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Over-constrained assembly of rigid parts is widely adopted in aircraft assembly to yield higher stiffness and accuracy of assembly.
Unfortunately, the quantitative tolerance analysis of over-constrained assembly is challenging, subject to the coupling effect of
geometrical and physical factors. Especially, gravitywill affect the geometrical gaps inmechanical joints between different parts, and
thus influence the deviations of assembled product. In the existing studies, the influence of gravity is not considered in the tolerance
analysis of over-constrained assembly.This paper proposes a novel tolerance analysis method for over-constrained assembly of rigid
parts, considering the gravity influence.This method is applied to a typical over-constrained assembly with constraints of multiple
planar hole-pin-hole pairs. This type of constraints is non-linear, which makes the tolerance analysis more challenging. Firstly,
the deviation propagation analysis of an over-constrained assembly is conducted. The feasibility of assembly is predicted, and for
a feasible assembly, the assembly deviations are determined with the principle of minimum potential energy. Then, the statistical
tolerance analysis is performed. The probabilities of assembly feasibility and quality feasibility are computed, and the distribution
of assembly deviations is estimated. Two case studies are presented to show the applicability of the proposed method.

1. Introduction

Mechanical parts are always manufactured with more or less
geometrical deviations. Tolerance analysis aims to predict
the influence of these manufacturing deviations on the
quality level of a mechanical system at the design stage. The
gaps in mechanical joints between different parts, coupled
with the manufacturing deviations, impact the functionality
of an assembly system. The manufacturing deviations are
assumed to be independent random variables defined by
their tolerance zones and the probability distributions with
respect to manufacturing process, while the gaps are charac-
teristic of epistemic uncertainty which makes the tolerance
analysis complex [1]. The gaps are seldom considered in
iso-constrained assembly, but in over-constrained assembly
they allow the parts to be assembled without deformation
and interference, and cannot be ignored. Over-constrained

assembly of rigid parts is widely used in products, such as
aircrafts and automobiles, because this kind of assembly can
increase stiffness and accuracy of mechanical structure [2].
However, the feasibility of assembly is weakened due to the
introduction of redundant constraints into the assembly, and
the deviations of assembled products are difficult to predict
because of the uncertain gaps.This is one of the key challenges
in assembly tolerance analysis.

Some studies have been conducted on tolerance analy-
sis of over-constrained assembly. Compared to worst case
method, statistical tolerance analysis is regarded to be better
to understand the behavior of a mechanical system, and
the over-constraints have to be considered for accuracy
in the tolerance analysis of over-constrained assembly [3].
Dantan and Qureshi [4] introduced the quantifier notion,
including existential quantifier “there exists” and universal
quantifier “for all”, to describe the condition corresponding
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to a functional requirement. The mathematical formulation
of tolerance analysiswas computedwith quantified constraint
satisfaction problem solvers and Monte Carlo simulation
(MCS). With the mathematical formulation based on quan-
tifier notion, Qureshi et al. [5] acquired the probability of
the functional operation of an assembly based on MCS and
optimization technique, which is used to find the worst case
for gap configuration. This approach was generalized and
applicable to both explicit and implicit response function, as
well as both linear and non-linear constraints. For explicit
function and linear constraints, MCS is time consuming and
computationally expensive. Ballu et al. [3] solved probability
of failure by using first order reliability method (FORM) and
second-order reliability method (SORM) to determine the
feasible extreme gap configuration. Beaucaire et al. [6, 7]
proposed the mathematical formulation from the structural
reliability domain considering several contact point situa-
tions, and computed the defect probability by FORM. For
non-linear constraints, Dumas et al. [8] investigated different
linearization strategies and discussed the impact of these
strategies on the predicted probability of failure. In addition,
Dumas et al. [1] formulated the tolerance analysis problem
by using the Lagrange dual form of optimization, where a
simulation-based selective search algorithm, i.e., a genetic
algorithm, was developed and then the probability of failure
was estimated by FORM. The above studies [1, 3–8] focused
on computing the probability that the assembled product can
fulfill its intended functional requirement.

Another problem related to statistical tolerance analysis
is the distributions of assembly deviations of functional
points, where these deviations characterize the fulfillment
of functional requirement of assembled product. In over-
constrained assembly, the presence of gaps in mechanical
joints makes the deviations of assembled product difficult
to predict, because a large variety of possible gap configu-
rations exist during the assembly process. Franciosa et al.
[9] determined the best-fit assembly configuration by using
optimization algorithm, where the optimization objective
is to minimize the sum of the squares of the distances
between object plane/axis and target plane/axis respectively.
However, this optimization objective is not suitable for most
of practical assemblies in production. Li et al. [10] defined two
planar hole-pin pairs as 3-2-1 location mode, and expressed
the ranges of location deviations by the intersection of
inequations which is approximated to an elliptic. However,
this study did not develop an approach to get the certain
location deviations.

Furthermore, tolerance analysis of over-constrained
assembly is subject to many nongeometrical factors involved
in an assembly process, such as thermal flux, contact force,
gravity, etc. Pierre et al. [11] integrated thermomechanical
strains into variational tolerance analysis. Gouyou et al. [2]
discussed the part deformation subject to contact forces
which allow the parts to be assembled when the interference
happens. However, although the influence of gravity on the
assembly deviations of rigid parts has been well recognized
[12], there is still limited research in tolerance analysis of over-
constrained assembly integrating the influence of gravity.
Specifically, in aircraft assembly, planar hole-pin-hole joints

are widely used to join different parts and locate parts on the
fixtures. Because many parts and fixtures in aircraft assembly
are large and heavy, the gravity will significantly impact the
configuration of gaps in hole-pin-hole joints, and thus the
assembly accuracy. In view of the strict dimensional accuracy
requirement in aircraft manufacturing, a reliable prediction
of assembly deviations by considering the gravity influence is
especially important to realize effective dimensional manage-
ment in aircraft assembly.

This paper proposes a method for tolerance analysis of
over-constrained assembly incorporating the influence of
gravity on assembly deviations. This method will be applied
to a typical over-constrained assembly with constraints of
multiple planar hole-pin-hole pairs. First of all, the deviation
propagation throughout an over-constrained assembly is
analyzed. Here, the feasibility of assembly is predicted; for
a feasible assembly, the assembly deviations are determined
considering the gravity influence. Then, the statistical tol-
erance analysis is performed by using MCS, and its output
results include the probabilities of assembly feasibility and
quality feasibility, as well as the distributions of assembly
deviations. Especially, in the deviation propagation analysis,
the judgment of assembly feasibility is formulated as a search
problem. And for a feasible assembly, with the principle
of minimum potential energy, the calculation of assembly
deviations is modeled as an optimization problem. These
search and optimization problems are inefficient and difficult
to solve, because of the non-linear studied constraints of
planar hole-pin-hole pairs. These problems are solved by
using the search algorithms including sequential search and
binary search, and the optimization algorithms including
particle swarm optimization (PSO) and linear programming
(LP).

The paper is organized as follows. Section 2 gives prob-
lem definition and mathematical representation. Sections 3
and 4 present deviation propagation analysis and statistical
tolerance analysis of over-constrained assembly, respectively.
Section 5 shows case studies. Section 6 draws conclusions.

2. Problem Definition and
Mathematical Representation

2.1. Problem Description and Assumption. Tolerance analysis
consists in predicting the functionality of an assembly system
based on the consideration of the manufacturing deviations
of parts. For over-constrained assembly of rigid parts, tol-
erance analysis consists of two key problems to be stud-
ied, including assembly feasibility prediction and assembly
deviation calculation. In over-constrained assembly of rigid
parts, the feasibility of assembly is weak because of redundant
constraints, even with the gaps in mechanical joints between
different parts. Furthermore, due to the uncertainty of gaps,
the assembly deviations are difficult to predict, especially
coupled with non-linear constraints and non-geometrical
factors.

With considering the influence of gravity, the proposed
method of tolerance analysis of over-constrained assembly is
illustrated by a typical assembly with constraints of multiple
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Figure 1: Two parts to be assembled with constraints of multiple planar hole-pin-hole pairs.

planar hole-pin-hole pairs. This type of constraints possesses
the feature of non-linearity. As shown in Figure 1, each of the
two parts, denoted as Part 1 and Part 2, has two or more pairs
of mating holes on the mating plane. Part 1 is assumed to
be fixed, and Part 2 will be assembled onto Part 1 with the
planar hole-pin-hole joints. The centers of the mating holes
of Part 1 are denoted as B1 ∼B𝑁. Similarly, these centers of
Part 2 are denoted as C1 ∼C𝑁. N is the number of hole-pin-
hole joints. Furthermore, the quality requirement concerns
the deviations of Part 2 with respect to (w.r.t.) Part 1. The
functional points are on Part 2, denoted as K1 ∼K𝑁𝑓.N𝑓 is the
number of functional points.The deviations of the functional
points are used to represent the assembly deviations. In
addition, G denotes the center of gravity of Part 2.

Notably, for simplifying the analysis and highlighting the
research focus, some assumptions are made as follows:

(a) The assembly tolerance analysis is performed only
considering the degrees of freedom (DOFs) on plane, such
that the mating planes are assumed to be perfect.

(b)The parts are treated as rigid bodies, and deformation
and interference are not allowed.

(c) The direction of gravitational field is on the mating
planes.

(d) The position of gravity center of Part 2 is not affected
by its manufacturing deviations.

(e) The hole-pin-hole pairs adopt clearance fit.
(f) For the manufacturing deviations of hole-pin-hole

pairs, dimensional deviations of diameters of holes and pins,
and position deviations of centers of holes are considered, but
the shape deviations are ignored.

2.2. Mathematical Representation

2.2.1. Definition of Coordinate Systems. In order to express
the deviations as well as their relationships, four types
of coordinate systems (CSs) are defined, including global
coordinate system (GCS), part coordinate system (PCS),
gravitational field coordinate system (GFCS), and functional
point coordinate system (FPCS).

GCS is considered to be error free and unchangeable
during the entire assembly process. PCS is associated with a

part. Similarly to GCS, GFCS and FPCS are also unchanged.
GFCS is constructed according to the direction of gravi-
tational field, and the 𝑌𝑔-axis is in the opposite direction
to gravitational field. Each FPCS is used to represent the
deviations of a functional point. The origin of a FPCS is in
the nominal position of a functional point w.r.t. GCS, and the
axes correspond to the direction required to be measured.
Moreover, the spatial relationships among different CSs can
be described by homogeneous transformation matrix (HTM)
[13].

As shown in Figure 2, Part 2 without any deviation is in
the nominal position w.r.t Part 1. XOY is the GCS, which is
assumed to coincide with the PCS of Part 1. xoy is the PCS of
Part 2 denoted as PCS2.𝑋𝑔𝑂𝑔𝑌𝑔 is the GFCS, whose origin is
in the nominal position of G w.r.t. GCS, and 𝑌𝑔-axis has the
angle 𝜃 from Y-axis of GCS. 𝑋𝑓𝑗𝑂𝑓𝑗𝑌𝑓𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑓, are
the FPCSs. Furthermore, the HTMs of nominal PCS2, GFCS
and FPCS𝑖 w.r.t. GCS are T𝐺2 , T

𝐺
𝑔 , and T𝐺𝑓𝑗, 𝑗 = 1, 2, . . . , 𝑁𝑓,

respectively.

2.2.2. Tolerance Representation. The dimensional and geo-
metric tolerances indicate the deviation of an actual feature
from its nominal one. The features are allowed to rotate and
translate within their tolerance zone [10], and these rotations
and translations can be described by the small displacement
torsor (SDT) model [14]. In SDT model, tolerance zones and
feature deviations are defined as vectorial representation [15],
i.e., 𝜏 = [𝜔 𝜀]T. 𝜔 = [𝛼 𝛽 𝛾]T denotes the rotation vector,
which has three components 𝛼, 𝛽, and 𝛾 around x, y, and
z axes, respectively. Similarly, 𝜀 = [𝑢 V 𝑤]T denotes the
translation vector, which has three components u, v, and 𝑤
along x, y and z axes, respectively. In this paper, it is assumed
that 𝛼 = 𝛽 = 0, 𝑤 = 0, thus 𝜏 = [𝛾 𝑢 V]T.

The assembly deviations are caused by deviation sources
which are propagated and accumulated through the assembly
process. This data stream of deviations can be analyzed
by deviation propagation model [16–18]. For example, the
deviation of feature i is 𝜏𝑖 = [𝛾𝑖 𝑢𝑖 V𝑖]T. An arbitrary point
on feature i is A, and its coordinates are denoted as a =
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[𝑥𝑎 𝑦𝑎]T. The deviation of point A can be calculated with
HTM [19, 20] as

[Δa 1]T = T𝑖 [a 1]T − [a 1]T (1)

where the HTM T𝑖 is

T𝑖 = [R𝑖 𝜀𝑖0 1] = [[[

cos 𝛾𝑖 − sin 𝛾𝑖 𝑢𝑖
sin 𝛾𝑖 cos 𝛾𝑖 V𝑖
0 0 1

]]
]
. (2)

3. Deviation Propagation Analysis

Deviation propagation analysis studies the introduction,
propagation and accumulation of data stream of devia-
tions through an assembly process. For an over-constrained
assembly with constraints of multiple planar hole-pin-hole
pairs, the deviation propagation analysis is performed with
considering the influence of gravity, which contains assembly
feasibility judgment and assembly deviation determination.

3.1. Assembly Feasibility Judgment. An assembly with over
constraints is usually disturbed by the infeasibility of assem-
bly, even though normal joint gaps are reserved. Dantan
and Qureshi [4] introduced the existential quantifier “there
exists” to correctly formulate this problem concerning assem-
bly with gaps, i.e., if there exits at least one gap configuration
such that the assembly is feasible, then assembly feasibility
of the mechanical structure is ensured. The mathematical
expression is

∃g ∈ [0, gmax (M)] : 𝑓𝑎𝑖 (M, g) ≤ 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (3)

where M denotes the manufacturing deviations of parts, g
denotes the gaps and gmax is the allowable gap widths, f 𝑎𝑖,𝑖 = 1, 2, . . . , 𝑁, are the functions of assembly requirement,
and N is the number of the functions. All of these functions
have to be non-positive to ensure the feasibility of assembly.

According to the above formulation, the judgment of
assembly feasibility can be transformed to a search problem.
Moreover, this search problem is inefficient to be solved due
to the non-linear studied constraints of multiple planar hole-
pin-hole pairs. Firstly, the search problem is modeled. Then
in order to improve the efficiency, a solving method is given
by reducing dimensionality of search object and narrowing
down search space.

3.1.1. Formulation of Assembly Requirement. In over-
constrained assembly, the gaps in mechanical joints are
correlated with each other and their worst configuration
depends on the manufacturing deviations of parts [3]. For
the constraints of multiple planar hole-pin-hole pairs, the
correlation of gaps, coupled with the relationships between
gap configurations and part manufacturing deviations, is
complicated. In an assembly process, the deviation of PCS2
w.r.t GCS is denoted as 𝜏2 = [𝛾2 𝑢2 V2]T, and one 𝜏2
corresponds to a configuration of gaps.

As shown in Figure 1, the coordinates of B𝑖 , 𝑖 = 1, 2, . . . , 𝑁,
w.r.t. GCS are B𝐺𝑖 = [𝑋𝑏𝑖 𝑌𝑏𝑖]T. The coordinates of C𝑖, 𝑖 =
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1, 2, . . . , 𝑁, w.r.t. PCS2 are denoted as C2𝑖 = [𝑥𝑐𝑖 𝑦𝑐𝑖]T. Then
when Part 2 is in the nominal position w.r.t. GCS, they w.r.t.
GCS are C𝐺𝑖 = [𝑋𝑐𝑖 𝑌𝑐𝑖]T as

[C𝐺𝑖 1]T = T𝐺2 [C2𝑖 1]T , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 (4)

With the deviation 𝜏2, the coordinates of C𝑖
, 𝑖 =

1, 2, . . . , 𝑁, w.r.t. GCS are changed into C𝐺𝑖
 = [𝑋𝑐𝑖 𝑌𝑐𝑖]T

as

[C𝐺𝑖  1]T = T2 [C𝐺𝑖 1]T , 𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁 (5)

where T2 is the HTM of 𝜏2.
The functions of assembly requirement concern the

planar hole-pin-hole joints. As shown in Figure 3, by taking
the ith constraint of planar hole-pin-hole pair as an example,
the function of assembly requirement is

𝑓𝑎𝑖 = 
→
B𝑖C

𝑖

 − 𝑠𝑖 (6)

where 𝑠𝑖 = (1/2)(𝑑𝑏𝑖 + 𝑑𝑐𝑖 − 2𝑑𝑝𝑖) and d𝑏𝑖, d𝑐𝑖, and d𝑝𝑖 denote
the diameters of the twomating holes and the pin respectively.
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It is definite that 𝑠𝑖 ≥ 0, due to clearance fit of hole-pin-hole
pairs. According to the assembly requirement as seen in (3),
the judgment of assembly feasibility is to judge whether f 𝑎𝑖 is

non-positive, i.e., to judge whether |→B𝑖C

𝑖 |, is not larger than

s𝑖, or whether |→B𝑖C

𝑖 |2 is not larger than 𝑠𝑖2. Therefore, from

the view of judging assembly feasibility, (6) can be translated
to (7) as

𝑓𝑎𝑖 = 
→
B𝑖C

𝑖


2 − 𝑠𝑖2 (7)

where 𝑓𝑎𝑖 is decorated with a topscript “ ∧”, in order to
distinguish from the original assembly requirement function
f 𝑎𝑖.

By referring to (5), (7) can be further arranged as

𝑓𝑎𝑖 = (𝑢2 + 𝑋𝑐𝑖 cos 𝛾2 − 𝑌𝑐𝑖 sin 𝛾2 − 𝑋𝑏𝑖)2
+ (V2 + 𝑋𝑐𝑖 sin 𝛾2 + 𝑌𝑐𝑖 cos 𝛾2 − 𝑌𝑏𝑖)2 − 𝑠𝑖2

(8)

For coordinates and diameters above mentioned, the
nominal values are decorated with a superscript “0,” whereas
they represent the actual ones with manufacturing deviations
of parts. In (8), coupled with the correspondence between 𝜏2
and configuration of gaps, the part manufacturing deviations
and gap configuration are both incorporated.

According to (3) and (8), the assembly requirement under
the constraints of N planar hole-pin-hole pairs is formulated
as: if there exits at least one real vector 𝜏2 satisfying all the
inequalities 𝑓𝑎𝑖 ≤ 0, 𝑖 = 1, 2, . . . , 𝑁, then assembly feasibility
of the mechanical structure is ensured. The mathematical
expression is

∃𝜏2 ∈ R3×1 ∩ 𝛾2 ∈ (−𝜋, 𝜋] : 𝑓𝑎𝑖
= (𝑢2 + 𝑋𝑐𝑖 cos 𝛾2 − 𝑌𝑐𝑖 sin 𝛾2 − 𝑋𝑏𝑖)2
+ (V2 + 𝑋𝑐𝑖 sin 𝛾2 + 𝑌𝑐𝑖 cos 𝛾2 − 𝑌𝑏𝑖)2 − 𝑠𝑖2 ≤ 0,

𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑁
(9)

where R3×1 denotes three-dimensional real vector space.

3.1.2. Solving Method of Search Problem. The judgment of
assembly feasibility depends on solving the search problem
modeled by (9). As a common search algorithm, sequen-
tial search algorithm is used. The search object is 𝜏2 =
[𝛾2 𝑢2 V2]T with three dimensions. The search space is dif-
ficult to narrow, due to the non-linearity of the functions 𝑓𝑎𝑖,𝑖 = 1, 2, . . . , 𝑁. Therefore, the solving of this search problem
is inefficient because of the multi-dimensional search object
and the large search space. To improve the efficiency, the
dimensionality of search object is reduced into one, and the
search space is reasonably narrowed.

The feasible solution space of the search object 𝜏2 can be
shown in a Cartesian coordinate system 𝑜2−𝑢2V2𝛾2. Referring
to Figure 4, the feasible solution space for an inequality 𝑓𝑎𝑖 ≤0 is denoted as D𝑓𝑎𝑖 . When 𝛾2 is constant, D𝑓𝑎𝑖 is a certain
circle, and its radius always equals to 𝑠𝑖. Besides, the locus
of center of this circle with 𝛾2 is a right-hand circular helix.
Then the feasible solution space under constraints ofN planar
hole-pin-hole pairs, denoted asD𝑓𝑎 𝑖𝑛, can be expressed as the
intersection of the spacesD𝑓𝑎𝑖 , 𝑖 = 1, 2, . . . , 𝑁. Figure 5 shows
an example of non-empty D𝑓𝑎 𝑖𝑛 when N=2.

When 𝛾2 is constant, D𝑓𝑎 𝑖𝑛 represents the intersection of
N circles with the known centers and radii. The situation of
this intersection denoted as 𝑆𝑓𝑎 𝑖𝑛(𝛾2) can be judged with a
geometry algorithm [21] especially when N>2. It is assumed
that when the intersection is empty, 𝑆𝑓𝑎 𝑖𝑛(𝛾2) < 0; when
the intersection is only a point, 𝑆𝑓𝑎 𝑖𝑛(𝛾2) = 0; otherwise,𝑆𝑓𝑎 𝑖𝑛(𝛾2) > 0. Then (9) can be redefined as follows: if there
exits at least one real 𝛾2 such that the intersection ofN circles
is non-empty, then assembly feasibility of the mechanical
structure is ensured. The mathematical expression is

∃𝛾2 ∈ D𝑠𝑒 𝛾2 : 𝑆𝑓𝑎 𝑖𝑛 (𝛾2) ≥ 0 (10)

where D𝑠𝑒 𝛾2 = {𝛾2 | 𝛾2 ∈ [𝛾2𝑠𝑒 min, 𝛾2𝑠𝑒 max]} denotes the
search space of 𝛾2, which is determined as follows:

(a) The ranges of 𝛾2 under constraints of each two planar
hole-pin-hole pairs are successively calculated. For example,
as shown in Figure 5, the range of 𝛾2 is denoted as 𝛾2 ∈[𝛾2 12 min, 𝛾2 12 max]. According to geometric characteristic of
D𝑓𝑎1 and D𝑓𝑎2, 𝛾2 12 min, and 𝛾2 12 min correspond to the
situations when the two circles 𝑓𝑎1(𝛾2 12 min,max, 𝑢2, V2) ≤ 0
and 𝑓𝑎2(𝛾2 12 min,max, 𝑢2, V2) ≤ 0 are externally tangent as
[−𝑎2 sin 𝛾2 12 min,max + 𝑎1 cos 𝛾2 12 min,max + 𝑎3]2

+ [𝑎1 sin 𝛾2 12 min,max + 𝑎2 cos 𝛾2 12 min,max + 𝑎4]2
− 𝑎52 = 0

(11)

where 𝑎1 = 𝑋𝑐2 − 𝑋𝑐1, 𝑎2 = 𝑌𝑐2 − 𝑌𝑐1, 𝑎3 = 𝑋𝑏1 − 𝑋𝑏2, 𝑎4 =𝑌𝑏1 − 𝑌𝑏2, and 𝑎5 = 𝑠1 + 𝑠2.
If (11) has no real solutions, this range of 𝛾2 is empty.
(b) The intersection of these ranges of 𝛾2 in (a) is

calculated asD𝑠𝑒 𝛾2.
As shown in Figure 6, if D𝑠𝑒 𝛾2 is empty, it is sure that

the assembly is infeasible; but if D𝑠𝑒 𝛾2 is non-empty, the
feasibility of assembly is still not ensured and the search
algorithm has to be performed, unless N=2.
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Figure 5: Feasible solution space under constraints of two planar hole-pin-hole pairs.
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Figure 6: Flow chart of solving search problem.

3.2. Assembly Deviation Determination. Assembly deviations
are difficult to quantify in over-constrainedmechanical struc-
ture due to uncertainty of gaps, when the assembly is feasible.
Here, the influence of gravity is considered. According to
the principle of minimum potential energy, the gravitational
potential energy of Part 2 tends to be minimum. In other
words, the center of gravity of Part 2 drops along the
direction of gravitational field as large as possible, within
the constraints of satisfying assembly requirement. Therefore
this section involves an optimization problem. Furthermore,
the non-linear studied constraints make the optimization
difficult to solve. Firstly the optimization problem ismodeled.
Then similarly to Section 3.1, a solving method is given by
reducing dimensionality of optimization object and narrow-
ing search space, to improve both accuracy and efficiency.

Finally, the assembly deviations of functional points are
calculated, and the quality feasibility is judged.

3.2.1. Optimization Problem Modeling. As shown in Figure 1,
the coordinates of G w.r.t. PCS2 are denoted as G2 =
[𝑥𝑔 𝑦𝑔]T, and it is assumed that G2 = 0G2. When Part 2 is in
the nominal position and has the deviation 𝜏2 w.r.t. GCS, the
coordinates of G w.r.t. GCS are denoted as G𝐺 = [𝑋𝑔 𝑌𝑔]T
and G𝐺 = [𝑋𝑔 𝑌𝑔]T respectively, which can be calculated
similarly to (4)-(5), as

[G𝐺 1]T = T𝐺2 [G2 1]T (12)

[G𝐺 1]T = T2 [G𝐺 1]T (13)
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Figure 7: Assembly under constraints of two planar hole-pin-hole pairs with considering gravity influence.

Then with the deviation 𝜏2, the coordinates of G w.r.t.
GFCS are G𝑔 = [𝑋𝑔𝑔 𝑌𝑔𝑔 ]T as

[G𝑔 1]T = (T𝐺𝑔 )−1 [G𝐺 1]T (14)

Here,𝑌𝑔-axis ofGFCShas the angle 𝜃 fromY-axis ofGCS.
Then (14) can be arranged as

𝑋𝑔𝑔 = (𝑋𝑔 cos 𝛾2 − 𝑌𝑔 sin 𝛾2 + 𝑢2 − 𝑋𝑔) cos 𝜃
+ (𝑋𝑔 sin 𝛾2 + 𝑌𝑔 cos 𝛾2 + V2 − 𝑌𝑔) sin 𝜃

𝑌𝑔𝑔  = − (𝑋𝑔 cos 𝛾2 − 𝑌𝑔 sin 𝛾2 + 𝑢2 − 𝑋𝑔) sin 𝜃
+ (𝑋𝑔 sin 𝛾2 + 𝑌𝑔 cos 𝛾2 + V2 − 𝑌𝑔) cos 𝜃

(15)

where 𝑌𝑔𝑔  is the coordinate of G against the direction of
gravitational field.

When the influence of gravity is considered, 𝑌𝑔𝑔  is min-
imum within the constraints of satisfying assembly require-
ment, according to the principle of minimum potential
energy. The optimization model is constructed as

min 𝐹𝑓𝑑 (𝜏2) = 𝑌𝑔𝑔  (𝜏2)
s.t. 𝜏2 ∈ D𝑓𝑎 𝑖𝑛

(16)

where 𝜏2 is the optimization object, 𝐹𝑓𝑑(𝜏2) is the objective
function, and 𝜏2 ∈ D𝑓𝑎 𝑖𝑛 is the constraint condition.

Without considering the influence of gravity and other
physical factors, the deviation 𝜏2 is randomly distributed
within the feasible solution spaceD𝑓𝑎 𝑖𝑛. When the influence
of gravity on the assembly deviations is taken into account
(the influence of other physical factors is not considered),
the value of 𝜏2 corresponds to the optimal solution of (16).
Figure 7 shows an example of the assembly under constraints
of two planar hole-pin-hole pairs. With considering the
gravity influence, the center of gravity G on Part 2 moves
along the direction of gravitational field to the farthest
position allowed by the assembly constraints.

u2

v2

o2

Ffd_1P
Ffd_2P

Ffd_3P
Ffd_4P

fa_in(2_＝ＩＨ, u2, 2)

l(u2,2)

Figure 8: Constraint condition and objective functionwith constant𝛾2.

3.2.2. Optimization Problem Solving. The assembly devia-
tions correspond to the optimal solution of (16). As a
selective search algorithm, PSO algorithm is used to solve the
optimization problem. This optimization solving is difficult
due to the non-linear constraint 𝜏2 ∈ D𝑓𝑎 𝑖𝑛. Here, the
dimensionality of search object is reduced, and the search
space is calculated, to improve the accuracy and efficiency of
solving.

As seen in (16), when 𝛾2 equals a real constant 𝛾2 con,
the constraint 𝜏2 ∈ D𝑓𝑎 𝑖𝑛(𝛾2 con, 𝑢2, V2) represents the
intersection of N known circles by referring to Section 3.1,
and the objective function 𝐹𝑓𝑑(𝛾2 con, 𝑢2, V2) is regarded as
a line. The slope of this line is unchangeable, which is only
related to the direction of gravitational field.The line equation
denoted as l(u2,v2) is

𝑙 (𝑢2, V2) = 𝑎𝑢2 + 𝑏V2 + 𝑐 (17)

where 𝑎 = − sin 𝜃, 𝑏 = cos 𝜃, 𝑐 = (−𝑋𝑔 sin 𝜃 +𝑌𝑔 cos 𝜃)(cos 𝛾2 con − 1) + (𝑌𝑔 sin 𝜃 + 𝑋𝑔 cos 𝜃) sin 𝛾2 con.
Therefore, the optimization modeled by (16) can be

treated a LP problemwhen 𝛾2 = 𝛾2 con. Figure 8 gives a graph-
ical schematic of constraint condition and objective function
when N=3. Here, the minimum value of 𝐹𝑓𝑑(𝛾2 con, 𝑢2, V2)
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is denoted as 𝐹𝑓𝑑 min(𝛾2 con, 𝑢2, V2). The coordinates of the
point corresponding to 𝐹𝑓𝑑 min(𝛾2 con, 𝑢2, V2) are denoted as
P𝐹𝑓𝑑 min = [𝑢2 𝐹𝑓𝑑 min V2 𝐹𝑓𝑑 min]T. Obviously, this point
belongs to intersection points of the arcs which comprise
boundary of the domain D𝑓𝑎 𝑖𝑛(𝛾2 con, 𝑢2, V2), or tangency
points of the line l(u2,v2) and these arcs. Furthermore, it
is certain that P𝐹𝑓𝑑 min depends on 𝛾2 con, i.e., 𝑢2 𝐹𝑓𝑑 min =𝑢2(𝛾2 con), V2 𝐹𝑓𝑑 min = V2(𝛾2 con). Hence, (16) can be remod-
eled with a nested LP as

min 𝐹𝑓𝑑 min (𝛾2, 𝑢2 (𝛾2) , V2 (𝛾2))
s.t. 𝛾2 ∈ D𝑓𝑎 𝑖𝑛 𝛾2

(18)

where the search space D𝑓𝑎 𝑖𝑛 𝛾2 = {𝛾2 | 𝛾2 ∈ [𝛾2min, 𝛾2max]}
is the range of 𝛾2 in D𝑓𝑎 𝑖𝑛, which is calculated as follows:
As seen in Section 3.1, a feasible solution of (10), denoted as𝛾2 𝑎, has been found to ensure the assembly feasibility of the
mechanical structure. It is obvious that 𝛾2 𝑎 ∈ [𝛾2min, 𝛾2max].
Moreover, for the search space of (10) denoted as D𝑠𝑒 𝛾2 ={𝛾2 | 𝛾2 ∈ [𝛾2𝑠𝑒 min, 𝛾2𝑠𝑒 max]}, it is definite that D𝑠𝑒 𝛾2 ⊇
D𝑓𝑎 𝑖𝑛 𝛾2, and then 𝛾2𝑠𝑒 min ≤ 𝛾2min ≤ 𝛾2 𝑎 and 𝛾2 𝑎 ≤ 𝛾2max ≤𝛾2𝑠𝑒 max. 𝛾2min and 𝛾2max can be approximately calculated
by binary search algorithm. Especially, when N=2, 𝛾2min =𝛾2𝑠𝑒 min and 𝛾2max = 𝛾2𝑠𝑒 max, thus the binary search algorithm
is omitted.

3.2.3. Assembly Deviation Calculation and Quality Feasi-
bility Judgment. By the solving method in Section 3.2.2,
the optimal solutions of the optimization model (18), as
well as the global best particle 𝜏2 𝑔, are determined. Then
the coordinates of functional point K𝑗 w.r.t. FPCS𝑗, 𝑗 =1, 2, . . . , 𝑁𝑓, are calculated as

[K𝑓𝑗𝑗 𝑔 1]T = (T𝐺𝑓𝑗)−1 T2 𝑔 [K𝐺𝑗 1]T ,
𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁𝑓

(19)

where T2 𝑔 = T2(𝜏2 𝑔) and K𝑓𝑗𝑗 𝑔
 = [𝑋𝑓𝑗

𝑓𝑗 𝑔

 𝑌𝑓𝑗
𝑓𝑗 𝑔

]T, 𝑗 =
1, 2, . . . , 𝑁𝑓, represent the assembly deviations.

The quality requirement is denoted as QR =
[QR1 QR2 ⋅ ⋅ ⋅ QR𝑁𝑓], where QR𝑗 = [QR𝑋𝑓𝑗𝑗 QR𝑌𝑓𝑗𝑗 ]T
and QR𝑋𝑓𝑗𝑗 = {𝑋𝑄𝑅𝑗 | 𝑋𝑄𝑅𝑗 ∈ [𝑋𝑄𝑅𝑗 min, 𝑋𝑄𝑅𝑗 max]},
QR𝑌𝑓𝑗𝑗 = {𝑌𝑄𝑅𝑗 | 𝑌𝑄𝑅𝑗 ∈ [𝑌𝑄𝑅𝑗 min, 𝑌𝑄𝑅𝑗 max]}, 𝑗 = 1, 2, . . . , 𝑁𝑓.
An assembly is regarded to be qualified when all the assembly
deviations of functional points meet the quality requirement,
i.e.,𝑋𝑓𝑗

𝑓𝑗 𝑔

 ∈ QR𝑋𝑓𝑗𝑗 and 𝑌𝑓𝑗
𝑓𝑗 𝑔

 ∈ QR𝑌𝑓𝑗𝑗 , 𝑗 = 1, 2, . . . , 𝑁𝑓.
4. Statistical Tolerance Analysis

Because as deviation sources, manufacturing deviations of
parts are generally random deviations within their tolerance
zones and statistical analysis is necessary rather than a
single case analysis. As one of the most common methods
for statistical analysis, the MCS is often computationally

Generate a set of random deviations of
deviation sources 

Judge assembly feasibility

Satisfy assembly 
requirement

Yes

No

Start

Count number of assemblies saitisfing 
assembly requirement

Yes

No Satisfy quality requirement

Calculate assembly deviations of 
functional points

Count number of assemblies saitisfying 
qualify requirement

The number of 
generation =NMC

End

Yes

No

Compute probabilities of assembly 
feasibility and quality feasibility

Quantify the deviations distributions of 
functional points

Figure 9: Flow chart of statistical tolerance analysis.

expensive and time-consuming, but quite comprehensive and
easy to use even for implicit and non-linear problems. The
MCS with deviation propagation analysis in Section 3 is used
to perform statistical tolerance analysis. The flowchart of the
statistical analysis is shown in Figure 9.

Iteratively, a set of random deviations of the sources are
generated within their tolerance zones; then the assembly
feasibility is judged; for the feasible assembly, the assembly
deviations of functional points are calculated and the quality
feasibility is judged.The process of random generation, judg-
ment and calculation is iterated until the samples are enough.
As to random generation of deviations within their tolerance
zones, it is assumed that the deviations are independent
of one another and present normal distributions, and the
deviations and their tolerances have a relationship as 𝑇 = 6𝜎.
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Figure 10: An assembly fixture with boards.

After all the iterations, the probabilities of assembly
feasibility and quality feasibility are estimated as [8]

𝑃𝑎,𝑞 = 1
𝑁𝑀𝐶
𝑁𝑀𝐶∑
𝑖=1

𝐼𝑎,𝑞 (M) (20)

where N𝑀𝐶 is the maximum number of iterations of the
MCS and 𝐼𝑎,𝑞(M) is an indicator function. The functions for
assembly requirement and quality requirement are

𝐼𝑎 (M) = {{{
1, if the assembly is feasible

0, if the assembly is infeasible
(21)

𝐼𝑞 (M)
= {{{

1, if the quality requirement is fulfilled

0, if the quality requirement is unfulfilled

(22)

Furthermore, for feasible assemblies, the deviations dis-
tributions of functional points can be quantified, where the
frequency distributions and the statistical characteristics are
computed, seen in Section 5.

For the statistical tolerance analysis, the input is deviation
sources, and the output contains probabilities of assembly
feasibility and quality feasibility, as well as deviations distri-
butions of functional points for feasible assemblies.

5. Case Studies

The proposed method is applied to two cases. Firstly stability
and accuracy of the optimization seen in Section 3.2 are ver-
ified. Then the output results of statistical tolerance analysis
for the gap configuration influenced by gravity are compared
with the output results for random configuration and worst
configuration of gaps.

The computational works are implemented by MATLAB.
For sequential and binary search algorithms seen in Section 3,
the precision is set as 10−7 for 𝛾2. In the statistical tolerance
analysis with MC simulation seen in Section 4, the number
of iterations in an experiment is set as N𝑀𝐶=10000.

5.1. Case Description

Case 1. This case is from a fixture with boards as shown in
Figure 10, which is widely used for locating aircraft panels
in the panel assembly process. The small working surfaces
on a fixture board are applied to constraining the normal
displacement of the panels. Each fixture board is mounted on
fixture frame with two planar hole-pin-hole joints. This case
is the assembly of a fixture board and a fixture frame, denoted
as Part 1 and Part 2. Each small working surface of Part 2 is
abstracted as a functional point.

Figure 11 shows the definition of CSs. For simplicity,
the axes of GCS, GFCS, and nominal PCS2 are assumed
to be all parallel to each other. As to FPCSs, three of the
functional points are selected for discussion. The Y𝑓𝑗-axis
(j=1,2,3) of a FPCS is along the nominal normal direction
of the corresponding working surface. The dimensions and
tolerances are shown in Figure 12. The fit tolerances of
hole-pin-hole pairs are both H7/g7/H7. The coordinates of
related points w.r.t. GCS/PCS2 are as B

𝐺
1 = [195 246.126]T,

B𝐺2 = [2805 246.126]T, o𝐺 = [1500 200]T, and
C21 = [−1305 46.126]T, C22 = [1305 46.126]T, G2 =
[0 524.435]T, O2𝑘 = [0 −1200]T. Besides, the quality
requirement is QR = [QR1 QR2 QR3], where QR𝑗 =
QR𝑌𝑓𝑗𝑗 = {𝑌𝑄𝑅𝑗 | 𝑌𝑄𝑅𝑗 ∈ [−0.07, 0.07]}, j=1,2,3.
Case 2. This case is the assembly of two aircraft fuselage
sections from a type of military aircraft. The front section
and the rear section, denoted as Part 1 and Part 2, are
assembled with the constraints of eighteen hole-pin-hole
pairs on planar bulkheads. The quality requirement concerns
the displacement deviations of Part 2 w.r.t Part 1.

Figure 13 shows the CSs, dimensions and tolerances.
In order to simplify the computation, it is assumed that
GCS, GFCS, FPCS and nominal PCS2 are all coincided
with each other. Besides, the fit tolerances of hole-pin-hole
pairs are all D8/d7/D8. The quality requirement is QR =
[QR𝑋𝑓 QR𝑌𝑓]T, QR𝑋𝑓 = {𝑋𝑄𝑅 | 𝑋𝑄𝑅 ∈ [−0.1, 0.1]}, and
QR𝑌𝑓 = {𝑌𝑄𝑅 | 𝑌𝑄𝑅 ∈ [−0.1, 0.1]}.
5.2. Stability and Accuracy of Optimization (PSO). As seen
in Section 3, PSO is used to determine assembly deviations,
which further impacts the output results of statistical toler-
ance analysis. In this PSO algorithm, the swarm size is 10, and
the number of iterations is 20. PSO is a heuristic optimization
algorithm, with simple parameters and fast convergence,
but it is easily trapped into local optimum. Therefore, it is
necessary to verify stability and accuracy of this optimization
algorithm.

Firstly, the experiment of statistical tolerance analysis is
performed and repeated 10 times, and the 10 sets of output
results are observed and compared. In order to eliminate
the disturbance of different generated deviation sources, the
same N𝑀𝐶 sets of deviation sources are required for all
experiments.
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Three iterative sub-processes are separated from the
experiment process. The iterative sub-process of deviation
sources generation is denoted as Sub-process 1, andN𝑀𝐶 sets
of generated deviation sources are stored in a matrix H𝑀.
Then with these deviation sources, the iterative sub-process
of assembly feasibility judgment is denoted as Sub-process 2,
and N𝑎 (𝑁𝑎 ≤ 𝑁𝑀𝐶) sets of deviation sources, which can
make sure the feasibility of assembly, are selected and stored
in a matrix H𝑎. Finally, with the deviation sources from H𝑎,
the iterative sub-process of assembly deviation calculation
and quality feasibility judgment is denoted as Sub-process
3. After the three sub-processes, the output results can be
calculated.

Therefore, the 10 experiments are designed as: Sub-
processes 1 and 2 are implemented in advance, and then
Sub-process 3 is repeated 10 times. The 10 sets of output
results with 4 figures after the decimal point are all the
same, as shown in Table 1 for Case 1 and Table 2 for
Case 2, where deviations of functional points (denoted as
DFP) are classified into the deviations satisfying quality

requirement (denoted as DFP QR) and that not satisfying
quality requirement (denoted as DFP NQR).

For further verification, with a set of deviation sources
arbitrarily selected fromH𝑎, the PSO procedure is performed
and repeated 10 times, and the 10 sets of optimization results
are compared. Tables 3 and 4 show the selected deviation
sources for Cases 1 and 2, respectively. The corresponding
feasible solution space D𝑓𝑎 𝑖𝑛 is shown in Figure 14 for Case
1 and Figure 15 for Case 2. In the 10 PSO procedures, the
global best particles 𝛾2 and the corresponding𝑌𝑔-coordinates
are shown in Figure 16 for Case 1 and Figure 17 for Case 2.
It is observed that the 10 optimization procedures for each
case are all convergent, and the 10 sets of optimization results,
including global best particles and objective function values,
are all the same when these values are rounded to 6 decimal
places.

Therefore, Tables 1 and 2 and Figures 16 and 17 indicate
this PSO algorithm is quite robust and accurate, and thus
the output results of tolerance analysis by using the proposed
method are reliable.

5.3. Comparison with Random Configuration andWorst Con-
figuration of Gaps. Theproposedmethod considers the influ-
ence of gravity on the gap configuration when determining
the assembly deviations. In order to exhibit the significance
of incorporating the influence of gravity to tolerance analysis,
two comparison experiments with common gap configura-
tions are given. The first comparison experiment is denoted
as EX1, where the deviation 𝜏2 is randomly generated within
the feasible solution space based on normal distribution.
The second comparison experiment, denoted as EX2, uses
the worst configuration of gaps, which makes the assembly
deviations largest. Besides, the experiment considering the
gravity influence is denoted as EX0.

In EX 2, the determination of the worst configuration of
gaps is an optimization problem.Themodeling and solving of
this optimization are both similar to (16)-(19). For example,
worst gap configuration corresponds to the largest assembly
deviation of the jth functional point along Y𝑓𝑗-axis. The
optimization is modeled as seen in (23), and solved by PSO
with a nested LP.

max 𝐹𝑓𝑑 𝑤𝑜𝑟 (𝜏2)
= 𝑌
𝑓𝑗

𝑓𝑗

 (𝜏2) − 𝑌𝑄𝑅𝑗 min + 𝑌𝑄𝑅𝑗 max2


s.t. 𝜏2 ∈ D𝑓𝑎 𝑖𝑛

(23)

In EX2 of Case 1, it is assumed that the worst configura-
tion of gaps corresponds to the largest assembly deviations of
K2 along Y𝑓2-axis. In EX2 of Case 2, the worst configuration
of gaps is assumed to concern the largest assembly deviations
along Y-axis, to make a straight comparison between the
output results of EX2 and EX0.

The output results of EX0, EX1 and EX2 are compared.
In order to avoid the distractions of different generated
deviation sources, the three experiments, denoted as a group
of experiments, are designed as follows: Sub-processes 1 and
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Figure 16: Global best particles and objective function values of PSO procedures for Case 1.
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Figure 17: Global best particles and objective function values of PSO procedure for Case 2.

2 are implemented in advance, and then Sub-process 3 for
EX0, EX1, and EX2 is performed, respectively. To enhance
the reliability of the predicted output results, a group of
experiments are repeated 10 times, and the 10 groups of
output results are averaged, which are shown in Table 5 for
Case 1 and Table 6 for Case 2. Furthermore, by taking the
output results of a group of experiments as examples, the
distributions of assembly deviations are shown in Figure 18
for Case 1 and Figure 19 for Case 2, and the distributions of
the corresponding 𝜏2 are shown in Figure 20 for Case 1 and
Figure 21 for Case 2.

From Tables 5 and 6 and Figures 18–21, the following is
observed:

(1)As to EX0, except for the output results along X-axis of
Case 2, the mean of DFP is unequal to 0. The DFP NQR and
the corresponding 𝜏2 are unsymmetrically distributed. This
may be because of the following: (a) part 2 (PCS2) drops along
one constant direction to the boundary of feasible solution
space D𝑓𝑎 𝑖𝑛, where the constant direction is related to 𝑌𝑔-
axis; (b) Y𝑓𝑗-axis, 𝑗 = 1, 2, . . . , 𝑁𝑓, is not perpendicular to𝑌𝑔-axis.(2) As to EX1, P𝑞 is the highest. The DFP NQR and
the corresponding 𝜏2 are symmetrically distributed. This
may be due to the normal distribution of 𝜏2 within D𝑓𝑎 𝑖𝑛.
The deviation 𝜏2 in the center of D𝑓𝑎 𝑖𝑛 has much more
probabilities to be selected than the one around the boundary
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Figure 18: Distributions of assembly deviations for Case 1.

Table 1: Output results of experiments for Case 1.

Output result K1 K2 K3
Probability of quality feasibility (Pq) 80.22%

DFP Mean(mm) -0.0208 -0.0235 -0.0243
Standard deviation(mm) 0.0267 0.0255 0.0250

DFP QR Mean(mm) -0.0177 -0.0204 -0.0213
Standard deviation(mm) 0.0242 0.0231 0.0227

of D𝑓𝑎 𝑖𝑛. The former one is more likely to correspond to the
smaller DFP than the latter one.(3) As to EX2, the P𝑞 is the lowest. For the DFP

corresponding to 𝑌𝑓𝑗
𝑓𝑗

(𝜏2) in (23), the standard deviation is
markedly lager than that of EX0 and EX1. These DFP are

bimodal distributed, and the DFP NQR are symmetrically
distributed. Furthermore, the point cloud of 𝜏2 has two
areas of high-density points, and 𝜏2 corresponding to the
DFP NQR are also symmetrically distributed. This may be
because the optimization function in (23) has the form
“max | ⋅ |”. Part 2 may fall along two opposite directions to the
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Figure 19: Distributions of assembly deviations for Case 2.

Table 2: Output results of experiments for Case 2.

Output result X Y
Probability of quality feasibility (Pq) 82.62%

DFP Mean(mm) -0.0010 -0.0402
Standard deviation(mm) 0.0261 0.0263

DFP QR Mean(mm) -0.0010 -0.0400
Standard deviation(mm) 0.0262 0.0261
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Figure 20: Distributions of 𝜏2 for Case 1.

Table 3: A set of deviation sources for Case 1.

Deviation source Coordinates of B𝑖 w.r.t. GCS Coordinates of C𝑖 w.r.t. PCS2 si(mm) X Y x y
Hole B1-pin-Hole C1 194.9787 246.1397 -1305.0518 46.1361 0.0324
Hole B2-pin-Hole C2 2804.9946 246.1302 1305.0297 46.1142 0.0351

boundary of D𝑓𝑎 𝑖𝑛, where the opposite directions are related
to X𝑓𝑗-axis or Y𝑓𝑗-axis, 𝑗 = 1, 2, . . . , 𝑁𝑓.

Certainly the output results of EX0 are significantly
different from that of EX1 and EX2. For the feasible assem-
bly of over-constrained mechanical structure, gravity has a
remarkable impact on gap configuration and then assembly
deviations. The gravity influence in tolerance analysis of over-
constrained assembly cannot be ignored.

6. Conclusions

This paper presents a tolerance analysis method for over-
constrained assembly considering the influence of gravity.
The proposed method contains deviation propagation anal-
ysis and statistical tolerance analysis. The probabilities of
assembly feasibility and quality feasibility can be computed,

and the deviations distributions for feasible assemblies can be
quantified.

The detailed tolerance analysis process is illustrated for
a typical over-constrained mechanical structure with con-
straints of multiple planar hole-pin-hole pairs. This type of
constraints has non-linearity, which increases complexity of
assembly tolerance analysis. In the deviation propagation
analysis, the judgment of assembly feasibility and the cal-
culation of assembly deviations are formulated as a search
problem and an optimization problem, respectively. Due to
the non-linear constraints, it is inefficient and difficult to solve
these problems. In order to improve accuracy and efficiency,
according to characteristic of this type of constraints, the
search and optimization problems are solved by reducing
object dimensionality and narrowing search space, where
the search algorithms, such as sequential search and binary
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Figure 21: Distributions of 𝜏2 for Case 2.

Table 4: A set of deviation sources for Case 2.

Deviation source Coordinates of B𝑖 w.r.t. GCS Coordinates of C𝑖 w.r.t. PCS2 si(mm) X Y x y
Hole B1-pin-Hole C1 450.0372 -0.0106 449.9975 -0.0411 0.1358
Hole B2-pin-Hole C2 422.7972 153.8436 422.8378 153.9293 0.1250
Hole B3-pin-Hole C3 344.7235 289.2612 344.7289 289.2649 0.1273
Hole B4-pin-Hole C4 225.0135 389.7606 225.0130 389.7105 0.1300
Hole B5-pin-Hole C5 78.1725 443.1735 78.1648 443.1337 0.1236
Hole B6-pin-Hole C6 -78.0688 443.2002 -78.1283 443.1470 0.1217
Hole B7-pin-Hole C7 -225.0053 389.6915 -224.9820 389.6781 0.1264
Hole B8-pin-Hole C8 -344.7693 289.2210 -344.6785 289.2782 0.1218
Hole B9-pin-Hole C9 -422.8215 153.9050 -422.8642 153.9120 0.1149
Hole B10-pin-Hole C10 -450.0165 0.0108 -450.0530 0.0023 0.1264
Hole B11-pin-Hole C11 -422.8637 -153.9604 -422.8953 -153.9496 0.1298
Hole B12-pin-Hole C12 -344.7204 -289.2573 -344.6876 -289.2419 0.1211
Hole B13-pin-Hole C13 -224.9730 -389.7477 -224.9676 -389.7089 0.1179
Hole B14-pin-Hole C14 -78.1358 -443.1664 -78.1309 -443.1260 0.1352
Hole B15-pin-Hole C15 78.1410 -443.1581 78.1550 -443.2297 0.1315
Hole B16-pin-Hole C16 224.9878 -389.6686 224.9854 -389.7149 0.1369
Hole B17-pin-Hole C17 344.7059 -289.2523 344.6852 -289.1532 0.1266
Hole B18-pin-Hole C18 422.7669 -153.9629 422.8744 -153.8547 0.1373
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Table 5: Output results of EX0, EX1, and EX2 for Case 1.

Output result EX0 EX1 EX2
Probability of assembly feasibility (Pa) 87.01%
Probability of quality feasibility (Pq) 80.24% 85.26% 73.55%

DFP

Mean(mm)
K1 -0.021 0.000 0.000
K2 -0.023 0.000 0.000
K3 -0.024 0.000 0.000

Standard deviation(mm)
K1 0.026 0.026 0.042
K2 0.026 0.025 0.047
K3 0.025 0.025 0.041

DFP QR

Mean(mm)
K1 -0.018 0.000 0.000
K2 -0.020 0.000 0.000
K3 -0.021 0.000 0.000

Standard deviation(mm)
K1 0.024 0.025 0.036
K2 0.023 0.024 0.042
K3 0.023 0.024 0.035

Table 6: Output results of EX0, EX1, and EX2 for Case 2.

Output result EX0 EX1 EX2
probability of assembly feasibility (Pa) 82.88%
probability of quality feasibility (Pq) 82.61% 82.87% 82.38%

DFP
Mean(mm) X 0.000 0.000 0.000

Y -0.040 0.000 0.000

Standard deviation(mm) X 0.026 0.021 0.025
Y 0.026 0.021 0.058

DFP QR
Mean(mm) X 0.000 0.000 0.000

Y -0.040 0.000 0.000

Standard deviation(mm) X 0.026 0.021 0.025
Y 0.026 0.021 0.058

search, as well as the optimization algorithms, such as PSO
and LP, are used.

The results of the case studies show the following: (a)
the PSO algorithm for the assembly deviation determination
is demonstrated to be quite robust and accurate, thus the
output results of the tolerance analysis are reliable and
accurate enough; (b) for predicting the assembly deviations
of the over-constrained mechanical structure, the influence
of gravity is remarkable and cannot be ignored.

Our main contribution lies in developing a reliable
and accurate method for assembly tolerance analysis with
overconstraints of multiple planar hole-pin-hole pairs, con-
sidering the influence of gravity. Besides gravity, it can be used
to incorporate the influence of other conservative forces into
tolerance analysis of over-constrained assembly as well.

In the proposed method, Monte Carlo simulation (MCS)
is used for the statistical tolerance analysis, due to its general
applicability for implicit and non-linear problem. The accu-
rate and reliable application of the MCS lightly depends on
the number of iterations. The accuracy of prediction can be
improved by increasing the number of iterations at the cost
of computational time. To relieve the required computational
effort, the first-order reliability method (FORM) method
combining with a reasonable linearization strategy for the

non-linear constraints will enable a reasonably accurate
prediction of defect probabilities at a lower computational
effort. However, it should be noted that the loss of accu-
racy of prediction on defect probability would be unavoid-
able.

Furthermore, the proposed method is applied to the two-
dimensional tolerance analysis of over-constrained assem-
blies, but the analytical framework of the proposed method
may be extended to three dimension applications, i.e., for
over-constrained mechanical structure, the assembly feasibil-
ity judgment and the assembly deviation determination con-
sidering the influence of gravity can be modeled as a search
problem and an optimization problem, respectively. For the
three-dimensional case, theDOFs in space instead of the ones
on plane are required to be considered, and the analysis of
assembly requirement is more challenging. Then, the search
and optimization problems for judging assembly feasibility
and determining assembly deviations are more difficult to be
modeled and solved. The authors are already working on the
extension of the method employed in this paper to the three-
dimensional tolerance analysis of over-constrained assembly.
Besides, in future work, part deformation for eliminating the
interference between different parts will also be integrated
into the assembly tolerance analysis.
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