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With regard to developing pavement performance models (PPMs), the existing state-of-the-art proposes Clusterwise Linear
Regression (CLR) to determine the pavement clusters and associated PPMs simultaneously. However, the approach does not
determine optimal clustering to minimize error; that is, the number of clusters and explanatory variables are prespecified to
determine the corresponding coefficients of the PPMs. In addition, existing formulations do no address issues associated with
overfitting as there is no limit to include parameters in the model. In order to address this limitation, this paper proposes a
mathematical program within the CLR approach to determine simultaneously (1) an optimal number of clusters, (2) assignment of
segments into clusters, and (3) regression coefficients for all prespecified explanatory variables required to minimize the estimation
error. The Bayesian Information Criteria is proposed to limit the number of optimal clusters. A simulated annealing coupled with
ordinary least squares was used to solve the mathematical program.

1. Introduction

Typically, pavement performance models (PPMs) are devel-
oped using a two-step approach. First, pavement segments
with similar characteristics are grouped into clusters using
a few critical factors, such as pavement type, age, and traffic
volume. Then, PPMs for each of the clusters are developed
using statistical techniques. The objective of clustering is to
group the pavement segments that perform similarly over
time. However, in practice, the performances of pavement
segments within a cluster differ significantly because clusters
are formed using only a few critical factors [1, 2]. A major
challenge is to select characteristics that define clusters and
the corresponding segments associated with them [3]. If
inappropriate characteristics are used, clusters may include
homogeneous segments with different performance behavior
or heterogeneous segments with similar performance behav-
ior [4]. The prediction accuracy of PPMs can be improved
by subdividing the pavement segments into more uniform

clusters. However, this subdivision is not always possible due
to limited information [1].

Figures 1(a) and 1(b) provide an example of heteroge-
neous performance behavior for two segments, each grouped
within the same cluster (the Prioritization Category), using
the two-step approach and actual data from the Pavement
Management System (PMS) of the Nevada Department of
Transportation (NDOT). Segments “SR445 (SB), MP: 40-
39” and “SR445 (NB), MP: 36-37” were assigned to one
cluster, Prioritization Category 4. Segments “SR156 (WB),
MP: 3-2” and “SR892 (SB), MP: 25-24” were assigned into
Prioritization Category 5.

In contrast, Figure 1(c) illustrates that segments “SR445
(SB), MP: 40-39” and “SR156 (WB), MP: 3-2” had homo-
geneous performance behavior. Similarly, segments “SR892
(SB),MP: 25-24” and “SR445 (NB),MP: 36-37” showed a con-
sistent behavior (see Figure 1(d)). This suggests that factors
other than the Prioritization Category are critical in causing
the differences in performance behavior. Influencing factors

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 2159865, 17 pages
https://doi.org/10.1155/2018/2159865

http://orcid.org/0000-0001-6123-5434
http://orcid.org/0000-0002-1217-9808
http://orcid.org/0000-0002-4852-0211
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/2159865


2 Mathematical Problems in Engineering

Segments with Prioritization Category 4

SR445 (SB), MP: 40-39

SR445 (NB), MP: 36-37

2008 2010 20122006
Collection year

2.0

2.4

2.8

3.2

3.6

PS
I

(a)

Segments with Prioritization Category 5

SR156 (WB), MP: 3-2

SR892 (SB), MP: 25-24

2.0

2.4

2.8

3.2

3.6

PS
I

2008 2010 20122006
Collection year

(b)

Potential Cluster #1

SR156 (WB), MP: 3-2

SR445 (SB), MP: 40-39

2008 2010 20122006
Collection year

2.0

2.4

2.8

3.2

3.6

PS
I

(c)

Potential Cluster #2

SR892 (SB), MP: 25-24

SR445 (NB), MP: 36-37

2.0

2.4

2.8

3.2

3.6
PS

I

2008 2010 20122006
Collection year

(d)

Figure 1: (a) and (b)Heterogeneous performance behavior of pavement segments from the same PrioritizationCategory; (c) and (d) potential
clusters with pavement segments having homogeneous performance behavior. NB: north bound; SB: south bound; WB: west bound; MP:
milepost.

could include subgrade type, traffic loading characteristics, or
any hidden effects.

To address the limitations of the two-step approach,
Spath [5] proposed using Clusterwise Linear Regression
(CLR) to determine clusters and associated regressionmodels
simultaneously. CLR assigns pavement segments that have
similar regression effects on the pavement performance such
that the overall sum of squared errors is minimal. Hence,
CLR minimizes the overall prediction error by simultane-
ously determining the explanatory variables’ coefficients and
assigning each pavement segment into an appropriate cluster.

In the context of pavement management, CLR first was
used by Luo and Chou [1] to model the deterioration
of pavement conditions. First, the pavement network was

clustered by using a few critical pavement characteristics.The
subdivisionwas performed at the data-point level; that is, data
points collected over various years for a pavement segment
could be assigned to multiple clusters. Hence, there was a
chance of pavement segments being associated with multiple
performance models. An additional step was proposed to
predict performance using the results from multiple models.
Later, Luo and Yin [2] expanded their research, using CLR
to formulate the development of pavement distresses. Both
studies [1, 2] used pavement age as the only explanatory
variable.

To address some of the limitations present in the studies
completed by Luo and Chou [1] and Luo and Yin [2],
Zhang andDurango-Cohen [6] developed CLRmodels using
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multiple explanatory variables. Data used in the study were
collected during the AASHO Road Test [7], conducted in the
late 1950s in Ottawa, Illinois. The data were collected from
a single site in a relatively controlled environment; clearly,
the site characteristics were not representative of all other
locations. For example, the data did not represent the varieties
of soil and climatic conditions. In addition, construction
techniques and materials have changed substantially since
this test was conducted. In this study, the number of clus-
ters was determined manually using an “elbow” criterion.
Experiments were run only for a number of clusters equal
to 1, 5, 10, 15, 20, and 25. One possible reason for not
examining all the possible number of clusters might have
been large amount of required computational time given that
an exchange algorithm was utilized with 100 instances with
various initial assignments.

The previous CLRmethods used to estimate PPMs do not
test the explanatory power of variables in both cluster and
regression analyses.That is, all the explanatory variables used
in regressionmodels are assumed to be significant.The effects
of any insignificant explanatory variables on the dependent
variable are also accounted for during assignment of pave-
ment segments into clusters and estimation of the regression
coefficients. The presence of any insignificant explanatory
variables distorts the underlying regression effects of other
significant explanatory variables. This may lead to an incor-
rect assignment of pavement segments into clusters and
estimation of PPMs. Khadka and Paz [8] developed PPMs
using CLR while testing the significance of the explanatory
variables and obtained superior results relative to the case
when significance was assumed.

Another key limitation of the existing CLR is the need to
prespecify the number of clusters. In order to avoid prespec-
ifying the number of required clusters, this study proposes
a mathematical program to simultaneously determine an
optimal number of clusters, the assignment of segments
into clusters, and regression coefficients for all explanatory
variables. This mathematical program is flexible enough to
handle multiple explanatory variables, multiple observations
per pavement segments, and user-defined constraints on
cluster characteristics.

In previous studies using CLR for pavementmanagement
[1, 2, 6], the objective function was to minimize the sum of
squared errors of prediction (SSE). It is intuitive that SSE
decreases monotonically as the number of clusters increases.
That is, for a given dataset, the optimum number of clusters
always is the total number of data points [9]. An optimum
number of clusters are equal to the total number of pavement
segments, and each pavement segment is the sole member of
its own cluster. Such clustering structure is unlikely to provide
statistical reliable models. In addition, SSE always decreases
when a new explanatory variable is added to the model [10].
Usually, this leads to an overfitting problem [11]. Therefore,
SSE is not the best objective function to use for searching an
optimal number of clusters.

Even though SSE decreases as the number of clusters
increases, the rate of improvement diminishes significantly
after a relative optimal [12] number of clusters known as
the elbow point. Increasing the number of clusters beyond

the elbow point provides a very small reduction in SSE. An
SSE versus the number of cluster curve might not exhibit an
elbow point distinctly in all cases. Hence, it could be very
challenging to choose the right number of clusters.

To address these limitations, this study extended the
existing CLR framework by simultaneously (i) incorporating
the Bayesian Information Criteria (BIC) [13] as the objective
function, (ii) finding the optimal number of clusters, and
(iii) finding the maximum number of clusters as required for
model estimation. The BIC penalizes more for the inclusion
of additional parameters relative to the Akaike Information
Criteria (AIC) [14]. The BIC selects simpler models than
the AIC when the sample size is greater than eight [15].
Hence, the optimal number of clusters found using BIC
provides a balance between model complexity and goodness
of fit [16]. On the other hand, several studies showed that
the number of parameters in a model selected using AIC
was overestimated [14, 17–19]. The search process for the
best model specification using BIC has the property of
consistency, which asymptotically selects this model with a
probability of “1” [20–23]. Galimberti et al. [24] used BIC
to propose a unified framework for model-based clustering,
linear regression, and multiple cluster structure detection.

In this study, the data limitations in the existing literature
were addressed using actual field data collected across a
variety of environmental, traffic, design, construction, and
maintenance conditions. Pavement data collected for the past
12 years over the entire State of Nevada were used. This
data included significant variations across a large range of
characteristics, e.g., pavement segments exposed to either
extreme desert heat or to very low winter temperatures in the
mountains.

2. Methodology

2.1. Problem Formulation. This section includes the defini-
tion of a pavement sample, notation and terms, proposed
mathematical program, and a procedure to find upper bound
of the range of the feasible number of clusters.

2.1.1. Definition of a Pavement Sample. The condition of a
pavement segment improves when intervention occurs by
applying an M&R treatment. Such intervention alters the
physical characteristics of the pavement. Hence, the perfor-
mance of a pavement before and after the intervention differs,
even though all other contributing factors remain constant.
In this circumstance, the same pavement segment before and
after intervention should be treated as two different samples.
Given that the physical location of a pavement segment is the
same, a different identifier is required to distinguish the set of
consecutive observations before and after the intervention. In
this study, the term pavement sample is used as an identifier
to uniquely represent the set of consecutive observations that
accounts for historical interventions made on a pavement
segment. Figure 2 provides a simplified depiction of how
consecutive observations of a pavement segment are divided
into two pavement samples.

In this study, a pavement sample, instead of pavement
segment, was considered as a single entity during cluster
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Figure 2: A typical pavement performance curve and a simplified depiction of how the observations of a pavement segments are divided into
two samples.

analysis. Hence, if a pavement segment consists of two or
more pavement samples, these samples could be assigned to
different clusters.

2.1.2. Notation and Terms. The following notation and terms
are used in describing the proposed model:

𝑖 = Subscript for a pavement sample in the network𝐼 = Number of pavement samples in the network,
indexed 1 ≤ 𝑖 ≤ 𝐼𝑡= Subscript for an observation period for a pavement
sample𝑇�푖 = Number of observation periods for a pavement
sample 𝑖, indexed 1 ≤ 𝑡 ≤ 𝑇�푖𝑂 = Total number of observations = ∑�퐼�푖 𝑇�푖 ∀𝑖 ∈ 𝐼𝑗 = Subscript for an explanatory variable𝐽 =Number of explanatory variables, indexed 1 ≤ 𝑗 ≤𝐽𝑘 = Subscript for a cluster𝐾�푚�푎�푥 = Maximum number of clusters𝐾 = Number of optimum clusters

𝑥�푘�푖�푗�푡 = Measurement of an explanatory variable 𝑗 (1 ≤𝑗 ≤ 𝐽) for a sample 𝑖 (1 ≤ 𝑖 ≤ 𝐼) at observation period𝑡 (1 ≤ 𝑡 ≤ 𝑇�푖) that is assigned to a cluster 𝑘 (1 ≤ 𝑘 ≤𝐾�푚�푎�푥)𝑦�푘�푖�푡 =Measurement of dependent variable for a sample𝑖 (1 ≤ 𝑖 ≤ 𝐼) at observation period 𝑡 (1 ≤ 𝑡 ≤ 𝑇�푖) that
is assigned to a cluster 𝑘 (1 ≤ 𝑘 ≤ 𝐾�푚�푎�푥)𝑛 = Minimum number of observations required in a
cluster𝐶�푘 = Set of pavement samples that are assigned to
cluster 𝑘 (1 ≤ 𝑘 ≤ 𝐾�푚�푎�푥)

𝑝�푖�푘 = Cluster membership of a pavement sample 𝑖 to
a cluster 𝑘, ∀1 ≤ 𝑖 ≤ 𝐼, and 1 ≤ 𝑘 ≤ 𝐾�푚�푎�푥.𝛿�푘 = Intercept for regression model in cluster 𝑘 ∀1 ≤𝑘 ≤ 𝐾�푚�푎�푥𝛽�푗�푘 = Slope coefficient for explanatory variable 𝑗 (1 ≤𝑗 ≤ 𝐽) in cluster 𝑘 (1 ≤ 𝑘 ≤ 𝐾�푚�푎�푥)

2.1.3. Mathematical Program. Amajor aspect ofmodel devel-
opment is to identify variables that explain an actual physical
process. Pavement performance models (PPMs) should only
include explanatory variables that affect pavement deterio-
ration. In this study, explanatory variables from the existing
literature were selected. For example, pavement age, traffic
and environmental conditions, and structural and material
properties of pavement were considered as factors affecting
pavement performance [25–28].

PSI was chosen as the dependent variable, 𝑦. PSI serves
as a unified standard and is widely accepted for evaluating
pavement performance, especially in terms of ride quality
[29–31]. In addition, PSI reflects the human rider’s response
and is understood by highway users and legislators [32].
The adopted functional form for the regression model is
expressed as

𝑦�푖�푡 = 𝛽0�푘 + �퐽∑
�푗=1

𝛽�푗�푘 ∗ 𝑥�푖�푗�푡 (1)

This study proposes a mixed-integer, nonlinear mathe-
matical program to determine an optimal number of clusters,
assignment of segments into clusters, and regression coeffi-
cients for all prespecified explanatory variables. The problem
was defined by the optimum number of clusters, 𝐾; the
number of predefined explanatory variables, 𝐽; the number
of pavement samples to be clustered, 𝐼; and the number
of observation periods, 𝑇�푖, associated with each pavement
sample.The formulation partitions pavement samples into an
optimum number of clusters, with a PPM model fit to each
cluster.
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The objective function involved minimization of the BIC
across 𝐾 clusters as expressed by

𝑀𝑖𝑛. 𝐵𝐼𝐶 = 𝑂 + 𝑂 ∗ ln (2𝜋) + 𝑂 ∗ ln(𝑆𝑆𝐸𝑂 )
+ (𝐽𝐾 + 2𝐾 − 1) ∗ ln (𝑂) (2)

Given that BIC is an increasing function of SSE and
free parameters (the number of clusters and regression
coefficients) to be estimated, a clustering with the lowest
BIC provides the optimal solution. Minimizing BIC reduces
unexplained variation in the dependent variable [13]. The
total SSE was calculated using

𝑆𝑆𝐸 = �퐾∑
�푘=1

�퐼∑
�푖=1

�푇𝑖∑
�푡=1

(𝛿�푘 + �퐽∑
�푗=1

𝛽�푗�푘 ∗ 𝑥�푘�푖�푗�푡 − 𝑦�푘�푖�푡)
2 ∗ 𝑝�푖�푘

∀𝑖, 𝑗, 𝑡, 𝑘
(3)

Each cluster was associated with a linear regression model
with predefined explanatory variables. Deviations of pre-
dicted statistics from actual data were calculated separately
for each cluster and summed to obtain the total SSE.

Decision variables to be determined were the coefficients
for all prespecified explanatory variables, 𝛿�푘 and 𝛽�푗�푘; the
optimum number of clusters,𝐾; and the cluster membership,𝑝�푖�푘.

The following constraints were imposed to describe the
proposed problem:

∑
�푘

𝑝�푖�푘 = 1 ∀𝑖 ∈ 𝑖, 𝑘 (4)

𝑝�푖�푘 = {{{
1, 𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀𝑖, 𝑘
(5)

∑
�푖∈�퐶𝑘

𝑇�푖 ≥ 𝑛 ∀𝐶�푘 (6)

1 ≤ 𝑘 ≤ 𝐾�푚�푎�푥 (7)

𝐾�푚�푎�푥 = F (𝐼, 𝑇�푖, 𝑛) (8)

Equations (4) and (5) ensure that each pavement sample
was assigned to exactly one cluster. The indicator 𝑝�푖�푘 equals
1 if and only if a pavement sample 𝑖 belongs to cluster 𝑘.
Otherwise, it takes a value of zero.

Equation (6) describes aminimum-size constraint, which
is imposed to ensure sufficient observations in each cluster
for a statistically reliable estimation of coefficients. The total
number of observations in a cluster is required to be no less
than the minimum number of observations, 𝑛.

Equations (7) and (8) are imposed to determine the
maximumnumber of potential clusters. If a pavement sample
has more than 𝑛 observations, regression over these obser-
vations could generate statistically reliable estimates of the
coefficients. Hence, a cluster could be formed with only

one pavement sample that has more than 𝑛 observations. If
all pavement samples have more than 𝑛 observations, each
pavement sample could form a cluster. In this case, the
maximum number of clusters would be the total number
of pavement samples, 𝐼. However, in reality, it is possible
that none of the pavement samples would have more than 𝑛
observations. In this case, samples would be grouped to form
a cluster at the sample level, but not at the observation level;
that is, observations of a samplemust not be assigned tomore
than one cluster. Equation (8) determines the maximum
number of potential clusters in both cases. Function F in this
constraint represents the following algorithm to determine𝐾�푚�푎�푥. A flowchart for this algorithm is provided in Figure 3.

2.1.4. Proposed Algorithm to Determine 𝐾�푚�푎�푥
Step 1. If the total number of observations, 𝑂, is less than
the minimum number of observations required to form a
cluster, 𝑛, then set 𝐾�푚�푎�푥= zero and go to Step 6. Otherwise,
create a matrix, M, of size (𝜏�푚�푎�푥 x 2) with the following
elements, where 𝜏�푚�푎�푥 is maximum number of observations
of a pavement segment(s) in the dataset:

(a) The first column ofM includes all integer values from
1 to 𝜏�푚�푎�푥.

(b) The second column includes the number of segments
associated with the number of observations.

(c) If no segments have a particular number of observa-
tions in the dataset, then set the second column of the
matrix to zero.

Step 2. If any segment has a number of observations greater
than or equal to 𝑛 (𝑚�휏,1 ≥ 𝑛), then

(a) calculate𝐾�푚�푎�푥 = ∑�휏≥�푛𝑚�휏,2
(b) update𝑚�휏,2 with 0 for 𝜏 ≥ 𝑛
Otherwise, go to Step 3 to find the maximum number of

clusters that could be formed.

Step 3. If the matrix M has all zeros in its second column(∑�휏𝑚�휏,2 = 0), then return 𝐾�푚�푎�푥 = 𝐾�푚�푎�푥 and go to Step 6.
Otherwise,

(a) updateM by removing all rows that have the number
of segments equal to zero (𝑚�휏,2 = 0)

(b) initialize two indices as 𝜔 = 𝜗 = number of rows inM
(c) make a copy of M and let it be represented byM

(d) if the remaining total number of observations(∑�휔�휏=1𝑚�휏,1 ∗ 𝑚�휏,2) is less than 𝑛, then, 𝐾�푚�푎�푥 = 𝐾�푚�푎�푥,
and go to Step 6. Otherwise, initialize 𝑆with the value
of𝑚�휔,1 and𝑚�휔,2 = 𝑚�휔,2 − 1

Step 4. Repeat the following steps until 𝑆 = 𝑛.
Step 4.1. If (𝑚�휗,2 = 0), then 𝜗 = 𝜗 − 1. Otherwise, go to Step
4.3.

Step 4.2. If (𝜗 = 0), then
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Figure 3: Algorithm utilized to calculate the maximum number of potential clusters.

(i) M = M

(ii) set 𝜗 = number of rows of M

(iii) set 𝑛 = 𝑛 + 1
(iv) set 𝑆 = 0

(v) go to Step 4.6

Otherwise, go to Step 4.3.

Step 4.3. If (𝑆 > 𝑛), then
(i) 𝑆 = 𝑆 − 𝑚�휗,1
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(ii) 𝑚�휗,2 = 𝑚�휗,2 + 1
(iii) 𝑆𝑒𝑡 𝜗 = 𝜗 − 1

Otherwise, go to Step 4.6.

Step 4.4. If (𝜗 = 0), then

(i) M = M

(ii) set 𝜗 = number of rows of M
(iii) set 𝜔 = 𝜔 − 1
(iv) set 𝑆 = 0

Otherwise, go to Step 4.6.

Step 4.5. If (𝜔 = 0), then
(i) update both indices 𝜔 and 𝜗 with the number of rows

ofM
(ii) set 𝑛 = 𝑛 + 1
(iii) go to Step 4.6

Otherwise,

(i) set 𝑆 = 𝑚�휔,1
(ii) set𝑚�휔,2 = 𝑚�휔,2 − 1
(iii) go to Step 4.6

Step 4.6. Update 𝑆 with (𝑆 + 𝑚�휗,1) and𝑚�휗,2 with (𝑚�휗,2 − 1).
Step 5. Set 𝐾�푚�푎�푥 = 𝐾�푚�푎�푥 + 1, and go to Step 3.

Step 6. Return the current value of𝐾�푚�푎�푥 and stop.

2.2. Solution to the Mathematical Program. Simulated
annealing (SA) coupled with an ordinary least square (OLS)
algorithm was implemented to solve the above mathematical
program. SA was used to cluster the dataset estimate, 𝑝�푖�푘.
For each accepted neighborhood cluster, OLS was utilized
to estimate the regression coefficients, 𝛿�푘 and 𝛽�푗�푘. The
fitting linear models (lm) function, available in the statistical
software, R, was used to estimate these coefficients [33].
DeSarbo et al. [34] successfully implemented such an
algorithm to solve the CLR problem.

The algorithm utilized to solve the clusterwise multiple
linear regression is described as follows, and illustrated in
Figure 4.

Step 1. Initialization:

Step 1.1. Set 𝐾 = 2, and 𝐵𝐼𝐶�푚�푖�푛 = infinity.

Step 1.2. Set values of initial temperature (𝜃0), final minimum
temperature (𝜃�푚�푖�푛), cooling rate (𝜆), and the maximum num-
ber of neighbors to be generated (𝑁�푚�푎�푥) at each temperature
level. Set the iterator𝑁 = 1.
Step 2. Calculate maximum number of potential clusters,𝐾�푚�푎�푥, utilizing function F as described above, as part of
Constraint 8.

Step 3. Initial estimation of regression coefficients:

Step 3.1. For a given number of clusters, 𝐾, randomly assign
cluster memberships to all pavement samples.

Step 3.2. Count the number of observations of all pavement
samples assigned to each cluster. If all clusters have at least 𝑛
observations, then go to Step 4; otherwise, reassign the cluster
memberships until all clusters have at least 𝑛 observations. Let𝐶�푁�퐾 be the valid initial clusters.

Step 3.3. Estimate 𝛿�푘 and 𝛽�푗�푘 for all 𝐾 clusters using OLS.

Step 4. Evaluate objective function, 𝐵𝐼𝐶�푁�퐾 using (2).
Step 5. Generate a set of neighborhood clusters near to the
previous one, using the following steps.

Step 5.1. Randomly select a prespecified number of pavement
samples (𝑁�푝�푠) to change their memberships.

Step 5.2. For each of the samples selected, assign a new
membership by generating a random number 𝑢 ∼ 𝑈(1,𝐾). If
the new membership is same as the previous one, regenerate
a random number 𝑢�耠 ∼ 𝑈(1,𝐾) until it is different. Repeat
this process until the memberships of all the selected pave-
ment samples are different from those that were previously
assigned.

Step 5.3. Count the total number of observations of all
pavement samples assigned to each cluster.

Step 5.4. If all clusters have at least 𝑛 observations, go to Step
6; otherwise, repeat Steps 5.1., 5.2., and 5.3. until all clusters
have at least 𝑛 observations. Let 𝐶�푁+1�퐾 be a new set of valid
neighborhood clusters.

Step 6. Search for a solution:

Step 6.1. For 𝐶�푁�퐾+1, estimate new 𝛿�푘 and 𝛽�푗�푘 for all 𝐾 clusters
using OLS.

Step 6.2. Evaluate 𝐵𝐼𝐶�푁+1�퐾 using (1).

Step 6.3. Calculate Δ𝐵𝐼𝐶 = 𝐵𝐼𝐶�푁+1�퐾 − 𝐵𝐼𝐶�푁�퐾 .
Step 6.4. Check the following two conditions:

(a) If Δ𝐵𝐼𝐶 < 0, accept the current set of clusters,𝐶�퐾�푁+1, and corresponding 𝛿�푘 and 𝛽�푗�푘. Go to Step 7;
otherwise, go to Step (b).

(b) Generate a random number 𝑢�耠�耠 ∼ 𝑈(0, 1). Calculate
the acceptance probability, 𝑝�푎�푐�푐�푒�푝�푡 = exp(−Δ𝐵𝐼𝐶/(𝐵∗𝑇)), where 𝐵 is a Boltzmann’s constant. If 𝑝�푎�푐�푐�푒�푝�푡 >𝑢�耠�耠, accept the current set of clusters, 𝐶�푁�퐾+1, and
corresponding 𝛿�푘 and 𝛽�푗�푘. Go to Step 7; otherwise,
return to Step 5.

Step 7. Counter and temperature update:
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Step 8. Stopping criteria

Step 7. Counter and temperature update

No No

NoNo

Yes

Yes

Yes

Yes

End

Step 6. Search of a solution

Start

No

K=K+1
Yes

No

Yes

N=N+1

• K=2
Step 1. Initialization

∙ BICmin = Infinity • N = 1
∙ Nmax= 10

Step 2. Maximum number of potential clusters
∙ Calculate the maximum number of potential clusters, Kmax

Step 3. Initial estimation of regression coefficients
∙ Randomly generate valid initial clusters, CN

K

∙ Estimate 0k and jkfor all clusters using OLS

Step 4. Evaluation of an objective function
∙ Evaluate the objective function BICN

K

Step 5. Generation of a set of neighborhood clusters
∙ Randomly generate a set of valid neighborhood clusters, CN+1

K

∙ For CN+1
K , estimate 0k and jkusing OLS

∙ Evaluate the objective function BICN+1
K

∙ Calculate ΔBIC = BICN+1
K − BICN

K

exp (−ΔBIC

B∗
) > u ΔBIC < 0

∙ CN
K= CN+1

K

∙ BICN
K= BICN+1

K

Set N=1
 = ∗

 < min N < Nmax

BICN
K < BICmin

K < Kmax

∙ BICmin= BICN
K

Koptimal = K∙

Generate a
random number 

u~U(0,1)

Figure 4: Algorithm utilized to solve the clusterwise multiple linear regression.

Step 7.1. Repeat Steps 5 and 6 for𝑁�푚�푎�푥 times.

Step 7.2. If 𝜃 < 𝜃�푚�푖�푛, stop the algorithm. Otherwise, reduce
the temperature by multiplying the current temperature by
the prespecified cooling rate, 𝜆, set𝑁 = 1, and go to Step 5.

Step 8. Stopping criteria:

Step 8.1. Update 𝐵𝐼𝐶�푚�푖�푛 with the smallest between the one
obtained in Step 7 and the current 𝐵𝐼𝐶�푚�푖�푛. Set 𝐾�표�푝�푡�푖�푚�푎�푙 equal
to 𝐾.
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Step 8.2. Repeat Steps 3 to 7 for 𝐾�푚�푎�푥 − 1 times.

This algorithm seeks solutions using a probabilistic
approach. The algorithm starts with a high temperature, 𝜃,
and a high probability of accepting a worse solution, 𝑝�푎�푐�푐�푒�푝�푡.
This enables occasional “uphill” moves, which help escape
from the local minima. The algorithm builds up a rough
view of the search space by moving with large step lengths.
As 𝜃 drops, 𝑝�푎�푐�푐�푒�푝�푡 decreases to behave more closely as a
greedy algorithm, with small step lengths slowly focusing
on the most promising solution space. Theoretical studies
have shown that, with infinitely slow cooling, the algorithm
converges to a global minimum [35].

3. Experiment and Results

3.1. Data Resources. Data used in this study were extracted
from the PMS database of NDOT [36]. The data consisted
of various classes, location data, segment data, contract data,
environmental data, traffic data, and pavement condition
data, collected for flexible pavement in the entire State of
Nevada.

A detailed data analysis was performed to check for
inconsistent and missing information in the dataset, and
some were found. Some of the missing data were synthesized
based on associated information available in the dataset. In
preparing the PMS data, the following filters were applied:

(i) Only one-mile segments were selected for consis-
tency.

(ii) Only pavement segments with the most recent main-
tenance contracts awarded in 2001 or later were used
in the study.

(iii) PSI of a pavement should deteriorate over time if no
M&R treatment occurred. If PSI of a segment in any
year increased by 0.1 ormore points from the previous
year without anyM&R treatment, all observations for
that year were excluded from the analysis. However,
if an increase in PSI in any year was less than 0.1
from the previous year, it was assumed to be a random
error during the process of pavement evaluation or
data processing. Therefore, those observations were
included in the analysis.

(iv) If the PSI of any year decreased by one or more points
from the previous year, all observations for that year
were excluded from the analysis.

(v) In practice, the PSI range is between 4.5 and 1.5.
Therefore, if a pavement segment had a PSI beyond
these limits in any year, it was considered an outlier,
and all observations for that year were excluded.

(vi) Only PSI values used were within the interval of the
mean, minus three standard deviations to the mean
plus three standard deviations.

(vii) Pavement samples that did not consist of data regard-
ing conditions for at least two consecutive years were
excluded.

(viii) Data analysis showed that an improvement in PSI was
seen one or two years after the contract award date.
Hence, the age of the pavement sample was set to 0
when the actual improvement occurred rather than
when the contract was awarded.

After data preparationwas completed, 4,138 flexible pave-
ment samples with 17,642 observations were available. For
CLR modelling, 14,637 observations, collected from 2001 to
2010, were used; the remaining 3,005 observations, collected
in 2011 and 2012 (about 17% of the total number), were used as
test dataset to check the accuracy of the CLR models. Tables
1 and 2 provide the descriptive statistics of continuous and
categorical variables used in this paper, respectively.

3.2. Parameters of the Algorithm. Performance of the SA algo-
rithm generally depends on the values of the optimization
parameters utilized for a given problem. To ensure proper
initialization and search for optimal solutions, selection of
the most appropriate parameter values is critical [37, 38]. A
body of literature exists regarding various methodologies for
finding the most appropriate values for annealing parameters
in SA [37, 39–43].

If an SA algorithm is allowed to run for a sufficiently
long time by setting a high initial temperature with a slow
cooling rate, the algorithm performs well, as shown by
Anily and Federgruen [44]. In such a cooling scheme, the
selection of the most appropriate parameter values may not
be critical. However, computation time cannot always be
ignored. Hence, the algorithm has to find a good solution in
a reasonable amount of time [39].

Effective values to be assigned to the optimization param-
eters depend on the type and complexity of the problem.
These values may not be obvious to determine, but rather
might be determined by trial and error for a given problem
[40]. In this study, values assigned to the optimization param-
eters were determined using experience gained fromprevious
research [45–51] that involved SA and other comparable
algorithms. Table 3 lists the parameter values used in this
study.

The minimum number of observations required in a
cluster, 𝑛, is one of the parameters to be defined by the analyst
for each dataset and application as it is required for any
other statistical analysis regarding the minimum sample size.
That is, the proposed methodology and contributions are not
restricted or affected by the sample size.The analystmust have
available sufficient data for each cluster to be able to obtain
reliable estimates. A too small 𝑛 will result in statistically
unreliable models and a potentially time-consuming search
process as the maximum number of feasible clusters; 𝐾�푚�푎�푥
will be very large. In contrast, a too large 𝑛 will result in
insufficient number of clusters required to provide the opti-
mum goodness of fit. Hence, sensitivity analysis is required to
achieve balance between reliable estimates and𝐾�푚�푎�푥.
3.3. Results and Discussion. Given the constraints for feasi-
ble partitions defined in the problem formulation and the
minimum number of observations required in a cluster, 𝑛 =800, the proposed algorithm determined 16 as the maximum
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Table 1: Descriptive statistics for the continuous variables.

Variable Minimum Maximum Mean Std. deviation
psi 1.60 4.57 4.01 0.41
age 0.00 8.00 2.24 2.01
adt 20.00 132000.00 4844.45 9812.57
trucks 1.00 7731.00 862.29 1082.20
elevation 228.60 2667.00 1368.25 415.19
precip 3.94 89.28 19.33 10.10
min temp -6.67 13.33 3.20 4.00
max temp 7.78 31.67 20.31 4.22
wet days 11.00 81.00 42.14 15.67
freeze thaw 0.00 230.00 136.75 51.51
rut depth 0.00 1.60 0.14 0.14

Table 2: Descriptive statistics for the continuous variables.

Variable Category Dummy variable Number of observations Percent
System ID IR - 4,622 31.6

NHS nhs 5,063 34.6
STP stp 4,952 33.8

Number of Lanes 1 - 8,450 57.7
2 lane=2 5,612 38.3≥ 3 lane≥3 575 3.9

Prioritization Category 1 - 5,004 34.2
2 category =2 3,181 21.7
3 category =3 3,118 21.3
4 category =4 1,558 10.6
5 category =5 1,776 12.1

Functional Class 1 - 4,695 32.1
2 f class = 2 107 0.7
3 f class = 3 5,106 34.9
4 f class = 4 2,604 17.8
5 f class = 5 1,830 12.5
6 f class = 6 251 1.7
7 f class = 7 44 0.3

Note: IR, interstate route; NHS, national highway system; STP, Surface Transportation Program.

Table 3: Setup parameters for implementation of the proposed algorithm.

Parameter Value Remarks𝜃0 10 Initial temperature𝜃�푚�푖�푛 10e-17 Final minimum temperature𝐵 3000 Boltzmann constant𝜆 0.97 Cooling rate

𝑁�푚�푎�푥 10 Number of neighborhood solutions generated at each temperature
level𝑛 800 Minimum number of observations required in a cluster

𝑁�푝�푠 25 Number of pavement samples, which memberships were changed to
generate a neighborhood cluster
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number of potential clusters. The algorithm searched for the
optimum number of clusters from 2 to 16. Seven-cluster CLR
models provided the optimum solution with the lowest BIC.
The estimated regression coefficients for the CLR models are
presented in Table 4.

Figure 5(a) shows the smallest BIC for each of the clusters
(𝐾 = 2 to 16) considered in this experiment. Figure 5(b)
shows the trajectory of the objective function, BIC, when the
CLR models were used. The initial value of BIC was 8,502.
After 1,360 iterations, the BIC decreased to 3,008.This change
was equivalent to an improvement of 65%.

It was observed that not all coefficients had associated
p values less than 0.05. In this study, the significance level
was considered to be 5%. As expected, coefficients differed
in magnitude and sign across the clusters, which indicated
that the deterioration patterns of pavement samples varied
among the clusters.However, seven explanatory variables had
the same sign across all clusters.

Different clusters had different numbers of significant
explanatory variables. For example, Cluster 2 had 10 insignif-
icant explanatory variables. In addition, among all seven
clusters, five variables, age, adt, rut depth, category=4, and
category=5, were significant. However, four variables, trucks,
elevation, precip, and category=2, were not significant in four
different clusters.

Trucks play a key role in pavement deterioration because
they transfer heavy loads to the pavement [52]. Hence, it is
expected that variable “trucks” be significant. There could
be various reasons precluding the statistical significance of
this variable. Two of them include (i)multicollinearity effects,
which are not addressed in the existing CLR literature and
motivates the expansion of the framework as recommend
in this paper under future research and (ii) different lanes
mistakenly used to collect pavement performance and truck
traffic data. The data used in this study does not include the
lane used to collect the information.

The performance of the proposed CLR approach was
compared with that of the existing CLR for pavement
management. That is, in this section models estimated using
the proposed approach were compared with those estimated
using the existing CLR [6] described in the Introduction.
Experiments using the existingCLR approachwere run for all
feasible clusters (𝐾 = 2 to 16). Figure 5(c) shows the smallest
SEE for each of these clusters. As expected, SSE decreased
with an increasing number of clusters, but at a very small rate
after 𝐾 = 11. In this case, Figure 5(c) does not exhibit a clear
elbow point. Hence, an optimum number of clusters needed
to be decided by visual inspection while considering the
trade-off between goodness of fit and model complexity (i.e.,
of the number of models and the explanatory variables). This
inherent subjectivity when choosing an optimum number of
clusters is a major drawback for the existing state-of-the-art
CLR approach.

After careful assessment, 11-cluster CLR models were
selected as the optimum solution. Figure 5(d) shows the
trajectory of SSE, when 11-cluster CLRmodels were used, and
Table 5 provides the corresponding regression coefficients.
Similar to the results obtained from the proposed CLR
approach, the coefficients differed in terms of magnitude and

sign. In addition, some coefficients had p values larger than
0.05.

The BIC for these models are provided in Tables 4 and 5.
To compare the goodness of fit, overallBIC values were calcu-
lated. The overall BIC for the seven-cluster models obtained
from the proposed approach was 3,008, whereas the BIC
for 11-cluster models, obtained from the existing approach,
was 3,171. This difference was the result of similar or better
explanatory power provided by the proposed approach with
seven clusters versus 11. That is, the more clusters, the more
coefficients for explanatory variables needed to be estimated
for a similar goodness of fit; thus, the BIC increased.

It is observed that the individual BIC for the 11-cluster
are slightly smaller than those for the seven-cluster models.
Similar to SSE, the more the clusters are used, the smaller the
individual model BIC is. However, this does not necessarily
translate into a smaller overall BIC.

3.4. Model Assessment and Validation

3.4.1. Potential Overfitting. Brusco et al. [53] noted that
clusterwise regression models have great potential for over-
fitting. Often, a variation in the response variable is governed
by clustering. Hence, they recommend investigating the
potential presence of overfitting in CLR models. This study
adopted a procedure proposed by Brusco et al. [53] and the
test dataset to diagnose overfitting. For the optimum seven-
cluster models, the total sum of squares (TSS) was 2,419,
the between-clusters sum of squares (BCSS) was 30, the
within-clusters sum of squares (WCSS) was 2,389, the sum
of squares due to regression (SSR) was 1,456, and the SSE was
933. The BCSS was around 1% of TSS and SSR was 62% of
WCSS. These results indicated that there was no overfitting,
asmost of the variation in PSIwas explained bywithin-cluster
regressions. SSE accounted for 38% of TSS, which suggests
that the models still have a relatively high rate of errors. A
nonlinear functional form should be investigated to reduce
the existing errors.

3.4.2. Model Accuracy. The accuracy of the models obtained
from both approaches was assessed by calculating the overall
root-mean-square error (RMSE), as follows:

𝑅𝑀𝑆𝐸 = √∑�휂1 (𝑦�푘�푖�푡 − 𝑦�푘�푖�푡)2𝜂 (9)

where,

𝑦�푘�푖�푡 = the observed PSI𝑦�푘�푖�푡 = the predicted PSI𝜂 = the number of predictions

Bothmodels were applied to the test dataset. Memberships of
the pavement samples were assigned by mapping the sample
IDs and memberships determined by the CLR models.
Associated regression models and observed data were used
to estimate the PSIs. Predicted PSIs then were compared with
the observed PSIs, as shown in Figure 6. Results indicate
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Figure 5: BIC trend over the number of clusters (a); trajectory of the BIC during optimization for seven-cluster models (b); SSE trend over
the number of clusters (c); and trajectory of the SSE during optimization for eleven-cluster models (d).

that both CLR models overestimated the PSI. A possible
reason might be the existence of multicollinearity among
explanatory variables.

The RMSE for 2011 and 2012 were calculated for models
obtained using both approaches. The RMSE were, respec-
tively, 0.429 and 0.439 for the 11-cluster models estimated
using the existing state-of-the-art and the seven-cluster
models estimated using the proposed CLR approach. The
prediction accuracy of models estimated by the existing
state-of-the-art was slightly higher than that of the model
estimated by the proposed approach. However, this differ-
ence in accuracy is very small. The additional four clus-
ters required 100 parameters corresponding to twenty-five
explanatory variables including the intercept. Hence, seven-
cluster models estimated using the proposed approach were
more parsimonious and preferred over the 11-cluster models.

4. Conclusions

This study proposed and implemented a clusterwise mul-
tiple linear regression to develop pavement performance
models. A mixed-integer nonlinear mathematical program
was formulated to explain the problem. The CLR approach
simultaneously divided pavement samples into an optimum
number of clusters, and estimated a PPM for each cluster.

In the experiments, various environmental factors were
considered as potential explanatory variables, including ele-
vation, annual precipitation, average minimum and maxi-
mum temperatures, the number of wet days, and freeze and
thaw cycles. The proposed approach enabled consideration
of other types of variables, such as economic and social
factors. Formulation of themathematical program developed
in this study supports a number of explanatory variables,
multiple observations per pavement segment, and user-
defined constraints on cluster characteristics.

A simulated annealing coupled with OLS was used
to solve the mathematical program. For the data used in
the experiments, the algorithm found that 7-cluster models
provided the optimum solution. Results obtained from the
proposed CLR models were compared with results obtained
from the state-of-the-art approach. This comparison showed
that the proposed CLR approach performed better than the
state-of-the-art approach in predicting the PSI of pavement
samples.

The analysis showed that overfitting was not an issue for
the resulting clusters and regressionmodels. As expected, the
use of the BIC as an objective function to determine the best
model specification provided a more parsimonious structure
compared with that obtained using SSE. This was a conse-
quence of the consistency property of the BIC [10, 20–23].
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Figure 6: PSI predictions using the test dataset with (a) the proposed CLR approach and (b) the state-of-the-art approach.

5. Future Work

This study did not address all limitations of the state-of-the-
art CLR approach that were discussed in the Introduction of
this paper. The following are potential extensions.

One limitation in this study is related to the error that
likely is caused by including insignificant explanatory vari-
ables during clustering and regression analyses.The proposed
formulation needs to be extended to include only significant
variables. Hence, the CLR models would not be restricted
only to prespecified explanatory variables. Instead, the mod-
els could include cluster-specific significant explanatory vari-
ables. In addition, the multicollinearity among explanatory
variables should be investigated to exclude highly correlated
variables during the model estimation process.

The proposed mathematical formulation was limited
to a linear functional form for PPMs. Luo and Chau [1]
implemented a CLR approach using an exponential form.
However, their study used only pavement age as an explana-
tory variable. An interesting aspect worthy of investigation
would be to explore utilizing the proposed CLR approach by
allowing nonlinear relationships between pavement perfor-
mance measures and multiple explanatory variables.

The proposed SA with the OLS algorithm was designed
to search for a global minimum. However, a large amount of
computational time was required. Hence, another avenue for
future research would be to develop faster and more efficient
combinatorial algorithms that could guarantee global opti-
mality.
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