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Traditional transit systems are susceptible to unexpected costs and delays due to unforeseen events, such as vehicle breakdowns.
The randomness of these events gives the appearance of an imbalance in the number of operating vehicles and of unreliable transit
services. Therefore, this paper proposes the queueing theory as a means to characterize the state of any given transit system
considering the risk of vehicle breakdowns. In addition, the proposed method is used to create an optimized model for reserve
fleet sizes in transit systems, in order to ensure the reliability of the transit system and minimize the total cost of any transit system
exposed to the risks of vehicle breakdowns. The optimization is conducted based on the two main characteristics of all bus systems,
namely, operator costs and user costs, in both normal and disruptive situations. In addition, the situations in our optimization are
generated in scenarios that have a certain degree of probability of experiencing delays. This paper formulates such an optimization

model, presents the formulation solution method, and proves the validity of the proposed method.

1. Introduction

Obviously, the traditional transit system fleet size consists
of an operating fleet, which is defined as the number of
vehicles operating on a line. The fleet size is selected and
determined by the desired bus frequency, in order to improve
the level of service, as well as a reserve fleet, which serves
as backup vehicles when operating vehicles break down or
require routine and planned maintenance. In order to ensure
the reliability of a transit system, it is necessary to guarantee
the size of the reserve fleet under the premise and conditions
of capital constraints. For instance, in London Bus, 2.4% of
the company’s total scheduled mileage was lost due to serious
vehicle breakdowns and traffic or staff problems in 2016/2017.
That figure represents 13.2 million km. While minor vehicle
failures can be repaired quickly, serious failures require longer
repair times. Sometimes, the disabled vehicle will even need
to be towed in for lengthy repairs or long-term maintenance.
In addition, the original schedule of the broken-down vehicle
may deteriorate to the extent where the operating fleet vehicle
schedule needs to be adjusted in real time. This has to be done
by scheduling backup vehicles from the reserve fleet to cover

regular routes, and this in turn depends on the availability of
the reserve fleet.

From the perspective of normal public transportation
systems, Lee et al. [1] used a classical analytic optimization
method to minimize the total operator and user costs. These
costs did not include the capital cost of vehicles in one-size
operations (on a single route or multiple routes) as means by
which to determine the size of bus fleets for urban operations.
Yan et al. [2] showed how to manage the interrelationships
between passenger trip demands and bus trip supplies, in
order to produce the best timetables and bus routes based
on a Lagrangian relaxation method, a subgradient method,
the network simplex method, a Lagrangian heuristic and
a flow decomposition algorithm. Ceder and Avishai [3]
explained the concrete application of the theory, model, and
algorithm of the bus line network and proposed a method
of capacity allocation based on a bus chain. Ceder et al.
[4] proposed minimizing the deviation of the determined
headways from a desired even headway and the deviation
of the observed passenger loads from a desired even-load
level of the vehicles at the maximum-load point. Li et al. [5]
proposed a bilevel mathematical programming problem with
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supply demand equilibrium constraints. Li then implemented
heuristic procedures to solve small instances leading to
headway values that improve the user’s net utility. Castelli
et al. [6] addressed a timetabling problem to minimize the
weighted sum of passenger costs based on time spent in
the system and operational costs based on vehicle usage.
Guihaire et al. [7] addressed the transit network’s timetables
with an objective function based on the quantity and quality
of transfers, evenness of line headways, size of feet, and length
of the deadheads. Liebchen et al. [8] defined an optimization
model that minimizes the expected total weighted delay for
planned trips. The model considers headway bounds and fleet
size constraints and develops a heuristic algorithm capable of
obtaining optimal solutions to problems that can be modeled
through series-parallel graphs. Raposo et al. [9, 10] presented
a predictive condition monitoring maintenance approach
based on engine oil analysis. This approach helps determine
the size of the reserve fleet and guarantee availability. Li et al.
[11] proposed an approach called new life additional benefit-
cost as a means to solve the mixed bus fleet management
problem. This approach maximizes the total net benefit of
early replacement, where both the optimal fleet size and
composition under budget constraints can be determined.
Kim et al. [12] proposed a hybrid approach as a means to
optimize conventional and flexible bus fleet sizes in multidi-
mensional, nonlinear, mixed integer optimization problems.
This approach considers conventional and flexible bus sizes,
conventional bus route spacing, and service zone areas for
flexible buses and headways.

From the perspective of disruptive public transportation
systems, Li et al. [13, 14] defined the state of urban bus
systems when a vehicle breaks down on a scheduled trip
and one or more vehicles need to be rescheduled to serve
the customers on that trip with minimum operating and
delay costs. Li also considered the problem of recovery in
response to breakdowns in bus passenger transportation
systems, in which vehicles are reassigned to trips. Guedes
et al. [15] proposed a dynamic extension of the classic
multiple-depot vehicle scheduling model. In Guedes’ model,
a heterogeneous fleet is considered, and the model displayed
in the study achieved good behavior in situations involving
several simultaneous disruptions. Although bus fleet sizes
have been studied for a long time, the studies always focused
on the operating fleet. However, the reserve fleet, which
is responsible for mitigating unexpected events (such as
vehicle breakdowns), has never been seen as the major
concern.

In this paper, we construct a new type of optimization
model for determining the reserve fleet size in traditional
transit systems. This model minimizes the costs to both
operators and users in both normal and disruptive situations.
The proposed method has been tested on a traditional transit
system. The obtained results have shown that the proposed
method provides better prediction and achieves better results
than the most commonly used method. The paper is orga-
nized as follows: In Section 2, the formal description of the
problems is given, and all used assumptions and constraints
are provided. The queueing theory of vehicle breakdowns in
traditional transit systems is also described. In Section 3, we
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propose the optimization model. The model’s verification by
a traditional transit system is exposed in Section 4. Lastly,
a summary of our results and areas of future research are
discussed in Section 5.

2. Problem Statement

2.1. Urban Transit System Description considering the Risk of
Vehicle Breakdowns. In this section, we explain the reserve
fleet scheduling problem in a traditional transit system. The
operating fleet in a transit system performs a service trip. This
service involves picking up and dropping off passengers at a
sequence of bus stops. The reserve fleet performs a backup
service trip, acting as a substitute for the main operating fleet
when vehicle failures and traffic accidents occur. Traditional
transit systems are susceptible to such requirements due to
these unforeseen events. In this article, vehicle failures and
traffic accidents are generalized as “vehicle breakdowns”. In
addition, the scenarios are generated in such a way that
they range from scenarios with a very low probability of
a delay and a low delay length, to scenarios with a high
probability of delay and a high delay length. The reason for
generating scenarios in this way was because we wanted to
cover very bad days (such as winter days with bad weather
conditions or hot summer days with high vehicle failure
rates), as well as days where only few disruptions occur. In
this paper, uncertain demand and uncertain travel times are
not major concerns, so we only focus on the influences of a
traditional transit system while considering the risk of vehicle
breakdowns.

The optimization of the reserve fleet size is based on some
assumptions, which are as follows:

(i) Vehicles breakdowns are mutually independent, and
broken-down vehicles can be repaired back to a
normal condition.

(ii) Daily passenger demand is constant, and passengers
normally arrive independent of vehicle arrivals.

(iii) The operating fleet and the reserve fleet belong to the
same bus line.

(iv) Average daily traffic is considered constant, except in
cases of vehicle breakdowns.

(v) The operator holds a constant and known preference
over the planning horizon.

Assumption (i) is very critical to our model, since
ignoring the independence of vehicle breakdowns could
lead to significant differences in both formulations and
optimal solutions. In this paper, we consider the average
vehicle breakdown rate in assumption (i); we then extend the
discussion to the state of an urban transit system with the
queueing theory. We assume passengers arrive independently
of the timetable, with no pass-ups in assumption (ii). This
is because our paper translates the pass-up passengers cost
into the cost of time, rather than considering the behavior
of passengers as a means to calculate the fare loss. Besides,
we want to determine the reserve fleet size of each line that
has the lowest expected total costs in all delay scenarios. If
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FIGURE 1: Transit system model.

other bus lines exist, it is possible that the backup vehicles of
the other bus lines may provide the backup service trip. As a
result, we assume that assumption (iii) holds in this paper. We
assume the difference in scenarios is only the average vehicle
breakdown rate in assumption (iv), because this paper mainly
discusses the reserve fleet size considering the risk of vehicle
breakdowns. Online requests and uncertain travel times are
not major concerns. Additionally, the implementation of
station control strategies and interstation control make it pos-
sible to keep bus headways evenly distributed. Assumption
(v) also has significant importance in this paper, because
the issue of uncertain risk preferences leads to another
challenging topic in optimization problems. In addition, the
implementation of geographical information systems and
wireless communication systems in public transit systems
makes it possible to handle accidents in a timely fashion when
breakdowns occur.

Our idealized model treats the bus route as a dynamic
system, with operating vehicles moving at a constant average
velocity around a circular route of a given length, with a
single depot and bus service workshops. At any point in
time, each bus headway is evenly distributed on this circuit
as E(H) and related to the frequency, as shown in Figure 1.
In addition, all vehicles belonging to a bus company start
and end each service trip at the same terminal. Additionally,
each vehicle performs a feasible sequence of trips, and a
trip is either served or cancelled when it is impossible to
reach the starting point by a specified time. When a vehicle
breakdown occurs, the driver provides the broken-down
vehicle’s information to the company. Based on the broken-
down vehicle’s information, the company will substitute the
disabled vehicle with a backup vehicle from the reserve fleet
at the depot. The backup vehicle will operate until the broken-
down vehicle is repaired, in order to keep the bus system
operating normally. The company will schedule the following
operating vehicles to service the remaining passengers in the
broken-down vehicle. However, if no reserve fleet is available
at the depot, the operator will adjust the bus frequency, in
order to keep the bus headway evenly distributed until the
broken-down vehicle is repaired.

2.2. The State of an Urban Transit System considering the Risk
of Vehicle Breakdowns. This paper considers daily vehicle
breakdowns to be random, accidental events. Breakdown
arrival patterns postulate for an ordinary Poisson process,
whereby one event at most can occur at any given time.
In addition, the broken-down vehicles require fixed repair
times for towing the disabled vehicle for repairs and then
receiving maintenance from the bus service workshop. The
bus operation process assumes that vehicle breakdown arrival
patterns postulate for an ordinary Poisson process with
parameter A; for different scenarios j. Also, the total time,
which is comprised of the bus service workshop service
time for broken-down vehicles and the time it takes for the
repaired vehicles to come back to the depot as backup vehicles
of the reserve fleet, is assumed to be subject to exponential
service rate y, ignoring any past system history. There are
m operating buses moving at a constant average velocity
v around a circular route of length L, with evenly spaced
headway E(H) in the operation system. The backup service
system consists of N backup vehicles as the reserve fleet to be
used to respond to any emergency with the operating buses.
In addition, the maintenance service system consists of n bus
service workshops, which carry out routine and emergency
maintenance. Usually, n>N in real life. Therefore, the transit
system is M/M/n/m+N/m queueing model, including the
operation system, maintenance service system, and backup
service system. The transit system state flow graph can be
drawn as in Figure 2.

The transit system can be one of the possible states E =
{0,1,2,3---m + N}. When the transit system is in state 0,
there are no vehicle breakdowns, and the reserve fleet and
the bus service workshop are idle. When the transit system
is in state k (0 < k < N — 1), there are k vehicles broken
down, and breakdown vehicles are sent to the k bus service
workshops for repair in the maintenance service system. The
backup service system sends k backup vehicles to substitute
for the k broken-down vehicles, and the bus system operates
as usual. Once the maintenance service is finished, the transit
system is in state k — 1, and the repaired vehicle joins the
reserve fleet as a new backup vehicle within the reserve fleet.
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FIGURE 2: Transit system state flow graph.

Because the possibility of k breakdown vehicles from broken-
down to repaired ones is equal, the total failure rate of the
system is mA; per unit time in state k, and the transition
intensity of the state from k to k — 1 is ky. When the transit
system is in state k (N < k < n — 1), due to the fact that
the reserve fleets all substitute for the broken-down vehicles,
the backup service system is congested, and the bus system
is under inadequate operation. The total failure rate of the
system is (m — k + N)A j per unit of time, and the transition
intensity is ky. When the transit system is in state k (n < k <
N + m), the reserve fleets all substitute for the broken-down
vehicles, and the bus service workshops are all repairing the
broken-down vehicles. Therefore, the backup service system
and the maintenance service system are both congested. The
bus system is also under inadequate operation. The total
failure rate of the system is (m—k+N)A jper unit of time, and
the transition intensity is ny. Through the state flow graph, we
determine the state algebraic equation based on the system
equilibrium conditions as follows:
For state 0, there is

mA ;py = Ups>
@)
and p, = mp, p,
For state 1, there is
mA;py = 2up;,
2 (2)
and p, = Z-pi o
For state N-1, there is
mA;pn-y = Nupy»
N 3
and =" o, 5
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N, (4)
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For state n-1, there is
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as follows:
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However, it is basically impossible for most of the vehicles
to fail in the operation process of the real bus line. Therefore,
the probability of the state needs to be adjusted according
to the historical data of the vehicle breakdowns or the fault
tolerance rate ¢. That is, if the probability of the state is less
than ¢, it will be impossible for that state to happen. The
possible number of vehicle breakdowns is m1,,. Subsequently,
the adjusted probability of the state is defined by

. # 0<ks<m,
ph=1 (-2 pix) (11)
0 k>m,
In terms of the number of operating vehicles, when
the transit system is in state k (0 < k < N), there
are available reserve fleet vehicles, and the number of the
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FIGURE 3: Transit system in disruptive situation 1.

operating vehicles in the transit system is m. When the transit
system is in state k (N + 1 < k < my,,), the reserve fleet
vehicle performs a backup service trip, substituting for the
broken-down vehicle, and then there are no available reserve
fleet vehicles. Therefore, the number of operating vehicles
in the transit system is diminishing with the following state.
Subsequently, the number of operating vehicles in different
states is defined by

m 0<k<N
mk= (12)
m+N-k N+1<k<m,

where my, is the total number of operating vehicles on line
under the bus system state of k.

In terms of the average headway, when the transit system
is in state k (k = 0), the average headway is related to the
preliminary frequency, which is determined by the operator
in the bus line’s normal state. After setting the frequency,
the operator usually considers the turnover time and the
shortest stop time at each bus terminal station, in order to
minimize the preliminary number of operating fleet vehicles.
Additionally, the operator prepares N backup vehicle for the
reserve fleet. When the transit system is in state k (0 <
k < N), the operator does not change the frequency, and
the headway E(H) basically stays the same because of the
availability of the reserve fleet. For example, when the transit
system is in state 1, vehicle “a” breaks down in the operation
system, and the headway of adjacent buses will be twice the
normal headway. In order to ensure the reliability of the
system, the backup service system sends backup vehicle “b”
to substitute for the broken-down vehicle. Either that or the
following operating bus will fill the vacancy, and the backup
vehicle will depart the depot, depending on the distance
between the location of vehicle “a” and the depot. Then,
broken-down vehicle “a” leaves the operation system to enter
the maintenance service system for repairs and maintenance.
When the broken-down vehicle is repaired, it goes back to the
depot to join the reserve fleet, as shown in Figure 3.

When the transit system is in state k (N + 1 < k < m,,),
the operator will change the frequency, and the headway will
be adjusted with an inadequate operating fleet. For example,
when the transit system is in state N+1, the reserve fleets
all substitute for the broken-down vehicles, and there is
no available reserve fleet in the backup service system. The
operation system adjusts the headway E(H) to E'(H) with
the inadequate operating fleet. This is done by adjusting the
bus speed (by either speeding up or slowing down) at a
time control point and changing the arrival and departure
frequency at the depot, in order to ensure adherence to the
schedule at the next time control point, as shown in Figure 4.

Subsequently, the average headway in different states is

defined by

T=@+t (13)
v
EH) 0<k<N
E(H,) = 14
(He) xr N+1<k<m, )
my

where L is the length of the bus line in kilometers, v is the
average speed of vehicles on the line during the peak period,
t is the shortest stop time at a bus terminal station, and T
represents the turnover time. Subsequently, the bus departure
interval under the transit system state of k is defined by
E(Hy).

3. Optimization Model

3.1. Cost Analysis. The optimization model for determining
the size of the reserve fleet has the objective of minimizing the
total daily cost of the transit system, which includes the costs
to both the operator and users in both normal and disruptive
situations.

Regarding the operator cost, we analyze three main parts
of a bus company’s expenses, including the acquisition cost
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FIGURE 4: Transit system in disruptive situation N+1.

of vehicles, operating and maintenance costs, and the cost of
carbon emissions treatment. The vehicle acquisition cost is
equivalent to the daily cost of vehicle utilization within the
length of the vehicles’ operation life and the transit fleet size.
The human cost can be considered as a constant, including
employee benefits and bonuses, which are generally neglected
in the bus company’s expenses. Operating and maintenance
costs also include repair costs and fuel costs related to total
vehicle mileage. The cost of carbon emissions treatment is
also directly related to vehicle mileage. Vehicle mileage is
determined using the frequency under the different states of
the transit system defined above.

Subsequently, the daily cost of vehicle utilizations is
defined by

¢ (m+N)

5 (15)

CC =
where ¢, represents the vehicle price, and D represents the
length of vehicle operation life.

Furthermore, the operating and maintenance costs are
calculated as

p]xp]kaxH

Co—caxZZ— (16)

j=0k=0

where ¢, represents the lines’ unit operating cost, p; repre-
sents daily probability of scenarios, and H represents the line’s
operating time.

Moreover, the cost of carbon emissions treatment is
defined by

p]xp]kaxHxE
100 x E (Hy,)

CE—C3XZZ

j=0 k=0

17)

where ¢; the unit cost of carbon treatment, and E denotes the
vehicle carbon emissions per 100 km.

The above models can be used to calculate the total
operating costs of a transit system, and the function is shown
as follows:

Cl(m+N) ZZPJXP]I(XLXH
=05 ——tq

j=0 k=0 (18)

p]xpjkaxHxE
E (H)

)

j=0k=0

Regarding the user costs, we analyze both the waiting
time cost and in-vehicle time cost. With regard to the waiting
time cost to passengers, since it is assumed that passengers
arrive at the stop randomly and uniformly over time, the
waiting time may be estimated as half of the headway. As
regards the in-vehicle travel time cost to passengers, we
translate the pass-up passengers’ cost into the excess of in-
vehicle time cost. The unit in-vehicle cost will increase with
the decrease in operating fleet size in disruptive situations. To
simplify our model, we assume the increase unit of in-vehicle
cost is directly proportional to the increase in the in-carriage
congestion level.

The waiting time cost to passengers is calculated as

E (W) = 0.5E (H,) x (1+CV?) 19)

[ mu
Sw:C4XZZPjXP?kXE(Wk)XQ (20)

j=0 k=0

where CV represents the standard deviation coefficient of
the headway, Q represents the daily passenger volume of the
bus line, and ¢, is the per unit waiting time cost.



Mathematical Problems in Engineering

The total in-vehicle time cost to passengers can be
expressed by

J o my
cm «  Qd
So= =X X QP X P X (21
1y j=0k=0 v

where ¢ is the unit in-vehicle cost, and d is the average
travel distance of boarding passengers.

The above models can be used to calculate the total user
costs of the transit system, and the function is shown as
follows:

S =Sy +Sc
:c4><Z]:%p.><p”.’k><E(Wk)><Q+ﬂ
j:ok:()] g my (22)
] m,
o Qd
xy Py X Plex = -
j=0 k=0

3.2. Mathematical Formulation. The above models can be
used to calculate the total costs of the transit system in
different states. In order to reduce costs and to increase the
bus system’s quality, the aim of this paper is to minimize the
objective of both the operator cost and the user cost in both
normal and disruptive situations, in order to determine the
optimum reserve fleet size. The objective function is shown
as follows:

G = min (aC + BS) (23)
subject to
N >0 (24)
m
N<w (25)
N = int (26)
Y Pl =1 (27)
i=0
J
Ypi=1 (28)
=0

where C represents the operator cost, S denotes the users
cost, « is the weight coefficient of the operator cost, and 8
is the weight coefficient of the user cost. Obviously, different
stakeholders have different opinions regarding o and . In
fact, different values assigned to weight coeflicients « and
may influence the result of the optimum reserve fleet size.
For instance, if the operator pays more attention to profit,
o is much larger than f, while in the opposite solution
the operator provides more convenience for passengers,
considering the bus operation to be primarily a service
industry. However, the weight coefficient is not the primary
scope of this paper. We wish to provide decision makers with

tools that will help them to decide upon and formulate the
proper service policy, once the proper weights for the chosen
area have been selected, depending on the circumstances.

Equations (24)-(28) are constraints of the objective func-
tion, which is used to improve the solution method process.
Constraint (24) ensures that the proportion of the reserve
fleet size in the transit system fleet should be greater than
the minimum reserve fleet rate 6, which is in turn dependent
on the experience of the operator and the operating policy.
Constraint (25) guarantees that the size of the reserve fleet
at the depot cannot exceed a given number W, which is
in turn dependent on the available space at the depot and
the operating policy. Constraint (26) guarantees that the
reserve fleet size is integer. The remaining constraints (27)-
(28) ensure that the sum of probabilities is equal to one.

3.3. Solution Methods. The optimization model in the previ-
ous section is nonlinear. A solution algorithm for the opti-
mization model is required, in order to solve the problem and
obtain the optimum solution. We used a genetic algorithm
to determine the optimum reserve fleet size, and values of
reserve fleet size are constantly reset to find the optimal
scheme. Figure 5 illustrates the solution algorithm for the
above objective function.

In the initial population generation logical block, we use
the binary code of reserve fleet size to reduce the efficiency
of the searching procedure. In the fitness computation logical
block, the total cost of the transit system in different states
is used as the fitness. We convert binary code to decimal
integer code that can uniformly generate a random number
of reserve fleet size from the feasible integer set. This process
can not only satisfy constraints (24)-(26), but also ensure
the diversification of initial population. In addition, if the
constraints (27)-(28) cannot be met under the corresponding
individual bus service, the fitness should be equal to a large
number M. Because the minimal fitness of the individual bus
service is the objective, this large number can be a penalty
for the inappropriate individual bus service. If the individual
bus service can meet all the constraints, the optimal reserve
fleet size for each individual bus service should be conducted
to determine the corresponding fitness value. In the genetic
manipulation logical block, the roulette wheel selection
method, the two-point crossover method, and the Gaussian
mutation method are used for selection, crossover, and
mutation separately. In addition, the termination criterion
is that the best fitness does not change during 10 successive
generations.

4. Model Verification

In this section, we present several numerical examples to
illustrate the performance of our models and algorithm. We
begin by testing the models on a common bus line, and we
compare the optimum reserve fleet size with the minimum
reserve fleet size. All related information pertaining to the bus
line is presented in Table 1. The bus line’s hourly passenger
volumes are uniform (such as the shopping volume). The two
scenarios applied to the bus lin€’s average accident rates A, '
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are assumed to be 0.8 and 0.5 per day. The daily probability of
the two scenarios p,, p, are assumed to be 0.6 and 0.4. Also,
on an annual basis, two or fewer accidents per hour occur
simultaneously in the analyzed bus line section. The weight
coeflicient of the operator cost o and the weight coeflicient of
the user cost f3 are equal to 0.5.

We applied the mathematical software MATLAB to deter-
mine the total cost of the transit system and the optimal
reserve fleet size, as obtained by the genetic algorithm. The
comparison of the minimum reserve fleet size obtained via
the experiential method (whereby the reserve fleet size is
determined by the minimum reserve fleet rate) and the
optimal reserve fleet size as obtained by the proposed model
is presented in Table 2.

Based on the results presented in Table 2, we find that
the total cost generated by the proposed model decreases
in contrast to the experiential method. We can therefore
conclude that the proposed model can effectively reduce the
total cost while still improving the quality of the bus service.

To further see the performance of the proposed model, we
tested two parameters on the bus line. To begin with, we
tested the models on different discrete values of o = 0.1
to 0.9, while the values of the other parameters remained
unchanged. According to the results obtained by MATLAB
software, it is reasonable to compare the transit system daily
total cost, as shown in Figure 6.

Figure 6 reveals how the trade-off between the weight
coefficient of the operator cost and the weight coefficient
of the user cost made by the stakeholder produces different
effects on the reserve fleet size. Given different weight
coeflicients of operator cost &, when o increases, the optimal
reserve fleet size becomes smaller and smaller, which is to
be expected. This is because the weight coefficient of the
user cost is increasing, and the larger reserve fleet can lead
to a larger decrease in the user costs. What is more, when
the weight coeflicient of the operator costs decreases, the
bus company’s expense influence caused by the reserve fleet
is less and less obvious. Given a weight coefficient of the
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TaBLE 1: Related bus line information.

Index Bus Line
L [km] 20
m [vehicle] 20
n 10
H [hours/day] 12
0 5%
t [minute] 2
Q 10000
d [km] 2
cv? 0.15
Average vehicle speed [km/h] 20
E [g/km] 57
¢ [¥] 500000
6 [¥'km] 2
¢, [¥-g/km] 0.00005
¢, [¥/h] 15
¢ [¥/h] 10
16 X100
1.55 - - - . - - - - - - E
I - S RS SR
=
&
|
2

Reserve fleet size

= «a=0.1 a=0.6
4+ a=0.2 - «a=0.7

a=0.3 * «=0.8
- «a=0.4 -+ «o=0.9
-« a=0.5

FIGURE 6: Transit system daily total cost with different ov.

operator cost & (0.5 < « < 0.9), we find that when the
reserve fleet size increases, the total cost gradually decreases
to the lowest point and then slowly rises. This result is to be
expected because the reserve fleet size is gradually increasing
to the optimal reserve fleet size. Conversely, given a weight
coeflicient of bus company « (0.1 < « < 0.5), we find that the
optimal reserve fleet size is zero, because the extra expense of
the reserve fleet becomes increasingly obvious.

In addition, we tested the models on different discrete
values of average accident rate A = 0 to 1 incident. The total
daily transit system costs under different discrete values are
presented in Figure 7.

As shown in Figure 7, given different average accident
rates, we find that when the accident rate increases, the total
cost increases, as well as when the reserve size is less than 5.
This is because the broken-down vehicles can be substituted

Total cost (¥/day)

Reserve fleet size

* A=0 -+ 1=0.6

+ A=0.1 A A=0.7
A=0.2 ¥ A=0.8

< =03 + 1=0.9

 A=0.4 - A=1
A=0.5

FIGURE 7: Transit system daily total cost under different A.

by the increasing reserve fleet size, in order to decrease the
user costs. What is more, we observe that whatever the reserve
fleet size is, the total cost with different average accident
rates changes only slightly when the reserve fleet size is more
than 5. This is because the reserve size is sufficient to cover
the broken-down vehicles. Given an average accident rate,
when the reserve fleet size increases, the total cost gradually
decreases to the lowest point and then gradually rises. This
is to be expected, because the reserve fleet can effectively
decrease the user cost until the reserve fleet size increases to
the optimal reserve fleet size.

5. Conclusions

In this paper, we implement an optimization model for
finding reserve fleet sizes in traditional transit systems that
are exposed to the risks of vehicle breakdowns. The scenarios
are generated in ways where they range from scenarios with
a very low probability of a delay and a low delay length, to
scenarios with a high probability and a high delay length.
Using the M/M/n/m+N/m queueing model, we characterize
the state of the transit system considering the risk of vehicle
breakdowns, and we analyze the influence on both the
operator cost and the user cost in disruptive situations.
Furthermore, we minimize the objective of the operator cost
and the user cost in both normal and disruptive situations, in
order to determine the optimum reserve fleet size. From our
tests, several conclusions can be found, as follows.

The comparison of our proposed model and the experien-
tial method was conducted according to both the total oper-
ator cost and user cost. The proposed model can effectively
reduce the total user costs of the transit system and improve
the quality of the bus service, but it will also increase the total
operating costs of the transit system.

Through an examination to determine the optimum
reserve fleet size on the different weight coefficients of the
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TaBLE 2: Comparison of optimal and minimum reserve fleet size as obtained by the proposed model.

Parameter Experiential method Proposed model Value added

N 1 2 1

Ccl¥] 2876.71 3013.70 136.99

Col¥] 9048.48 9287.16 238.68

Cpl¥] 12.89 13.23 0.34

Sy [¥] 4572.44 4441.02 13142

Scl¥] 10763.27 10393.57 -369.7

G [¥] 13636.90 13574.34 -62.56

operator cost, we can see that a change of the weight coef-
ficient will have an influence on the objective formulation. If
the weight coefficient of the operator cost is too small, the
objective of balancing the operator cost and the user cost
cannot be achieved.

Compared with different average accident rates on our
proposed model, we observe that, whatever the reserve fleet
size is, the total cost with different average accident rates
changes only slightly when the reserve fleet size is more than
5. Therefore, if the accident rate of the traditional transit
systems is uncertain within limits, there will be a reserve fleet
size that is sufficient to cover the broken-down vehicles.

Rules above would be beneficial for the determination of
reserve fleet sizes. We will incorporate capacity constraints,
uncertain demand, and uncertain correlated disruptions in
our future work. In addition, we will consider multiple bus
lines belong to the bus company, and we will optimize the
total reserve fleet size serving different bus lines.
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