
this integrated model, Hill [8] gave the optimal production
and shipment solution.

Most early research on theEOQmodel assumes that setup
cost is constant or a fixed part of ordering cost. However,
the Japanese have successfully introduced the “just-in-time”
philosophy that reduces setup cost and time as much as
possible. Subsequently, related research has been published
to investigate the effects of investment in reducing setup
cost. Porteus [9] analyzed an investment cost with the setup
level and examined how the capital investment impacts on
reducing setup cost in the standard EOQ model. Later,
Porteus [10, 11] extended the research to the discounted EOQ
model. Billington [12] presented an economic production
quantity (EPQ) model where setup cost varied linearly or
exponentially as a function of investment. Then, Kim et al.
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[13] extended the model of Billington [12] and Porteus [9] by
analyzing the corresponding behavior under different setup
cost reduction functions. Spence and Porteus [14] considered
the impact of setup reduction onproduction capacity.Nasri et
al. [15] considered decreasing setup cost as a decision variable
in the EOQmodel.Then, the extension of the setup reduction
model was introduced into the economic manufacturing
quantity (EMQ) model by Sarker and Coates [16]. Later,
under the conditions of setup cost reduction, Huang [17] and
Lou and Wang [18] determined the optimal policies of the
integrated inventorymodel when payment is permitted delay.
In recent years, Shahpouri et al. [19] developed an integrated
vendor-buyer inventory model incorporating lead time and
ordering cost reduction with a service-level constraint. In
their model, it is suggested that decreasing lead time and
reducing ordering cost can decrease the expected total cost.
An integrated procurement production inventory model for
defective productswas studied by Priyan et al. [20] to simulta-
neously control setup and ordering cost under the JIT policy.
Sarkar et al. [21] invented a two-echelon supply chain model
with deterioration by considering the effects of setup cost
reduction and quantity improvement. Our paper will follow
the assumption that the setup cost is a function of investment.

So far, all the models mentioned above assumed that the
transportation cost is part of the ordering cost. In reality,
however, this assumption is unreasonable since transporta-
tion cost is impacted by many factors like the routing
decisions, the selected shipment size, and others. There
is a substantial amount of studies addressing the related
problems. Baumol and Vinod [22] provided a simplified
model that describes the essentials of freight shipment. They
sought the minimization of inventory cost andmaximization
of profit, respectively, in their model. Then, Burns et al. [23]
developed an analytic method to minimize the sum of trans-
portation and inventory costs when items are distributed
from a supplier to multiple customers. They compared the
optimal decisions under two distribution strategies: direct
shipping and peddling. New vendor-managed inventory sys-
tems that coordinated inventory and transportation decision
in a stochastic setting were proposed by Çetinkaya and Lee
[24]. Çetinkaya and Lee [25] utilized the methodology of
Çetinkaya and Lee [24] to optimize the integrated inventory
and outbound transportation model. In their model, the
outbound distributionwarehouse is operated by a third-party
provider and freight quantities are consolidated. In addition,
Toptal et al. [26] suggested the vendor-buyer coordinating
model including inbound and outbound cargo capacity and
coordinating transportation cost. Lee [27] incorporated the
discounted freight rate into the EOQ model. Burwell et
al. [28] constructed a price-dependent demand model with
freight discounts. Swenseth and Godfrey [29] incorporated
two freight rate functions into the inventory replenishment
model to explore the impact on purchasing decisions. Sub-
sequently, Ertogral et al. [30] developed optimal solution
procedures for solving the integrated inventory model. They
concluded that the explicit incorporation of transportation
cost in the integrated inventory model has great effect on
the production decisions. Then, Shu et al. [31] extended
the production-delivery lot sizing model under the jointly

exponentially distributed delivery time. Other related articles
can be found in Kang and Kim [32], Hwang [33, 34], and
Lee and Fu [35]. Recently, Makkar and Jha [36] developed
a procurement-distribution model with freight discount
for perishable product. A three-party supply chain system
with quantity and freight discounts was provided by Ke et
al. [37]. Jauhari and Winingsih [38] illustrated the supply
chain coordination in a stochastic environment using freight
discount by proposing four schedules. Birbil et al. [39]
identified the set of purchase-transportation cost functions
into an economic order quantity cost model. They proposed
a Lipschitz optimization procedure for the problem.

In real production management, some manufacturers
may have an insufficient production capacity due to being
understaffed, possessing outdated equipment, and other
restricted conditions. To meet the large demand, overtime
work is the most common and relative effective method
thatmanymanufacturers usually adopt. FoxconnTechnology
Group is a classic case where the manager requires the staff
to work several hours of overtime per day to improve the
production rate. Another representative example is Toyota
Motor Corporation. In August, Toyota announced that they
would adopt “discretionary labor system” in December. This
new measure can promote the enterprise’s production capac-
ity by encouraging workers to work overtime. In this paper,
we attempt to extend the model of Shu et al. [31] by assuming
that the manufacturer’s production rate is smaller than the
market demand rate.We take the factor of overtimework into
consideration to increase the production rate per day.

The objective is to minimize the integrated average total
cost of the two-stage supply chain, based on which the
optimal delivery quantity, shipment number, and investment
expenditure are obtained. It is obvious that decreasing the
manufacturer’s holding inventory can effectively reduce the
integrated inventory cost. Hence, the best policy to minimize
the integrated annual cost is that the manufacturer should
have no excess inventory during each delivery interval; that is,
the manufacturer’s production quantity during each delivery
interval equals the size of each shipment. Furthermore, to
ensure the normal operation of this supply chain, the manu-
facturer does not immediately produce the next lot when each
lot is finished but shuts down for a time interval to maintain
and repair equipment. This consideration is very different
from the previously mentioned literature. We developed an
algorithm to solve the model in this paper which can yield
globally optimal solution. Numerical examples and analysis
are shown to prove the effectiveness of the algorithm. In
addition, this paper follows previous research by assuming
that the transportation cost is a ceiling function of each
delivery quantity.

The remainder of this paper is organized as follows.
In Section 2, we provide notations and assumptions. In
Section 3, we present our model with the manufacturer’s
overtime work and transportation cost. In Section 4, we
analyze the model and propose a solution procedure to mini-
mize the integrated annual total cost. Numerical experiments
and sensitive analysis are given in Section 5. Finally, the
conclusion and the future extensions of the proposed model
have been made in last section.
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2. Notations and Assumptions

This paper develops a long-term production-delivery model,
where the manufacturer’s production rate 𝑅 is smaller than
demand rate 𝐷. To improve insufficient production capacity,
the manufacturer proposes a rational overtime work strategy
to increase production rate from 𝑅 to (1 + 𝛼)𝑅, where 𝛼 is
the increasing production rate by working overtime. Unit
production cost of the manufacturer is increased from 𝑐
to 𝑐1 when workers work overtime. The retailer orders 𝑄
units from the manufacturer per production run. However,
if all 𝑄 units goods are delivered at a time, not only will
the manufacturer increase production pressure, but also
the retailer will also increase holding cost. To avoid these
dilemmas, each lot is divided into 𝑛 times for delivery, and the
manufacturer’s delivery pressure decreases to 𝑞 during each
delivery interval. Thus, the produced total quantity per lot is𝑄 = 𝑛𝑞 and the delivery cycle is 𝑇 = 𝑞/𝐷.

The model runs as follows. When the retailer orders𝑄 units goods from the manufacturer, the manufacturer
produces 𝑞 units by overtime and then delivers the first 𝑞
units goods to the retailer. The first delivery point is 𝑞/(1 +𝛼)𝑅 (point F). The manufacturer synchronizes working 𝑡
by overtime work and then working 𝑇 − 𝑡 normally and
continuously during cycles [𝑞/(1+𝛼)𝑅, 𝑞/(1+𝛼)𝑅+𝑇], [𝑞/(1+𝛼)𝑅+𝑇, 𝑞/(1+𝛼)𝑅+2𝑇], . . ., and [𝑞/(1+𝛼)𝑅+(𝑛−2)𝑇, 𝑞/(1+𝛼)𝑅 + (𝑛 − 1)𝑇]. At point 𝑞/(1 + 𝛼)𝑅 + (𝑛 − 1)𝑇 (point A),
the manufacturer finishes a lot 𝑛𝑞 and shuts down for a time
interval Δ𝑡 to maintain and repair equipment. The following
notations and assumptions are used to develop the integrated
inventory model.

Notations

𝑞0: the capacity per vehicle𝐸: transportation cost per vehicle
𝐾: expenditure per day to operate the planning
ordering system between the manufacturer and the
retailer in each ordering cycle
𝑈(𝐾): the retailer’s setup cost per shipment
𝐴𝑚: themanufacturer’s setup cost for each production
run
𝐴 𝑠: the manufacturer’s opportunity cost per produc-
tion run, including maintenance cost, the lost profit,
and goodwill loss caused by shutdown
ℎ𝑚: inventory holding cost per unit per time for the
manufacturer
ℎ𝑟: inventory holding cost per unit per time for the
retailer
𝐶𝑚: the manufacturer’s average total cost
𝐶𝑟: the retailer’s average total cost𝐽: the integrated inventory model’s average total cost

Assumptions. (1) According to the description of Billington
[12], the capital investment impacts on the reduction of
setup cost to minimize the total cost of the EOQ model.

In this paper, to obtain the optimal cost of the model, we
follow Billington’s [12] assumption that the retailer’s setup
cost per shipment𝑈(𝐾) is a negative exponential function of
operating expenditure 𝐾:

𝑈 (𝐾) = 𝑈0𝑒−𝜆𝐾, (1)

where 𝑈0 is original order setup cost per shipment and 𝜆 is a
constant parameter.(2) Demand rate 𝐷 is constant over time, and the
manufacturer’s production rate 𝑅 is smaller than the demand
rate𝐷. The manufacturer can increase the production rate to(1+𝛼)𝑅 by working overtime. Tomake the problem tractable,
we assume that the production rate by working overtime is
larger than the demand rate; that is, (1 + 𝛼)𝑅 > 𝐷.(3) With the increase of operating time in each ordering
cycle, the equipment wear is more serious. The equipment
wear can to some extent reduce the production capacity. To
make sure that the equipment’s production rate is unchange-
able and equipment is running normally, the manufacturer
reserves maintenance time tomaintain and repair equipment
when each lot is finished. To make this near to the actual sit-
uation, we assume that maintenance time is a nondecreasing
function of ordering cycle

Δ𝑡 (𝑛𝑇) = 𝛾 log (𝑛𝑇 + 𝐶) + 𝜂 (𝑛𝑇)2 , (2)

where 𝛾, 𝜂, and 𝐶 are constants and 𝜆, 𝜂, 𝐶 > 0. The
equipment still needs to be maintained, even if nothing is
produced; that is, Δ𝑡(Δ𝑡) > 0 when the production time𝑛𝑇−Δ𝑡 is zero. For maintenance time Δ𝑡, we can find a linear
function Δ𝑡 = 𝛽𝑛𝑇 + Δ𝑡(Δ𝑡), where 𝛽 is a constant and0 < 𝛽 < 1, subject to Δ𝑡 ≥ Δ𝑡 for all 𝑛𝑇. By analyzingΔ𝑡 ≥ Δ𝑡, we obtain Δ𝑡/𝑛𝑇 > 𝛽.(4) Shortages are not allowed.(5) To ensure the continuous production operation, the
manufacturer should produce 𝑞/(1 + 𝛼)𝑅 units of goods in
advance.

3. Mathematical Model

Figure 1 illustrates the inventory profiles for both the man-
ufacturer and the retailer over one replenishment cycle. To
decrease the manufacturer’s holding cost, the manufacturer
adopts a reasonable overtime strategy to make the manu-
facturer’s production quantity during each delivery interval
equal to the size of each shipment; that is, (1+𝛼)𝑅𝑡+𝑅(𝑇−𝑡) =𝐷𝑇. Therefore, the length of overtime during each delivery
interval is 𝑡 = (𝐷 − 𝑅)𝑇/𝛼𝑅 = (𝐷 − 𝑅)𝑞/𝛼𝑅𝐷.

The average integrated total cost consists of the manufac-
turer’s and the retailer’s respective average total costs. Next,
we separately discuss them.

3.1. The Manufacturer’s Average Total Cost. The manufac-
turer’s average total cost consists of holding cost, setup cost,
and production cost. The total number of shipments in each
ordering cycle and the delivery quantity at each delivery point
are two decision variables for the manufacturer. Hence, the
manufacturer’s average total cost is a function of 𝑛 and 𝑞. In
Figure 1, the polygonal line OEDB illustrates the accumulated
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Figure 1: The manufacturer and retailer’s on-hand inventory.

inventory level of the manufacturer. The trapezoid region
AFGH depicts the total depletion of the manufacturer’s
inventory. The polygonal line OEDB intersects the trapezoid
region AFGH at each delivery point. In other words, the
manufacturer has no excess inventory at each delivery point;
that is, the manufacturer’s production quantity exactly equals
the manufacturer’s delivery volume during each delivery
interval. In Figure 1, we illustrate that the shaded region
OEDBHGF represents the manufacturer’s total accumulated
inventory in each ordering cycle.

The shaded region OEDBHGF

= the rectangle area OABC

− the polygon area OCBDE

− the stair-shaped area AHGF = [ 𝐷𝑇(1 + 𝛼) 𝑅
+ (𝑛 − 1) 𝑇] 𝑛𝐷𝑇 − [ 2𝐷𝑇(1 + 𝛼) 𝑅 (𝑛 − 1) + (𝑛 − 1) 𝑡
+ (𝑛 − 1) (𝑛 − 2) 𝑇] (1 + 𝛼) 𝑅𝑡2 − [ 2𝐷𝑇(1 + 𝛼) 𝑅 (𝑛 − 1)
+ (𝑛 − 1) 𝑡 + (𝑛 − 1)2 𝑇] 𝑅 (𝑇 − 𝑡)2 − 𝑞22 (1 + 𝛼) 𝑅
− 𝐷𝑇2 (𝑛 − 1) 𝑛2 = [ 𝐷𝑇(1 + 𝛼) 𝑅 + (𝑛 − 1) 𝑇] 𝑛𝐷𝑇
− 𝑛 (𝑛 − 1) 𝑞𝑇2 − 𝑞22 (1 + 𝛼) 𝑅
− 𝑅 (𝛼𝑡 + 𝑇)2 [2𝑞 (𝑛 − 1)(1 + 𝛼) 𝑅 + (𝑛 − 1) (𝑛 − 2) 𝑇
+ (𝑛 − 1) 𝑡] − 𝑅 (𝑇 − 𝑡) (𝑛 − 1) 𝑇2 .

(3)

As a result, the manufacturer’s average holding cost

= ℎ𝑚𝑛𝑇 {[ 𝐷𝑇(1 + 𝛼) 𝑅 + (𝑛 − 1) 𝑇] 𝑛𝐷𝑇 − 𝑛 (𝑛 − 1) 𝑞𝑇2
− 𝑞22 (1 + 𝛼) 𝑅 − 𝑅 (𝛼𝑡 + 𝑇)2 [2𝑞 (𝑛 − 1)(1 + 𝛼) 𝑅
+ (𝑛 − 1) (𝑛 − 2) 𝑇 + (𝑛 − 1) 𝑡]
− 𝑅 (𝑇 − 𝑡) (𝑛 − 1) 𝑡2 } = ℎ𝑚𝑞 [ 𝐷(1 + 𝛼) 𝑅𝑛
− (𝑛 − 1)𝐷2𝑛𝛼𝑅 + (1 + 𝛼) (𝑛 − 1)𝑛𝛼 − (1 + 𝛼) (𝑛 − 1) 𝑅2𝑛𝛼𝐷 ] .

(4)

The manufacturer’s average setup cost is 𝐴𝑚/𝑛𝑇 = 𝐴𝑚𝐷/𝑛𝑞.
The manufacturer’s average opportunity cost is 𝐴 𝑠/𝑛𝑇 =𝐴 𝑠𝐷/𝑛𝑞.
According to the discussion above and Figure 1, the total

production cost in each ordering cycle is 𝑐1(1 + 𝛼)𝑅[𝑞/(1 +𝛼)𝑅 + (𝑛 − 1)𝑡] + 𝑐𝑅(𝑛 − 1)(𝑇 − 𝑡). Thus, the manufacturer’s
average production cost is 𝑐1𝐷/𝑛 + [𝑐1(1 + 𝛼) − 𝑐](𝑛 − 1)(𝐷 −𝑅)/𝑛𝛼 + 𝑐𝑅(𝑛 − 1)/𝑛.

Combined with the discussion above, we obtain the
manufacturer’s average cost

𝐶𝑚 (𝑞, 𝑛) = ℎ𝑚𝑞 [ 𝐷2 (1 + 𝛼) 𝑅𝑛 − (𝑛 − 1)𝐷2𝑛𝛼𝑅
+ (1 + 𝛼) (𝑛 − 1)𝑛𝛼 − (1 + 𝛼) (𝑛 − 1) 𝑅2𝑛𝛼𝐷 ] + 𝐴𝑚𝐷𝑛𝑞
+ 𝐴 𝑠𝐷𝑛𝑞 + 𝑐1𝐷𝑛 + [𝑐1 (1 + 𝛼) − 𝑐] (𝑛 − 1) (𝐷 − 𝑅)𝑛𝛼
+ 𝑐 (𝑛 − 1) 𝑅𝑛 .

(5)

For convenience, let 𝐹 = 𝐷/2(1 + 𝛼)𝑅𝑛 − (𝑛 − 1)𝐷/2𝑛𝛼𝑅 +(1+𝛼)(𝑛−1)/𝑛𝛼− (1+𝛼)(𝑛−1)𝑅/2𝑛𝛼𝐷. Themanufacturer’s
average total cost becomes

𝐶𝑚 (𝑞, 𝑛) = ℎ𝑚𝑞𝐹 + (𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞 + 𝑐1𝐷𝑛
+ [𝑐1 (1 + 𝛼) − 𝑐] (𝑛 − 1) (𝐷 − 𝑅)𝑛𝛼
+ 𝑐 (𝑛 − 1) 𝑅𝑛 .

(6)

Next, we discuss the retailer’s average total cost.

3.2. The Retailer’s Average Total Cost. In most inventory
models, transportation cost is fixed or a continuous function
of ordering quantity. In this paper, we view transportation
cost as a ceiling function with respect to the number of
vehicles used to transport goods. According to notations in
Section 2, we know that the capacity per vehicle is 𝑞0. Hence,
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when themanufacturer delivers 𝑞units of goods to the retailer
at delivery point, the retailer needs to pay ⌈(𝑞/𝑞0)𝐸⌉ for
transportation.

The retailer’s average inventory cost consists of trans-
portation cost, setup cost, holding cost, and expenditure
cost. Hence, the retailer has two decision variables: delivery
quantity at each delivery point and operating expenditure in
each delivery cycle. Obviously, the retailer’s average total cost
is a function of 𝑞 and 𝐾. According to the discussion above,
the retailer’s average total cost can be represented as

𝐶𝑟 (𝑞, 𝐾) = 1𝑇 [⌈ 𝑞𝑞0 ⌉𝐸 + 𝑈0𝑒−𝜆𝐾 + ℎ𝑟 ∫𝑇
0

𝑞 − 𝐷𝑡 𝑑𝑡]
+ 𝐾 = ⌈ 𝑞𝑞0 ⌉

𝐸𝐷𝑞 + 𝐷𝑈0𝑒−𝜆𝐾𝑞 + ℎ𝑟𝑞2 + 𝐾.
(7)

Now, we elaborate on the integrated average cost for both
the manufacturer and the retailer.

3.3.The Integrated Average Total Cost. Themanufacturer and
the retailer work together in a cooperative manner to min-
imize the integrated average total cost. Thus, the integrated
average total cost consists of the manufacturer’s average total
cost and the retailer’s average total cost. According to Sections
3.1 and 3.2, we know that the integrated average total cost
has three decision variables, including the total number of
shipments in each ordering cycle, the delivery quantity at
each delivery point, and the operating expenditure in each
ordering cycle. Hence, the integrated average total cost is a
function of 𝑞, 𝑛, and 𝐾. The integrated average total cost can
be written as

𝐽 (𝑞, 𝑛, 𝐾) = ℎ𝑚𝑞𝐹 + (𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞 + 𝑐1𝐷𝑛
+ [𝑐1 (1 + 𝛼) − 𝑐] (𝑛 − 1) (𝐷 − 𝑅)𝑛𝛼
+ 𝑐 (𝑛 − 1) 𝑅𝑛 + ⌈ 𝑞𝑞0 ⌉

𝐸𝐷𝑞 + 𝐷𝑈0𝑒−𝜆𝐾𝑞
+ ℎ𝑟𝑞2 + 𝐾.

(8)

4. Analysis and Optimal Solution

The objective of this model is to minimize the integrated
average total cost 𝐽(𝑞, 𝑛, 𝐾) defined by (8). To find the
optimal solution, we analyze the first- and second-order
partial derivatives of 𝐽(𝑞, 𝑛, 𝐾) with respect to 𝐾.

𝜕𝐽 (𝑞, 𝑛, 𝐾)
𝜕𝐾 = −𝜆𝐷𝑈0𝑒−𝜆𝐾𝑞 + 1.

𝜕2𝐽 (𝑞, 𝑛, 𝐾)
𝜕2𝐾2 = 𝜆2𝐷𝑈0𝑒−𝜆𝐾𝑞 .

(9)

Obviously, 𝜆2𝐷𝑈0𝑒−𝜆𝐾/𝑞 > 0 holds for all 𝐾, which
proves that function 𝐽(𝑞, 𝑛, 𝐾) is convex in 𝐾. Setting (9) to
be zero, we obtain

𝐾 = 1𝜆 ln
𝜆𝐷𝑈0𝑞 . (10)

By inspecting Section 2, we know that 𝑛 represents the
total number of shipments in each ordering cycle. Hence, 𝑛 is
a positive integer. We derive the range of 𝑛 as follows.

Proposition 1. The total number of shipments in each ordering
cycle is an integer between 1 and ⌊1/𝛽 − 𝐷/𝛽(1 + 𝛼)𝑅⌋.
Proof. See Appendix A.

For the convenience of the discussion below, let 𝑛 =⌊1/𝛽−𝐷/𝛽(1+𝛼)𝑅⌋.There is an implicit assumption to ensure
the feasibility of the model: 𝑛 ≥ 1.

Now, we analyze the first-order partial derivative of𝐽(𝑞, 𝑛, 𝐾) with respect to 𝑞 for a certain 𝑛.
Because of the discontinuity of ⌈𝑞/𝑞0⌉, the function𝐽(𝑞, 𝑛, 𝐾) with respect to 𝑞 is discontinuous. It is difficult to

obtain the optimal delivery quantity by calculating the first-
and second-order partial derivative of 𝐽(𝑞, 𝑛, 𝐾) with respect
to 𝑞. We introduce a parameter 𝜀, subject to 𝑞/𝑞0 + 𝜀 being an
integer, where 0 < 𝜀 < 1. Hence, the integrated average total
cost becomes

𝐽𝜀 (𝑞, 𝑛, 𝐾) = ℎ𝑚𝑞𝐹 + (𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞 + 𝑐1𝐷𝑛
+ [𝑐1 (1 + 𝛼) − 𝑐] (𝑛 − 1) (𝐷 − 𝑅)𝑛𝛼
+ 𝑐 (𝑛 − 1) 𝑅𝑛 + ( 𝑞𝑞0 + 𝜀) 𝐸𝐷𝑞
+ 𝐷𝑈0𝑒−𝜆𝐾𝑞 + ℎ𝑟𝑞2 + 𝐾

= ℎ𝑚𝑞𝐹 + (𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞 + 𝑐1𝐷𝑛
+ [𝑐1 (1 + 𝛼) − 𝑐] (𝑛 − 1) (𝐷 − 𝑅)𝑛𝛼
+ 𝑐 (𝑛 − 1) 𝑅𝑛 + 𝐸𝐷𝑞0 + 𝜀𝐸𝐷𝑞
+ 𝐷𝑈0𝑒−𝜆𝐾𝑞 + ℎ𝑟𝑞2 + 𝐾.

(11)

Obviously, 𝐽𝜀(𝑞, 𝑛, 𝐾) is continuous with respect to 𝑞, and
we can obtain the first- and second-order partial derivatives
of 𝐽𝜀(𝑞, 𝑛, 𝐾) with respect to 𝑞, respectively, as

𝜕𝐽𝜀 (𝑞, 𝑛, 𝐾)
𝜕𝑞 = −(𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞2 + ℎ𝑚𝐹 − 𝜀𝐸𝐷𝑞2

− 𝐷𝑈0𝑒−𝜆𝐾𝑞2 + ℎ𝑟2 ,
(12)



6 Mathematical Problems in Engineering

𝜕𝐽2𝜀 (𝑞, 𝑛, 𝐾)
𝜕𝑞2 = 2 (𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞3 + 2𝜀𝐸𝐷𝑞3

+ 2𝐷𝑈0𝑒−𝜆𝐾𝑞3 .
(13)

From (13), we know that 2(𝐴𝑚 + 𝐴 𝑠)𝐷/𝑛𝑞3 + 2𝜀𝐸𝐷/𝑞3 +2𝐷𝑈0𝑒−𝜆𝐾/𝑞3 > 0 for all 𝑞 > 0, which demonstrates that𝐽𝜀(𝑞, 𝑛, 𝐾) is convex for 𝑞 > 0. By setting (12) to be zero and
combining with (10), we derive

𝑞(𝜀)
= 2 [(𝐴𝑚 + 𝐴 𝑠)𝐷/𝑛 + 𝜀𝐸𝐷]

−1/𝜆 + √1/𝜆2 + 4 [(𝐴𝑚 + 𝐴 𝑠)𝐷/𝑛 + 𝜀𝐸𝐷] (ℎ𝑚𝐹 + ℎ𝑟/2) .
(14)

Proposition 2 determines the optimal value of 𝜀 for
minimizing the integrated average total cost 𝐽𝜀.
Proposition 2. The integrated average total cost can be at its
minimum when 𝜀 = 0; that is, when the size of each shipment
is integer multiple of the capacity per vehicle, the integrated
average total cost can reach to the minimum for a certain 𝑛.
Proof. See Appendix B.

Note

𝑞 = 𝑘𝑞0, (15)

where 𝑘 is a positive integer variable. We rewrite the inte-
grated average total cost 𝐽(𝑞, 𝑛, 𝐾) as

𝐽 (𝑘, 𝑛, 𝐾) = ℎ𝑚𝑘𝑞0𝐹 + (𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑘𝑞0 + 𝑐1𝐷𝑛
+ [𝑐1 (1 + 𝛼) − 𝑐] (𝑛 − 1) (𝐷 − 𝑅)𝑛𝛼
+ 𝑐 (𝑛 − 1) 𝑅𝑛 + 𝐸𝐷𝑞0 + 𝐷𝑈0𝑒−𝜆𝐾𝑘𝑞0
+ ℎ𝑟𝑘𝑞02 + 𝐾.

(16)

Combining (16) with (9), the first-order partial derivative
of 𝐽(𝑞, 𝑛, 𝐾) with respect to 𝐾 becomes

𝜕𝐽 (𝑘, 𝑛, 𝐾)𝜕𝐾 = −𝜆𝐷𝑈0𝑒−𝜆𝐾𝑘𝑞0 + 1. (17)

Setting (17) to be zero. We derive

𝐾 = 1𝜆 ln
𝜆𝐷𝑈0𝑘𝑞0 . (18)

Next, incorporating with (18), we analyze the first-order
partial derivative of 𝐽(𝑞, 𝑛, 𝐾) with respect to 𝑘 and set the
result to be zero.

𝜕𝐽 (𝑘, 𝑛, 𝐾)𝜕𝑘 = −(𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞0𝑘2 + ℎ𝑚𝐹𝑞0 − 𝐷𝑈0𝑒−𝜆𝐾𝑘2𝑞0
+ ℎ𝑟2

= −(𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞0𝑘2 + ℎ𝑚𝐹𝑞0 − 1𝑘𝜆 + ℎ𝑟2
= 0.

(19)

The solution is

𝑘
= 2 (𝐴𝑚 + 𝐴 𝑠)𝐷

𝑛𝑞0 [−1/𝜆 + √1/𝜆2 + (4 (𝐴𝑚 + 𝐴 𝑠)𝐷/𝑛) (ℎ𝑚𝐹 + ℎ𝑟/2)] . (20)

For a given 𝑛, the local optimal solution of 𝑘 is given
by (20) when it is an integer. Otherwise, let 𝑘1 = ⌊𝑘⌋ and𝑘2 = ⌈𝑘⌉. Accordingly, we calculate the corresponding deliv-
ery quantity 𝑞1, investment expenditure 𝐾1, and integrated
average total cost 𝐽1 under 𝑘1 and calculate 𝑞2, 𝐾2, and 𝐽2
under 𝑘2, combining with (18) and (15). As analyzing the
above, we obtain the local optimal solution of 𝑘.

𝑘𝑛 =
{{{{{{{{{

𝑘, if 𝑘 is integer,
𝑘2, if 𝑘 is not integer and 𝐽1 > 𝐽2,
𝑘1, if 𝑘 is not integer and 𝐽1 ≤ 𝐽2.

(21)

Combined with (18), (20), (21), and (15), for a certain 𝑛,
the local optimal solutions 𝑞 and𝐾 are solved. To prevent any
potential confusion, let 𝑞𝑛 and𝐾𝑛 represent the local optimal
solutions 𝑞 and 𝐾, respectively. Substituting 𝑞𝑛 and 𝐾𝑛 into
(8), we get the local minimum average total cost and note it
as 𝐽𝑛.

As a summary, the procedure for determining the optimal
inventory policy can be described as follows.

Step 1. Determine 𝑛 from Proposition 1.

Step 2. Let 𝑛 = 1 and calculate the local optimal solutions𝑘1, 𝑞1,𝐾1, and 𝐽1, respectively, combined with (20), (21), (15),
(18), and (8).

Step 3. Let 𝑛 = 𝑛 + 1. If 𝑛 ≤ 𝑛, determine the local optimal
solutions 𝑘𝑛, 𝑞𝑛,𝐾𝑛, and 𝐽𝑛, respectively, combined with (20),
(21), (15), (18), and (8).Then, proceed to the same calculation
procedure in this step. Otherwise, proceed to the next step.

Step 4. Compare all the local optimal costs: 𝐽1, 𝐽2, . . . , 𝐽𝑛.The
lowest one of them is the optimal average total cost for our
problem and is denoted as 𝐽∗. The corresponding delivery
quantity, the total number of shipments, and the operating
expenditure are noted as 𝑞∗, 𝑛∗, and 𝐾∗, respectively.
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Table 1: The optimal decision of the integrated model by varying 𝛼.
𝛼 𝑛∗ 𝑘∗ 𝑞∗ 𝐾∗ 𝐽∗ 𝐶𝑚∗ 𝐶𝑟∗
0.35 1 3 90 24.0795 2181.3017 1588.8889 592.4128
0.4 2 2 60 28.1341 1976.2055 1454.7381 521.4674
0.6 4 2 60 28.1341 1858.7383 1337.2708 521.4674
0.7 5 2 60 28.1341 1831.8383 1310.3709 521.4674
0.8 6 1 30 35.0656 1736.6628 1283.2639 453.3989

Table 2: The optimal decision of the integrated model by varying 𝛽.
𝛽 𝑛∗ 𝑘∗ 𝑞∗ 𝐾∗ 𝐽∗ 𝐶𝑚∗ 𝐶𝑟∗
0.01 10 1 30 35.0656 1729.4727 1276.0738 453.3989
0.03 3 2 30 28.1341 1914.2928 1392.8254 521.4674
0.05 2 2 60 28.1341 1976.2055 1454.7381 521.4674
0.06 1 3 90 24.0795 2175.3493 1582.9365 592.4128
0.1 1 3 90 24.0795 2175.3493 1582.9365 592.4128

Table 3: The optimal decision of the integrated model by varying 𝜆.
𝜆 𝑛∗ 𝑘∗ 𝑞∗ 𝐾∗ 𝐽∗ 𝐶𝑚∗ 𝐶𝑟∗
0.01 2 2 60 51.0826 2089.1540 1454.7381 634.4159
0.05 2 2 60 42.4053 2000.4767 1454.7381 545.7386
0.1 2 2 60 28.1341 1976.2055 1454.7381 521.4674
0.2 2 2 60 17.5328 1960.6042 1454.7381 505.8661
0.4 2 2 60 10.4993 1951.0707 1454.7381 496.3326
0.8 2 2 60 6.1161 1945.4375 1454.7381 490.6994

5. Numerical Examples and
Sensitivity Analysis

Consider an example where the following parameters are
known: 𝐷 = 100 units/day, 𝑅 = 80 units/day, ℎ𝑚 =
$4/unit/day, ℎ𝑟 = $5/unit/day, 𝐸 = $100/vehicle, 𝑈0 = $100/
shipment, 𝑐 = $10/unit, 𝑐1 = $12/unit, 𝐴𝑚 = $100/order,𝐴 𝑠 = $100/order, 𝑞0 = 30 units/vehicle, 𝜆 = 0.1, 𝛼 = 0.4, and𝛽 = 0.05.

We illustrate the solution procedure as follows:(1) 𝑛 = 2 is obtained from Step 1.(2) 𝑛 = 1, 𝑘1 = 3, 𝑞1 = 90, 𝐾1 = 24.0795, 𝐽1 = 2112.3493.(3) 𝑛 = 2, 𝑘2 = 2, 𝑞2 = 60, 𝐾2 = 28.1341, 𝐽2 = 1976.2055.(4) Comparing 𝐽1, 𝐽2, we know 𝐽2 is the minimum.Then,
the optimal delivery size is 𝑞∗ = 60, the optimal expenditure
is 𝐾∗ = 28.1341, the optimal number of deliveries is 𝑛∗ = 2,
and the lowest cost is 𝐽∗ = 1976.2055.

In themodel, there aremany parameters involved, includ-
ing the indemnify rate 𝛼, the parameter of maintenance time𝛽, and the parameter of setup cost for the retailer 𝜆. To better
understand the effect of this model on the manufacturer and
the retailer’s decision, sensitivity analysis is given by varying
some parameters while fixing other parameters.

Table 1 presents the impact of indemnify rate variability
on the integrated inventory model developed in this paper.
The optimal number of shipments is increasing when the

indemnify rate of the manufacturer 𝛼 increases. Conversely,
the optimal delivery quantity 𝑞∗ and the optimal integrated
average total cost 𝐽∗ are decreasing as the indemnify rate𝛼 increases. From Table 1, it can be observed that the
integrated average cost decreases from 2181.3017 to 1976.2055
when the increased rate of production rate by working
overtime increases from 0.35 to 0.4. However, the integrated
average cost decreases from 1858.7383 to 1831.8383 when the
increasing rate increases from 0.6 to 0.7. It shows that the
influence of overtime on the model declines as 𝛼 increases.
Thus, the manufacturer should adopt appropriate overtime
work policy in the production operation.

Table 2 analyzes how the parameter of maintenance
time 𝛽 impacts the optimal production-delivery strategy
of the integrated model. Clearly, the manufacturer’s and
the retailer’s costs increase as the maintenance time is
extended. Meanwhile, the integrated average cost increases,
too. When the manufacturer spends more time maintaining
and repairing equipment in each ordering cycle, the number
of deliveries decreases to minimize the integrated average
cost. Table 2 also shows that more capital is lost when the
percentage of maintenance time increases. Hence, in order
to prevent extensive equipment damage, the proper use of
equipment is necessary in the production process.

In Table 3, we obtain the reverse phenomenon compared
with Table 2. According to assumption (1), the retailer’s setup
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cost per shipment 𝑈(𝐾) is a negative exponential function
of operating expenditure 𝐾. Since a large 𝜆 brings large
fluctuation of setup cost for fixed 𝐾, the integrated average
cost decreases sharply as 𝜆 increases. Simultaneously, the
optimal operating expenditure 𝐾∗ and the retailer’s cost
to a great extent decrease when 𝜆 increases. However, the
reduction of setup cost has no influence on the optimal
number of shipments 𝑛∗.
6. Conclusion

In this paper, we formulate an integrated production-delivery
lot sizing model with a manufacturer and a retailer. Con-
sidering capacity constraints, the manufacturer adopts a
proper overtime strategy to improve his production rate
and to decrease holding cost. To ensure the supply chain
operating normally and continuously, a time interval is given
to maintain and repair equipment when each lot is finished.
Besides, considering that both the manufacturer and the
retailer bear large cost pressures when a batch goods are
delivered at a time, each lot is divided into 𝑛 times for
delivery. Based on Huang [17] and Lou and Wang [18], the
article assumes that the retailer’s setup cost is a negative
exponential function of operating expenditure. In addition,
transportation cost in this model is assumed to be a ceiling
function of delivery quantity.Then, we analyze the integrated
average total cost and give a solution procedure to obtain
the optimal production-delivery strategy. Finally, numerical
examples and sensitivity analysis are presented to illustrate
the model and its solution procedure.

However, this model has several limitations. For instance,
in real business activities, most production-delivery systems
have more than one retailer and the demand rate is usually
uncertain/stochastic. These problems should be of interest
for future research. Beyond that, in real cases, when the
manufacturer suffers from the capacity constraints problem,
they might adopt overtime and emergency replenishment to
satisfy the demand rate. This also should be considered in
future research.

Appendix

A. Proof of Proposition 1

According to assumption (3), we deduce the following:
Δ𝑡𝑛𝑇 > 𝛽 ⇒

𝑛𝑇 − (𝑛 − 1) 𝑇 − 𝑞/ (1 + 𝛼) 𝑅𝑛𝑇 > 𝛽 ⇒
𝑇 − 𝑞(1 + 𝛼) 𝑅 > 𝛽𝑛𝑇 ⇒

𝑛 < 1𝛽 − 𝐷𝛽 (1 + 𝛼) 𝑅 .

(A.1)

Since 𝑛 represents the total number of shipments in each
ordering cycle, 𝑛 is a positive integer and is at least 1. Hence,𝑛 is an integer between 1 and ⌊1/𝛽 − 𝐷/𝛽(1 + 𝛼)𝑅⌋.
B. Proof of Proposition 2

First, substituting (14) and (10) into (11), we get

𝐽𝜀 (𝑞(𝜀), 𝑛, 𝐾)
= ℎ𝑚𝑞(𝜀)𝐹 + (𝐴𝑚 + 𝐴 𝑠)𝐷𝑛𝑞(𝜀) + 𝑐1𝐷𝑛

+ [𝑐1 (1 + 𝛼) − 𝑐] (𝑛 − 1) (𝐷 − 𝑅)𝑛𝛼 + 𝑐 (𝑛 − 1) 𝑅𝑛
+ 𝐸𝐷𝑞0 + 𝜀𝐸𝐷𝑞(𝜀) + 1𝜆 + ℎ𝑟𝑞(𝜀)2 + 𝐾

= √ 1𝜆2 + 4 [(𝐴𝑚 + 𝐴 𝑠)𝐷𝑛 + 𝜀𝐸𝐷](ℎ𝑚𝐹 + ℎ𝑟2 )
+ 𝑐1𝐷𝑛 + [𝑐1 (1 + 𝛼) − 𝑐] (𝑛 − 1) (𝐷 − 𝑅)𝑛𝛼
+ 𝑐 (𝑛 − 1) 𝑅𝑛 + 𝐸𝐷𝑞0 + 1𝜆 + 𝐾.

(B.1)

Clearly, this result is a functionwith respect to 𝜀.The first-
order partial derivative of this function with respect to 𝜀 is

𝜕𝐽𝜀𝜕𝜀
= 2𝐸𝐷 (ℎ𝑚𝐹 + ℎ𝑟/2)

√1/𝜆2 + 4 [(𝐴𝑚 + 𝐴 𝑠)𝐷/𝑛 + 𝜀𝐸𝐷] (ℎ𝑚𝐹 + ℎ𝑟/2)
> 0.

(B.2)

Hence, 𝐽𝜀 is an increasing function of 𝜀, where 0 ≤ 𝜀 < 1.
When 𝜀 = 0, the integrated average total cost 𝐽 reaches to the
minimum and 𝑞 is correctly integer multiple of 𝑞0.
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