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In this paper, we propose a novel model-free trajectory tracking control for robot manipulators under complex disturbances.
The proposed method utilizes time delay control (TDC) as its control framework to ensure a model-free scheme and uses
adaptive nonsingular terminal sliding mode (ANTSM) to obtain high control accuracy and fast dynamic response under lumped
disturbance. Thanks to the application of adaptive law, the proposed method can ensure high tracking accuracy and effective
suppression of noise effect simultaneously. Stability of the closed-loop control system is proved using Lyapunovmethod. Finally, the
effectiveness and advantages of the newly proposed TDC schemewith ANTSM dynamics are verified through several comparative
simulations.

1. Introduction

Robot manipulators have been widely used in lots of fields
due to their strong capacity to realize all kinds of automatic
working tasks [1, 2]. Usually, high performance trajectory
tracking control of robot manipulators is required to execute
the tasks, which, however, is still an open challenging job
[3, 4]. The main difficulties can be concluded as strong
nonlinearities, large couplings and unknown lumped time-
varying disturbances [5].

To ensure good control performance under lumped
complex uncertainties, lots of scholars have devoted them-
selves in this field and proposed some effective methods.
In [6], a novel continuous finite time control scheme was
proposed for uncertain robot manipulators using integral
sliding mode (SM) dynamics. Good control performance has
been observed through simulation studies. In [7], a novel
control/identification algorithm was proposed and investi-
gated for the high performance control of robot manipula-
tors. By properly integrating the parametric estimation error
information into the designed identification scheme, high
comprehensive performance has been obtained. In [8], a new

model predictive control (MPC) was proposed using integral
sliding mode (ISM) dynamics. Thanks to the effective combi-
nation ofMPC and ISM schemes, satisfactory comprehensive
control performance has been obtained with the proposed
control scheme. In [9], a novel adaptive fuzzy control scheme
was proposed for the position/force tracking control purpose
of cooperative robotmanipulators. By using the fuzzy logic to
estimate the unknown system dynamics and adaptive control
to ensure high control accuracy, the designed control scheme
can ensure good comprehensive control performance. To
ensure high accuracy trajectory tracking control performance
of robot manipulators, a novel adaptive fuzzy neural network
control scheme was proposed and studied [10]. Other control
schemes have also been proposed and investigated for the
control purpose of complex systems [11–13]. Despite the
exiting results obtained with the above-mentioned control
schemes, they are usually not suitable for complicated real
situations due to the requirement of system dynamic model
or complex estimation algorithms.

As a well-known model-free control scheme, time delay
control (TDC) can efficiently solve the above issues in a
simple way [14–20]. The core element of TDC scheme is
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the so-called time delay estimation (TDE), which uses the
time-delayed values of the system states to estimate the
remaining systemdynamics and ensures amodel-free feature.
Thanks to the above attractive feature, TDC control has
been widely used in lots of systems [21–27]. By combining
TDE with other robust control schemes, exciting results have
been obtained. In [28], a novel TDC scheme was proposed
for the trajectory tracking control of underwater vehicles.
The proposed method used TDE to estimate the system
lumped dynamics and then applied PD-type error dynam-
ics to ensure desired dynamics. Afterwards, an improved
scheme based on discrete TDE (DTDE) was reported, which
effectively suppressed the noise effect [29]. Still, linear error
dynamics was utilized in [29]. In [30], the artificial bee
colony (ABC) algorithm was used to further enhance the
TDC scheme. Obvious control performance improvement
has been clearly observed with the above-mentioned TDC
scheme with ABC algorithm. To further improve the control
performance, a novel TDC scheme with terminal sliding
mode (TSM) was proposed and investigated for the robot
manipulators [17]. The proposed method utilizes TDE to
obtain the system dynamics and applied TSM error dynamics
to guarantee high control accuracy. Thanks to the attractive
finite time convergence nature and high performance near
the equilibrium point, TSM control has been widely used in
many systems [31–41]. Recently, a novel continuous NTSM
(CNTSM) scheme has been proposed and investigated for
the control purpose of robot manipulators [42, 43]. Exciting
results have been reported in [42, 43], which effectively
verified the validity of both TDE scheme and NTSM error
dynamics. Still, the control scheme proposed in [42, 43]
can be further improved. The well-known fast-TSM-type
reaching law with constant parameters was used, which may
be not suitable for complicated real situations. When external
disturbance appears, we need extra robust term to suppress
it and maintain good control performance. When external
disturbance disappear, the extra robust term should also go
to suppress the chattering problem. The above expectation
can hardly realize using the fast-TSM-type reaching law with
constant parameters. To maintain good control performance
throughout the control process, sufficiently large constant
parameters are obligatory, which, however, may lead to
unwanted chattering and control performance degradation.

To effectively settle the above issues, we propose a novel
TDC scheme with ANTSM dynamics for the robot manipu-
lators in this work. The proposed method utilizes TDC as its
basic control framework and ensures an attractive model-free
nature. Afterwards, theNTSMerror dynamics togetherwith a
combined reaching law are used to provide with high control
accuracy and fast dynamic response and strong robustness.
Stability of the closed-loop control system is analyzed using
Lyapunov method. Finally, comparative simulations were
conducted to demonstrate the effectiveness and advantages of
our newly proposed method over the existing TDC schemes
with NTSM error dynamics.

The contributions we try to make in this paper can be
given as follows:(1) Propose a newTDC scheme using ANTSMdynamics.
Using a combined adaptive reaching law and the NTSM

dynamics, we propose a novel TDC schemewhich can ensure
good comprehensive control performance.(2) Present the stability analysis of the closed-loop control
system considering the ANTSM dynamics.(3)Verify the effectiveness and superiorities of our newly
proposed TDC scheme over the existing methods by several
comparative simulation studies.

The rest is organized as what follows. Section 2 presents
the main results and gives the proposed control scheme
design. Section 3 gives the stability analysis using Lyapunov
method; meanwhile, Section 4 demonstrates the validity
of the proposed method through comparative simulation
studies. Finally, Section 5 concludes this paper.

2. TDC Scheme Design with ANTSM

2.1. System Modeling. The robot manipulators with n-DOFs
can be described by the following equation [17]:

M (q) q̈ + C (q, q̇) q̇ + G (q) + Fr (q, q̇) + 𝜏𝑑 = 𝜏 (1)

where M(q) is the inertia matrix, C(q, q̇) is the Corio-
lis/centrifugal matrix, G(q) stands for the gravity vector,
Fr(q, q̇) represents the friction vector, and 𝜏𝑑 stands for the
lumped unknown disturbance, while 𝜏 is the control torque
vector.

To effectively apply TDC, the above dynamic equation is
reexpressed as

Mq̈ + h = 𝜏 (2)

whereM is a constant control parameter to be tuned by simu-
lations afterwards, while h stands for the complicated lumped
remaining dynamics of the robot manipulators except Mq̈.
The term h is defined as

h = (M −M)M (q) q̈ + C (q, q̇) q̇ + G (q) + Fr (q, q̇)
+ 𝜏𝑑 (3)

It can be observed clearly from (3) that the element h is
extremely complicated, which contains strong nonlinearities
and high couplings and unknown time-varying disturbances.
Therefore, it can be very difficult to obtain h using traditional
method. Then, the goal of this paper can be described as
follows: given a reference trajectory q𝑑, design a model-free
and simple control scheme for the robot manipulators to
track q𝑑 as precisely as possible.

2.2. TDC Scheme with Linear Error Dynamics. As discussed
above, the element h can be very difficult or time-consuming
to obtain with conventional methods. Conventional meth-
ods, like adaptive techniques and fuzzy logic methods and
other intelligent schemes, usually need detailed systemmodel
or lots of parameters to get h. However, the detailed system
model is usually quite difficult to get in complicated real
situations. Also, too many estimation parameters will make
the algorithm not easy to use. What we need is a simple and
straightforward scheme to obtain h; meanwhile, the validity
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and estimation accuracy should also be guaranteed. To realize
the above requirement, we use TDC scheme in this paper.
The core element of TDC scheme is the so-called time delay
estimation (TDE), which uses time-delayed values of the
system states to estimate the remaining dynamics h. For TDE,
it can be described by the following equation [14–20]:

ĥ (𝑡) ≅ h (𝑡 − 𝐿) = 𝜏 (𝑡 − 𝐿) −Mq̈ (𝑡 − 𝐿) (4)

where L is the delayed time and usually selected as one or
several sampling periods. It can be observed from (4) that no
systemmodel information is used and therefore a fascinating
model-free feature can be effectively obtained.

Define the control error as
e = qd − q (5)

Then, the classical TDC scheme with linear error dynam-
ics can be given as [14–20]

𝜏 = M (q̈d + k𝑝e + k𝑑ė) + ĥ (𝑡)
= M (q̈d + k𝑝e + k𝑑ė)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Injected dynamics

+ 𝜏 (𝑡 − 𝐿) −Mq̈ (𝑡 − 𝐿)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
TDE

(6)

where k𝑝 and k𝑑 are positive constant control parameters.
As shown in (6), therefore, there are mainly two parts

in the classical TDC scheme: the TDE part and the injected
dynamics part. The former is used to estimate the lumped
remaining system dynamics and bring in an attractive model-
free nature; meanwhile, the latter is utilized to ensure the
desired dynamic performance and high control accuracy.
Due to the application of time-delayed system states in
TDE scheme as shown in (4), the estimation error is usu-
ally unavoidable especially when system experiences abrupt
changes. Therefore, the injected dynamics should be robust
enough to obtain good control accuracy and fast dynamics
response, which, however, can be an extremely challenging
job for the above linear error dynamics. Since the upper
boundary information is usually unknown, thus sufficiently
large control gains k𝑝 and k𝑑 are usually used to ensure
satisfactory control performance, which in turn may lead
to obvious increasing of the noise effect and control perfor-
mance deterioration.

2.3. TDC Scheme Design with ANTSM Dynamics. To effec-
tively settle the above-mentioned issues and ensure high
control performance for the robot manipulators, we design
a new TDC scheme with ANTSM dynamics.

The NTSMmanifold is designed as

s = e + ksig (ė)𝑎 (7)

where k and a are positive constant control parameters and1 < 𝑎𝑖 < 2, 𝑖 = 1 ∼ 𝑛. The notation sig(e)𝑎 is defined
as sig(e)𝑎 = [|𝑒̇1|𝑎1sgn( ̇𝑒1), . . . , |𝑒̇𝑛|𝑎𝑛sgn( ̇𝑒𝑛)]𝑇, with the sign
function given as

sgn (𝑒𝑖) =
{{{{{{{{{

1, if 𝑒𝑖 > 0
0, if 𝑒𝑖 = 0
−1, if 𝑒𝑖 < 0

(8)

To ensure both high control accuracy and effective
chattering suppression simultaneously, we use the following
combined adaptive reaching law as

̇s = −𝜌1s − 𝜌2sig (s)𝛽 − K̂ (𝑡) sgn (s) (9)
where 𝜌1, 𝜌2, 𝛽 are positive constant control parameters and0 < 𝛽 < 1. Meanwhile, the adaptive control gain K̂(𝑡) is
updated using the following adaptive law:

̇̂𝐾𝑖 (𝑡) =
{{{{{{{{{

𝜂𝑖, 𝐾̂𝑖 ≤ 𝐾min 𝑖

𝜂𝑖 sgn (󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 − Δ 𝑖) , 𝐾min 𝑖 < 𝐾̂𝑖 < 𝐾max 𝑖

−𝜂𝑖, 𝐾̂𝑖 ≥ 𝐾max 𝑖

(10)

where 𝜂i, Δ i are constant parameters and 𝐾min 𝑖 and 𝐾max 𝑖
are the predescribed minimum and maximum values of the
adaptive gain 𝐾̂𝑖(𝑡). As shown in (10), the parameter 𝜂i is used
to determine the adaptive speed, while Δ 𝑖 is used to decide
when 𝐾̂𝑖(𝑡) increases or decreases. It should be noted that the
adaptive gain K̂(𝑡) is naturally bounded as 𝐾min 𝑖 ≤ 𝐾̂𝑖 ≤𝐾max 𝑖 using the proposed adaptive law (10).

Different from the existing TDC schemes [14–27], our
proposed TDC scheme uses a combined reaching law to
enhance the control performance under time-varying uncer-
tainties. Taking (9) and (10) for further analysis, we can
see that the combined reaching law has two elements, i.e.,
a well-known fast-TSM-type reaching law and a constant
speed reaching law with adaptive gain. The former is used
to ensure high control accuracy and fast dynamic response
in the whole control process; meanwhile, the latter is mainly
used to provide extra robustness against unknown lumped
disturbance. When the control performance is relatively
satisfactory, the fast-TSM-type reaching law will dominate
thewhole combined reaching law (9) and bring in continuous
high control performance. On the other hand, when the
control errors tend to increase, the adaptive gain K̂(𝑡) will
increase rapidly and then the latter part will take over the
combined reaching law. Afterwards, the control errors will
be strongly suppressed by the extra robustness provided by
the part K̂(𝑡)sgn(s). Thanks to the novel combined reaching
law and proposed adaptive law, high control accuracy and
fast dynamic response and effective suppression of the chatter
can be obtained simultaneously. Moreover, the utilization
of above adaptive law can also effectively suppress the
potential chatters by rapidly reducing the gain K̂(𝑡) when
the control performance is satisfactory. Above claims will be
demonstrated in the simulation studies given afterwards.

Finally, combining the designed NTSMmanifold (7) and
proposed combined reaching law (9)-(10) with the TDC
scheme (6), we have

𝜏 = M (q̈𝑑 + 𝑎−1k−1sig (ė)2−𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
NTSM error dynamics

+M (𝜌1s + 𝜌2sig (s)𝛽 + K̂ (𝑡) sgn (s))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Combined reaching law

+ 𝜏 (𝑡 − 𝐿) −Mq̈ (𝑡 − 𝐿)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
TDE

(11)
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As depicted in (11), our newly proposed method has
three parts: the TDE part applied to ensure the model-free
nature and bring in simple control scheme, the combined
reaching law part utilized to ensure high control accuracy and
fast dynamic response and good robustness in the reaching
phase, and the NTSM error dynamics part used to obtain
fast convergence and high control accuracy in the sliding
mode phase. The working mechanism and advantages of the
proposed combined reaching law part have been carefully
discussed earlier.

Remark 1. To ensure good control performance with our
newly proposed TDC scheme, proper control parameters
are required. It should be noted that the delayed time L is
usually selected as one or several periods.Then, the following
parameter tuning procedures can be utilized [44]:

(1) Set k=𝑎=𝜌1=𝜌2=1n, 𝜂 = K̂(𝑡 = 0) = 0; then tune M
by increasing it from small one to large one until the
control performance tends to degrade.

(2) Set 𝑎=𝜌1=𝜌2=1n, 𝜂 = K̂(𝑡 = 0) = 0; then tune k by
reducing it from large one to small one and check the
control performance; tune 𝑎 by increasing it from 1n
to 2 and check the control performance.

(3) Set 𝜂 = K̂(𝑡 = 0) = 0; tune 𝜌1 and 𝜌2 by increasing
them from small ones to large ones and check the
control performance.

(4) Set 𝜂=0, K̂(𝑡 = 0) = Kmax; tune 𝐾max by increasing it
from small one to large one until the system tends to
chatter.

(5) Set 𝜂=0, K̂(𝑡 = 0) = Kmin; tune 𝐾min by decreasing
it from 𝐾max to small one and check the control
performance.

(6) Set K̂(𝑡 = 0) = Kmin; tune 𝜂 by increasing it from
small one to large one and check the control perfor-
mance; Δ can be tuned using the same procedure.

3. Stability Analysis

In this section, the stability of the closed-loop control system
is analyzed. Before giving the analysis results, the following
lemma will be necessary.

Lemma 2 (see [45]). For a system 𝑥̇ = 𝑓(𝑥, 𝑦), suppose
inequality (12) holds for a continuous function𝑉(𝑥)with𝜌 > 0,0 < 𝛽 < 1, 0 < 𝜂 < ∞:

𝑉̇ (𝑥) ≤ −𝜌𝑉𝛽 (𝑥) + 𝜂 (12)

Then, the system 𝑥̇ = 𝑓(𝑥, 𝑦) is defined as practical finite time
stable (PFS), and the system trajectory will be enforced into the
following field (13) using finite time 𝑇 as (14):

lim
𝜑󳨀→𝜑0

𝑥 ∈ (𝑉𝛽 (𝑥) ≤ 𝜂
(1 − 𝜑) 𝜌) (13)

𝑇 ≤ 𝑉1−𝛽 (𝑥0)𝜌𝜑0 (1 − 𝛽) (14)

where 0 < 𝜑0 < 1 and 𝑉(𝑥0) stands for the initial value of𝑉(𝑥).
Substituting the proposed control (11) into the system

dynamics (2), we have

ë + 𝑎−1k−1sig (ė)2−𝑎 + 𝜌1s + 𝜌2sig (s)𝛽 + K̂ (𝑡) sgn (s)
= 𝛿 (𝑡) (15)

where the element 𝛿(𝑡) is the so-called TDE error and is given
as

𝛿 (𝑡) = −M−1 (ĥ − h) (16)

It can be seen from (16) that 𝛿(𝑡) is mainly caused by the
applications of time-delayed values of system states and is
usually unavoidable.On the other hand, 𝛿(𝑡)has been broadly
proven to be bounded for lots of systems including robot
manipulators [17].

Define 𝐾̃𝑖 = 𝐾𝑖 − 𝐾̂𝑖, where 𝐾𝑖 is a positive constant
parameter. Meanwhile, bring in a new nonnegative variable𝜆𝑖 = 𝑘𝑖𝑎𝑖| ̇𝑒𝑖|𝑎𝑖−1 ≥ 0. For simplicity, we will take the i-DOF to
analyze in what follows. Then, following Lyapunov function
is chosen as

𝑉𝑖 = 12𝑠𝑖2 + 𝜆𝑖2 𝐾̃𝑖2 (17)

Differentiating (17) along time, we have

𝑉̇𝑖 = 𝑠𝑖 ̇𝑠𝑖 + 𝜆𝑖𝐾̃𝑖 ̇̃𝐾𝑖 = 𝑠𝑖 ( ̇𝑒𝑖 + 𝑘𝑖𝑎𝑖 󵄨󵄨󵄨󵄨 ̇𝑒𝑖󵄨󵄨󵄨󵄨𝑎−1 ̈𝑒𝑖) − 𝜆𝑖𝐾̃𝑖 ̇̂𝐾𝑖
= 𝑠𝑖𝜆𝑖 (𝛿𝑖 − 𝜌1𝑖𝑠𝑖 − 𝜌2𝑖𝑠𝑖𝑔 (𝑠𝑖)𝛽 − 𝐾̂𝑖sgn (𝑠𝑖))
− 𝜆𝑖𝐾̃𝑖 ̇̂𝐾𝑖

= −𝑠𝑖 (𝜌1𝑖𝑠𝑖 + 𝜌2𝑖𝑠𝑖𝑔 (𝑠𝑖)𝛽) − 𝜆𝑖𝐾̂𝑖 󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 + 𝜆𝑖𝑠𝑖𝛿𝑖
− 𝜆𝑖𝐾̃𝑖 ̇̂𝐾𝑖

(18)

where 𝜌1𝑖 = 𝜆𝑖𝜌1𝑖, 𝜌2𝑖 = 𝜆𝑖𝜌2𝑖.
Considering the adaptive law (10), (18) can be further

given as

𝑉̇𝑖 ≤ −𝑠𝑖 (𝜌1𝑖𝑠𝑖 + 𝜌2𝑖𝑠𝑖𝑔 (𝑠𝑖)𝛽) − 𝜆𝑖 󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 (𝐾̂𝑖 − 󵄨󵄨󵄨󵄨𝛿𝑖󵄨󵄨󵄨󵄨)
+ 𝜂𝑖𝜆𝑖 󵄨󵄨󵄨󵄨󵄨𝐾̃𝑖󵄨󵄨󵄨󵄨󵄨

(19)

Since the TDE error 𝛿(𝑡) is usually quite small; therefore,
it can be easy to select a proper large𝐾min 𝑖 such that𝐾min 𝑖 ≥|𝛿𝑖| holds for 𝑡 ≥ 0. Meanwhile, the element|𝐾̃𝑖| is obvious
bounded considering the boundedness of K̂(𝑡).

Then, (19) can be given as

𝑉̇𝑖 ≤ −𝑠𝑖 (𝜌1𝑖𝑠𝑖 + 𝜌2𝑖𝑠𝑖𝑔 (𝑠𝑖)𝛽) + 𝜂𝑖𝜆𝑖 󵄨󵄨󵄨󵄨󵄨𝐾̃𝑖󵄨󵄨󵄨󵄨󵄨 (20)

Equation (20) can be further reexpressed into the follow-
ing two inequalities:

𝑉̇𝑖 ≤ −𝜌2𝑖 󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨𝛽+1 + 𝜂𝑖𝜆𝑖 󵄨󵄨󵄨󵄨󵄨𝐾̃𝑖󵄨󵄨󵄨󵄨󵄨 (21)

𝑉̇𝑖 ≤ −𝜌1𝑖𝑠𝑖2 + 𝜂𝑖𝜆𝑖 󵄨󵄨󵄨󵄨󵄨𝐾̃𝑖󵄨󵄨󵄨󵄨󵄨 (22)



Mathematical Problems in Engineering 5
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Figure 1: 2-DOFs robot manipulators.

For (21), it can be rewritten into the following form:

𝑉̇𝑖 ≤ −2(𝛽+1)/2𝜌2𝑖 (12𝑠𝑖2)
(𝛽+1)/2

− 2(𝛽+1)/2𝜌2𝑖 (12𝐾̃𝑖2)
(𝛽+1)/2

+ 2(𝛽+1)/2𝜌2𝑖 (12𝐾̃𝑖2)
(𝛽+1)/2 + 𝜂𝑖𝜆𝑖 󵄨󵄨󵄨󵄨󵄨𝐾̃𝑖󵄨󵄨󵄨󵄨󵄨

= −𝜃1𝑖 ((12𝑠𝑖2)
(𝛽+1)/2 + (12𝐾̃𝑖2)

(𝛽+1)/2) + 𝜛1𝑖

(23)

where 𝜃1𝑖 = 2(𝛽+1)/2𝜌2𝑖, 𝜛1𝑖 = 2(𝛽+1)/2𝜌2𝑖((1/2)𝐾̃𝑖2)(𝛽+1)/2 +𝜂𝑖𝜆𝑖|𝐾̃𝑖|.
Considering a well-known inequality (|𝑥1| + |𝑥2|)𝑦 ≤|𝑥1|𝑦 + |𝑥2|𝑦, 𝑥1, 𝑥2 are real numbers and 0 < 𝑦 ≤ 1; then

the above inequality (23) can be further written as

𝑉̇𝑖 ≤ −𝜃1𝑖𝑉𝑖(𝛽+1)/2 + 𝜛1𝑖 (24)

Therefore, the system trajectories will be enforced to the
following fields within finite time based on Lemma 2:

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 ≤ ( 𝜛1𝑖(1 − 𝜑𝑖) 𝜃1𝑖) (25)

Using the same analysis method for (22), similar results
can be obtained as

󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 ≤ ( 𝜛2𝑖(1 − 𝜑𝑖) 𝜃2𝑖) (26)

where 𝜃1𝑖 = 2𝜌1𝑖, 𝜛1𝑖 = 𝜌1𝑖𝐾̃𝑖2 + 𝜂𝑖𝜆𝑖|𝐾̃𝑖|.
Thus, the system trajectories will be enforced into the

following fields in finite time:

Ω𝑖 = min{( 𝜛1𝑖(1 − 𝜑𝑖) 𝜃1𝑖) ,(
𝜛2𝑖(1 − 𝜑𝑖) 𝜃2𝑖)} (27)

It should be noted that 𝜆𝑖 = 0; i.e., ̇𝑒𝑖 = 0may hinder the
reachability of NTSM manifold (7), which, however, will be

analyzed in what follows. Substituting ̇𝑒𝑖 = 0 and 𝑠𝑖 ̸= 0 into
(15), we have

ë𝑖 = 𝛿𝑖 (𝑡) − 𝜌1𝑖𝑠𝑖 − 𝜌2𝑖𝑠𝑖𝑔 (𝑠𝑖)𝛽 − 𝐾̂𝑖sgn (𝑠𝑖) (28)

It is obvious that ̈𝑒𝑖 = 0 will not be always satisfied witḣ𝑒𝑖 = 0 and 𝑠𝑖 ̸= 0. Therefore, 𝜆𝑖 = 0 will not hinder the
reachability of NTSMmanifold (7).

Substituting (27) into (7), we have

𝑠𝑖 = 𝑒𝑖 + 𝑘𝑖𝑠𝑖𝑔 ( ̇𝑒𝑖)𝑎𝑖 , 󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 ≤ Ω𝑖 (29)

The above equation can be further restructured as

𝑒𝑖 + (𝑘𝑖 − 𝑠𝑖𝑠𝑖𝑔 ( ̇𝑒𝑖)−𝑎𝑖) 𝑠𝑖𝑔 ( ̇𝑒𝑖)𝑎𝑖 = 0 (30)

Equation (30) will still be NTSM manifold form as (7)
under the condition that (𝑘𝑖−𝑠𝑖𝑠𝑖𝑔(𝑒̇𝑖)−𝑎𝑖) > 0holds; therefore,̇𝑒𝑖 will converge to the following field within finite time:

󵄨󵄨󵄨󵄨 ̇𝑒𝑖󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑠𝑖𝑘𝑖−1󵄨󵄨󵄨󵄨󵄨1/𝑎𝑖 ≤ 󵄨󵄨󵄨󵄨󵄨Ω𝑖𝑘𝑖−1󵄨󵄨󵄨󵄨󵄨1/𝑎𝑖 = Ω ̇𝑒𝑖 (31)

Substituting (31) into (29), we have
󵄨󵄨󵄨󵄨𝑒𝑖󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝑠𝑖 − 𝑘𝑖𝑠𝑖𝑔 ( ̇𝑒𝑖)𝑎𝑖 󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑠𝑖󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝑘𝑖𝑠𝑖𝑔 (𝑒̇𝑖)𝑎𝑖 󵄨󵄨󵄨󵄨󵄨 = 2Ω𝑖 (32)

Thus, the system trajectories will be enforced into the field
(27), (31), and (32)within finite time.Then, the stability of the
closed-loop control system is proved.

4. Simulation Studies

To demonstrate the effectiveness and advantages of our newly
proposed TDC scheme with ANTSM dynamics, comparative
simulations were conducted using 2-DOFs (degree of free-
doms) robot manipulators as indicated in Figure 1.

4.1. Simulation Setup. The system dynamics used in the fol-
lowing simulations are directly taken from [15] with different
design of lumped uncertainties for both joints as 𝜏𝑑=sin (𝜋t)
N∙m.The detailed system dynamics are [17]

M (q) = [𝑀11 𝑀12𝑀21 𝑀22] ,
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Figure 2: Simulation results of Case one: (a) and (b) are trajectory tracking performance for joints 1 and 2, respectively; (c) and (d) are
estimation error h − ĥ for joints 1 and 2, respectively; (e) and (f) are tracking errors for joints 1 and 2, respectively; (g) and (h) are control
efforts for joints 1 and 2, respectively; (i) is the adaptive gain K̂ for joints 1 and 2, respectively.

𝑀11 = 𝑙22𝑚2 + 2𝑙1𝑙2𝑚2 cos (𝑞2) + 𝑙21 (𝑚1 + 𝑚2)
𝑀12 = 𝑀21 = 𝑙22𝑚2 + 𝑙1𝑙2𝑚2 cos (𝑞2) ,
𝑀22 = 𝑙22𝑚2

(33)

C (q, q̇) q̇

= [−𝑙1𝑙2𝑚2 sin (𝑞2) 𝑞̇22 − 2𝑙1𝑙2𝑚2 sin (𝑞2) 𝑞̇1𝑞̇2𝑙1𝑙2𝑚2 sin (𝑞2) 𝑞̇22 ]
(34)

G (q)
= [𝑙2𝑚2𝑔 cos (𝑞1 + 𝑞2) + (𝑚1 + 𝑚2) 𝑙1𝑔 cos (𝑞1)𝑙2𝑚2𝑔 cos (𝑞1 + 𝑞2) ] (35)
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Figure 3: Simulation results of Case one: (a) and (b) are control errors within initial phase t𝜖[1, 3]sec for joints 1 and 2, respectively; (c) and
(d) are control errors within peak phase t 𝜖 [6.2, 9.2]sec for joints 1 and 2, respectively; (e) and (f) are control errors within steady phase t 𝜖
[4.1, 6.1]sec for joints 1 and 2, respectively.

Fr (q, q̇) = [𝐹V1𝑞̇1 + 𝐹𝑐1sgn (𝑞̇1)𝐹V2𝑞̇2 + 𝐹𝑐2sgn (𝑞̇2)] (36)

where 𝑙𝑖, 𝑚𝑖, 𝑔, 𝐹V𝑖, 𝐹𝑐𝑖 stand for the link length, mass, local
acceleration, viscous, and Coulomb friction for the 𝑖-DOF,
respectively. The dynamical parameters are 𝑙1 = 1m, 𝑙2 = 0.8
m, 𝑚1 = 𝑚2 = 1 kg, 𝐹V1 = 𝐹V2 = 5 N⋅m⋅s/rad, 𝐹𝑐1 = 𝐹𝑐2 = 5
N⋅m, and 𝑔 = 9.8m/s2.

Three TDC schemes are taken for comparisons. The first
one is our newly proposed TDC with ANTSM (11), (10). The
other two, referred to as Controller 2 and Controller 3, are
taken from [17, 42, 43] as

𝜏 = M (q̈𝑑 + 𝑎−1k−1sig (ė)2−𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
NTSM error dynamics

+M (𝜌1s + 𝜌2sat (sig (s)𝛽 /𝜑𝛽))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
reaching law

+ 𝜏 (𝑡 − 𝐿) −Mq̈ (𝑡 − 𝐿)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
TDE

(37)

𝜏 = M (q̈𝑑 + 𝑎−1k−1sig (ė)2−𝑎 + 𝜌2sat (s/𝜑))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
NTSM error dynamics

+ 𝜏 (𝑡 − 𝐿) −Mq̈ (𝑡 − 𝐿)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
TDE

(38)

withNTSMmanifold designed as (7).The parameter 𝜑 stands
for the boundary layer.

To make the comparison fair and also suppress the
potential chatters, our newly proposed TDC scheme with
ANTSM dynamics is also modified as

𝜏

= M (q̈𝑑 + 𝑎−1k−1sig (ė)2−𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
NTSM error dynamics

+M (𝜌1s + 𝜌2sat (sig (s)𝛽 /𝜑𝛽) + K̂ (𝑡) sat (s/𝜑))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Combined reaching law

+ 𝜏 (𝑡 − 𝐿) −Mq̈ (𝑡 − 𝐿)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
TDE

(39)
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Figure 4: Simulation results of Case two: (a) and (b) are trajectory tracking performance for joints 1 and 2, respectively; (c) and (d) are
estimation error h − ĥ for joints 1 and 2, respectively; (e) and (f) are tracking errors for joints 1 and 2, respectively; (g) and (h) are control
efforts for joints 1 and 2, respectively; (i) is the adaptive gain K̂ for joints 1 and 2, respectively.

4.2. Simulation Results. Three cases were simulated for com-
prehensive demonstration of the newly proposed control
scheme. First, the robot manipulator is commanded to
track a smooth reference trajectory with no consideration
of measurement noise. Second, the measurement noise is
taken into consideration based on Case one. Third, the robot
manipulator is commanded to track a combined triangular

wave signal.The control parameters for our proposedmethod
are selected as k = diag(1, 1), a = diag(1.2, 1.2), 𝜌1 =
𝜌2 = diag(2, 2), 𝛽 = 0.5, 𝜂 = diag(20, 20), Δ = 0.001 ×
diag(2, 2), Kmin = diag(2, 2), Kmax = diag(10, 10), 𝜑 = 0.05,
M = 0.01 × diag(5, 5), and 𝐿 = 1ms. Meanwhile, the initial
value of K̂(𝑡) is set to Kmin, and the sampling period of the
simulation is set to 1ms. For comparison fairness, the control
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Figure 5: Simulation results of Case two: (a) and (b) are control errors within initial phase t𝜖[1, 3]sec for joints 1 and 2, respectively; (c) and
(d) are control errors within peak phase t 𝜖 [6.2, 9.2]sec for joints 1 and 2, respectively; (e) and (f) are control errors within steady phase t 𝜖
[4.1, 6.1]sec for joints 1 and 2, respectively.

parameters for the other two TDC schemes (37) and (38)
are selected exactly the same as ours. Furthermore, a time-
varying lumped disturbance 𝜏d = sin(𝜋𝑡) N∙m is added to
both joints in the simulation to demonstrate the robustness
of our proposed TDC scheme.

4.2.1. Case One. In this case, the robot manipulator is com-
manded to track a smooth reference trajectory, which is
obtained through fifth-order polynomial method using the
initial and terminate points listed in Table 1. Finally, the
simulation results are given in Figures 2 and 3.

As shown in the simulation results in Figures 2 and 3, all
three control schemes can provide good reference trajectory
tracking control performance under time-varying lumped
disturbance 𝜏d. High control accuracy and fast convergence
have been clearly observed as shown in Figures 2(e), 2(f),
and 3(a)–3(f). The above results strongly demonstrate the
effectiveness of TDC scheme and NTSM error dynamics.
Meanwhile, our proposed TDC schemewith a novel ANTSM
dynamics can still ensure the best comprehensive control
performance as shown in Figures 2(e), 2(f), and 3(a)–3(f).
Faster dynamical response and higher control accuracy can
be clearly seen from these simulation results. For further

analysis, we take Figure 2(i) to analyze. It can be seen
that the adaptive gain K̂(𝑡) will rapidly increase when the
control performance tend to degrade, which in turnwill bring
in extra control efforts and robustness. Then, high control
accuracy and strong robustness can be effectively obtained.
Meanwhile, K̂(𝑡) will rapidly decrease when the control per-
formance is relatively satisfactory. Therefore, relative smaller
control efforts will be generated. Thanks to this adaptive
mechanism, high comprehensive control performance and
effective suppression of the chattering and noise effect can be
ensured simultaneously.

4.2.2. Case Two. in this case, the measurement noise is
taken into consideration, which is simulated using a band-
limited white noise module with noise power of 10−8 and
sampling time of 1 ms. The reference trajectory is selected
the same as Case one. The obtained simulation results are
given Figures 4 and 5. As indicated in Figures 4 and 5,
the introduction of measurement noise has led to clear
noisy performance of control effort but bounded without any
noticeable chattering. Still, our proposedmethod can provide
the best comprehensive control performance among all three
TDC schemes as shown in Figures 4(e), 4(f), and 5. Higher
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Figure 6: Simulation results of Case three: (a) and (b) are trajectory tracking performance for joints 1 and 2, respectively; (c) and (d) are
estimation error h − ĥ for joints 1 and 2, respectively; (e) and (f) are tracking errors for joints 1 and 2, respectively; (g) and (h) are control
efforts for joints 1 and 2, respectively; (i) is the adaptive gain K̂ for joints 1 and 2, respectively.

control accuracy, faster convergence, and stronger robustness
have been clearly observed with our newly proposed method
under measurement noise.

4.2.3. Case Three. to further verify the effectiveness of our
proposed method, a combined triangular wave signal with
two different speeds is sent to the robotmanipulator as shown
in Figures 6(a) and 6(b). Corresponding simulation results

are given in Figures 6 and 7. As shown in Figures 6 and 7,
satisfactory control performance can still be ensured with all
three control schemes under this reference trajectory. On the
other hand, our proposed method can still provide the best
control performance as indicated in Figures 6(e), 6(f), and
7. Furthermore, taking Figures 6(h) and 6(i) to analyze, we
can see that when the reference trajectory changes suddenly,
the adaptive mechanism will generate large extra control
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Figure 7: Simulation results of Case three: (a) and (b) are control errors within initial phase t 𝜖[1, 3]sec for joints 1 and 2, respectively; (c)
and (d) are control errors within peak phase t 𝜖[6, 9]sec for joints 1 and 2, respectively; (e) and (f) are control errors within steady phase t𝜖[12, 15]sec for joints 1 and 2, respectively.

Table 1: Initial and terminate points of the reference trajectory.

t (sec) 0.0 3.0 7.0 11.0 15.0
q1(
∘) 0.0 30 -30 30 0.0

q2(
∘) 0.0 30 -30 30 0.0

efforts enforcing the robot manipulator to accurately track
the reference trajectory. Thanks to this mechanism, higher
control accuracy and faster convergence have been clearly
observedwith our proposedmethod comparedwith the other
twos.

Generally speaking, the effectiveness and advantages of
our newly proposed method have been clearly demonstrated
through the above comparative simulation studies. Higher
control accuracy, faster dynamic response, and stronger
robustness have been obviously observed in the simulation
results.

5. Conclusions

For the high performance trajectory tracking control purpose
of robot manipulators under complex lumped disturbance,
a novel TDC scheme with ANTSM dynamics is proposed

and studied in this paper. The proposed method uses TDC
as its basic control framework and brings in a fascinat-
ing model-free feature. Afterwards, a combined reaching
law is used which combines the well-known fast-TSM-type
reaching law with a constant reaching law using adaptive
mechanism. Then, the TDC scheme is effectively enhanced
with a designed NTSM surface and a combined reaching
law. Thanks to this combined reaching law, higher control
accuracy and faster dynamic response can be ensured with
our proposed method compared with the existing methods.
Stability of the closed-loop control system is analyzed using
the Lyapunovmethod. Comparative simulations results show
that our proposed TDC scheme with ANTSM dynam-
ics can provide higher control accuracy, faster dynamic
response, and better robustness against lumped distur-
bance than the two existing TDC schemes with NTSM
dynamics.
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