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This letter proposes a sequential selection normalized subband adaptive filter (SS-NSAF) in order to reduce the computational
complexity. In addition, a variable step-size algorithm is also proposed using the mean-square deviation analysis of the SS-NSAF.
To enhance the performance in terms of the convergence speed, we propose an improved variable step-size SS-NSAF using a two-
stage concept. The simulation results show the low computational complexity and low misalignment errors using the proposed
algorithm.

1. Introduction

The normalized least mean-square (NLMS) algorithm has
been used in a variety of applications such as network echo
cancellation, system identification, and channel estimation
because of its low computational complexity and ease of im-
plementation. However, it suffers from the performance de-
gradation in terms of the convergence rate for colored input
signals. To address this drawback, affine projection algorithm
(APA), zero-attracting algorithms, 𝑙0-norm constrained algo-
rithms, and normalized subband adaptive filter (NSAF) have
been proposed [1–4].

The NSAF improves a convergence rate for colored input
signals using multiple subbands with small computational
complexity compared to APA. To achieve better performance
in terms of the steady-state error and the convergence rate,
variable step-size schemes have also been proposed. In [5],
the variable step-size NSAF (VSS-NSAF) was developed
by minimizing the mean-square deviation (MSD) of the
NSAF. In [6], the variable step-size matrix NSAF effectively
estimates the noise variance of each subband. Furthermore,
several algorithms have been proposed to reduce the com-
putational complexity of the NSAF. The simplified selective
partial update subband adaptive filter reduces the compu-
tational complexity by updating partial filter coefficients in

each subband rather than the entire filter at every adaptation
[7]. The dynamic selection NSAF (DS-NSAF) updates only
a selected subset of subband filters [8], leading to the largest
decrease between the successive MSDs at every adaptation.
Recently, Rabiee [9] introduced the flexible complexity VSS-
NSAF (FC-VSS-NSAF) to reduce the computational com-
plexity and improve the convergence performance.

This paper proposes a sequential selection NSAF (SS-
NSAF) to reduce complexity and a variable step-size algo-
rithm to improve performance in terms of the convergence
speed and the misalignment errors. The variable step-size
algorithm is derived by the MSD analysis of the SS-NSAF. In
addition, to improve the convergence speed, we propose
an improved variable step-size algorithm using a two-stage
concept [10]. It carries out the conventionalNSAFwith a fixed
step size in the first stage to achieve a fast convergence rate
and then performs SS-NSAF with variable step size. We con-
firm that the proposed algorithm has low misalignment errors
while reducing the computational complexity.

2. Sequential Selection NSAF (SS-NSAF)

We consider data 𝑑(𝑛) derived from an unknown system:

𝑑 (𝑛) = u𝑇 (𝑛)w + V (𝑛) , (1)
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Figure 1: Structure of the NSAF.

where w is an m-dimensional unknown vector to be esti-
mated, V(𝑛) accounts for ameasurement noisewith zeromean
and variance 𝜎2V , and u(𝑛) denotes an m-dimensional input
vector.

Figure 1 shows the structure of the NSAF, where𝑁 is the
number of subbands. The desired system output signal 𝑑𝑖(𝑛)
and the filter output signal𝑦𝑖(𝑛) of the 𝑖th subband are divided
into 𝑁 subbands by the analysis filters 𝐻0(𝑧), . . . , 𝐻𝑁−1(𝑧).
These signals are then critically decimated. In this letter, the
variables 𝑛 and 𝑘 are used to index the original sequences and
the decimated sequences, respectively. The decimated filter
output signal is defined as𝑦𝑖,𝐷(𝑘) = ŵ𝑇(𝑘)u𝑖(𝑘), whereu𝑖(𝑘) =[𝑢𝑖(𝑘𝑁) 𝑢𝑖(𝑘𝑁 − 1) . . . 𝑢𝑖(𝑘𝑁 − 𝑚 + 1)]𝑇. Theoutput error
of the 𝑖th subband is defined as 𝑒𝑖,𝐷(𝑘) = 𝑑𝑖,𝐷(𝑘) − 𝑦𝑖,𝐷(𝑘),
where 𝑑𝑖,𝐷(𝑘) = 𝑑𝑖(𝑘𝑁).

The conventional NSAF update equation is

ŵ (𝑘 + 1) = ŵ (𝑘) + 𝜇𝑁−1∑
𝑖=0

u𝑖 (𝑘)󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩2 𝑒𝑖,𝐷 (𝑘) , (2)

where 𝜇 is a step size.
The SS-NSAF updates using sequentially selected𝑁 sub-

band filters to reduce the computational complexity, where𝑁 ≤ 𝑁. The proposed SS-NSAF is

ŵ (𝑘 + 1) = ŵ (𝑘) + 𝜇𝑁−1∑
𝑖=0

𝑠𝑖 (𝑘)u𝑖 (𝑘) 𝑒 (𝑘)‖u (𝑘)‖2 (3)

where 𝑠𝑖(𝑘) has 1 or 0, which is an element of vector S(k) =[𝑠0(𝑘) 𝑠1(𝑘) ⋅ ⋅ ⋅ s𝑁−1(𝑘)]𝑇. The S(k) is obtained as follows:

𝑠𝑖 (𝑘) = {{{
𝑠𝑁−1 (𝑘 − 1) if 𝑖 = 0,𝑠𝑖−1 (𝑘 − 1) otherwise

(4)

where the initial values are

𝑠𝑖 (0) = {{{
1, if 𝑖 < 𝑁0, otherwise. (5)

3. Variable Step-Size SS-NSAF (VSS-SS-NSAF)

A weight-error vector is defined as w̃(𝑘) ≜ w − ŵ(𝑘) and the
SS-NSAF update equation (3) can be rewritten in terms of w̃
as follows:

w̃ (𝑘 + 1) = w̃ (𝑘)
− 𝜇𝑁−1∑
𝑖=0

𝑠𝑖 (𝑘)u𝑖 (𝑘)󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩2 (u𝑇𝑖 (𝑘) w̃ (𝑘) + V𝑖,𝐷)
≜ F (𝑘) w̃ (𝑘) − 𝜇𝑁−1∑

𝑖=0

𝑠𝑖 (𝑘)u𝑖 (𝑘) V𝑖,𝐷󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩2 ,
(6)

where F(𝑘) ≜ I − 𝜇∑𝑁−1𝑖=0 (𝑠𝑖(𝑘)u𝑖(𝑘)u𝑇𝑖 (𝑘)/‖u𝑖(𝑘)‖2) and I is
the identity matrix. For a given set U(𝑘) ≜ {u𝑖(𝑗) | 0 ≤ 𝑖 ≤𝑁, 0 ≤ 𝑗 ≤ 𝑘}, the covariance matrix and MSD are defined as

P (𝑘) ≜ 𝐸 (w̃ (𝑘) w̃𝑇 (𝑘))
≡ 𝐸 {𝐸 (w̃ (𝑘) w̃𝑇 (𝑘) | U (𝑘 − 1))} , (7)

MSD (𝑘) ≜ 𝐸 (w̃𝑇 (𝑘) w̃ (𝑘)) ≡ 𝑇𝑟 (P (𝑘)) , (8)

where 𝐸{⋅} is the expectation value of a random variable
and 𝑇𝑟(⋅) is the trace of a matrix. Let us define P(𝑘) as the
conditional covariance matrix of (7) as follows:

P (𝑘) ≜ 𝐸 (w̃ (𝑘) w̃𝑇 (𝑘) | U (𝑘 − 1)) . (9)
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By substituting (6) into (9), we have

P (𝑘 + 1) = F (𝑘)P (𝑘)F𝑇 (𝑘)
+ 𝜇2𝑁−1∑
𝑖=0

𝑠𝑖 (𝑘) 𝜎2V𝑖,𝐷u𝑖 (𝑘)u𝑇
𝑖 (𝑘)󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩4 . (10)

After taking the trace on both sides of (10), the update
recursion of the 𝑇𝑟(P) has the form𝑇𝑟 (P (𝑘 + 1)) = 𝑇𝑟 (P (𝑘))

− 2𝜇𝑇𝑟(𝑁−1∑
𝑖=0

A𝑖 (𝑘)P (𝑘))
+ 𝜇2𝑇𝑟(𝑁−1∑

𝑖=0

A𝑖 (𝑘)P (𝑘))
+ 𝜇2𝑁−1∑
𝑖=0

𝑠𝑖 (𝑘) 𝜎2V𝑖,𝐷󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩2 ,
(11)

where A𝑖(𝑘) = 𝑠𝑖(𝑘)u𝑖(𝑘)u𝑇𝑖 (𝑘)/‖u𝑖(𝑘)‖2. Using the result [11]
with 𝛽 = 1, we can assume that

𝑇𝑟(𝑁−1∑
𝑖=0

A𝑖 (𝑘)P (𝑘)) ≃ 𝑁𝑀𝑇𝑟 (P (𝑘)) (12)

is available, which leads to

𝑇𝑟 (P (𝑘 + 1)) = (1 − (2𝜇 − 𝜇2)𝑁𝑀 )𝑇𝑟 (P (𝑘))
+ 𝜇2𝑁−1∑
𝑖=0

𝑠𝑖 (𝑘) 𝜎2V𝑖,𝐷󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩2 .
(13)

From (7), after taking the expectation value of both sides of
(13), because a probability 𝑃(𝑠𝑖(𝑘) = 1) = 𝑁/𝑁, the update
recursion of the MSD is derived as follows:

𝑇𝑟 (P (𝑘 + 1)) = (1 − (2𝜇 − 𝜇2)𝑁𝑀 )𝑇𝑟 (P (𝑘))
+ 𝜇2𝑁−1∑
𝑖=0

𝐸(𝑠𝑖 (𝑘) 𝜎2V𝑖,𝐷󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩2 )
= (1 − (2𝜇 − 𝜇2)𝑁𝑀 )𝑇𝑟 (P (𝑘))
+ 𝜇2𝜎2V𝑁𝑀𝑁2 𝑁−1∑

𝑖=0

1𝜎2𝑢𝑖 ,

(14)

where 𝜎2V𝑖,𝐷 = 𝜎2V/𝑁 [12]. From the MSD analysis of the NSAF
given by (14), the steady-state value of the MSD can be ob-
tained as

lim
𝑘󳨀→∞

𝑇𝑟 (P (𝑘)) = 𝜇𝜎2V(2 − 𝜇)𝑁2 𝑁−1∑
𝑖=0

1𝜎2𝑢𝑖 . (15)

The steady-state MSD values are same when setting at same
step size for various𝑁.

By minimizing the value of 𝑇𝑟(P(𝑘 + 1)) with respect to
step size 𝜇, the optimal step size 𝜇(𝑘) is derived by

𝜇 (𝑘) = 𝑁𝑇𝑟 (P (𝑘))𝑁𝑇𝑟 (P (𝑘)) + 𝜎2V ∑𝑁−1𝑖=0 (1/𝑁𝜎2𝑢𝑖) . (16)

4. Improved VSS-SS-NSAF (IVSS-SS-NSAF)

Since the SS-NSAF updates only 𝑁 subband filters at every
iteration, small𝑁 leads to low computational complexity and
slow convergence rate. Therefore, the VSS-SS-NSAF also has
slow convergence rate when it uses small 𝑁. To improve the
convergence rate of the VSS-SS-NSAF, we propose the IVSS-
SS-NSAF that has two stages. In the first stage, the NSAF for
a large step size 𝜇(0) is performed to guarantee a fast con-
vergence. Then, when the NSAF reaches the steady state, the
proposed algorithm uses only𝑁 subband filters with optimal
step size as (16), resulting in low computational complexity.
From (15), the steady-state value of the MSD with 𝜇(0) can be
obtained as

MSD𝑠𝑠 = lim
𝑘󳨀→∞

𝑇𝑟 (P (𝑘)) = 𝜇 (0) 𝜎2V(2 − 𝜇 (0))𝑁2 𝑁−1∑
𝑖=0

1𝜎2
𝑢𝑖
(𝑘) . (17)

Therefore, the proposed algorithm uses all subband filters
when 𝑇𝑟(P(𝑘)) > MSD𝑠𝑠.

4.1.PracticalConsiderations. Theproposed algorithmachieves
the optimal step size using the currentMSD value; however, it
is always decreased, which leads to the performance degrada-
tion in a fast-varying system. To reflect the nonstationarity of
the system, the current MSD value can be rewritten by output
error variance as follows [11, 13]:

𝑇𝑟 (P (𝑘 + 1)) = (1 − 2𝜇𝑁𝑀 )𝑇𝑟 (P (𝑘))
+ 𝜇2𝑁𝑀𝑁𝑁−1∑

𝑖=0

𝜎2𝑒𝑖,𝐷 (𝑘)𝜎2𝑢𝑖 (𝑘) ,
(18)

where

𝜎2𝑒𝑖,𝐷 (𝑘) ≜ 𝐸 {(𝑑𝑖,𝐷 (𝑘) − u𝑇𝑖 (𝑘) ŵ (𝑘))2}
≈ 𝜎2𝑢𝑖 (𝑘) 𝑇𝑟 (P (𝑘)) + 𝜎2V𝑖,𝐷 . (19)

Because it is hard to obtain the exact value of 𝜎2𝑒𝑖,𝐷(𝑘) and𝜎2𝑢𝑖(𝑘), they are estimated by a moving average method as
follows: 𝜎2𝑒𝑖,𝐷 (𝑘) = 𝛾𝜎2𝑒𝑖,𝐷 (𝑘 − 1) + (1 − 𝛾) 𝑒2𝑖,𝐷 (𝑘) , (20)

𝜎2𝑢𝑖 (𝑘) = 𝛾𝜎2𝑢𝑖 (𝑘 − 1) + (1 − 𝛾) 𝑢2𝑖 (𝑘𝑁) , (21)

where 𝛾 ∈ [0, 1) is smoothing factor. Algorithm 1 summarizes
the proposed algorithm and Table 1 shows the computational
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Initialization: ŵ(0) = 0, 𝜇(0), 𝑇𝑟(P(0)), S(0)𝜎2
𝑒𝑖,𝐷
(0) = 0, 𝜎2𝑢𝑖 (0) = 0

Parameters: 𝜎2V : known or estimated a priori𝛾,𝑁: predefined
For each iteration 𝑘

1. 𝜎2
𝑒𝑖,𝐷

and 𝜎2
𝑢𝑖
estimation𝜎2

𝑒𝑖,𝐷
(𝑘) = 𝛾𝜎2

𝑒𝑖,𝐷
(𝑘 − 1) + (1 − 𝛾) 𝑒2

𝑖,𝐷
(𝑘),𝜎2

𝑢𝑖
(𝑘) = 𝛾𝜎2

𝑢𝑖
(𝑘 − 1) + (1 − 𝛾) 𝑢2

𝑖
(𝑘𝑁) .

2. MSD𝑠𝑠(𝑘) estimation

MSD𝑠𝑠(𝑘) = 𝜇 (0) 𝜎2V(2 − 𝜇 (0))𝑁2 𝑁−1∑
𝑖=0

1𝜎2
𝑢𝑖
(𝑘)

3. 𝜇(𝑘), NSAF, and MSD update
if 𝑇𝑟(P(𝑘)) > MSD𝑠𝑠(𝑘)𝜇(𝑘) = 𝜇(0),

ŵ(𝑘 + 1) = ŵ(𝑘) + 𝜇(𝑘)𝑁−1∑
𝑖=0

u𝑖(𝑘)󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩2 𝑒𝑖,𝐷(𝑘),𝑇𝑟(P(𝑘 + 1)) = (1 − 2𝜇(𝑘)𝑁𝑀 )𝑇𝑟(P(𝑘)) + 𝜇2(𝑘)𝑀 𝑁−1∑
𝑖=0

𝜎2
𝑒𝑖,𝐷
(𝑘)𝜎2
𝑢𝑖
(𝑘) .

else𝜇(𝑘) = 𝑁𝑇𝑟(P(𝑘))𝑁𝑇𝑟(P(𝑘)) + 𝜎2V ∑𝑁−1𝑖=0 (1/𝑁𝜎2𝑢𝑖 (𝑘)) ,𝑠𝑖(𝑘) = {{{
𝑠𝑁−1(𝑘 − 1) if 𝑖 = 0,𝑠𝑖−1(𝑘 − 1) otherwise,

ŵ(𝑘 + 1) = ŵ(𝑘) + 𝜇(𝑘)𝑁−1∑
𝑖=0

𝑠𝑖(𝑘)u𝑖(𝑘)󵄩󵄩󵄩󵄩u𝑖 (𝑘)󵄩󵄩󵄩󵄩2 𝑒𝑖,𝐷(𝑘),𝑇𝑟(P(𝑘 + 1)) = (1 − 2𝜇(𝑘)𝑁𝑀 )𝑇𝑟(P(𝑘)) + 𝜇2(𝑘)𝑁𝑀𝑁 𝑁−1∑
𝑖=0

𝜎2
𝑒𝑖,𝐷
(𝑘)𝜎2
𝑢𝑖
(𝑘) .

end
end

Algorithm 1: Algorithm summary.

complexity of the NSAF, FC-VSS-NSAF, VSS-SS-NSAF, and
IVSS-SS-NSAF for every iteration. To reduce the computa-
tional complexity, we used a recursive computation of the
norms of the input signals [6, 14]. The FC-VSS-NSAF and
IVSS-SS-NSAF have more computational complexity than
conventional NSAF algorithm when 𝑟(𝑘) = 𝑁; however,
they can reduce average computational complexity and power
consumption by the number of selected subbands, 𝑟(𝑘), based
on the value of complexity reduction factors, 𝛿 and 𝑁, re-
spectively.

5. Simulation Results

In this section, computer simulations in the system identifi-
cation are used to illustrate the performance of the proposed
algorithm. In these simulations, the unknown system is the
acoustic impulse response of a room truncated to 512 for 128
taps. We assume that the adaptive filters and the unknown
system have the same number of taps, i.e.,𝑀 = 512 or𝑀 =128.The colored input signals are generated by filtering white
Gaussian noise through the following system:

𝐺1 (𝑧) = 1(1 − 0.9𝑧−1) , (22)

𝐺2 (𝑧) = 1(1 − 0.1𝑧−1 + 0.8𝑧−2) . (23)

The measurement noise is added to the output u𝑇(𝑛)w
such that the signal-to-noise ratio (SNR) = 30 dB, where SNR
is defined as

SNR ≜ 10 log10(𝐸[(u𝑇 (𝑛)w)2]𝐸 [V (𝑛)2] ) . (24)

In addition, the normalizedmean squared deviation (NMSD)
is defined as

NMSD ≜ 10 log
10
(𝐸 [w̃𝑇 (𝑘) w̃ (𝑘)]

w𝑇w
) . (25)

Assume that 𝜎2V is known, since it can be easily estimated
during silences and online [15–18]. Each subband adaptive
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Figure 2: NMSD learning curves of the experimental results and the estimated MSD values at 𝜇 = 1 for colored input generated by 𝐺1(𝑧).
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Figure 3: NMSD learning curves of the experimental results and the estimated MSD values at 𝜇 = 0.5 for colored input generated by 𝐺1(𝑧).

filter uses an eight-band filter bank that has 32 filter lengths,
i.e.,𝑁 = 8 and𝐿 = 32.We set𝑇𝑟(P(0)) to 1 for initialization of
the proposed algorithm. In addition, the proposed algorithm
is performed for 𝛾 = 0.995when𝑀 = 512 and 𝛾 = 0.95when𝑀 = 128. The simulation results were obtained by ensemble
averaging over 30 trials.

5.1. MSD Estimation of SS-NSAF. Figures 2, 3, and 4 show
the estimated MSD curves (as in (18)) and simulation results
when setting at 𝜇 = 1, 𝜇 = 0.5, and 𝜇 = 0.1 for different𝑁. As it is shown, all curves have same steady-state value
regardless𝑁. However, the smaller𝑁 leads to the slower con-
vergence rate.The estimated MSD curves are close to simula-
tion results.

5.2. Performance Comparison. Figures 5(a) and 5(b) compare
the NMSD learning curves of the conventional NSAFs, SM-
NLMS[19] (𝛾 = √𝜎2V ), VSS-NLMS[20] (𝜇(0) = 1, 𝜇𝑚𝑖𝑛 =10−15, 𝜇𝑚𝑎𝑥 = 1, 𝛽 = 30, 𝛼 = 0.9995 or 0.9999), FC-VSS-
NSAFs, VSS-SS-NSAFs, and IVSS-SS-NSAFs (𝜇(0) = 1) for
colored input generated by 𝐺1(𝑧) when𝑀 = 512 and 𝑀 =128, respectively. Figure 6 shows average number of selected
subband filters for updating in FC-Vss-NSAFs, VSS-SS-
NSAFs, and IVSS-SS-NSAFs when𝑀 = 512.This simulation
abruptly changes the unknown system at the midpoint of
the test interval. The FC-VSS-NSAFs perform differently
depending on the value of the complexity reduction factor 𝛿
[9]. The IVSS-SS-NSAFs also perform differently depending
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Figure 4: NMSD learning curves of the experimental results and the estimated MSD values at 𝜇 = 0.1 for colored input generated by 𝐺1(𝑧).
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Figure 5: NMSD learning curves of the NSAFs (𝜇 = 1, 0.05), SM-NLMS (𝛾 = √𝜎2V ), VSS-NLMS (𝛼 = 0.9995 or 0.9999), FC-VSS-NSAFs
(𝛿 = 0, 0.01𝜎2V ), VSS-SS-NSAF (𝑁 = 4, 2), and IVSS-SS-NSAF (𝑁 = 4, 2, 𝜇(0) = 1) for colored input generated by𝐺1(𝑧). (a)𝑀 = 512 and (b)𝑀 = 128.
on the𝑁 but the IVSS-SS-NSAF for𝑁 = 2 has lower steady-
state errors and lower computational complexity than the FC-
VSS-NSAF for 𝛿 = 0, which has best performance among
them. As can be seen, this simulation results confirm that
the proposed algorithm, which has the lower computational
complexity than the FC-VSS-NASF which performs well in

terms of misalignment errors. Figures 7(a) and 7(b) show
the NMSD learning curves of the conventional NSAFs, SM-
NLMS, VSS-NLMS, FC-VSS-NSAFs, VSS-SS-NSAFs, and
IVSS-SS-NSAFs (𝜇(0) = 1) for colored input generated
by 𝐺2(𝑧) when 𝑀 = 512 and 𝑀 = 128, respectively.
Figure 8 shows average number of selected subband filters for
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Figure 7: NMSD learning curves of the NSAFs (𝜇 = 1, 0.05), SM-NLMS (𝛾 = √𝜎2V ), VSS-NLMS (𝛼 = 0.9995 or 0.9999), FC-VSS-NSAFs
(𝛿 = 0, 0.01𝜎2V ), VSS-SS-NSAF (𝑁 = 4, 2), and IVSS-SS-NSAF (𝑁 = 4, 2, 𝜇(0) = 1) for colored input generated by𝐺2(𝑧). (a)𝑀 = 512 and (b)𝑀 = 128.

updating in FC-VSS-NSAFs, VSS-SS-NSAFs, and IVSS-SS-
NSAFs when𝑀 = 512. Figure 9 describes the comparisons
of NSAFs (𝜇 = 1, 0.03), SM-NLMS (𝛾 = √5𝜎2V ), VSS-NLMS

(𝜇(0) = 1, 𝜇𝑚𝑖𝑛 = 10−15, 𝜇𝑚𝑎𝑥 = 1, 𝛽 = 30, 𝛼 = 0.9999),
FC-VSS-NSAFs (𝛿 = 0, 0.01𝜎2V ), VSS-SS-NSAF (𝑁 = 4, 2),
and IVSS-SS-NSAF (𝑁 = 4, 2, 𝜇(0) = 0.1) in an acoustic
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echo-cancellation application. We used the speech signal as
input signal that is sampled by 8kHz.

6. Conclusion

In this paper, we proposed the SS-NSAF and variable step-
size algorithms to reduce computational complexity and

achieved low steady-state errors. By the MSD analysis of
the SS-NSAF, the variable step size algorithm was derived.
In addition, to improve the convergence performance, we
proposed IVSS-SS-NSAF using a two-stage concept. The
simulation results showed that the proposed algorithm is
better than the FC-VSS-NSAF in terms of misalignment
errors.



10 Mathematical Problems in Engineering

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea Govern-
ment (MSIP; Ministry of Science, ICT & Future Planning)
(no. 2017R1C1B5017968). This work was supported by the
Soonchunhyang University Research Fund.

References

[1] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using
an orthogonal projection to an affine subspace and its proper-
ties,” Electronics and Communications in Japan (Part I: Commu-
nications), vol. 67, no. 5, pp. 19–27, 1984.

[2] Radhika Sivashanmugam and Sivabalan Arumugam, “Robust
Adaptive Algorithm by an Adaptive Zero Attractor Controller
of ZA-LMS Algorithm,”Mathematical Problems in Engineering,
vol. 2016, pp. 1–7, 2016.

[3] Y.-S. Choi, “Subband adaptive filtering with 𝑙1-norm constraint
for sparse system identification,” Mathematical Problems in
Engineering, vol. 2013, Article ID 601623, 7 pages, 2013.

[4] K. A. Lee andW. S. Gan, “Inherent decorrelating and least per-
turbation properties of the normalized subband adaptive filter,”
IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4475–
4480, 2006.

[5] J. Shin, N. Kong, and P. Park, “Normalised subband adaptive
filter with variable step size,” IEEE Electronics Letters, vol. 48,
no. 4, pp. 204–206, 2012.

[6] J. Ni and F. Li, “A variable step-size matrix normalized subband
adaptive filter,” IEEE Transactions on Audio, Speech and Lan-
guage Processing, vol. 18, no. 6, pp. 1290–1299, 2010.

[7] M. S. E. Abadi and J. H. Husøy, “Selective partial update and set-
membership subband adaptive filters,” Signal Processing, vol. 88,
no. 10, pp. 2463–2471, 2008.

[8] S.-E. Kim, Y.-S. Choi, M.-K. Song, and W.-J. Song, “A subband
adaptive filtering algorithm employing dynamic selection of
subband filters,” IEEE Signal Processing Letters, vol. 17, no. 3, pp.
245–248, 2010.

[9] M. Rabiee, M. A. Attari, and S. Ghaemmaghami, “A low com-
plexity NSAF algorithm,” IEEE Signal Processing Letters, vol. 19,
no. 11, pp. 716–719, 2012.

[10] N. Kong, J. Shin, and P. Park, “A two-stage affine projection
algorithm with mean-square-error-matching step-sizes,” Signal
Processing, vol. 91, no. 11, pp. 2639–2646, 2011.

[11] P. Park, M. Chang, and N. Kong, “Scheduled-stepsize NLMS
algorithm,” IEEE Signal Processing Letters, vol. 16, no. 12, pp.
1055–1058, 2009.

[12] W. Yin and A. S. Mehr, “Stochastic analysis of the normalized
subband adaptive filter algorithm,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 58, no. 5, pp. 1020–1033,
2011.

[13] J. J. Jeong, K. Koo,G. T. Choi, and S.W.Kim, “A variable step size
for normalized subband adaptive filters,” IEEE Signal Processing
Letters, vol. 19, no. 12, pp. 906–909, 2012.

[14] H. Ding, “Fast affine projection adaptation algorithms with
stable and robust symmetric linear system solvers,” IEEE Trans-
actions on Signal Processing, vol. 55, no. 5, part 1, pp. 1730–1740,
2007.

[15] N. R. Yousef and A.H. Sayed, “A unified approach to the steady-
state and tracking analyses of adaptive filters,” IEEE Transac-
tions on Signal Processing, vol. 49, no. 2, pp. 314–324, 2001.

[16] J. Benesty, H. Rey, L. R. Vega, and S. Tressens, “A nonparametric
VSS NLMS algorithm,” IEEE Signal Processing Letters, vol. 13,
no. 10, pp. 581–584, 2006.

[17] C. Paleologu, J. Benesty, and S. Ciochiňa, “A variable step-size
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