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This paper is concerned with the vibration-driven system which can move due to the periodic motion of the internal mass and the
dry friction; the system can be modeled as Filippov system and has the property of stick-slip motion. Different periodic solutions
of stick-slip motion can be analyzed through sliding bifurcation, two-parameter numerical continuation for sliding bifurcation is
carried out to get the different bifurcation curves, and the bifurcation curves divide the parameters plane into different regions
which stand for different stick-slip motion of the periodic solution. Furthermore, continuations with additional condition V = 0
are carried out for the directional control of the vibration-driven system in one period; the curves divide the parameter plane into
different progressions.

1. Introduction

Recently, mobile mechanisms that can move due to the
vibration of the internal mass have been widely researched,
and these mechanisms have many advantages over con-
ventional mobile systems (driven by legs, wheels, wings,
etc.), for example, easy fabrication, hermetic structure, and
locomotion in the narrow environment. Thus they have
extensive application in pipeline inspection, life detection in
disaster, and medical endoscopy.

Chernousko [1] first proposed the horizontal motion
of the system driven by the movable internal mass; the
friction which acted on the body is anisotropic, which
means the coefficient of friction in forward and backward
direction is different. The two periodic control modes,
velocity-controlled mode and acceleration-controlled mode,
are constructed for the relative motion of the internal mass,
and optimal parameters of periodic control were decided to
realize the maximum mean velocity of the body. Fang et al.
[2] used the method of averaging to obtain an approximate
expression of the average steady-state velocity when the stick-
slip phenomenon was not considered, optimal parameters of
the internal controlled mass were determined to maximize
the average velocity, and some control strategies were given

to control the motion of system under the stick-slip effect.
Liu et al. [3] studied the vibroimpact capsule system which
has a main body interacting with an internal harmonically
driven mass, when the internal mass contact with the plate
impact occurs, and the parameters for the maximum mean
velocity can be determined through nonlinear dynamics
analysis, the energy consumption was also considered, and
the parameters for the maximum mean velocity and the
minimum energy consumption were not the same. Fang et
al. [4, 5] and Zimmermann et al. [6–8] studied the two and
more modules vibration-driven systems; the approximate
expression of steady-state motion was obtained when the
friction is small and the optimal parameters were got to
achieve the maximum mean velocity. Bolotnik et al. [9]
modeled the system driven by the movable internal mass
which can move in the horizontal direction and the vertical
direction (change the normal force for anisotropic friction
in the different direction). Then the approximate expression
of average steady-state velocity was obtained through the
method of averaging; optimal parameters (the amplitude
and the phase shift of the horizontal and vertical vibration
excitation forces) were determined to realize the maximum
average velocity and to control the direction of motion. In the
paper, we study the model.
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The dry friction plays an important role in vibration-
driven system motion. The systems with dry friction belong
to Filippov piecewise-smooth dynamical systems [10, 11].The
Filippov systems may exhibit different types of limit cycles
caused by the interaction of a trajectory with the boundary of
the sliding regions; the features of Filippov system are called
the sliding bifurcation. Kowalczyk et al. [12] investigated
a dry friction oscillator through numerical continuation of
sliding bifurcation and revealed the codimension two sliding
bifurcation points. Marcel Guardia et al. [13] analytically
considered sliding bifurcations of periodic orbits in the dry
friction oscillator, and the results agreed with the numerical
calculation [12]. Fang et al. [14] studied the vibration-driven
system through sliding bifurcation, and a two-parameter
bifurcation problem was theoretically analyzed. For the
numerical continuation of piecewise-smooth system, the
software SlideCont [15] and TC-HAT [16] based on ATUO
have been developed. Joseph Páez Chávez used the software
TC-HAT to study the bifurcation of somemechanicalmodels,
the nonsmooth Jeffcott rotor [17], the impact oscillator [18],
the piecewise-linear capsule system [19], etc. The continu-
ation toolbox COCO was developed for continuation and
bifurcation analysis of smooth and nonsmooth dynamical
systems [20, 21]; the soft impact oscillator [22] and the
impulsively coupled oscillators [23] were analyzed through
the COCO. In this paper, the COCO will be employed to
numerically study the sliding bifurcation of vibration-driven
system; the sliding bifurcation will help us to understand
the stick-slip property of periodic solution and give some
instructive ideas to design and control the system.

The paper is organized as follows. In Section 2, the model
of the vibration-driven system is described.Themathematical
model of vibration-driven system is studied in detail in order
to perform the numerical analysis by the mean of COCO in
Section 3. Two-parameter sliding bifurcations are analyzed
and the directional control of the vibration-driven system is
tackled by the numerical continuation in Section 4, and some
conclusions are given in Section 5.

2. Modeling of Vibration-Driven System

The vibration-driven system is considered as depicted in
Figure 1. The vibration-driven system is composed of a
rigid body and an internal mass; the rigid body realizes the
translational motion along a straight line in the resistive
environment. The internal mass can move relative to the rigid
body in horizontal and vertical direction.The internal mass is
considered a point mass. Dry friction acts between the rigid
body and the ground.

Two Cartesian reference frames are introduced: the iner-
tial reference frame 𝑂𝑥𝑦 and the coordinate system 𝑂𝜉𝜂
attached to the rigid body. The 𝑥- and 𝜉-axes are horizontal;
the 𝑦− and 𝜂-axes are vertical. We denote 𝑥 as the coordinate
of the point𝑂 in the inertial reference frame𝑂𝑥𝑦, 𝑥 denotes
the displacement of the rigid body, 𝜉 and 𝜂 denote the
coordinates of the internal body in the reference frame𝑂𝜉𝜂,𝑚 and 𝑚1 are the masses of the rigid body and the internal
body, respectively, and 𝑔 is the gravitational acceleration.
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Figure 1: Vibration-driven system.

The dynamics equation of the system along 𝑥−axis can be
governed by Newton’s second laws as follows:

(𝑚 + 𝑚1) �̈� + 𝑚1 ̈𝜉 = 𝐹𝑓, (1)

where 𝐹𝑓 is the frictional force. The force 𝐹𝑓 is described by
Coulomb law:

𝐹𝑓 =
{{{{{{{{{

−𝜇𝐹𝑁 sgn ̇𝑥, 𝑖𝑓 �̇� ̸= 0,
−𝐹0, 𝑖𝑓 �̇� = 0& 𝐹0 ≤ 𝜇𝐹𝑁,
−𝜇𝐹𝑁 sgn𝐹0, 𝑖𝑓 �̇� = 0& 𝐹0 > 𝜇𝐹𝑁,

(2)

where 𝐹0 is the resultant force on the body except for the dry
friction in the horizontal direction, 𝐹𝑁 is the normal force
exerted on the system by the ground, and 𝜇 is the coefficient
of dry friction. The asymmetrical friction in forward and
backwardmotions arises from the time-varying normal force𝐹𝑁. The force 𝐹0 and force 𝐹𝑁 can be expressed:

𝐹0 = −𝑚1 ̈𝜉, (3)

𝐹𝑁 = (𝑚 + 𝑚1) 𝑔 + 𝑚1 ̈𝜂. (4)

The rigid body keeps the contact with the ground; therefore,
the force 𝐹𝑁 must be satisfied the inequality 𝐹𝑁 ≥ 0. So we
have

(𝑚 + 𝑚1) 𝑔 + 𝑚1 ̈𝜂 ≥ 0. (5)

Next, we assume the control acceleration is harmonic
function with the same frequency but shifted in the phase;
particularly,

̈𝜉 = −𝐴 sin𝜔𝑡,
̈𝜂 = 𝐵 sin (𝜔𝑡 + 𝜙) . (6)

Here 𝐴 and 𝐵 are the driving-amplitudes, respectively,𝜔 is the driving-frequency, and 𝜙 is the phase difference
between the forces.
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Substituting (6) into (1)-(5),

𝑀�̈� = 𝐹𝑥 sin𝜔𝑡 + 𝐹𝑓, (7)

𝐹𝑓

=
{{{{{{{{{

−𝜇𝐹𝑁 sgn �̇�, 𝑖𝑓 �̇� ̸= 0,
−𝐹𝑥 sin𝜔𝑡, 𝑖𝑓 �̇� = 0& 𝐹𝑥 sin𝜔𝑡 ≤ 𝜇𝐹𝑁,
−𝜇𝐹𝑁 sgn sin𝜔𝑡, 𝑖𝑓 �̇� = 0& 𝐹𝑥 sin𝜔𝑡 > 𝜇𝐹𝑁,

(8)

𝐹𝑁 = 𝑀𝑔 + 𝐹𝑦 sin (𝜔𝑡 + 𝜙) , 𝐹𝑁 ≥ 0, (9)

where𝑀 = 𝑚 +𝑚1, 𝐹𝑥 = 𝑚1𝐴, and 𝐹𝑦 = 𝑚1𝐵.
To reduce the number of parameters of the system, the

nondimensional variables 𝑥∗ and 𝑡∗ and the parameters 𝜀 and𝛼 are introduced:

𝑥∗ = 𝑀𝜔2
𝐹𝑥 𝑥,

𝑡∗ = 𝜔𝑡,
𝜀 = 𝜇𝑀𝑔

𝐹𝑥 ,

𝛼 = 𝐹𝑦
𝑀𝑔

(10)

Substituting these variables above into (7)-(9) (omit the
asterisks),

�̈� = sin 𝑡 + 𝑓𝑐, (11)

𝑓𝑐 =
{{{{{{{{{

−𝜀𝑓𝑛 sgn �̇�, 𝑖𝑓 �̇� ̸= 0,
− sin 𝑡, 𝑖𝑓 �̇� = 0& |sin 𝑡| ≤ 𝜀𝑓𝑛,
−𝜀𝑓𝑛 sgn sin 𝑡, 𝑖𝑓 �̇� = 0& |sin 𝑡| > 𝜀𝑓𝑛,

(12)

𝑓𝑛 = 1 + 𝛼 sin (𝑡 + 𝜙) , 𝛼 ≤ 1. (13)

The expressions 𝑓𝑐 and 𝑓𝑛 stand for the normalized dry
friction and the normal force, respectively. The parameter 𝜀
represents the ratio of the possible maximum value of the dry
friction force to the amplitude 𝐹𝑥. We assume the value of the
parameter 𝜀 is in the interval (0, 1). Due to periodicity, the
phase difference 𝜙 ranges from 0 to 2𝜋.
3. Modeling of the Vibration-Driven System as
Filippov System

The mathematical model of vibration-driven system can be
defined as a piecewise-smooth system of the Filippov type.
We can transform (11) into vector fields, event functions,
and reset functions through the approach of multisegment
periodic orbits. Let y = (𝑦1, 𝑦2)𝑇 = (�̇�, 𝑡)𝑇 and p = (𝜀, 𝛼, 𝜙)𝑇
represent the state variables of the system and the parameters,
respectively.

The multisegment periodic orbits of the vibration-driven
system consist of two or more segments, which can be
modeled as follows.

Stick: This segment occurs when sin 𝑦2 < |𝜀𝑓𝑛|; the
motion during this segment is governed by the equation

ẏ = 𝑓𝑠 = (01) . (14)

This segment terminates when the resultant force on the
body except for the dry friction equals the threshold of the dry
friction force. The event functions are detected as follows:

ℎ𝑓(y) = sin 𝑦2 − 𝜀(1 +𝛼 sin(𝑦2 +𝜙)) = 0 (transition to
forward slip)
ℎ𝑏(y) = sin 𝑦2 + 𝜀(1 + 𝛼 sin(𝑦2 + 𝜙)) = 0 (transition to
backward slip)

The next segment initial point is defined by the reset
function 𝑔𝑖𝑑(y) = y.

Forward slip: this segment occurs when the force is larger
than the maximum value of the dry friction; that is, sin𝑦2 >𝜀(1 + 𝛼 sin(𝑦2 + 𝜙)); the motion during this segment is
governed by the equation

ẏ = 𝑓𝑓 = (sin 𝑦2 − 𝜀 (1 + 𝛼 sin (𝑦2 + 𝜙))1 ) . (15)

This segment ends when the velocity becomes zero; that
is, ℎ(y) = 𝑦1 = 0. The next segment is connected by the reset
function 𝑔𝑖𝑑(y) = y.

Backward slip: this segment occurs when sin𝑦2 < −𝜀(1 +𝛼 sin(𝑦2 +𝜙)); the motion of the system during this segments
is described by the equation

ẏ = 𝑓𝑏 = (sin 𝑦2 + 𝜀 (1 + 𝛼 sin (𝑦2 + 𝜙))1 ) . (16)

This segment ends when the velocity becomes zero; the
event function is defined: ℎ(y) = 𝑦1 = 0. The next segment is
connected by the reset function 𝑔𝑖𝑑(y) = y.

Stick 2𝜋: this segment is introduced to keep the variable𝑦2 within the interval [0, 2𝜋), when sin 𝑦2 < |𝜀𝑓𝑛|, the motion
of the system is governed by (14), the segment ends whenℎ2𝜋(y) = 2𝜋 − 𝑦2 = 0, and the reset function is

𝑔2𝜋 (y) = ( 𝑦1
𝑦2 − 2𝜋) . (17)

Forward slip 2𝜋: this segment is introduced to keep the
variable 𝑦2 within the interval [0, 2𝜋), when sin𝑦2 > 𝜀(1 +𝛼 sin(𝑦2 + 𝜙)), the motion of the system is governed by (15),
the segment ends when ℎ2𝜋(y) = 2𝜋 − 𝑦2 = 0, and the reset
function is 𝑔2𝜋(y).

Backward slip 2𝜋: this segment is introduced to keep the
variable 𝑦2 within the interval[0, 2𝜋), when sin 𝑦2 < −𝜀(1 +𝛼 sin(𝑦2 + 𝜙)), the motion of the system is governed by (16),
the segment ends when ℎ2𝜋(y) = 2𝜋 − 𝑦2 = 0, and the reset
function is 𝑔2𝜋(y).

A periodic solution of Filippov system can be described
as a sequence of triplet 𝐼𝑖 = (𝑓𝑖, ℎ𝑖, 𝑔𝑖); the segment of
system is governed by the vector field 𝑓𝑖, terminates at the
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event function ℎ𝑖, and connects the next segment by the
reset function 𝑔𝑖. Any periodic trajectory of the system is
described by solution signature {𝐼𝑖}𝑀𝑖=1; 𝑀 is the length of
signature. Therefore the periodic solution of the vibration-
driven can be described by combinations of the seven triplets
corresponding to above statement:

𝐼1 = (𝑓𝑠, ℎ𝑓, 𝑔𝑖𝑑) ,
𝐼2 = (𝑓𝑠, ℎ𝑏, 𝑔𝑖𝑑) ,
𝐼3 = (𝑓𝑓, ℎ, 𝑔𝑖𝑑) ,
𝐼4 = (𝑓𝑏, ℎ, 𝑔𝑖𝑑) ,
𝐼5 = (𝑓𝑠, ℎ2𝜋, 𝑔2𝜋) ,
𝐼6 = (𝑓𝑓, ℎ2𝜋, 𝑔2𝜋) ,
𝐼7 = (𝑓𝑏, ℎ2𝜋, 𝑔2𝜋) .

(18)

In the Filippov system, there are four possible sliding
bifurcations in the limit cycle because of the interaction of
a trajectory with the boundary of a sliding region, includ-
ing crossing-sliding bifurcation, gazing-sliding bifurcation,
switching-sliding bifurcation, and adding-sliding bifurca-
tion. Nondegeneracy conditions for the four sliding bifurca-
tion are given [10, 11].The sliding bifurcation does not change
the number and stability of the system’s solutions, but it will
induce the different interaction between the limit cycle and
the sliding regions.

4. Numerical Bifurcation Analysis

In this section, we will perform the sliding bifurcation and
directional control to analyze the dynamics response of the
vibration-driven system.

4.1. Sliding Bifurcation Analysis. When 𝜀 = 0.6, 𝛼 =0.456, 𝜙 = 2𝜋/3, the periodic trajectory of the motion is
shown by Figure 2. The cycle signature is {𝐼1, 𝐼3, 𝐼4, 𝐼5}. We
start the numerical continuation of the periodic solution by
themethod of path-following using the parameter value as an
initial value. The additional boundary ℎ𝑏(y) = sin 𝑦2 + 𝜀(1 +𝛼 sin(𝑦2+𝜙)) = 0may be applied to the start point of the third
segment for the crossing-sliding bifurcation continuation.We
will use the COCO to carry out the numerical continuation
concerning parameters 𝜙 and 𝜀; the curve 𝑐𝑠1 which is the
result of this numerical continuation is shown in Figure 3.

Similarly, the numerical continuation is performed in
parameter space 𝜙 × 𝜀 with different cycle signatures and
different additional boundary condition for different segment
boundary point and the results are depicted in Figure 3. The
signature of cycle trajectory in 𝐸1 is {𝐼1, 𝐼3, 𝐼5}, when the
additional conditions ℎ𝑏(y) = sin 𝑦2 +𝜀(1+𝛼 sin(𝑦2 +𝜙)) = 0
and cos 𝑦2 + 𝜀𝛼 cos(𝑦2 + 𝜙) = 0 are applied to the point
of the segment 𝐼5 according to nondegeneracy conditions
of adding-sliding bifurcation; hence we can get the adding-
sliding bifurcation curve 𝑎𝑑1. The adding-sliding bifurcation
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Figure 2: Periodic solution of vibration-driven system (11) com-
puted for the parameter values 𝜀 = 0.6, 𝛼 = 0.456, 𝜙 = 2𝜋/3. The
trajectory consists of the segments 𝐼1, 𝐼3, 𝐼4, 𝐼5.
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Figure 3: Two-parameter continuation of sliding bifurcation with
respect to 𝜙 and 𝜀 for 𝛼 = 0.456. 𝑎𝑑𝑖 represent adding-sliding
bifurcations, 𝑐𝑠𝑖 represent crossing-sliding bifurcations, and the
regions 𝐸𝑖 denote the different stick-slip motions of the periodic
solutions.

branch 𝑎𝑑2 is got similarly. The curves 𝑐𝑠1, 𝑐𝑠2, 𝑐𝑠3, and 𝑐𝑠4
represent crossing-sliding bifurcation branches. The sliding
bifurcation curves divide the two parameters plane into eight
regions and there are six different stick-slip periodic solutions
in the parameter plane. The periodic solution of system in𝐸1 with signature {𝐼1, 𝐼3, 𝐼5} is depicted in Figure 4(a), which
means the velocity of the system is always greater than or
equal to 0. The signature of the periodic trajectory in 𝐸2 is{𝐼4, 𝐼2, 𝐼7} as depicted in Figure 4(b), whichmeans the velocity
of the system is always lower than or equal to 0. The velocity
in the two regions does not change its sign; it is important for
the practical application to do some work, such as medical
robot for intestinal therapy. Furthermore, when the velocity
of system changes its sign, the efficiency will decrease because
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Figure 4: The velocity of the vibration-driven system for 𝛼 = 0.456, (a) 𝜀 = 0.8, 𝜙 = 𝜋 in 𝐸1. (b) 𝜀 = 0.8, 𝜙 = 0 in 𝐸2. (c) 𝜀 = 0.8, 𝜙 = 2𝜋/3
in 𝐸3. (d) 𝜀 = 0.6, 𝜙 = 2𝜋/3 in 𝐸4. (e) 𝜀 = 0.6, 𝜙 = 5𝜋/3 in 𝐸5. (f) 𝜀 = 0.2, 𝜙 = 2𝜋/3 in 𝐸6.

of more energy dissipated by opposite slip. The limit cycle of
system in𝐸3 can be described by the signature {𝐼1 , 𝐼3, 𝐼2, 𝐼4, 𝐼5}
depicted in Figure 4(c). The signature of periodic solution in𝐸4 is {𝐼1, 𝐼3, 𝐼4, 𝐼5} showed in Figure 4(d); the signature of the

periodic solution in𝐸5 is {𝐼4, 𝐼3, 𝐼1, 𝐼7} depicted in Figure 4(e).
The cyclic signature in Figure 4(f) is {𝐼4, 𝐼3, 𝐼7}.

The result of two-parameter continuation for the sliding
bifurcation with respect to the parameters 𝜙 and 𝜀 by fixing
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Figure 5: Two-parameter continuations of sliding bifurcation with respect to 𝜙 and 𝜀 for different parameter 𝛼: (a) 𝛼 = 0.2; (b) 𝛼 = 0.45; (c)𝛼 = 0.7; 𝑎𝑑𝑖 represent adding-sliding bifurcations, 𝑐𝑠𝑖 represent crossing-sliding bifurcations, and the regions 𝐸𝑖 denote the different stick-slip
motions of the periodic solutions.

different value 𝛼 ((a) 𝛼 = 0.2; (b) 𝛼 = 0.45; (c) 𝛼 = 0.7)
is shown in Figure 5. The regions 𝐸3 and 𝐸6 are shrinking
and the regions 𝐸1, 𝐸2, 𝐸4, and 𝐸5 are expanding as the 𝛼
increases. Therefore it is easy to realize directional motion
in 𝐸1 or 𝐸2 through changing the parameters when the
parameter 𝛼 increases.

We carry out the numerical continuation with respect to
the parameters 𝜀, 𝛼 in [0, 1] × [0, 1] for the different 𝜙 and
the results are depicted in Figure 6 ((a) 𝜙 = 𝜋/3; (b) 𝜙 =2𝜋/3; (c) 𝜙 = 4𝜋/3). The periodic solutions in region 𝐸𝑖 in
Figures 3 and 6 have the same stick-slip motion; the curve𝑠𝑠1 represents the switching-sliding bifurcation branch. As
shown from Figure 6, there are different regions of stick-slip
motion of system in the parameter plane when 𝜙 is different;
the motion in 𝐸2 which is always equal to or lower than 0 can
be realized by changing the parameter 𝜀 and 𝛼when 𝜙 = 𝜋/3,
but the motion in 𝐸1 could not happen no matter the value
of 𝜀 and 𝛼. The velocity of system which is always equal to
or larger than zero can be controlled through changing the

parameter when 𝜙 is 2𝜋/3 or 4𝜋/3. Therefore the value of 𝜙 is
important for realizing directional motion.

The numerical continuation for the parameters 𝜙,𝛼 in the[0, 2𝜋]× [0, 1] by fixing the value of the parameter 𝜀 is carried
out and the results are depicted in Figure 7. From Figure 7,
there are no regions 𝐸1 and 𝐸2 in the parameter plane when𝜀 = 0.4, but the regions 𝐸1 and 𝐸2 appear in the parameter
plane as 𝜀 increases to 0.6; the regions 𝐸1 and𝐸2 expand when𝜀 = 0.8.
4.2. Directional Control. Based on the above analysis, we can
see that the direction of the system progression in one period
can be forward (the region 𝐸1 in Figure 3) or backward (the
region 𝐸2 in Figure 3) owing to different parameters.

The average velocity of the system in one period is

V = 1
𝑇 ∫𝑇
0
𝑦1 (𝑡) 𝑑𝑡. (19)
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Figure 6: Two-parameter continuation of sliding bifurcation with respect to 𝜀 and 𝛼 for different 𝜙: (a) 𝜙 = 𝜋/3; (b) 𝜙 = 2𝜋/3; (c) 𝜙 = 4𝜋/3;𝑎𝑑𝑖 represent adding-sliding bifurcations, 𝑐𝑠𝑖 represent crossing-sliding bifurcations, 𝑠𝑠𝑖 represent switching-sliding bifurcations, and the
regions 𝐸𝑖 denote the different stick-slip motions of the periodic solutions.

The regions of different directional progression in one period
can be determined by implementing the parameters continu-
ation of the periodic solution with additional condition V = 0.

When 𝛼 = 0.456, there are six different stick-slip period
solutions in the parameter plane in Figure 3; two parameters𝜙, 𝜀 can be continued numerically based on different period
solutions with the additional condition V = 0. The result
is presented in Figure 8. The curves divide the parameters
into three regions: forward drift (V > 0), backward drift
(V < 0), and zero drift (V = 0, on the curves). They are
shown in Figures 9(a), 9(b), and 9(c), respectively. According
to Figure 8, it can be seen that, for any value of the parameter𝜀, the direction of system progression can be controlled by
changing the phase 𝜙, the direction of progression is forward
when 𝜙 is in (𝜋/2, 𝜋), and the direction of progression is
backward when 𝜙 is in (3𝜋/2, 2𝜋). When 0.7239 < 𝜀 < 1, the
direction of progression is forward when 𝜙 is in (𝜋/2, 3𝜋/2);
and the direction of progression is backward when 𝜙 is in(0, 𝜋/2) and (3𝜋/2, 2𝜋).

When 𝜙 = 2𝜋/3, there is no solution with additional
condition V = 0 in the parameter 𝜀 − 𝛼 plane, which indicates

that the direction of the progression does not change. The
direction of the progression is forward because the average
velocity is larger than zero in the region 𝐸1 seen from
Figure 6(b).

When 𝜀 = 0.6, the parameter 𝜙-𝛼 plane for directional
continuation is presented in Figure 10, some conclusions
are draw from Figure 10 similarly: for any parameter 𝛼,
the direction of system progression can be controlled by
changing the phase 𝜙; the direction of progression is forward
when 𝜙 is in (𝜋/2, 4.4211); and the direction of progression
is backward when 𝜙 is in (3𝜋/2, 2𝜋) and (0, 1.2795). When0 < 𝛼 < 0.2278, the direction of progression is forward
when 𝜙 is in (𝜋/2, 3𝜋/2); and the direction of progression is
backward when 𝜙 is in (0, 𝜋/2) and (3𝜋/2, 2𝜋).
5. Conclusions

This paper studies the dynamical response of the vibration-
driven system which is composed of a body with movable
internal mass. The asymmetry of friction in forward and
backward direction is essential to the motion of system,
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Figure 7: Two-parameter continuation of sliding bifurcation with respect to 𝜙 and 𝛼 for different 𝜀: (a) 𝜀 = 0.4; (b) 𝜀 = 0.6; (c) 𝜀 = 0.8; 𝑎𝑑𝑖
represent adding-sliding bifurcations, 𝑐𝑠𝑖 represent crossing-sliding bifurcations, 𝑠𝑠𝑖 represent switching-sliding bifurcations, and the regions𝐸𝑖 denote the different stick-slip motions of the periodic solutions.
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Figure 8: Two-parameter continuations of the periodic orbits for
the parameter 𝛼 = 0.456. The average velocity is zero along the
curves in the plane.

which arises from the normal force change due to the vertical
motion of the internal mass. The vibration-driven system
involving dry friction belongs to the Filippov system, the
cycle trajectory of the system can be divided into smooth
segments, the event functions defined the terminal point
of the segments, and the reset functions connected the
segments. We take advantage of the software COCO to carry
out the bifurcation analysis.

Two-parameter sliding bifurcations are carried out by
performing the numerical continuation. Different period
solutions of stick-slip motion are obtained though the sliding
bifurcation curves. For directional control of the vibration-
driven system, the drift of the vibration-driven system in one
period may change sign, the continuation with additional
condition V = 0 is carried out in the parameters plane, and the
curves are obtained. The curves divide the parameters plane
into three modes of drift (backward, forward, and zero). So
the direction of the vibration-driven system progression can
be controlled by changing the parameters.
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Figure 9: The progression of the vibration-driven system for (a) 𝜀 = 0.5, 𝛼 = 0.456, 𝜙 = 𝜋/2; (b) 𝜀 = 0.5, 𝛼 = 0.456, 𝜙 = 3𝜋/2; (c)𝜀 = 0.4271, 𝛼 = 0.456, 𝜙 = 1.1121.
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Figure 10: Two-parameter continuation of the periodic orbits for
the parameter 𝜀 = 0.6. The average velocity is zero along the curves
in the plane.

The particular contribution of this research is the numer-
ical continuation of the parameters for the vibration-driven
system and detailed classifications of parameter space where
different system dynamic behaviors can be obtained. The
bifurcation analysis improves our understanding of the
dynamical behaviors of the vibration-driven system and is
of benefit to devise control strategies for the vibration-driven
system.
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[19] J. Páez Chávez, Y. Liu, E. Pavlovskaia, and M. Wiercigroch,
“Path-following analysis of the dynamical response of a
piecewise-linear capsule system,” Communications in Nonlinear
Science and Numerical Simulation, vol. 37, pp. 102–114, 2016.

[20] H. Dankowicz and F. Schilder, “An Extended Continuation
Problem for Bifurcation Analysis in the Presence of Con-
straints,” Journal of Computational and Nonlinear Dynamics,
vol. 6, no. 3, 2011.

[21] H. Dankowicz and F. Schilder, Recipes for continuation, Society
for Industrial and Applied Mathematics, Philadelphia, Pennsyl-
vania, 2013.

[22] H. Jiang and M. Wiercigroch, “Geometrical insight into non-
smooth bifurcations of a soft impact oscillator,” IMA Journal of
Applied Mathematics, vol. 81, no. 4, pp. 662–678, 2016.

[23] H. Jiang, Y. Liu, L. Zhang, and J. Yu, “Anti-phase synchro-
nization and symmetry-breaking bifurcation of impulsively
coupled oscillators,” Communications in Nonlinear Science and
Numerical Simulation, vol. 39, pp. 199–208, 2016.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

