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The theoretical study of continuous-time homogeneous Markov chains is usually based on a natural assumption of a known
transition rate matrix (TRM). However, the TRM of a Markov chain in realistic systems might be unknown and might even need
to be identified by partially observable data.Thus, an issue on how to identify the TRM of the underlyingMarkov chain by partially
observable information is derived from the great significance in applications. That is what we call the statistical identification of
Markov chain.TheMarkov chain inversion approach has been derived for basic Markov chains by partial observation at few states.
In the current letter, a more extensive class of Markov chain on trees is investigated. Firstly, a type of a more operable derivative
constraint is developed. Then, it is shown that all Markov chains on trees can be identified only by such derivative constraints of
univariate distributions of sojourn time and/or hitting time at a few states. A numerical example is included to demonstrate the
correctness of the proposed algorithms.

1. Introduction

The classic study of continuous-time homogeneous Markov
chains usually has a natural assumption that it has a known
transition probability matrix or a transition rate matrix
(TRM). However, the TRM of a Markov chain in realistic
systems might be unknown although it is an underlying
one (named as the underlying Markov chain), and that
is what needs to be identified by observable data. For a
Markov chain with a finite state space, it is determinative
provided that its TRM is identified. In some realistic systems,
moreover, one probably observes the partial motion of the
underlyingMarkov chain. For example, one can only observe
the sojourn sequences and hitting sequences on one of the
states. Subsequently, one can fit the PDF of sojourn (resp.,
hitting) time by statistical techniques. It is easy and trivial to
identify the TRM of this Markov chain if we know exactly the
PDFs of sojourn time and hitting time of every state.

A natural question arises as to whether it is possible to
identify the TRM by those few states. Due to the transition
relations of states which intercommunicate in the underlying

Markov chain, it is indeed possible. Thus, an issue on how to
identify the TRMof the underlyingMarkov chain by partially
observable information is derived from the great significance
in applications.

In fact, the continuous-time homogeneousMarkov mod-
el which described the gating kinetics of single ion channel is
a good example to show the real application in biophysics and
neuroscience; for example, see [1, 2] and further publications.
In experiments, the transition between the various states can-
not be directly observed and only transitions between a small
number of open states are observable. It is straightforward
to derive the sojourn time and hitting time distributions
for a single state or a small number of states. The PDFs of
sojourn or hitting time generally take the form of a sum of
exponentials (e.g., [2–4]). And the best-fitting approach and
function can be found with a number of readily available
computer programs [5–7].

Unfortunately, once the fitting is completed, it is very dif-
ficult to use these PDFs to identify the TRMof the underlying
Markov chain. The most difficult challenge lies in finding
out the hidden solutions and algorithms to perform the
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reverse operation. Thus, the identification has always been
addressed directly using the maximum likelihood estimate
(MLE) (e.g., see [8–11] and further references) rather than
performing this inversion. Another series of publications
using canonical forms of reduced dimensions analyze finite
two-state trajectories, in which the system is aggregated into
only two states, defined as the on state and the off state
(irreversible transitions are also allowed); see [12, 13] and the
references therein for a review. All of them are powerful.
However, each approach has pros and cons. None of them can
perfectly identify all kinds of Markov chains. In general, for
example, the sojourn times 𝑓𝐶 and 𝑓𝑂 may not be sufficient
for parameterizing a given Markov model. This is shown
by [14] where, in general, 𝑓𝐶 and 𝑓𝑂 as well as bivariate
distributions of subsequent open and closed times, 𝑓𝑂𝐶 and𝑓𝐶𝑂, are necessary.

Note that those discarded the prior information from the
underlying topology. Thus, it is indeed possible to perform
the complicated inversion since the prior information from
the underlying architecture of Markov chain is very helpful
to accomplish it. This is what we call statistical identification
of Markov chain (SIMC). We developed a Markov chain
inversion approach (MCIA) to open the possibility of solving
the SIMC. This issue can be reduced to three steps for
applications. The first one is to obtain the necessary data at
the fewest possible states by preprocessing the observed data.
The second one is to accurately fit the corresponding PDFs of
states required by the next step. The final one is to find out
the algorithm to identify the TRM of the underlying Markov
chain by those PDFs. Throughout this paper, we focus our
attention on the final one since there are a number of readily
available approaches to fit those PDFs.

We explore a class of Markov models where reversibility
is maintained. Since some realistic systems obey the principle
of microscopic reversibility or detailed balance, this implied
the reversibility of the Markov chain. At least in applications
to ion channels, an assumption of reversibility is plausible
in many circumstances, corresponding to channels which
are not coupled to a free energy source such as an ion
concentration gradient; for discussion of this assumption,
see [15]. As an example, [16, 17] derived a criterion to
identify whether it is reversible or not in a three-stateMarkov
system based on the coarse-grained information of two-state
trajectories.Throughout the rest of this paper, the unqualified
term “Markov chain” usually refers to a reversible Markov
chain.

It is well known that classic architectures include star-
graph, linear, and cycle chains.Thus, some general constraints
and the corresponding algorithms for them were explored in
former publications [18–20]. There is no obvious strategy for
selecting the constraints to use for a general model. A key
task is to find out the feasible solutions and the corresponding
algorithms to different classes. Then, a subsequent question
is whether more complicated architectures are identified by
such approach. On this point, any one of them can be
viewed as a tree provided that it contains no cycles. This
implies that the tree is a very important extension of the
star graph and line graph and represents one of the two
classes of topologies (whether containing cycles or not). It

is known that all Markov chains on trees are reversible [21].
Thus, SIMC on trees will be exploited in this letter, although
some of them are still not applied in real systems. It is
derived that all Markov chains on trees are identified by our
approach. It is mentioned that, for SIMC on trees, the greatest
contribution should be to discover the fundamental way and
the corresponding algorithm to identify the TRM due to
the challenge of performing the reverse operation as stated
earlier. Hence, the work further opens up the possibility of
carrying out the statistical identification for all reversible
Markov chains.

Such approach has obvious advantages over MLE in that
it can identify the most reversible Markov chain without the
requirement of bivariate distributions of subsequent sojourn
time and hitting time and in that the computation is accurate
based on the accurate sojourn time PDFs and the prior
information about the underlying topological structure of the
Markov chain.

This paper is organized as follows. After recalling the
sojourn timedistribution, a type of amore operable derivative
constraint is developed in Section 2. In Section 3, the solution
to SIMC on trees is provided by such derivative constraints.
In addition, we address the solutions to three particular
and regular representatives of trees, including theoretical
conclusions, proofs, and algorithms. Finally, a numerical
example is included to demonstrate the correctness of the
proposed model.

2. Distributions of Hitting Time and
Its Derivative Relationships

Throughout this section, diag(⋅ ⋅ ⋅ ) denotes a diagonal matrix
whose entries on the diagonal are those of them, and ⊤
denotes transpose, 1 a column vector of ones, and 0 a matrix
(vector) of zeros, with the dimensions of these being clear
from their context. Furthermore, 𝐴 𝑖𝑗 and 𝐴 𝑖 denote the(𝑖, 𝑗)th entry and the 𝑖th column vector of the matrix 𝐴,
respectively.

Let {𝑋𝑡 : 𝑡 ≥ 0} be a reversible Markov chain with finite
state space S = {0, 1, . . . ,𝑀}, conservative TRM 𝑄 = (𝑞𝑖𝑗)𝑆×𝑆
such that 𝑄1 = 0 (𝑞𝑖𝑗 ≥ 0, 𝑗 ̸= 𝑖; 𝑞𝑖 ≡ −𝑞𝑖𝑖 > 0), and
equilibrium distribution 𝜋̃ = [𝜋0, 𝜋1, . . . , 𝜋𝑀]⊤ such thatΠ1/2𝑄Π−1/2 = (Π1/2𝑄Π−1/2)⊤ ,𝜋̃⊤1 = 1, (1)

whereΠ = diag(𝜋0, 𝜋1, . . . , 𝜋𝑀), and the first one (i.e., 𝜋𝑖𝑞𝑖𝑗 =𝜋𝑗𝑞𝑗𝑖 for any 𝑖, 𝑗 ∈ 𝑆) implies the reversibility.
Assume that the state space may be partitioned as S =

C ∪ O1 ∪ O2 ∪ ⋅ ⋅ ⋅ ∪ O𝑠 into 𝑟 + 𝑠(⩾ 1) classes, where
C denotes the class of closed states (unobservable), O1 ={1, 2, . . . , 𝑟} the class of open states being distinguishable (i.e.,
having 𝑟 different open levels), and O𝑖 (𝑖 = 2, . . . , 𝑠) the class
of aggregated open states (i.e., having other common open
levels); for example, see [2].

A proper subsetO of the open classO = O1∪O2∪⋅ ⋅ ⋅∪O𝑠
is observed such that either O𝑘 ⊆ O or O𝑘 ∩ O = 0 for𝑘 = 2, . . . , 𝑠 (this condition allows one to obtain the sojourn
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time and hitting time sequences of O from experimental
recording). Let C = S −O. The state space is now partitioned
as S = O ∪ C. The TRM 𝑄 may be partitioned as, by the
classesO and C,

𝑄 = (𝑄𝑜𝑜 𝑄𝑜𝑐𝑄𝑐𝑜 𝑄𝑐𝑐) . (2)

The corresponding partition is used for the equilibrium
distribution 𝜋̃; that is, 𝜋̃⊤ = [𝜋̃⊤𝑜 , 𝜋̃⊤𝑐 ].
2.1. Distributions of Hitting Time. The sojourn time and
hitting time of O can be defined as 𝜎 = inf{𝑡 > 0, 𝑋𝑡 ∉ O}
and 𝜏 = inf{𝑡 > 0, 𝑋𝑡 ∈ O}, with the usual convention that
the infimum over an empty set is infinity, respectively. They
are also the hitting time and sojourn time of C, respectively.

For some basic results on aggregated continuous-time
Markov chains, refer to [1, 2, 20, 22].Thus, just some of them,
required in the sequel, are now recalled.

For ease of exposition, let 𝑁 be the number of C, and
C ≡ {1, 2, . . . , 𝑁}, Π𝑐 ≡ diag(𝜋1, 𝜋2, . . . , 𝜋𝑁). Note that 𝑄𝑐𝑐
is nonsingular since {𝑋(𝑡)} is irreducible, and hence all the
eigenvalues of 𝑄𝑐𝑐 have strictly negative real parts. Assume
that −𝛼1, −𝛼2, . . . , −𝛼𝑁 are all real eigenvalues of 𝑄𝑐𝑐 such
that 𝛼𝑖 > 0. By symmetric reparameterization with respect
to (⋅, ⋅)Π𝑐 , 𝑄𝑐𝑐 can be diagonalized with an orthogonal matrix𝐸 and we can obtain a matrix 𝑊 = Π−1/2𝑐 𝐸 and then set𝐷 = 𝑊−1 and 𝐴 = diag(𝛼1, 𝛼2, . . . , 𝛼𝑁). Then, one can get

𝑄𝑐𝑐 = −𝐷−1𝐴𝐷,𝐷⊤𝐷 = Π𝑐,𝐷𝑄𝑐𝑐 = −𝐴𝐷,Π𝑐𝑄𝑐𝑐 = −𝐷⊤𝐴𝐷.
(3)

Theorem 1. The PDF of hitting time of O (resp., the sojourn
time of C) takes the following form:

𝑓𝜏 (𝑡) = (𝜋̃⊤𝑐 1)−1 (𝐷1)⊤ 𝐴 exp (−𝐴𝑡)𝐷1
= 𝑁∑
𝑖=1

𝛾𝑖 exp (−𝛼𝑖𝑡) , 𝑡 > 0. (4)

Note that the above is a sum of 𝑁-exponentials, 𝛾𝑖 exp(−𝛼𝑖𝑡),
where −𝛼𝑖 (𝛼𝑖 > 0) are the real eigenvalues of 𝑄𝑐𝑐 and 𝛾𝑖 =𝛼𝑖(𝐷1)⊤𝑖 (𝐷1)𝑖(𝜋̃⊤𝑐 1)−1.

In particular, if O only contains a single state 𝑖, that is,
O = {𝑖}, then the PDF of the sojourn time degenerates to an
exponential form.

Corollary 2. The PDF of the sojourn time 𝜎 at a single state 𝑖
takes a form of an exponential

𝑓𝜎 (𝑡) = 𝑞𝑖 exp (−𝑞𝑖𝑡) , 𝑡 > 0. (5)

2.2. The Derivative Constraints. Let Γ = (𝛾1, . . . , 𝛾𝑁) and
𝑑𝑛 = Γ𝐴𝑛−11 = 𝑁∑

𝑖=1

𝛾𝑖𝛼𝑛−1𝑖 , 𝑛 ≥ 1,
𝑐𝑛 = (𝜋⊤𝑐 1) 𝑑𝑛 = (1 − 𝜋⊤𝑜 1) 𝑑𝑛. (6)

Then, (−1)𝑛𝑑𝑛 is the 𝑛th derivative of the hitting time PDF of
O at 𝑡 = 0.

By (6), 𝑑𝑛 = (𝜋⊤𝑐 1)−1∑𝑁𝑖=1(𝐷1)⊤𝑖 (𝐷1)𝑖𝛼𝑛𝑖 =(𝜋⊤𝑐 1)−1(𝐷1)⊤𝐴𝑛(𝐷1). By (3), 𝐷𝑄𝑐𝑐 = −𝐴𝐷, and then𝐷⊤𝐴2𝐷 = −𝐷⊤𝐴𝐷𝑄𝑐𝑐 = (−1)2Π𝑐𝑄2𝑐𝑐. One can apply such
operation repeatedly to conclude𝐷⊤𝐴𝑛𝐷 = (−1)𝑛Π𝑐𝑄𝑛𝑐𝑐.

A class of constraints commonly used can be derived from
the derivatives of the hitting time distribution at 𝑡 = 0.
Theorem 3. The derivatives of the hitting time distribution of
O at 𝑡 = 0 are related to the transition rates with the formula𝑐𝑛 = (−1)𝑛 1⊤Π𝑐𝑄𝑛𝑐𝑐1 = (−1)𝑛∑

𝑖∈C
𝜋𝑖 ∑
𝑗∈C
(𝑄𝑛𝑐𝑐)𝑖𝑗 . (7)

It is noted that many other constraints are required to identify
the general Markov chains [20]. However, derivative con-
straints are the most common ones. Thus, we will more deeply
discover the intrinsic laws in derivative constraints. Further, we
will show that only by applying the derivative constraints is it
possible to solve most of theMarkov chains such as the trees; see
the next section.

In particular, the most useful and commonly used con-
straints are the first three ones.

Corollary 4. The following equations hold:𝑐1 = ∑
𝑗∈C
𝜋𝑗∑
𝑖∈O
𝑞𝑗𝑖,

𝑐2 = ∑
𝑗∈C
𝜋𝑗(∑
𝑖∈O
𝑞𝑗𝑖)2 ,

𝑐3 = −∑
𝑠∈C

∑
𝑗∈C
𝜋𝑠𝑞𝑠𝑗(∑

𝑙∈O
𝑞𝑠𝑙∑
𝑖∈O
𝑞𝑗𝑖) .

(8)

In particular, a single state 𝑖 has a more simple and visual form
of 𝑐𝑛, and by far the most common and convenient are those for
a single state.

Corollary 5. Observing a single state 𝑖, one can get the
following equations for a tree:𝑐1 = ∑

𝑗 ̸=𝑖

𝜋𝑗𝑞𝑗𝑖,
𝑐2 = ∑
𝑗 ̸=𝑖

𝜋𝑗 (𝑞𝑗𝑖)2 ,
𝑐3 = ∑
𝑗 ̸=𝑖

𝜋𝑗 (𝑞𝑗𝑖)2 𝑞𝑗,
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𝑐4 = ∑
𝑗 ̸=𝑖

𝜋𝑗 (𝑞𝑗𝑖)2 [∑
𝑠∈C
𝑞𝑗𝑠𝑞𝑠𝑗] ,

𝑐2𝑠+1 = ∑
𝑗 ̸=𝑖

𝜋𝑗 (𝑞𝑗𝑖)2 [[ ∑
𝑎1 ,...,𝑎𝑠−1∈C

𝑞𝑗𝑎1𝑞𝑎1𝑎2
⋅ ⋅ ⋅ 𝑞𝑎𝑠−2𝑎𝑠−1𝑞𝑎𝑠−1𝑞𝑎𝑠−1𝑎𝑠−2 ⋅ ⋅ ⋅ 𝑞𝑎2𝑎1𝑞𝑎1𝑗]] ,

𝑐2𝑠+2 = ∑
𝑗 ̸=𝑖

𝜋𝑗 (𝑞𝑗𝑖)2 [[ ∑
𝑎1 ,...,𝑎𝑠∈C

𝑞𝑗𝑎1𝑞𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑞𝑎𝑠−1𝑎𝑠𝑞𝑎𝑠𝑎𝑠−1
⋅ ⋅ ⋅ 𝑞𝑎2𝑎1𝑞𝑎1𝑗]] .

(9)

The right-hand side of the first equation gives a sum over all exit
rate flows for state 𝑖 because of 𝜋𝑗𝑞𝑗𝑖 = 𝜋𝑖𝑞𝑖𝑗. Conditional upon
the first equation, the second and the third one are obvious.The
expression within the bracket of 𝑐2𝑠+1 (resp. 𝑐2𝑠+2) is the sum
over rates of possible (2𝑠 − 1)-step (resp., 2𝑠-step) transitions
departing from a state 𝑗, having a direct transition to 𝑖, and
returning to itself. Those possible transitions imply the intrinsic
relationships to𝑄𝑐𝑐 so that most transitions can be identified by
those hitting PDFs.

By the end of this section, we show that the above 𝑐𝑛 (𝑛 ≥1) are known from the required PDFs at O and follow from
Lemma 6. First of all, Corollary 2 shows that 𝑞𝑖 = 1/𝐸𝜎,
where 𝐸𝜎 is the expected sojourn time for state 𝑖. Corollary 5
shows that 𝑐1 = ∑𝑗 ̸=𝑖 𝜋𝑗𝑞𝑗𝑖 = ∑𝑗 ̸=𝑖 𝜋𝑖𝑞𝑖𝑗 = 𝜋𝑖𝑞𝑖. In addition,𝑐1 = (1 − 𝜋𝑖)𝑑1. It suffices to yield 𝜋𝑖 = 𝑑1/(𝑞𝑖 + 𝑑1) = 𝑐1𝐸𝜎,
which implies the following lemma.

Lemma 6. The PDFs of sojourn time and hitting time at a
single state 𝑖 show that

𝑞𝑖 = 1𝐸𝜎 ,𝜋𝑖 = 𝑑1(𝑞𝑖 + 𝑑1) = 𝑐1𝐸𝜎. (10)

For observations at O, one can obtain the corresponding 𝑑𝑛.
Thus, (6) shows that 𝑐𝑛 (𝑛 ≥ 1) is known, which is equal to 𝑑𝑛
times a known constant 𝜋⊤𝑐 1 from the observation at O. The
reason is as follows. Lemma 6 shows that, based on statistics
for a single state 𝑖, one can obtain by its PDF 𝜋𝑖 for any 𝑖 ∈ O,
followed by 𝑐𝑛 = 𝜋⊤𝑐 1𝑑𝑛 = (1 − ∑𝑖∈O 𝜋𝑖)𝑑𝑛 (𝑛 ≥ 1).
3. Solutions to Trees

As stated in the Introduction, the tree is a very important
extension of the star graph and line graph and represents one
of the two classes of topologies. It is known that all Markov
chains on trees are reversible [21].Thus, SIMC on trees will be
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Figure 1: Schematic plot of a subchain on a tree. 𝑖, 𝑖1, . . . , 𝑖𝑛 are leaves
and all children of state 𝑗; 𝑗, 𝑗1, . . . , 𝑗𝑚 are all children of state 𝑘.
exploited in this section, although some of them are still not
applied in real systems. In this letter, the term “tree” refers to
a connected tree. For a Markov chain on a tree with vertices
V1, V2, . . . , V𝑚 and with a TRM 𝑄 = (𝑞𝑖𝑗), its state space is
composed of the vertices {V1, . . . , V𝑚}, an edge between vertex
V𝑖 and vertex V𝑗 implies the nonzero transition rates 𝑞𝑖𝑗 and𝑞𝑗𝑖, and 𝑞𝑖𝑗/𝑞𝑖 is the probability of a transition from V𝑖 to V𝑗.

It is concluded that all Markov chains on trees are
identified by our approach.There are various kinds of trees, so
we cannot provide individual proofs and algorithms.Without
loss of generality, a complete binary tree is provided to show a
general proof and solution. According to the classification of
WolframMathWorld, there are many valid and specific trees:
Banana Tree, Cross Graph, E Graph, Fork Graph, Firecracker
Graph, H Graph, Spider Graph, and so forth. Cross Graph,
E Graph, Fork Graph, H Graph, and Spider Graph can be
conformationally viewed as a Star-Branch Graph (a special
tree) which can be identified by the algorithms in earlier
publications [19, 20]. Double-Star Graph, Banana Tree, and
Firecracker Graph are three particular and regular models of
them. For demonstration on solutions of specific trees, those
three trees will also be addressed as representatives of trees.

It is mentioned that, for SIMC on trees, the greatest
contribution should be to discover the fundamental way and
the corresponding algorithm to identify the TRM due to
the challenge of performing the reverse operation as stated
earlier.

3.1. General Conclusions on the Tree. At the start of this sub-
section, we present several useful conclusions from the
derivative constraints which are convenient to determine the
transition rates of Markov chain on trees as the first step.

Lemma 7. For a subchain on a tree such as in Figure 1, the
following conclusions hold.

(i) One can obtain the quantities 𝜋𝑖, 𝜋𝑗, 𝑞𝑖 = 𝑞𝑖𝑗, 𝑞𝑗, 𝑞𝑗𝑖 at
least from the sojourn and hitting time PDFs at state 𝑖; in other
words, 𝜋𝑖, 𝜋𝑗, 𝑞𝑖 = 𝑞𝑖𝑗, 𝑞𝑗, 𝑞𝑗𝑖 at least can be expressed in terms
of real functions of 𝐸𝜎, 𝑐1, 𝑐2, and 𝑐3.

(ii) Further, one can obtain 𝜋𝑖, 𝜋𝑗, 𝑞𝑖 = 𝑞𝑖𝑗, 𝑞𝑗, 𝑞𝑗𝑖 and qk,
qjk, qkj, and 𝜋k at least from the sojourn and hitting time
PDFs at state 𝑖, provided that the transitions between 𝑗 and
its other children 𝑖1, . . . , 𝑖𝑛, that is, 𝑞𝑠,𝑗 and 𝑞𝑗,𝑠 for any 𝑠 ∈{𝑖1, . . . , 𝑖𝑛}, are all known or have been identified. That is to
say,𝜋𝑖, 𝜋𝑗, 𝑞𝑖 = 𝑞𝑖𝑗, 𝑞𝑗, 𝑞𝑗𝑖 and qk, qjk, qkj, and𝜋k at least can be
expressed in terms of real functions of𝐸𝜎, 𝑐1, . . . , 𝑐5 and 𝑞𝑠,𝑗, 𝑞𝑗,𝑠
(𝑠 ∈ {𝑖1, . . . , 𝑖𝑛}).
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Proof. (i) Firstly, 𝜋𝑖, 𝑞𝑖 = 𝑞𝑖𝑗 are easy to get by Lemma 6.
Secondly, by Corollary 5,𝑐1 = 𝜋𝑗𝑞𝑗𝑖,𝑐2 = 𝜋𝑗𝑞2𝑗𝑖,𝑐3 = 𝜋𝑗𝑞2𝑗𝑖𝑞𝑗.

(11)

Thus,

𝑞𝑗𝑖 = 𝑐2𝑐1 ,
𝜋𝑗 = 𝑐1𝑞𝑗𝑖 = 𝑐21𝑐2 ,𝑞𝑗 = 𝑐3𝑐2 ,

(12)

which imply the first assertion.
(ii) On the basis of (i), one needs only to find out the

algorithm to obtain 𝑞𝑘, 𝑞𝑗𝑘, 𝑞𝑘𝑗, and𝜋𝑘. For ease of exposition,
set the constants as 𝑋 = ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠, 𝑌 = ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠𝑞𝑠𝑗, and𝑍 = ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠𝑞𝑠𝑞𝑠𝑗 since 𝑞𝑠 = 𝑞𝑠,𝑗 and 𝑞𝑗,𝑠 are all known for
any 𝑠 ∈ {𝑖1, . . . , 𝑖𝑛}.

Firstly, one has

𝑞𝑗𝑘 = 𝑞𝑗 − 𝑞𝑗𝑖 − 𝑖𝑛∑
𝑠=𝑖1

𝑞𝑗𝑠 = 𝑐3𝑐2 − 𝑐2𝑐1 − 𝑖𝑛∑𝑠=𝑖1 𝑞𝑗𝑠= 𝑐3𝑐2 − 𝑐2𝑐1 − 𝑋.
(13)

Secondly, by Corollary 5,

𝑐4 = 𝜋𝑗𝑞2𝑗𝑖 [𝑞2𝑗 + 𝑞𝑗𝑘qkj + 𝑖𝑛∑
𝑠=𝑖1

𝑞𝑗𝑠𝑞𝑠𝑗] ,
𝑐5 = 𝜋𝑗𝑞2𝑗𝑖 [𝑞3𝑗 + 𝑞𝑗𝑘qk𝑞𝑘𝑗 + 2𝑞𝑗𝑞𝑗𝑘𝑞𝑘𝑗
+ 𝑖𝑛∑
𝑠=𝑖1

(2𝑞𝑗𝑞𝑗𝑠𝑞𝑠𝑗 + 𝑞𝑗𝑠𝑞𝑠𝑞𝑠𝑗)] .
(14)

It follows that

𝑞𝑘𝑗 = 𝑐4/𝑐2 − 𝑞2𝑗 − ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠𝑞𝑠𝑗𝑞𝑗𝑘
= 𝑐4/𝑐2 − 𝑐23 /𝑐22 − ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠𝑞𝑠𝑗𝑐3/𝑐2 − 𝑐2/𝑐1 − ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠
= 𝑐4/𝑐2 − 𝑐23 /𝑐22 − ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠𝑞𝑠𝑗𝑐3/𝑐2 − 𝑐2/𝑐1 − 𝑋 ,
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. .
.
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.
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· · ·

· · ·

··
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Figure 2: Schematic plot of a subtree. 𝑖, 𝑖11, . . . , 𝑖1𝑛1 are leaves and all
children of state 𝑖2; 𝑖2, 𝑖21, . . . , 𝑖2𝑛2 are all children of state 𝑖3; 𝑖𝑚 is the
root.

𝑞𝑘 = 𝑐5/𝑐2 − 𝑞3𝑗 − ∑𝑖𝑛𝑠=𝑖1 (2𝑞𝑗𝑞𝑗𝑠𝑞𝑠𝑗 + 𝑞𝑗𝑠𝑞𝑠𝑞𝑠𝑗)𝑞𝑗𝑘𝑞𝑘𝑗 − 2𝑞𝑗
= 𝑐5/𝑐2 − 𝑐33 /𝑐32 − ∑𝑖𝑛𝑠=𝑖1 (2 (𝑐3/𝑐2) 𝑞𝑗𝑠𝑞𝑠𝑗 + 𝑞𝑗𝑠𝑞𝑠𝑞𝑠𝑗)𝑐4/𝑐2 − ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠𝑞𝑠𝑗 − 𝑐23 /𝑐22− 2𝑐3𝑐2
= 𝑐5/𝑐2 − 𝑐33 /𝑐32 − (2 (𝑐3/𝑐2) 𝑌 + 𝑍)𝑐4/𝑐2 − 𝑐23 /𝑐22 − 𝑌 − 2𝑐3𝑐2 .

(15)

Finally, by reversibility, it easily follows that

𝜋𝑘 = 𝜋𝑗𝑞𝑗𝑘𝑞𝑘𝑗 = (𝑐21 /𝑐2) (𝑐3/𝑐2 − 𝑐2/𝑐1 − ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠)2𝑐4/𝑐2 − 𝑐23 /𝑐22 − ∑𝑖𝑛𝑠=𝑖1 𝑞𝑗𝑠𝑞𝑠𝑗
= (𝑐21 /𝑐2) (𝑐3/𝑐2 − 𝑐2/𝑐1 − 𝑋)2𝑐4/𝑐2 − 𝑐23 /𝑐22 − 𝑌 , (16)

which completes the proof.

Lemma 8. A subtree such as that in Figure 2 is considered, in
which 𝑖𝑚 is the root, 𝑖1, . . . , 𝑖𝑚−1 are the leftmost children, and𝑖1, 𝑖11, . . . , 𝑖1𝑛1 are leaves as all children of state 𝑖2. Let𝐷𝑘 denote
the descendants of state 𝑖𝑘 for 𝑘 = 1, . . . , 𝑚 − 1. For example,𝐷1 is empty and𝐷2 = {𝑖11, . . . , 𝑖1𝑛1}.

One can obtain 𝜋𝑠, 𝜋𝑠, 𝑞𝑠, 𝑞𝑠𝑡, 𝑞𝑡s (𝑠, 𝑡 = 𝑖1, 𝑖2, . . . , 𝑖𝑚) from
the sojourn and hitting time PDFs at state 𝑖1, provided that the
transitions between 𝑖𝑘 and its descendants in 𝐷𝑘 for any 𝑘(=2, 3, . . . , 𝑚 − 1) are all known or have been identified.

Proof. Firstly, one can obtain 𝜋𝑖1 , 𝜋𝑖2 , 𝜋𝑖3 , 𝑞𝑖1 = 𝑞𝑖1,𝑖2 , 𝑞𝑖2 ,𝑞𝑖3 , 𝑞𝑖2 ,𝑖1 , 𝑞𝑖2,𝑖3 , 𝑞𝑖3,𝑖2 according to (ii) of Lemma 7.
Secondly, 𝑞𝑖3 ,𝑖4 = 𝑞𝑖3 −𝑞𝑖3 ,𝑖2 −∑𝑛2𝑠=1 𝑞𝑖3 ,𝑖𝑠 , and by Corollary 5,
𝑐6 = 𝜋𝑖2𝑞2𝑖2 ,𝑖1 [[𝑞𝑖2,𝑖3𝑞𝑖3 ,𝑖4qi4 ,i3𝑞𝑖3 ,𝑖2
+ ∑
𝑎1 ,𝑎2∈𝐷3∪{𝑖3}\{𝑖1}

𝑞𝑖2 ,𝑎1𝑞𝑎1 ,𝑎2𝑞𝑎2 ,𝑎1𝑞𝑎1 ,𝑖2]] ,
(17)
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𝑐7 = 𝜋𝑖2𝑞2𝑖2 ,𝑖1 [[𝑞𝑖2 ,𝑖3𝑞𝑖3 ,𝑖4 (qi4 + 𝑞𝑖3 + 𝑞𝑖2) 𝑞𝑖4 ,𝑖3𝑞𝑖3 ,𝑖2
+ ∑
𝑎1 ,𝑎2 ,𝑎3∈𝐷3∪{𝑖3}\{𝑖1}

𝑞𝑖2,𝑎1𝑞𝑎1 ,𝑎2𝑞𝑎3𝑞𝑎2 ,𝑎1𝑞𝑎1 ,𝑖2]] .
(18)

Obviously, only the bold part is unknown in (17). Thus,
one can determine 𝑞𝑖4,𝑖3 by (17). Then, only the bold part
is unknown in (18), and 𝑞𝑖4 can be determined by (18).
Furthermore, 𝜋𝑖4 = 𝜋𝑖3𝑞𝑖3 ,𝑖4/𝑞𝑖4 ,𝑖3 .

Finally, by induction, it is not difficult to verify that𝜋𝑠, 𝑞𝑠, 𝑞𝑠𝑡, 𝑞𝑡𝑠 (𝑠, 𝑡 = 𝑖5, 𝑖6, . . . , 𝑖𝑚) can be identified by the
subsequent 𝑐8, 𝑐9, . . . , 𝑐2𝑚−2, 𝑐2𝑚−1.

The proof is completed.

Remark 9. The above conclusion is true by observation at𝑖𝑠 for any 𝑠 = 𝑖1, 𝑖2, . . . , 𝑖𝑛1 provided that the transitions
between 𝑖2 and its other descendants are all known or have
been identified.

Lemmas 7 and 8 show that if a state 𝑗 in a tree has 𝑛
children and the transitions between states 𝑗 and 𝑛−1 of the 𝑛
children aswell as the descendants of such 𝑛−1 children are all
known or have been identified, then the transitions between
state 𝑗, the 𝑛th child (say 𝑖), and the parent can be identified
by the PDFs of sojourn and hitting time at the 𝑛th child (i.e.,
state 𝑖).
3.2. Main Results on Trees. Recall the statement in the Intro-
duction; it is trivial to identify the TRM of an underlying
Markov chain provided that every state of this chain is
observed. People hope that the number of states observed is as
few as possible. But there is no strict criterion for determining
howmany states are observed to use for a generalmodel other
than simplicity and ease of solution. However, there is no
doubt that it is also of questionable significance to finish it
if the number is more than half of the whole chain. Thus, we
impose a mild restriction on the number of observed states
such that it is smaller than or equal to half of the whole chain.

First of all, a solution is first provided to complete the
binary tree, in which all interior nodes have two children and
all leaves have the same depth or same level.

Theorem 10. If the initial distribution of a Markov chain on a
complete binary tree is the equilibrium distribution, then this
tree can be identified by the PDFs of the sojourn time and
hitting time for all leaves.

Proof. Consider a complete binary tree with a depth of ℎ; it
has 2ℎ leaves at the last level ℎ and has 2ℎ − 1 nonleaf nodes
(including one root).

Now, let us use mathematical induction to prove these
facts as follows.

Step 1. We prove the case with 2 levels. For the convenience
of expression, let 1–4 be the leaf from the left to the right
at the last level, 5-6 be the node from the left to the right

1 2 3 4

6

7

5

Figure 3: Schematic plot of a complete binary tree with two levels.1 and 2 are leaves and two children of state 5; 3 and 4 are leaves and
two children of state 6; state 7 is the root.
at the former level, and 7 be the root (see Figure 3). Let 𝜋𝑖
be the corresponding equilibrium distribution for state 𝑖 for𝑖 = 1, 2, . . .. Firstly, according to Lemma 6, one can obtain𝜋1, . . . , 𝜋4, and 𝑞1 = 𝑞15, 𝑞2 = 𝑞25, 𝑞3 = 𝑞36, and 𝑞4 = 𝑞46 by
observation at states 1–4. Secondly, (i) of Lemma 7 implies
that 𝑞5, 𝑞6, 𝑞51, 𝑞52, 𝑞63, and 𝑞64 can be solved. Thus, one has𝑞57 = 𝑞5 − 𝑞51 − 𝑞52 and 𝑞67 = 𝑞6 − 𝑞63 − 𝑞64.

By observation at state 1 (resp., state 3), according to
Corollary 5, one has 𝑐4 = 𝜋5(𝑞51)2[𝑞25 + 𝑞52𝑞25 + 𝑞57q75]
(resp., 𝑐4 = 𝜋6(𝑞63)2[𝑞26 + 𝑞64𝑞46 + 𝑞67q76]) and 𝑐5 =𝜋5(𝑞51)2[𝑞52𝑞2𝑞25+𝑞52𝑞25𝑞5+𝑞57𝑞75𝑞5+𝑞57q7𝑞75]. Finally, one
gets 𝑞75 (resp. 𝑞76) and 𝑞7 by (ii) of Lemma 7.Those complete
the proof of 2 levels.
Step 2. We suppose that this claim is true for any complete
binary tree with 𝑘 (≥ 2) levels. For a complete binary tree
with 𝑘 + 1 levels, we then show it is correct as follows. At
this point, a complete binary tree with 𝑘 levels can be viewed
as a left or right child. This means that all transition rates in
two complete binary trees with 𝑘 levels can be identified by
observation at all leaves between 1 and 2ℎ+1.

For conciseness of notation, let 𝐿𝑘 (resp. 𝐿𝑘−1) be a
subtree belonging to the left child in the complete binary tree
with 𝑘 + 1 (resp., 𝑘) levels, and let 0-(𝑘 + 1) be the number of
the leftmost nodes at each level from the bottom to the top in
such complete binary tree with 𝑘 + 1 levels.

Firstly, by observation at state 0, according to Corollary 5,
one has

𝑐2𝑘+1 = 𝜋1 (𝑞10)2 [[ ∑
𝑎1 ,...,𝑎𝑘−1 ̸=0∈𝐿𝑘

𝑞1𝑎1𝑞𝑎1𝑎2
⋅ ⋅ ⋅ 𝑞𝑎𝑘−2𝑎𝑘−1𝑞𝑎𝑘−1𝑞𝑎𝑘−1𝑎𝑘−2 ⋅ ⋅ ⋅ 𝑞𝑎2𝑎1𝑞𝑎11]] = 𝜋1 (𝑞10)2
⋅ [[ ∑
𝑎1 ,...,𝑎𝑘−1 ̸=0∈𝐿𝑘−1

𝑞1𝑎1𝑞𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑞𝑎𝑘−2𝑎𝑘−1𝑞𝑎𝑘−1𝑞𝑎𝑘−1𝑎𝑘−2
⋅ ⋅ ⋅ 𝑞𝑎2𝑎1𝑞𝑎11]] + 𝜋1 (𝑞10)2 [𝑞12𝑞23 ⋅ ⋅ ⋅ 𝑞𝑘−1,𝑘qk𝑞𝑘−1,𝑘−2⋅ ⋅ ⋅ 𝑞32𝑞21] .

(19)

By inductive assumptions, there is only one unknown 𝑞𝑘
in (19). Thus, 𝑞𝑘 can be determined. Again by inductive
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assumptions, one can obtain 𝑞𝑘,𝑘+1 = 𝑞𝑘 − 𝑞𝑘,𝑘−1 − 𝑞𝑘,𝑠 (where𝑠 denotes the right child of the node 𝑘).
Analagous to the above, one can get 𝑞𝑘+1,𝑘 by
𝑐2𝑘+2 = 𝜋1 (𝑞10)2 [ ∑

𝑎1 ,...,𝑎𝑘 ̸=0∈𝐿𝑘

𝑞1𝑎1𝑞𝑎1𝑎2 ⋅ ⋅ ⋅ 𝑞𝑎𝑘−1𝑎𝑘𝑞𝑎𝑘𝑎𝑘−1
⋅ ⋅ ⋅ 𝑞𝑎2𝑎1𝑞𝑎11] = 𝜋1 (𝑞10)2 [[ ∑

𝑎1 ,...,𝑎𝑘 ̸=0∈𝐿𝑘−1

𝑞1𝑎1𝑞𝑎1𝑎2
⋅ ⋅ ⋅ 𝑞𝑎𝑘−1𝑎𝑘𝑞𝑎𝑘𝑎𝑘−1]] + 𝜋1 (𝑞10)2 [𝑞12𝑞23 ⋅ ⋅ ⋅ 𝑞𝑘,𝑘+1qk+1,k⋅ ⋅ ⋅ 𝑞32𝑞21] .

(20)

Thus, 𝑞𝑘+1,𝑘 can be determined by (20).
Those imply that all transition rates from the left subtree

(for the tree with 𝑘+1 levels) can be identified by observations
at the first 2𝑘−1 leaves.

Secondly, one can identify the rest (i.e., right part) of the
tree with 𝑘 + 1 levels by duplicate method of the left part.

These have proved that the conclusions of induction are
true for a complete binary tree with 𝑘 + 1 levels.

As amatter of fact, this theorem can also be proved simply
by Lemma 8.

Remark 11. This proof shows the corresponding algorithm to
determine all transition rates. The solution by observation at
all leaves is satisfied by the mild restriction on the number
of observed states, although the number of leaves is bigger
than the number of nonleaf nodes by one. Because it also
can be identified by observation at any 2ℎ − 1 of those 2ℎ
leaves, for example, without loss of generality, assume that1–3 are observable for a tree in Figure 3; one can obtain𝑞1 = 𝑞15, 𝑞51, 𝑞2 = 𝑞25, 𝑞52, 𝑞5, 𝑞57, 𝑞7, 𝑞75, 𝜋1, 𝜋2, 𝜋5, 𝜋7 by
observations at 1 and 2 and 𝑞3 = 𝑞36, 𝑞63, 𝑞6, 𝜋3, 𝜋6 by
observations at 3 and then obtain 𝑞76, 𝑞67, 𝑞6 by observation

at 1 or 2; thus, 𝑞64 = 𝑞6 − 𝑞67 − 𝑞63, 𝜋4 = 1 − 𝜋1 − 𝜋2 − 𝜋3 −𝜋5 − 𝜋6 − 𝜋7, and 𝑞46 = 𝜋6𝑞64/𝜋4. If the number of all leaves
is less than that of all nonleaf nodes for a tree, such as a tree
in which many nodes have only one child, then this solution
is very valid. These assertions are valid to 𝑛-tree later.

One can carry this line of argument a bit further to obtain
the following result.

Theorem 12. If the initial distribution of a Markov chain on𝑛-tree is the equilibrium distribution, then this tree can be
identified by the PDFs of the sojourn time and hitting time for
all leaves.

One may proceed as previously explained to obtain a
more general conclusion for the tree.

Theorem 13. If the initial distribution of a Markov chain on
a tree is the equilibrium distribution, then this tree can be
identified by the PDFs of the sojourn time and hitting time for
all leaves.

Theoretically, the transition rates about state 𝑖 in a tree
can be calculated by PDFS at any leaf from the descendants.
However, the one from the shortest path should be optimal to
minimize the error propagation.

Furthermore, identification by observation at leaves is just
one of the solutions forMarkov chains on trees.There are also
other solutions for particular trees; for example, the number
of leaves is bigger than the number of nonleaf nodes by
one.

3.3. Solutions to Special Trees. In this subsection, Double-Star
Graph, Banana Tree, and Firecracker Tree, as representatives
of trees, will be addressed for demonstration to solutions of
specific trees.

3.3.1. Double-Star Graph. Consider a Double-Star Graph
Markov chain {𝑋𝑡; 𝑡 ≥ 0} (see Figure 4), where the two
central states 𝑂1 and 𝑂2 are observable states. The transition
rate matrix is given as follows:

𝑄 =
(((((((((((((((((((
(

𝑞0 𝑞01 𝑞02 ⋅ ⋅ ⋅ 𝑞0,𝑀−1 𝑞0,𝑀 0 0 ⋅ ⋅ ⋅ 0𝑞10 𝑞1 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0𝑞20 0 𝑞2 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0... ... ... d
... ... ... ... d

...𝑞𝑀−1,0 0 0 ⋅ ⋅ ⋅ 𝑞𝑀−1 0 0 0 ⋅ ⋅ ⋅ 0𝑞𝑀,0 0 0 ⋅ ⋅ ⋅ 0 𝑞𝑀 𝑞𝑀,𝑀+1 𝑞𝑀,𝑀+2 ⋅ ⋅ ⋅ 𝑞𝑀,𝑁0 0 0 ⋅ ⋅ ⋅ 0 𝑞𝑀+1,𝑀 𝑞𝑀+1 0 ⋅ ⋅ ⋅ 00 0 0 ⋅ ⋅ ⋅ 0 𝑞𝑀+2,𝑀 0 𝑞𝑀+2 ⋅ ⋅ ⋅ 0... ... ... d
... ... ... ... d

...0 0 0 ⋅ ⋅ ⋅ 0 𝑞𝑁,𝑀 0 0 ⋅ ⋅ ⋅ 𝑞𝑁

)))))))))))))))))))
)

. (21)
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Figure 4: Schematic plot of Markov chain on a Double-Star Graph.

One can observe the two central states 0 = 𝑂1 ∈ O1 and𝑀 = 𝑂2 ∈ O2.
For the conciseness of notation, we denote 𝑖 = 𝐶𝑖 (𝑖 =1, . . . ,𝑀−1), 𝑗 = 𝐶𝑗 (𝑗 = 𝑀+1, . . . , 𝑁), and 0 = 𝑂1,𝑀 = 𝑂2.

Thus, the state space is simple for S = {0, 1, . . . ,𝑀−1,𝑀,𝑀+1, . . . , 𝑁} and the transition rates 𝑞𝑖𝑗 are nonzero only for 𝑖 ∈0,𝑀 or 𝑗 ∈ 0,𝑀. Thus, one intends to derive 𝑞𝑖0, 𝑞0𝑖 for all𝑖 = 1, . . . ,𝑀−1 and 𝑞𝑗𝑀, 𝑞𝑀𝑗 for all 𝑗 = 𝑀+1, . . . , 𝑁, as well
as 𝑞0𝑀, 𝑞𝑀0. We set

𝜋0 = (1 + 𝑞0𝑀𝑞𝑀0 + 𝑀−1∑𝑖=1 𝑞0𝑖𝑞𝑖0 + 𝑁∑
𝑗=𝑀+1

𝑞𝑀𝑗𝑞𝑗𝑀)
−1 ,

𝜋𝑖 = 𝜋0𝑞0𝑖𝑞𝑖0 , 1 ≤ 𝑖 ≤ 𝑀 − 1;
𝜋𝑗 = 𝜋0𝑞0𝑀𝑞𝑀𝑗𝑞𝑗𝑀𝑞𝑀0 , 𝑀 + 1 ≤ 𝑗 ≤ 𝑁;
𝜋𝑀 = 𝜋0𝑞0𝑀𝑞𝑀0 .

(22)

Then, {𝜋0, . . . , 𝜋𝑀−1, 𝜋𝑀, 𝜋𝑀+1, . . . , 𝜋𝑁} is the equilibrium
distribution and the reversibility in (1) is satisfied.

From now on, we investigate the algorithm of how to
identify such chain.

Firstly, we observe state 0 and let 𝜎(0) be its sojourn time.
It follows from Corollary 2 that

𝑞0 = 1𝐸𝜎(0) ,𝜋0 = 𝑐(0)1 𝐸𝜎(0). (23)

Secondly, we observe the state𝑀 and let 𝜎(𝑀) be its sojourn
time. It follows from Corollary 2 that

𝑞𝑀 = 1𝐸𝜎(𝑀) ,𝜋𝑀 = 𝑐(𝑀)1 𝐸𝜎(𝑀). (24)

Finally, we observe the two states 0 and 𝑀, that is, O ={0,𝑀} (C = S − O). Let 𝜏(0,𝑀) (resp., 𝜎(0,𝑀)) be the hitting
time (resp., sojourn time) ofO. According toTheorem 1, one
can get the following lemma.

Lemma 14. The PDF of the hitting time 𝜏(0,𝑀) is, for 𝑡 > 0, as
follows:

𝑓𝜏 (𝑡) = 𝑀−1∑
𝑖=1

𝛾𝑖 exp (−𝛼𝑖𝑡) + 𝑁∑
𝑗=𝑀+1

𝛾𝑗 exp (−𝛼𝑗𝑡) , (25)

where 𝛼𝑖 = 𝑞𝑖0 = 𝑞𝑖, 1 ≤ 𝑖 ≤ 𝑀 − 1;𝛼𝑗 = 𝑞𝑗𝑀 = 𝑞𝑗, 𝑀 + 1 ≤ 𝑗 ≤ 𝑁;
𝛾𝑖 = 𝜋01 − (𝜋0 + 𝜋𝑀)𝑞0𝑖, 1 ≤ 𝑖 ≤ 𝑀 − 1;
𝛾𝑗 = 𝜋𝑀1 − (𝜋0 + 𝜋𝑀)𝑞𝑀𝑗, 𝑀 + 1 ≤ 𝑗 ≤ 𝑁.

(26)

Proof. Here, C = {1, . . . ,𝑀 − 1,𝑀 + 1, . . . , 𝑁}. So,𝑄𝑐𝑐

=
(((((((((((((
(

𝑞1 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 00 𝑞2 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0... ... d
... ... ... d

...0 0 ⋅ ⋅ ⋅ 𝑞𝑀−1 0 0 ⋅ ⋅ ⋅ 00 0 ⋅ ⋅ ⋅ 0 𝑞𝑀+1 0 ⋅ ⋅ ⋅ 00 0 ⋅ ⋅ ⋅ 0 0 𝑞𝑀+2 ⋅ ⋅ ⋅ 0... ... d
... ... ... d

...0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 𝑞𝑁

)))))))))))))
)

. (27)

According to the proof ofTheorem 1, −𝛼𝑖 = −𝑞𝑖 (1 ≤ 𝑖 ̸= 𝑀 ≤𝑁) are all real eigenvalues of 𝑄𝑐𝑐, and𝑃 (𝜏(0,𝑀) > 𝑡) = ∑
𝑖 ̸=0,𝑀

𝜋𝑖1 − (𝜋0 + 𝜋𝑀) ∑
𝑗 ̸=0,𝑀

𝑝𝑐𝑖𝑗 (𝑡)
= 11 − (𝜋0 + 𝜋𝑀) [[

𝑀−1∑
𝑖=1

𝜋𝑖 exp (−𝛼𝑖𝑡)
+ 𝑁∑
𝑗=𝑀+1

𝜋𝑗 exp (−𝛼𝑗𝑡)]] .
(28)

Performing the differential calculation in (28), by reversibil-
ity, 𝛾𝑖 = 𝜋𝑖𝛼𝑖1 − (𝜋0 + 𝜋𝑀) = 𝜋𝑖𝑞𝑖01 − (𝜋0 + 𝜋𝑀)= 𝜋01 − (𝜋0 + 𝜋𝑀)𝑞0𝑖, 1 ≤ 𝑖 ≤ 𝑀 − 1;

𝛾𝑗 = 𝜋𝑗𝛼𝑗1 − (𝜋0 + 𝜋𝑀) = 𝜋𝑗𝑞𝑗𝑀1 − (𝜋0 + 𝜋𝑀)= 𝜋𝑀1 − (𝜋0 + 𝜋𝑀)𝑞𝑀𝑗, 𝑀 + 1 ≤ 𝑗 ≤ 𝑁.
(29)

This completes the proof.
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Figure 5: Schematic plot of banana trees (adapted fromWolfram MathWorld).

The following theorem is an immediate consequence of
Lemma 14.

Theorem 15. If the initial distribution of the Markov chain
with Double-Star Graph in Figure 4 is the equilibrium distri-
bution, then it can be identified by the PDFs of the sojourn time
and hitting time for the two central states 𝑂1 and 𝑂2.
Proof. Firstly, 𝑞0, 𝜋0 and 𝑞𝑀, 𝜋𝑀 can be obtained by (23) and
(24). Secondly, according to Lemma 14, 𝑞𝑖0 (1 ≤ 𝑖 ≤ 𝑀 − 1)
and 𝑞𝑗𝑀 (𝑀 + 1 ≤ 𝑗 ≤ 𝑁) can be obtained by the first two
assertions of (26), because all 𝛼𝑖 and 𝛾𝑖 are known from the
PDF in Lemma 14 by observation of states 0 and𝑀. Finally,𝑞0𝑖 (1 ≤ 𝑖 ≤ 𝑀−1) and 𝑞𝑀𝑗 (𝑀+1 ≤ 𝑗 ≤ 𝑁) can be followed
by the final two assertions of (26).

Note that this proof shows the corresponding algorithm
to determine all transition rates of such Double-Star Graph
chain. In the course of calculation, one can easily derive real
roots from comparatively accurate PDFs.

3.3.2. Banana Tree Graph. An (𝑛, 𝑘)-banana tree, say 𝐵𝑛,𝑘, as
defined by Chen et al. [23], is a graph obtained by connecting
one leaf of each of 𝑛 copies of a 𝑘-star graph with a single root
vertex that is distinct from all the stars.Thus, there are 𝑛(𝑘−2)
leaves, 2𝑛 nodes, and 1 root. This is one of the regular trees.

Consider a Markov chain {𝑋𝑡; 𝑡 ≥ 0} with Banana Tree
Graph 𝐵𝑛,𝑘 (see Figure 5).

For 𝑘 = 2 or 𝑘 = 3, it is degenerated into the special case
of Star-Branch Graph.

For 𝑘 = 4, there are two leaves for each 𝑘-star graph.
It is implied that the number 2𝑛 of all leaves is less than 1,
compared with 2𝑛 + 1 of all nonleaf nodes. So, observation at
all leaves is valid. According toTheorem 13, a normal solution
is as follows.

Theorem 16. If the initial distribution of a Markov chain
with Banana Tree Graph 𝐵𝑛,𝑘 (𝑘 ≤ 4) is the equilibrium
distribution, then it can be identified by the PDFs of the sojourn
time and hitting time for all leaves.

For 𝑘 ≥ 5, the number of all leaves is bigger than that of
nonleaf nodes. An optional solution is as follows.

Theorem 17. If the initial distribution of a Markov chain
with Banana Tree Graph 𝐵𝑛,𝑘 (𝑘 ≥ 5) is the equilibrium
distribution, then it can be identified by the PDFs of the sojourn
time and hitting time for the root state and all node states, that
is, all nonleaf states.

Proof. For ease of exposition, suppose that 𝑟 is the root (see
the previous introduction of banana tree in this subsection)
of this tree and that 𝑜 is the central state, 𝑙 is the leaf, and𝑠 are the others at each 𝑘-star graph, respectively. Firstly,
the corresponding 𝑞𝑟, 𝜋𝑟, 𝑞𝑜, 𝜋𝑜, 𝑞𝑠, and 𝜋𝑠 can be obtained
by each nonleaf state. Secondly, according to the proof of
Double-Star Graph, all 𝑞𝑙 = 𝑞𝑙𝑜, 𝑞𝑜𝑙 can be obtained by
observation at all nonleaf states, because their𝑄𝑐𝑐 is similar to
that of observation at {𝑂1, 𝑂2} forDouble-Star Graph. Finally,
for each 𝑘-star graph, 𝑞𝑜𝑠 = 𝑞𝑜 − ∑𝑙 𝑞𝑜𝑙, 𝑞𝑠𝑜 = 𝜋𝑜𝑞𝑜𝑠/𝜋𝑠,𝑞𝑠𝑟 = 𝑞𝑠 − 𝑞𝑠𝑜, and 𝑞𝑟𝑠 = 𝜋𝑠𝑞𝑠𝑟/𝜋𝑟.
3.3.3. Firecracker Graph. An (𝑛, 𝑘)- firecracker, say 𝐹𝑛,𝑘, is a
graph obtained by the concatenation of 𝑛 𝑘-stars by linking
one leaf from each [23].

A Markov chain {𝑋𝑡; 𝑡 ≥ 0} with Firecracker Graph 𝐹𝑛,𝑘
(see Figure 6) is provided.

For 𝑘 = 2 or 𝑘 = 3, it is degenerated into the special
tree which is similar, but not completely equivalent, to a Star-
Branch Graph.
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Figure 6: Schematic plot of firecracker graphs (adapted fromWolfram MathWorld).

For 𝑘 ≤ 4, there are two leaves for each 𝑘-star graph.
It is implied that the number 2𝑛 of all leaves is identical to
that of all nonleaf nodes. So, observation at all leaves is valid.
According to Theorem 13, a normal solution for 𝑘 ≤ 4 is as
follows.

Theorem 18. If the initial distribution of a Markov chain with
Firecracker Graph 𝐹𝑛,𝑘 (𝑘 ≤ 4) is the equilibrium distribution,
then it can be identified by the PDFs of the sojourn time and
hitting time for all leaves.

For 𝑘 ≥ 5, the number of all leaves is bigger than that
of nonleaf nodes. Following the technique of proof in
Theorem 17, it is easy to verify such optional solution.

Theorem 19. If the initial distribution of a Markov chain with
Firecracker Graph 𝐹𝑛,𝑘 (𝑘 ≥ 5) is the equilibrium distribution,
then it can be identified by the PDFs of the sojourn time and
hitting time for all nonleaf states.

3.4. Numerical Example. To demonstrate how to apply our
algorithms to real data, we present a numerical example here.
As we mentioned before, we focus on the final step and then
we omit the preprocessing of data. Thus, the data we have is
the observed PDFs of sojourn time and hitting time at each
leaf. Based upon these data, we could find all the transition
rates of this tree.

Example 1. The model of a Markov chain is a binary tree in
Figure 3 with the true transition rates matrix 𝑄 = (𝑞𝑖𝑗)𝑆×𝑆
given by

𝑄 =((((((((
(

−10 0 0 0 10 0 00 −25 0 0 25 0 00 0 −30 0 0 30 00 0 0 −15 0 15 05 15 0 0 −50 0 300 0 30 50 0 −100 200 0 0 0 90 60 −150

))))))))
)

. (30)

We can divide the calculation into two steps: fitting sojourn
time and hitting time histogram and transition rates estima-
tion.

Step 1 (sojourn time and hitting time histogram estimate).
Suppose that we have obtained the PDFs by fitting (simulat-
ing) as follows:𝑓𝜏(1) (𝑡) = 0.002032𝑒−186.015025𝑡 + 0.002801𝑒−107.093861𝑡+ 0.031748𝑒−43.239654𝑡+ 0.530183𝑒−0.537764𝑡+ 0.121303𝑒−9.103660𝑡+ 0.000006𝑒−24.010036𝑡 (𝑡 ≥ 0) ,

(31)

𝑓𝜏(2) (𝑡) = 0.018133𝑒−185.792813𝑡 + 0.023965𝑒−106.751426𝑡+ 1.024495𝑒−1.089438𝑡+ 0.265559𝑒−8.032879𝑡+ 0.669767𝑒−30.000000𝑡+ 0.091104𝑒−23.333445𝑡 (𝑡 ≥ 0) ,
(32)

𝑓𝜏(3) (𝑡) = 0.098146𝑒−185.213916𝑡 + 1.004750𝑒−98.503674𝑡+ 0.063878𝑒−43.082231𝑡+ 2.304378𝑒−2.701274𝑡+ 0.960962𝑒−7.138694𝑡+ 0.001383𝑒−13.360211𝑡 (𝑡 ≥ 0) ,
(33)

𝑓𝜏(4) (𝑡) = 0.425895𝑒−185.406369𝑡 + 3.907008𝑒−101.419933𝑡+ 0.117730𝑒−43.639996𝑡+ 2.473349𝑒−3.548045𝑡
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+ 3.456848𝑒−18.354848𝑡+ 0.897366𝑒−12.630809𝑡 (𝑡 ≥ 0) ,
(34)𝑓𝜎(1) (𝑡) = 25𝑒−25𝑡,𝑓𝜎(2) (𝑡) = 10𝑒−10𝑡,𝑓𝜎(3) (𝑡) = 15𝑒−50𝑡,𝑓𝜎(4) (𝑡) = 30𝑒−50𝑡 (𝑡 ≥ 0) ,
(35)

where 𝑓𝜎(𝑖)(𝑡) (resp., 𝑓𝜏(𝑖)(𝑡)) is the PDF of sojourn time (resp.,
hitting time) at the state 𝑖 for 𝑖 = 1, 2, 3, 4.
Step 2 (transition rate calculations). Firstly, by (35) and (10),
we have 𝑞1 = 𝑞15 = 10,𝑞2 = 𝑞25 = 25,𝑞3 = 𝑞36 = 30,𝑞4 = 𝑞46 = 15.

(36)

For state 1, let
𝛼1 = 186.015025,𝛼2 = 107.093861,𝛼3 = 43.239654,𝛼4 = 0.537764,𝛼5 = 9.103660,𝛼6 = 24.010036,𝛾1 = 0.002032,𝛾2 = 0.002801,𝛾3 = 0.031748,𝛾4 = 0.530183,𝛾5 = 0.121303,𝛾6 = 0.000006.

(37)

Because 𝑑(1)1 = ∑6𝑖=1 𝛾𝑖 = 0.688073, hence 𝜋1 = 𝑑(1)1 /(𝑞1 +𝑑(1)1 ) = 0.064378, 1 − 𝜋1 = 0.935622. Since
𝑑(1)𝑛 = 6∑

𝑖=1

𝛾𝑖𝛼𝑛−1𝑖 ,
𝑐(1)𝑛 = (1 − 𝜋1) 𝑑(1)𝑛 = 0.935622𝑑𝑛, (38)

we have 𝑐(1)1 = 0.643777,𝑐(1)2 = 3.218884,𝑐(1)3 = 160.944206,𝑐(1)4 = 17945.278970.
(39)

Similarly, we can get for states 2, 3, and 4, respectively,𝜋2 = 0.077253,𝜋3 = 0.128755,𝜋4 = 0.429185,𝑐(2)1 = 1.931330,𝑐(2)2 = 28.969957,𝑐(2)3 = 1448.497854,𝑐(2)4 = 152092.274678,𝑐(3)1 = 3.862661,𝑐(3)2 = 115.879828,𝑐(3)3 = 11587.982833,𝑐(3)4 = 1384763.948498,𝑐(4)1 = 6.437768,𝑐(4)2 = 321.888412,𝑐(4)3 = 32188.841202,𝑐(4)4 = 3894849.785408.

(40)

Thus, we can obtain by the algorithm (proof) of Theorem 10
that

𝑞51 = 𝑐(1)2𝑐(1)1 = 5.000000,
𝑞63 = 𝑐(3)2𝑐(3)1 = 29.999999,
𝑞52 = 𝑐(2)2𝑐(2)1 = 15.000000,
𝑞64 = 𝑐(4)2𝑐(4)1 = 50.000000,
𝑞5 = 𝑐(1)3𝑐(1)2 = 50.000000,
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𝑞6 = 𝑐(3)3𝑐(3)2 = 100.000000,
𝜋5 = [𝑐(1)1 ]2𝑐(1)2 = 0.128755,
𝜋6 = [𝑐(3)1 ]2𝑐(3)2 = 0.128755,
𝑞57 = 𝑞5 − 𝑞51 − 𝑞52 = 30.000000,𝑞67 = 𝑞6 − 𝑞63 − 𝑞64 = 20.000000,

𝑞75 = 𝑐(1)4 /𝑐(1)2 − 𝑞52𝑞25 − 𝑞25𝑐(1)3 /𝑐(1)2 − 𝑐(1)2 /𝑐(1)1 − 𝑞52 = 90.000007,
𝑞76 = 𝑐(3)4 /𝑐(3)2 − 𝑞64𝑞46 − 𝑞26𝑐(3)3 /𝑐(3)2 − 𝑐(3)2 /𝑐(3)1 − 𝑞64 = 59.999999,
𝜋7 = 1 − 6∑

𝑖=1

𝜋𝑖 = 0.042919.
(41)

Thus, the TRM of {𝑋𝑡 : 𝑡 ≥ 0} is identified as follows:

𝑄 =((((((((
(

−10 0 0 0 10 0 00 −25 0 0 25 0 00 0 −30 0 0 30 00 0 0 −15 0 15 05 15 0 0 −50 0 300 0 29.999999 50 0 −99.999999 200 0 0 0 90.000007 59.999999 −150.000006

))))))))
)

. (42)

Comparing matrix (42) with the original 𝑄-matrix (30), it is
not difficult to find that our approach is very efficient under
the condition that we obtain an accurate PDF of the hitting
time and sojourn time at each leaf.

Note that if 𝑄 is symmetric, then the corresponding
algorithms are also valid. As a matter of fact, the calculation
can be more concise due to the identical equilibrium distri-
butions. In addition, it also can be identified by observations
at any three states of four leaves as stated in Remark 11 of
Theorem 10.

4. Discussion

In the current paper, we have focused on the statistical
identification of Markov chains on trees. As stated earlier, all
of them are identified only by the derivative constraints. For
example, a complete binary tree is identified by observations
at all leaves (seeTheorem 10). Many of them are from current
applications and others are still not (e.g., in ion channels).
However, it is necessary for the theoretical point of view to be
extended to themore general one-treemodel. It is mentioned
that the states of each subset observed should be distinguish-
able on the experimental recording of applications.

In the future, we might shed light on the statistical
identification of reversible Markov chains with cyclic graphs,
as another important class analogous to trees such as Tadpole
Graph, Pan Graph, and even the more general one-Markov
chain. Once reversible Markov chains with cyclic graphs
are solved, our approach is then feasible to most of the
reversibleMarkov chains, except those with very complicated
network architectures. Hence, the work further opens up the

possibility of carrying out the statistical identification for
general Markov chains with reversibility.
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