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For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes
asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and
stabilization are addressed for affine switched systems, and several definitions and sufficient conditions are proposed to study FTB
and𝐻∞ performance. At first, the definition of FTB for affine switched systems is improved concerning the affine terms andmultiple
equilibria. Based on the FTB definition, sufficient conditions ensuring finite-time boundedness for affine switched systems under
a prespecified state boundary are given. Then the results are extended to solve 𝐻∞ finite-time boundedness problem, in which
the𝐻∞ controllers are designed to guarantee the finite-time boundedness of affine switched system with𝐻∞ performance. In our
investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several
numerical examples are given to illustrate the effectiveness of the proposed results.

1. Introduction

Switched systems are distinctive subclass of hybrid sys-
tems. They are composed of a family of continuous-time
or discrete-time subsystems with a criterion that rules the
switching among them. This switching rule can be clas-
sified as time-dependent, state-dependent, or time-state-
dependent [1]. Since many physical processes possess switch-
ing nature, and many real-world applications resort to
switching strategy to improve the control performance, the
theory and application of switched systems have received a
great attention during the recent decades. For more details
on the recent results about the basic problems in stability
and stabilization for switched systems, readers are referred
to surveys [2–4] and books [1, 5] and the references cited
therein.

The issue of stability analysis and stabilization is an
important topic for switched dynamical systems [6–10]. Find-
ing sufficient conditions ensuring the Lyapunov asymptotic
stability dealing with infinite time interval has been themajor
concern for switched systems. Numerous published results
discussed the asymptotic stability analysis and stabilization

employing different variations of Lyapunov function [7, 11,
12]. Average dwell-time approach [13, 14] and Lie-algebraic
condition technique [15, 16] are effective tools for analysis of
switched systems. On the contrary, the finite-time behavior
of dynamical systems is also of interest in many practical
applications. It concerns that the states do not exceed a
certain bound during a fixed time interval, e.g., to avoid
saturations or excitation. The theory of finite-time stability
(FTS) and finite-time boundedness (FTB) focuses on the
transient response of dynamical systems over a finite-time
interval, while asymptotic behavior is for infinite time. In the
survey of recent development of this innovative theory, some
necessary and sufficient conditions for finite-time stability
and stabilization of continuous-time systems or discrete-
time systems have been provided in [17, 18]. Based upon it,
necessary and sufficient conditions for finite-time stability of
systems with impulsive effects were obtained in [19, 20]. The
authors [21, 22] applied FTS/FTB conceptions to switched
systems and compared the conservativeness among differ-
ent conditions. In [23], the mixed 𝐻∞/finite-time stability
control problem was discussed. For quadratic input-output
finite-time stability with an 𝐻∞ bound, [23] provided a
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necessary and sufficient condition. Then the method was
extended to robust 𝐻∞ controller and filter design for
switched system with exogenous noise [24, 25]. It should
be noted that finite-time stability and Lyapunov asymptotic
stability are independent concepts: a Lyapunov asymptotic
stable system may not fulfill FTS/FTB criteria since the
transient response of a system may exceed the bound, and
vice versa [26]. In many practical applications, switching
is likely to occur in some short-time intervals, whereas for
remaining long time no switching occurs. Since Lyapunov
stability concerns with infinite time, it may not be influenced
by such short-time switching. However, the boundedness of
state may be affected by the switching. Hence, FTB criteria
are needed to be considered for designing controller and
switching laws during such applications.

Most of the existing literatures on stability issues of
switched systems are based on the premise that all subsystems
share a common equilibrium (typically the origin). On the
other hand, for affine switched system, subsystems have
different equilibria, so complex and interesting phenomena
emerge. Almost all the practical hybrid systems can be
modeled as affine switched systems.Many results like [27–30]
analyzed interesting behaviors similar to those of asymptot-
ically stable systems near an equilibrium for affine switched
systems and depicted their real-world applications. Many
extensions of the conventional stability concepts have been
obtained for affine switched systems. S-Procedure method
with the extensional state vector has been proposed in
[31, 32] to analyze the asymptotic stability for continuous
affine switched system. The relative results were extended to
discrete affine switched systems in [33]. In [34], a method
for designing switching rules driving the state of affine
switched system to a desired equilibrium was investigated.
Almost all the existing literatures on stability analysis of
affine switched systems focused on the asymptotic stability.
However, the boundedness of state for affine switched systems
under constrained dwell-time switching is also of significant
interest for affine switched systems. In FTB analysis, we also
need to deal with affine terms leading to multiple equilibria
for affine switched systems, but the investigation of this
problem lacks researchers’ interest previously. Potential of
affine switched systems theory and importance of finite-
time transient behavior from the perspective of real-world
applications are the major motivations for this investigation
presented in this paper.

The main objective in this paper is to find sufficient
conditions ensuring the FTB of affine switched systems by
switching signal and feedback controllers design and to drive
the state of affine switched system to the prescribed neighbor-
hood of a desired equilibrium during a finite-time interval.
Taking into account the influence of affine terms on FTB for
affine switched system, we propose an innovative FTB con-
cept. Based on this definition, sufficient conditions ensuring
the affine switched system finite-time bounded are proposed.
Specifically, with the prespecified state boundary, average
dwell time and state-feedback controllers for each subsystem
are determined to guarantee the finite-time boundedness.
The paper [22] points out that the more information about
switching signal we know, the less conservative results can

be derived. We extend this idea to switched affine systems
to further reduce the conservatism. Classifying subsystems
into asymptotically stable and unstable systems, we get the
less conservative results of finite-time boundedness for affine
switched system with the help of additional information of
switching signal. Then, results are extended to solve the FTB
problem for𝐻∞ controller design.

The rest of this paper is organized as follows. In Section 2,
definitions of finite-time boundedness and 𝐻∞ finite-time
boundedness for affine switched system are revisited. Based
on these definitions, finite-time boundedness analysis and
finite-time stabilization are presented in Section 3. Then in
presence of exogenous signals, 𝐻∞ finite-time boundedness
and the controllers design are investigated in Section 4. In
Section 5, several numerical examples are presented to vali-
date the proposed results. Conclusions are given in Section 6.

2. Preliminaries and Problem Formulation

For our investigation, we consider continuous-time affine
switched system described as

𝑥̇ (𝑡) = 𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡) + 𝑏𝑖, 𝑥 (0) = 𝑥0
𝑦 (𝑡) = 𝐶𝑖𝑥 (𝑡) (1)

where 𝑥(𝑡) ∈ R𝑛 is the system state, 𝑢(𝑡) ∈ R𝑚 is the control
input, 𝑦(𝑡) ∈ R𝑞 is the measurement output, 𝐴 𝑖, 𝐵𝑖, and 𝐶𝑖
are systemmatriceswith appropriate dimensions, constants 𝑏𝑖
are affine terms, and 𝑖(𝑡) : R+ 󳨀→ 𝐼 = {1, ⋅ ⋅ ⋅ , 𝑚} is switching
signal. For notational simplicity, we use 𝑖 in place of 𝑖(𝑡).

Matrix variables 𝐴 𝑖, 𝐵𝑖, and 𝑏𝑖 give rise to an equilibrium
(stable or unstable) for each subsystem; assuming all 𝐴 𝑖 to be
nonsingular, we consider a given reference 𝑥𝑟 as the required
equilibrium for the whole system, referred to as switched
equilibrium. Without loss of generality, it is assumed that
the desirable equilibrium is different from all the equilibria
of subsystems. Now although the asymptotic stability of
affine switched system may be achieved by other types of
switching strategy such asmin-switching and slidingmethod,
the state will not exactly converge to 𝑥𝑟 under dwell-time
constrained switching. The reason is that there always exist
time interval (dwell time is always greater than zero) in which
state must diverge from 𝑥𝑟. In our FTB investigation, we
provide solution for boundedness of error state under dwell-
time switching, which depicts the importance and innovation
of our approach.

Here first we will extend the FTS and FTB concepts for
affine switched systems keeping in view prescribed equilib-
rium 𝑥𝑟. In absence of control input, system (1) can be stated
as

𝑥̇ (𝑡) = 𝐴 𝑖𝑥 (𝑡) + 𝑏𝑖, 𝑥 (0) = 𝑥0 (2)

Definition 1. Autonomous affine switched system (2) is said
to be finite-time bounded with respect to (𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇)
if the following inequalities hold:
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(𝑥0 − 𝑥𝑟)𝑇 𝑅𝑒 (𝑥0 − 𝑥𝑟) ≤ 𝛿2𝑒
𝑘𝑇max𝑅𝜔𝑘max ≤ 𝛿2𝜔

𝑡 = 0
(𝑥 (𝑡) − 𝑥𝑟)𝑇 𝑅𝑒 (𝑥 (𝑡) − 𝑥𝑟) ≤ 𝜀2 0 < 𝑡 ≤ 𝑇

(3)

where 𝑘max = argmax𝑖=1,⋅⋅⋅ ,𝑚{𝑘𝑇𝑖 𝑅𝜔𝑘𝑖}, 𝑘𝑖 = 𝐴 𝑖𝑥𝑟 +𝑏𝑖, 0 ≤ 𝛿𝑒 <𝜀, 𝛿𝜔 ≥ 0, 𝑅𝑒 > 0, 𝑅𝜔 > 0, and 𝑇 ∈ R+.

Remark 2. Given equilibrium 𝑥𝑟 and system (2), its tracking
error system can be written as

̇𝑒 (𝑡) = 𝐴 𝑖𝑒 (𝑡) + 𝑘𝑖 (4)

where 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑟, 𝑘𝑖 = 𝑏𝑖 + 𝐴 𝑖𝑥𝑟. According to
Definition 1, we can conclude that affine switched system (2)
is finite-time bounded with respect to (𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇) if𝑒(𝑡)𝑇𝑅𝑒𝑒(𝑡) ≤ 𝜀2whenever 𝑒𝑇0𝑅𝑒𝑒0 ≤ 𝛿2𝑒 and 𝑘𝑇max𝑅𝜔𝑘max ≤ 𝛿2𝜔.
The FTB criteria of affine switched systems ensure the state
tracking the desired equilibrium 𝑥𝑟 within the boundary 𝜀.
In other words, it guarantees the error state 𝑒(𝑡) tracking the
origin in finite-time interval. Therefore, our study about FTB
of affine switched systems can be turned into analyzing its
corresponding tracking error system. Moreover, it is worth
noting that FTB theory for general switched systems is related
to initial state 𝑥0 [35, 36]; whereas for affine switched systems,
we are concerned with 𝑥0 as well as the desired equilibrium𝑥𝑟 and affine terms 𝑏𝑖. Thus, in the Definition 1, the premise
constraint conditions are extended to both initial state 𝑥0 and𝑘𝑖 to analyze the FTB of affine switched systems, where 𝑘𝑖 is
related to the desired equilibrium 𝑥𝑟 and affine terms 𝑏𝑖.
Remark 3. With the state-feedback controller 𝑢(𝑡) = 𝐾𝑖𝑥(𝑡),𝑖 ∈ 𝐼, affine switched system (1) can be rewritten into the
following closed-loop system:

̇𝑥 (𝑡) = 𝐴𝑖𝑥 (𝑡) + 𝑏𝑖, 𝑥 (0) = 𝑥0 (5)

where 𝐴𝑖 = 𝐴 𝑖 + 𝐵𝑖𝐾𝑖 and the FTB analysis method can be
used directly. Similar to the significant impact of switching
laws on asymptotic stability, the switching signals affect the
finite-time boundedness of affine switched systems property
significantly. Therefore, both switching signals and robust
controllers should be designed during the FTB analysis of
affine switched systems.

On the other hand, external disturbances are inevitable to
dynamical systems. We can state affine switched system with
time-varying disturbance 𝜔(𝑡) as

𝑥̇ (𝑡) = 𝐴 𝑖𝑥 (𝑡) + 𝐵𝑖𝑢 (𝑡) + 𝐺𝑖𝜔 (𝑡) + 𝑏𝑖, 𝑥 (0) = 𝑥0 (6)

𝜔(𝑡) is assumed to be energy-bounded and hence for some
scalar 𝑑 > 0 it satisfies the inequality ∫𝑇

0
𝜔𝑇(𝑡)𝜔(𝑡)𝑑𝑡 ≤ 𝑑2.

For simplifying FTB analysis, following Definition 1 we can
transform affine switched system (6) to its error tracking
switched system as

̇𝑒 (𝑡) = 𝐴 𝑖𝑒 (𝑡) + 𝐵𝑖𝑢 (𝑡) + 𝐺𝑖𝜔 (𝑡) + 𝑘𝑖 , 𝑥 (0) = 𝑥0
𝑧 (𝑡) = 𝐶𝑖𝑒 (𝑡) + 𝐷1𝑖𝑢 (𝑡) + 𝐷2𝑖𝜔 (𝑡) (7)

where 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑟, 𝑘𝑖 = 𝐴 𝑖𝑥𝑟 + 𝑏𝑖, 𝑥𝑟 is the desirable
reference point, 𝑧(𝑡) ∈ R𝑞 is the controlled output, and
the switched equilibrium of system is moved to the origin
accordingly. Considering state-feedback controller 𝑢(𝑡) =𝐾𝑖𝑥(𝑡), we derive the following closed-loop switched system:

̇𝑒 (𝑡) = 𝐴𝑖𝑒 (𝑡) + 𝐺𝑖𝜔 (𝑡) + 𝑘𝑖, 𝑥 (0) = 𝑥0
𝑧 (𝑡) = 𝐶𝑖𝑒 (𝑡) + 𝐷2𝑖𝜔 (𝑡)

(8)

where 𝐴𝑖 = 𝐴 𝑖 + 𝐵𝑖𝐾𝑖, 𝐶𝑖 = 𝐶𝑖 + 𝐷1𝑖𝐾𝑖. Now we are able to
state the following definition.

Definition 4. For affine switched system (7), considering
state-feedback controller 𝑢(𝑡) = 𝐾𝑖𝑥(𝑡) andH∞ performance
index 𝛾 > 0, if the following two conditions are satisfied:

(1) the closed-loop error tracking switched system (8) is
finite-time bounded;

(2) under zero-initial condition, the controlled output 𝑧
satisfies the inequality

∫𝑇
0
𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡 < 𝛾2∫𝑇

0
𝜔̃𝑇 (𝑡) 𝜔̃ (𝑡) 𝑑𝑡

< 𝛾2∫𝑇
0
(𝜔𝑇 (𝑡) 𝜔 (𝑡) + 𝑘𝑇max𝑘max) 𝑑𝑡

(9)

where 𝜔̃(𝑡) = [𝜔𝑇(𝑡) 𝑘𝑇𝑖 ]𝑇, 𝑘max = argmax𝑖=1,⋅⋅⋅ ,𝑚{𝑘𝑇𝑖 𝑅𝜔𝑘𝑖},
then 𝑢(𝑡) is called ‘finite-time𝐻∞ controller’.

Assuming 𝑢(𝑡) = 0, 𝑘𝑖 = 0 system (7) is expressed as

̇𝑒 (𝑡) = 𝐴 𝑖𝑒 (𝑡) + 𝐺𝑖𝜔 (𝑡) , 𝑥 (0) = 𝑥0
𝑧 (𝑡) = 𝐶𝑖𝑒 (𝑡) + 𝐷2𝑖𝜔 (𝑡) (10)

Now Definition 4 can be reduced to the following form.
Switched system (10) is said to beH∞ finite-time bounded

with performance index 𝛾, if
(1) the error tracking switched system (10) is FTB;
(2) under zero-initial condition, the controlled output 𝑧

satisfies

∫𝑇
0
𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡 < 𝛾2 ∫𝑇

0
𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡 (11)

Based upon the above preliminaries we will focus on
how to find sufficient conditions to ensure the finite-time
boundedness of affine switched systems and address the𝐻∞ analysis and synthesis of piecewise linear state-feedback
controllers resorting to LMI-based algorithms. The main
problems we concern in this paper can be stated as follows.

Problem 5 (finite-time boundedness for affine switched
systems). Given affine switched system (2), find sufficient
conditions ensuring the finite-time boundednesswith respect
to (𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇).
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Problem 6 (state-feedback stabilization under FTB). Given
affine switched system (1), find set of static state-feedback
controllers 𝑢(𝑡) = 𝐾𝑖𝑥(𝑡) to ensure that the closed-
loop system (5) is finite-time bounded with respect to(𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇).
Problem 7 (𝐻∞ performance and controller design). Given
affine switched system (8), analyze the 𝐻∞ performance
and design set of 𝐻∞ controllers defined in Definition 4
to ensure the finite-time boundedness with respect to(𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇) and reduce the effect of the exogenous
signal 𝜔 and 𝑘𝑖 on the controlled output 𝑧 to a prescribed level𝛾.
3. Finite-Time Boundedness and
State-Feedback Stabilization

In this section, Problems 5 and 6 are taken into consideration.
Our main aim is to find sufficient conditions and state-
feedback controllers to ensure the finite-time boundedness
of affine switched system in the form of (2). For a finite-
time interval [0, 𝑇], we consider finite switchings 𝑘[0,𝑇]. Each
subsystem has an (stable or unstable) equilibrium point 𝑥𝑟𝑖 =−𝐴−1𝑖 𝑏𝑖. Regarding reference point 𝑥𝑟 as an equilibrium point
for the whole system called switched equilibrium and taking
into account average dwell time, we will derive sufficient
conditions ensuring finite-time boundedness.

Theorem 8. Affine switched system (2) is finite-time bounded
with respect to (𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇), if there exist positive
definite matrices 𝑃𝑖, scalars 𝛼, 𝛽 > 0, 𝜉 ≥ 0, such that

𝛼𝑅𝑒 < 𝑃𝑖 < 𝛽𝑅𝑒 (12a)

[𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 𝑃𝑖𝑃𝑖 0] < 𝜉 [
𝑅𝑒 0
0 𝑅𝜔] (12b)

𝑒(𝜉/𝛼)𝑇+𝑘[0,𝑇]ln(𝛽/𝛼) (𝛽𝛿2𝑒 + 𝑇𝜉𝛿2𝜔) − 𝛼𝜀2 < 0 (12c)

Proof. Consider the error tracking switched system (4), let
R = dig(𝑅𝑒, 𝑅𝜔), 𝜂𝑖 = [𝑒𝑇(𝑡) 𝑘𝑇𝑖 ]𝑇. We choose piecewise
Lyapunov function 𝑉𝑖(𝑡) = 𝑒𝑇(𝑡)𝑃𝑖𝑒(𝑡). From condition (12b)
we have

𝑉̇𝑖 (𝑡) = ̇𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) + 𝑒𝑇 (𝑡) 𝑃𝑖 ̇𝑒 (𝑡)
= [𝑒 (𝑡)𝑘 ]𝑇 [𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 𝑃𝑖𝑃𝑖 0] [

𝑒 (𝑡)
𝑘𝑖 ] < 𝜉𝜂

𝑇
𝑖 R𝜂𝑖

(13)

Employing (12a) we derive

𝑉̇𝑖 (𝑡) < 𝜉𝛼−1 (𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) + 𝛼𝑘𝑇𝑖 𝑅𝜔𝑘𝑖)
≤ 𝜉𝛼−1𝑉𝑖 + 𝜉𝛿2𝜔

(14)

Let ∀𝑡 > 0, 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑘 be the switching instant
of switched system. For overall system we can write 𝑉(𝑡) =∑𝑖∈𝐼 𝜃𝑖𝑉𝑖(𝑡), 𝜃𝑖 ∈ {0, 1}. Now from inequality (14),

𝑉 (𝑡) < 𝜙 (𝑡, 𝑡𝑘) 𝑉 (𝑡+𝑘 ) + 𝜉𝛿2𝜔 ∫𝑡
𝑡𝑘

𝜙 (𝑡, 𝜏) 𝑑𝜏 (15)

where 𝜙(𝑡, 𝜏) = exp(𝜉𝛼−1(𝑡 − 𝜏)) < exp(𝜉𝛼−1𝑇), 𝑇 denotes the
finite-time interval. Accordingly, the Lyapunov inequality in
single step satisfies

𝑉 (𝑡𝑘+1) < 𝜙 (𝑡𝑘+1, 𝑡𝑘) 𝑉 (𝑡+𝑘 )𝑉 (𝑡−
𝑘
)𝑉 (𝑡−𝑘 )

+ 𝜉𝛿2𝜔 ∫𝑡𝑘+1
𝑡𝑘

𝜙 (𝑡𝑘+1, 𝜏) 𝑑𝜏
(16)

Suppose system switches frommode 𝑖 to 𝑗 at some instant 𝑡𝑘;
then from condition (12a),

𝑉 (𝑡+𝑘 )𝑉 (𝑡−
𝑘
) =

𝑉𝑗 (𝑡𝑘)𝑉𝑖 (𝑡𝑘) =
𝑒𝑇 (𝑡𝑘) 𝑃𝑗𝑒 (𝑡𝑘)𝑒𝑇 (𝑡𝑘) 𝑃𝑖𝑒 (𝑡𝑘)

< 𝛽𝑒𝑇 (𝑡𝑘) 𝑅𝑒𝑒 (𝑡𝑘)𝛼𝑒𝑇 (𝑡𝑘) 𝑅𝑒𝑒 (𝑡𝑘) =
𝛽𝛼

(17)

It is evident that 𝛽/𝛼 > 1 and following (16) iteratively we can
derive easily that

𝑉 (𝑡𝑘) < (𝛽𝛼)
𝑘[0,𝑇] [𝜙 (𝑡𝑘, 𝑡0) 𝑉 (𝑡0)

+ 𝑘∑
𝑛=1

(𝛽𝛼)
−𝑛 𝜉𝛿2𝜔𝜙 (𝑡𝑘, 𝑡𝑛) ∫𝑡𝑛

𝑡𝑛−1

𝜙 (𝑡𝑛, 𝜏) 𝑑𝜏]
(18)

Applying (15) and (18) we deduce

𝑉(𝑡) < (𝛽𝛼)
𝑘[0,𝑇] [𝜙 (𝑡, 𝑡0) 𝑉 (𝑡0)

+ 𝑘∑
𝑛=1

(𝛽𝛼)
−𝑛 𝜉𝛿2𝜔𝜙 (𝑡, 𝑡𝑛) ∫𝑡𝑛

𝑡𝑛−1

𝜙 (𝑡𝑛, 𝜏) 𝑑𝜏]

+ 𝜉𝛿2𝜔 ∫𝑡
𝑡𝑘

𝜙 (𝑡, 𝜏) 𝑑𝜏 < (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝑉 (𝑡0)

+ 𝑘∑
𝑛=1

(𝛽𝛼)
𝑘[0,𝑇]−𝑛 𝜉𝛿2𝜔 ∫𝑡𝑛

𝑡𝑛−1

𝜙 (𝑡, 𝜏) 𝑑𝜏 + 𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇 (𝑡

− 𝑡𝑘) < (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝑉 (𝑡0)

+ 𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇 [ 𝑘∑
𝑛=1

(𝛽𝛼)
𝑘[0,𝑇] (𝑡𝑛 − 𝑡𝑛−1) + (𝑡 − 𝑡𝑘)]

< (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝑉(𝑡0) + 𝑇(𝛽𝛼)

𝑘[0,𝑇] 𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇

(19)

On the other hand, from condition (12a), we have

𝑉 (𝑡) = 𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) > 𝛼𝑒𝑇 (𝑡) 𝑅𝑒𝑒 (𝑡) (20)
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Using the fact that 𝑉(𝑡0) = 𝑒𝑇0𝑃𝑖𝑒0 < 𝛽𝑒𝑇0𝑅𝑒𝑒0 ≤ 𝛽𝛿2𝑒 , in order
to ensure the finite-time boundedness of switched system
(4), i.e., 𝑒𝑇(𝑡)𝑅𝑒𝑒(𝑡) ≤ 𝜀2, the following condition should be
satisfied:

𝛼𝑒𝑇 (𝑡) 𝑅𝑒𝑒 (𝑡) < (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝛽𝛿2𝑒

+ 𝑇(𝛽𝛼)
𝑘[0,𝑇] 𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇 < 𝛼𝜀2

(21)

which can be rewritten as condition (12c). Therefore, we get(𝑥(𝑡) − 𝑥𝑟)𝑇𝑅𝑒(𝑥(𝑡) − 𝑥𝑟) ≤ 𝜀2 and we conclude that the affine
switched system (2) is finite-time bounded which completes
the proof.

Remark 9. When other parameters are fixed, condition (12c)
can be described by average dwell time as [37]

𝜏𝑎 ≥ 𝜏∗𝑎 = 𝑇 ln
𝛽𝛼 (ln 𝛼𝜀2𝛽𝛿2𝑒 + 𝑇𝜉𝛿2𝜔 −

𝜉𝛼𝑇)
−1

(22)

where 𝜏∗𝑎 = 𝑇/𝑘[0,𝑇]. In other words, the average dwell time𝜏𝑎 should be chosen large enough to ensure that inequality
(22) is satisfied, which is necessary to guarantee the finite-
time boundedness of affine switched system (2). Moreover,
assuming 𝑅𝑒 = 𝐼, from (12a) and (19) we deduce

√𝛼 ‖𝑒 (𝑡)‖ < √𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡)
< √(𝛽𝛼)

𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝛽 󵄩󵄩󵄩󵄩𝑒 (𝑡0)󵄩󵄩󵄩󵄩
+ √𝑇(𝛽𝛼)

𝑘[0,𝑇] 𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇
(23)

When 𝑡 󳨀→ ∞, 𝑇 󳨀→ ∞ and the term√𝑇(𝛽/𝛼)𝑘[0,𝑇]𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇 on the right side of (23) will become
infinite, which explains that the affine switched system (2) is
not ultimately bounded, which illustrates FTB and ultimately
boundedness are independent concepts.

Remark 10. Once the state bound 𝜀 is not ascertained, the
minimum value 𝜀min is of interest, which can be found
through optimization problem min(𝛽/𝛼)𝑘[0,𝑇]𝑒(𝜉/𝛼)𝑇(𝛽𝛿2𝑒 +𝑇𝜉𝛿2𝜔)𝛼−1 subject to (12a) and (12b). If we fix the parameter𝜉 and let 𝛼 = 1, 𝛽 = 𝜃𝛼, the optimization problem becomes

min
𝜃≥1

𝜃
𝑠.𝑡. 𝑅𝑒 < 𝑃𝑖 < 𝜃𝑅𝑒

[𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 𝑃𝑖𝑃𝑖 0] < 𝜉 [
𝑅𝑒 0
0 𝑅𝜔]

(24)

Then 𝜀min = √𝜃𝑘[0,𝑇]𝑒𝜉𝑇(𝜃𝛿2𝑒 + 𝑇𝜉𝛿2𝜔) can be derived with the
optimized value 𝜃.

It is evident that smaller value of 𝜀 gives rise to less
conservative FTB conditions. In Theorem 8, the parameter 𝜉
indicates the asymptotic stability property of each subsystem.
It is well known that when 𝜉 = 0 in condition (12b), this
condition can be regarded as Lyapunov function condition
which ensures each subsystem to be asymptotic stable;
whereas when 𝜉 > 0, the condition that 𝑉̇(𝑡)must be negative
is relaxed in FTB sense, and 𝑉̇(𝑡) just should be no greater
than 𝑉̇𝑖(𝑡) < 𝜉𝛼−1𝑉𝑖 + 𝜉𝛿2𝜔 to guarantee the boundedness
of state in finite-time interval [0, 𝑇]. The parameter 𝜉 ≥ 0
in condition (12b) covers both the asymptotic stable and
unstable subsystems. Now let subsystems 𝐴1, ⋅ ⋅ ⋅ , 𝐴𝑟 be
asymptotic stable and 𝐴𝑟+1, ⋅ ⋅ ⋅ , 𝐴𝑚 are unstable, and 𝑇−,𝑇+ denote the total activation time for stable and unstable
subsystems during [0, 𝑇]. Then the less conservative results
about FTB of affine switched system can be obtained in the
following corollary.

Corollary 11. Switched system (2) is finite-time bounded
(FTB) with respect to (𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇), if there exist a set of
positive definite symmetric matrices 𝑃𝑖, 𝑖 ∈ 𝐼, scalars 𝛼 > 0,𝛽 > 0, and 𝜉+ ≥ 0 such that the following conditions are
satisfied:

𝛼𝑅𝑒 < 𝑃𝑖 < 𝛽𝑅𝑒 (25a)

[𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 𝑃𝑖𝑃𝑖 0] ≤
{{{{{{{{{

0 𝑖 ≤ 𝑟
𝜉+ [
[
𝑅𝑒 0
0 𝑅𝜔]]

𝑖 > 𝑟 (25b)

𝑒(𝜉+/𝛼)𝑇++𝑘[0,𝑇] ln(𝛽/𝛼) (𝛽𝛿2𝑒 + 𝑇+𝜉+𝛿2𝜔) − 𝛼𝜀2 < 0 (25c)

Proof. Consider the error tracking switched system (4), let
R = dig(𝑅𝑒, 𝑅𝜔), 𝜂𝑖 = [𝑒𝑇(𝑡) 𝑘𝑇𝑖 ]𝑇, 𝑖 ∈ 𝐼; we choose
piecewise Lyapunov function 𝑉𝑖(𝑡) = 𝑒𝑇(𝑡)𝑃𝑖𝑒(𝑡).

From condition (25b), we get

𝑉̇𝑖 (𝑡) = ̇𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) + 𝑒𝑇 (𝑡) 𝑃𝑖 ̇𝑒 (𝑡)
= [𝑒 (𝑡)𝑘𝑖 ]

𝑇 [𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 𝑃𝑖𝑃𝑖 0] [
𝑒 (𝑡)
𝑘𝑖 ]

< {{{
0 𝑖 ≤ 𝑟
𝜉+𝜂𝑇𝑖 R𝜂𝑖 𝑖 > 𝑟 󳨐⇒

𝑉̇𝑖 (𝑡) < {{{{{
0 𝑖 ≤ 𝑟
𝜉+𝛼 𝑉𝑖 + 𝜉+𝛿2𝜔 𝑖 > 𝑟

(26)
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Let ∀𝑡 > 0, 𝑡0 < ⋅ ⋅ ⋅ < 𝑡𝑘 be the switching instant of switched
system, and 𝑉(𝑡) = ∑𝑖∈𝐼 𝜃𝑖𝑉𝑖(𝑡), 𝜃𝑖 ∈ {0, 1}. From inequalities
(25a) and (26), we have

𝑉 (𝑡)

< {{{{{
𝛽𝛼−1𝑉 (𝑡−𝑘 ) 𝑖 (𝑡+𝑘 ) ≤ 𝑟
𝛽𝛼−1𝜙 (𝑡, 𝑡𝑘) 𝑉 (𝑡−𝑘 ) + 𝜉+𝛿2𝜔 ∫𝑡

𝑡𝑘

𝜙 (𝑡, 𝜏) 𝑑𝜏 𝑖 (𝑡+𝑘 ) > 𝑟
(27)

where 𝜙(𝑡, 𝜏) = exp(𝜉+𝛼−1(𝑡−𝜏)) < exp(𝜉+𝛼−1𝑇+). Following
(27) iteratively

𝑉 (𝑡) < (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉+/𝛼)𝑇+𝑉 (𝑡0)

+ 𝑇+ (𝛽𝛼)
𝑘[0,𝑇] 𝜉+𝛿2𝜔𝑒(𝜉+/𝛼)𝑇+

(28)

By the same proof line in Theorem 8, we know that in order
to ensure the finite-time boundedness of switched system
(4), i.e., 𝑒𝑇(𝑡)𝑅𝑒𝑒(𝑡) ≤ 𝜀2, the following condition should be
satisfied:

𝛼𝑒𝑇 (𝑡) 𝑅𝑒𝑒 (𝑡) < 𝑉 (𝑡)
< (𝛽𝛼)

𝑘[0,𝑇] 𝑒(𝜉+/𝛼)𝑇+𝑉 (𝑡0)
+ 𝑇+ (𝛽𝛼)

𝑘[0,𝑇] 𝜉+𝛿2𝜔𝑒(𝜉+/𝛼)𝑇+ < 𝛼𝜀2
(29)

Since 𝑉(𝑡0) = 𝑒𝑇0𝑃𝑖𝑒0 < 𝛽𝑒𝑇0𝑅𝑒𝑒0 ≤ 𝛽𝛿2𝑒 , we have
(𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉+/𝛼)𝑇+𝛽𝛿2𝑒 + 𝑇+ (𝛽𝛼)

𝑘[0,𝑇] 𝜉+𝛿2𝜔𝑒(𝜉+/𝛼)𝑇+
< 𝛼𝜀2

(30)

which can be rewritten as (25c). Hence, (𝑥(𝑡) − 𝑥𝑟)𝑇𝑅𝑒(𝑥(𝑡) −𝑥𝑟) ≤ 𝜀2 and proof is complete.

Remark 12. Similar to the optimization problem of state
bound 𝜀described inRemark 10, the optimal value 𝜀min can be
found according to min(𝛽/𝛼)𝑘[0,𝑇]𝑒𝜉+𝛼−1𝑇+ (𝛽𝛿2𝑒 + 𝑇+𝜉+𝛿2𝜔)𝛼−1
subject to (25a) and (25b). We fix the parameter 𝜉+ and let𝛼 = 1, 𝛽 = 𝜃𝛼, the optimization problem becomes

min
𝜃≥1

𝜃
𝑠.𝑡. 𝑅𝑒 < 𝑃𝑖 < 𝜃𝑅𝑒

[𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 𝑃𝑖𝑃𝑖 0] < 𝜉+ [
𝑅𝑒 0
0 𝑅𝜔]

(31)

Then the minimum 𝜀min = √𝜃𝑘[0,𝑇]𝑒𝜉+𝑇+(𝜃𝛿2𝑒 + 𝑇+𝜉+𝛿2𝜔) can
be derived with the optimized value 𝜃. Since 𝑇+ ≤ 𝑇,
comparing the value of the optimal state bound 𝜀min in

Theorem 8 and Corollary 11, we know that, by classifying
subsystems into asymptotically stable and unstable, the FTB
conditions derived in Corollary 11 are less conservative than
that inTheorem 8.

Constituting state-feedback controller of the form 𝑢(𝑡) =𝐾𝑖𝑥(𝑡), affine switched system (1) can be transformed into the
closed-loop form of (5) and Definition 1 of FTB can be used
directly. Nowwewill consider problem-2 to provide sufficient
conditions for finite-time state-feedback stabilization.

Theorem 13. For affine switched system (1) holding Defini-
tion 1 , if there exist state-feedback controllers 𝑢(𝑡) = 𝐾𝑖𝑥(𝑡),
positive definite matrices 𝑄𝑖, matrices 𝑋𝑖, and scalars 𝜃 ≥ 1,𝜉 ≥ 0 such that

[−𝑄𝑖 𝑄𝑖
∗ −𝑅−1𝑒 ] < 0,

[−𝜃𝑅𝑒 𝐼
∗ −𝑄𝑖] < 0

(32a)

[𝐴 𝑖𝑄𝑖 + 𝑄𝑖𝐴𝑇𝑖 + 𝐵𝑖𝑋𝑖 + 𝑋𝑇𝑖 𝐵𝑇𝑖 − 𝜉𝑄𝑖 𝐼
𝐼 −𝜉𝑅𝜔] < 0 (32b)

𝑒𝜉𝑇+𝑘[0,𝑇] ln 𝜃 (𝜃𝛿2𝑒 + 𝑇𝜉𝛿2𝜔) − 𝜀2 < 0 (32c)

then closed-loop system (5) is FTB with respect to (𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒,𝑅𝜔, 𝑇) with𝐾𝑖 = 𝑋𝑖𝑄−1𝑖 .
Proof. Assume 𝑥𝑟 is the switched equilibrium point of affine
switched system (1). Applying coordinate transformation we
can get its corresponding error tracking switched system as

̇𝑒 (𝑡) = 𝐴 𝑖𝑒 (𝑡) + 𝐵𝑖𝑢 (𝑡) + 𝑘𝑖 (33)

where 𝑘𝑖 = 𝐴 𝑖𝑥𝑟 + 𝑏𝑖 and 𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑟. Then under the
state-feedback controllers 𝑢(𝑡) = 𝐾𝑖𝑒(𝑡), and the closed-loop
error system can be written as

̇𝑒 (𝑡) = 𝐴𝑖𝑒 (𝑡) + 𝑘𝑖 (34)

where 𝐴𝑖 = 𝐴 𝑖 + 𝐵𝑖𝐾𝑖. From Remark 2, we know that FTB
analysis and finite-time control can be realized employing
tracking error system. Hence, we consider the closed-loop
error system (34) here to design the controllers stabilizing the
system (1) in finite-time interval.

Let R = dig(𝑅𝑒, 𝑅𝜔), 𝜂𝑖 = [𝑒𝑇(𝑡) 𝑘𝑇𝑖 ]𝑇, we choose
piecewise Lyapunov function 𝑉𝑖(𝑡) = 𝑒𝑇(𝑡)𝑃𝑖𝑒(𝑡) for each
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subsystem; then the derivative of 𝑉𝑖 along the solution of
system (34) is described as

𝑉̇𝑖 (𝑡) = ̇𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) + 𝑒𝑇 (𝑡) 𝑃𝑖 ̇𝑒 (𝑡) = [𝑒 (𝑡)𝑘𝑖 ]
𝑇

⋅ [𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴𝑖 𝑃𝑖𝑃𝑖 0][
𝑒 (𝑡)
𝑘𝑖 ] = [

𝑒 (𝑡)
𝑘𝑖 ]
𝑇

⋅ [𝐴𝑇𝑖 𝑃𝑖 + 𝐾𝑇𝑖 𝐵𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 + 𝑃𝑖𝐵𝑖𝐾𝑖 𝑃𝑖𝑃𝑖 0] [
𝑒 (𝑡)
𝑘𝑖 ]

(35)

Letting 𝑄𝑖 = 𝑃−1𝑖 , pre- and postmultiplying (32b) by
diag(𝑃𝑖, 𝐼) we get
[𝑃𝑖𝐴 𝑖 + 𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐵𝑖𝐾𝑖 + 𝐾𝑇𝑖 𝐵𝑇𝑖 𝑃𝑖 − 𝜉𝑃𝑖 𝑃𝑖𝑃𝑖 −𝜉𝑅𝜔] < 0 (36)

Due to condition (32a) and Schur’s complement formula [38],
we deduce

[−𝑄𝑖 𝑄𝑖
∗ −𝑅−1𝑒 ] < 0 󳨐⇒

𝑅𝑒 < 𝑃𝑖,
[−𝜃𝑅𝑒 𝐼
∗ −𝑄𝑖] < 0 󳨐⇒

𝑃𝑖 < 𝜃𝑅𝑒

(37)

Now using (36), from (35) we can derive

𝑉̇𝑖 (𝑡) < 𝜂𝑇𝑖 [𝜉𝑃𝑖 0
0 𝜉𝑅𝜔] 𝜂𝑖 = 𝜉𝑒

𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) + 𝜉𝑘𝑇𝑖 𝑅𝜔𝑘𝑖
< 𝜉𝑉𝑖 + 𝜉𝛿2𝜔

(38)

By the same proof guidelines of Theorem 8, FTB condi-
tions (32a) and (32c) of closed-loop error system (34) can be
derived. Accordingly we get (𝑥(𝑡) − 𝑥𝑟)𝑇𝑅𝑒(𝑥(𝑡) − 𝑥𝑟) ≤ 𝜀2,
which proves that the affine switched system (1) is finite-time
bounded under state-feedback controllers 𝑢(𝑡) = 𝐾𝑖𝑒(𝑡).
4. 𝐻∞ Performance Analysis and Controller
Design of Affine Switched Systems

Based upon FTB investigation of previous section, our main
aim now is to design a set of𝐻∞ controllers to solve Problem
7. As stated in Remark 2, finite-time 𝐻∞ control can be
realized through tracking error system, and this will be the
main focus in this section. For the sake of simplicity, we firstly
consider the autonomous error switched system in the form
of (10) assuming that 𝑘𝑖 = 0, 𝑢(t) = 0 and the corresponding
theorem is stated as follows; then wewill show how to remove
the assumption and extend the results to the general affine
switched system with exogenous signal input.

Theorem 14. Given autonomous robust switched system (10),
if there exist positive definite matrices 𝑃𝑖, scalars 𝛼 > 0, 𝛽 > 0,
and 𝜉 ≥ 0 such that

𝛼𝑅𝑒 < 𝑃𝑖 < 𝛽𝑅𝑒 (39a)

[𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 + 𝐶𝑇𝑖 𝐶𝑖 𝑃𝑖𝐺𝑖 + 𝐶𝑇𝑖 𝐷2𝑖∗ −𝛾2𝐼 + 𝐷𝑇2𝑖𝐷2𝑖]

< 𝜉 [𝑅𝑒 0
∗ 𝑅𝜔]

(39b)

𝑒(𝜉/𝛼)𝑇+𝑘[0,𝑇]ln(𝛽/𝛼) (𝛽𝛿2𝑒 + 𝑇𝜉𝛿2𝜔 + 𝛾2𝑑2) − 𝛼𝜀2 < 0 (39c)

then this system is finite-time bounded with H∞ performance𝛾 with respect to (𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇).
Proof. LetR = dig(𝑅𝑒, 𝑅𝜔), 𝜂𝑖 = [𝑒𝑇(𝑡) 𝜔𝑇(𝑡)]𝑇, and we opt
Lyapunov function 𝑉𝑖(𝑡) = 𝑒𝑇(𝑡)𝑃𝑖𝑒(𝑡) and

𝑉̇𝑖 (𝑡) = ̇𝑒𝑇 (𝑡) 𝑃𝑖e (𝑡) + 𝑒𝑇 (𝑡) 𝑃𝑖 ̇𝑒 (𝑡)
= [𝑒 (𝑡)𝜔 (𝑡)]

𝑇 [𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 𝑃𝑖𝐺𝑖∗ 0 ] [𝑒 (𝑡)𝜔 (𝑡)]
(40)

Since [ 𝐶𝑇𝑖 𝐶𝑖 𝐶𝑇𝑖 𝐷2𝑖
∗ 𝐷𝑇2𝑖𝐷2𝑖

] = [ 𝐶𝑇𝑖
𝐷𝑇2𝑖
] [𝐶𝑖 𝐷2𝑖] ≥ 0, condition (39b)

implies that

[𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 𝑃𝑖𝐺𝑖∗ −𝛾2𝐼] < 𝜉 [
𝑅𝑒 0
∗ 𝑅𝜔] (41)

From (40) and (41), 𝑉̇𝑖(𝑡) < 𝜉𝑒𝑇(𝑡)𝑅𝑒𝑒(𝑡) + 𝜉𝛿2𝜔 + 𝛾2𝜔𝑇(𝑡)𝜔(𝑡)
and together with condition (39a), we get

𝑉̇𝑖 (𝑡) < 𝜉𝛼𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) + 𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡)
= 𝜉𝛼𝑉𝑖 + 𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡)

(42)

Let ∀𝑡 > 0, 𝑡0 < ⋅ ⋅ ⋅ < 𝑡𝑘 be the switching instants, and 𝑉(𝑡) =∑𝑖∈𝐼 𝜃𝑖𝑉𝑖(𝑡), 𝜃𝑖 ∈ {0, 1}, where 𝜃𝑖 is the indication function for
activated subsystem. From inequality (42), we have

𝑉 (𝑡) < 𝜙 (𝑡, 𝑡𝑘) 𝑉 (𝑡+𝑘 )
+ ∫𝑡
𝑡𝑘

𝜙 (𝑡, 𝜏) [𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏)] 𝑑𝜏 (43)

where𝜙(𝑡, 𝜏) = exp((𝜉/𝛼)(𝑡−𝜏)) < exp((𝛾/𝛼)𝑇). Accordingly,
the Lyapunov inequality in single step satisfies

𝑉 (𝑡𝑘+1)
< 𝜙 (𝑡𝑘+1, 𝑡𝑘) 𝑉 (𝑡+𝑘 )𝑉 (𝑡−

𝑘
)𝑉 (𝑡−𝑘)

+ ∫𝑡𝑘+1
𝑡𝑘

𝜙 (𝑡𝑘+1, 𝜏) [𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏)] 𝑑𝜏
(44)
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Let system switch from mode 𝑖 to 𝑗 at instant 𝑡𝑘(0 < 𝑡𝑘 < 𝑇);
then condition (39a) implies that

𝑉(𝑡+𝑘 )𝑉 (𝑡−
𝑘
) =

𝑉𝑗 (𝑡𝑘)𝑉𝑖 (𝑡𝑘) =
𝑒𝑇 (𝑡𝑘) 𝑃𝑗𝑒 (𝑡𝑘)𝑒𝑇 (𝑡𝑘) 𝑃𝑖𝑒 (𝑡𝑘)

< 𝛽𝑒𝑇 (𝑡𝑘) 𝑅𝑒𝑒 (𝑡𝑘)𝛼𝑒𝑇 (𝑡𝑘) 𝑅𝑒𝑒 (𝑡𝑘) =
𝛽𝛼

(45)

Noting that 𝛽/𝛼 > 1, following relation (44) iteratively, we
can derive

𝑉 (𝑡𝑘) < (𝛽𝛼)
𝑘[0,𝑇] {𝜙 (𝑡𝑘, 𝑡0) 𝑉 (𝑡0)

+ 𝑘∑
𝑛=1

(𝛽𝛼)
−𝑛 𝜙 (𝑡𝑘, 𝑡𝑛)

⋅ ∫𝑡𝑛
𝑡𝑛−1

𝜙 (𝑡𝑛, 𝜏) [𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏)] 𝑑𝜏}

(46)

Applying (43) and (46), the following inequality is obtained:

𝑉 (𝑡) < (𝛽𝛼)
𝑘[0,𝑇] {𝜙 (𝑡, 𝑡0) 𝑉 (𝑡0)

+ 𝑘∑
𝑛=1

(𝛽𝛼)
−𝑛 𝜙 (𝑡, 𝑡𝑛)

⋅ ∫𝑡𝑛
𝑡𝑛−1

𝜙 (𝑡𝑛, 𝜏) [𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏)] 𝑑𝜏}
+ ∫𝑡
𝑡𝑘

𝜙 (𝑡, 𝜏) [𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏)] 𝑑𝜏
< (𝛽𝛼)

𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝑉 (𝑡0) + 𝑘∑
𝑛=1

(𝛽𝛼)
𝑘[0,𝑇]−𝑛

⋅ ∫𝑡𝑛
𝑡𝑛−1

𝜙 (𝑡, 𝜏) [𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏)] 𝑑𝜏
+ 𝑒(𝜉/𝛼)𝑇∫𝑡

𝑡𝑘

𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏) 𝑑𝜏 < (𝛽𝛼)
𝑘[0,𝑇]

⋅ 𝑒(𝜉/𝛼)𝑇𝑉 (𝑡0) + (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝜉𝛿2𝜔𝑇 + (𝛽𝛼)

𝑘[0,𝑇]

⋅ 𝑒(𝜉/𝛼)𝑇 [𝛾2 ∫𝑡
𝑡0

𝜔𝑇 (𝜏) 𝜔 (𝜏) 𝑑𝜏]

(47)

Using the fact ∫𝑇
0
𝜔𝑇(𝜏)𝜔(𝜏)𝑑𝜏 ≤ 𝑑2, (47) can be rewritten as

𝑉 (𝑡) < (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝑉 (𝑡0)

+ 𝑇(𝛽𝛼)
𝑘[0,𝑇] 𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇

+ (𝛽𝛼)
𝑘[0,𝑇] 𝛾2𝑑2𝑒(𝜉/𝛼)𝑇

(48)

On the other hand, from condition (39a), we have

𝑉 (𝑡) = 𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) > 𝛼𝑒𝑇 (𝑡) 𝑅𝑒𝑒 (𝑡) (49)

Since 𝑉(𝑡0) = 𝑒𝑇(𝑡0)𝑃𝑖𝑒(𝑡0) < 𝛽𝑒𝑇(𝑡0)𝑅𝑒𝑒(𝑡0) ≤ 𝛽𝛿2𝑒 we
conclude that in order to ensure FTB for system (10) such that𝑒𝑇(𝑡)𝑅𝑒𝑒(𝑡) ≤ 𝜀2, the following condition should be satisfied:

𝛼𝑒𝑇 (𝑡) 𝑅𝑒𝑒 (𝑡) < (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝛽𝛿2𝑒

+ 𝑇(𝛽𝛼)
𝑘[0,𝑇] 𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇

+ (𝛽𝛼)
𝑘[0,𝑇] 𝛾2𝑑2𝑒(𝜉/𝛼)𝑇 < 𝛼𝜀2

(50)

which can be rewritten as condition (39c). Hence, FTB
analysis for system (10) is completed.

Considering 𝑧𝑇(𝑡)𝑧(𝑡) − 𝛾2𝜔𝑇(𝑡)𝜔(𝑡) + 𝑉̇(𝑡), from (39a)
and (39b) we deduce

𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡) + 𝑉̇ (𝑡) = [𝑒 (𝑡)𝜔 (𝑡)]
𝑇

⋅ [𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 + 𝐶𝑇𝑖 𝐶𝑖 𝑃𝑖𝐺𝑖 + 𝐶𝑇𝑖 𝐷2𝑖∗ 𝐷𝑇2𝑖𝐷2𝑖 − 𝛾2𝐼][
𝑒 (𝑡)
𝜔 (𝑡)]

< 𝜉 [𝑒 (𝑡)𝜔 (𝑡)]
𝑇 [𝑅𝑒 0
∗ 𝑅𝜔][

𝑒 (𝑡)
𝜔 (𝑡)] <

𝜉𝛼𝑉 (𝑡) + 𝜉𝛿2𝜔 󳨐⇒
𝑉̇ (𝑡) < 𝜉𝛼−1𝑉(𝑡) + 𝜉𝛿2𝜔 − 𝑧𝑇 (𝑡) 𝑧 (𝑡) + 𝛾2𝜔𝑇 (𝑡) 𝜔 (𝑡)

(51)

Integrating both sides of (51) and through iterations, we can
deduce

𝑉 (𝑡𝑘) < (𝛽𝛼)
𝑘[0,𝑇] [𝜙 (𝑡𝑘, 𝑡0) 𝑉 (𝑡0) + 𝑘∑

𝑛=1

(𝛽𝛼)
−𝑛

⋅ 𝜙 (𝑡𝑘, 𝑡𝑛)
⋅ ∫𝑡𝑛
𝑡𝑛−1

[𝜉𝛿2𝜔 + 𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏) − 𝑧𝑇 (𝜏) 𝑧 (𝜏)]
⋅ 𝜙 (𝑡𝑛, 𝜏) 𝑑𝜏]

(52)
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where 𝜙(𝑡, 𝜏) = exp(𝜉𝛼−1(𝑡 − 𝜏)) < exp(𝜉𝛼−1𝑇). Then
following the proof line of Theorem 8, we get

0 ≤ 𝑉 (𝑡) < (𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇𝑉 (𝑡0) + 𝑇(𝛽𝛼)

𝑘[0,𝑇]

⋅ 𝜉𝛿2𝜔𝑒(𝜉/𝛼)𝑇 + (𝛽𝛼)
𝑘[0,𝑇]

⋅ 𝑒(𝜉/𝛼)𝑇∫𝑡
𝑡0

𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏) − 𝑧𝑇 (𝜏) 𝑧 (𝜏) 𝑑𝜏
(53)

Since the zero-initial condition, we have 𝑉(0) = 0; thus,
(𝛽𝛼)
𝑘[0,𝑇] 𝑒(𝜉/𝛼)𝑇∫𝑡

𝑡0

𝛾2𝜔𝑇 (𝜏) 𝜔 (𝜏) − 𝑧𝑇 (𝜏) 𝑧 (𝜏) 𝑑𝜏
> 0

(54)

Setting 𝑡 = 𝑇, 𝑡0 = 0, the H∞ performance condition (11) is
satisfied which completes the proof.

Remark 15. The parameter 𝛾 is 𝐻∞ performance index and
its minimum value 𝛾min is often of interest from practical
viewpoint; hence, we can state the optimization problem as

min 𝛾2
𝑠.𝑡. (39a) , (39b) , (39c) (55)

Similarly, fulfilling FTB criteria, minimum value of state
bound 𝜀min is also desired, which can be found as the
optimization problem: min(𝛽/𝛼)𝑘[0,𝑇]𝑒(𝜉/𝛼)𝑇(𝛽𝛿2𝑒 + 𝑇𝜉𝛿2𝜔 +𝛾2𝑑2)𝛼−1 subject to (39a) and (39b). If we fix the parameter 𝜉
and let 𝛼 = 1,𝛽 = 𝜃𝛼, then we can state optimization problem
as

min
𝜃≥1

𝜃
𝑠.𝑡. 𝑅𝑒 < 𝑃𝑖 < 𝜃𝑅𝑒

[𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 + 𝐶𝑇𝑖 𝐶𝑖 𝑃𝑖𝐺𝑖 + 𝐶𝑇𝑖 𝐷2𝑖∗ −𝛾2𝐼 + 𝐷𝑇2𝑖𝐷2𝑖]
< 𝜉 [𝑅𝑒 0

∗ 𝑅𝜔]

(56)

and 𝜀min = √𝜃𝑘[0,𝑇]𝑒𝜉𝑇(𝜃𝛿2𝑒 + 𝑇𝜉𝛿2𝜔 + 𝛾2𝑑2) is derived with the
optimized value of 𝜃. We can adopt a convex combination of

𝛾min and 𝜀min as 𝐽(𝜌) = 𝜌𝛾2min + (1 − 𝜌)𝜀2min, 0 ≤ 𝜌 ≤ 1 and a
more general convex optimization problem can be stated as

min 𝐽 (𝜌)
𝑠.𝑡. 𝑅𝑒 < 𝑃𝑖 < 𝜃𝑅𝑒

[𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴 𝑖 + 𝐶𝑇𝑖 𝐶𝑖 𝑃𝑖𝐺𝑖 + 𝐶𝑇𝑖 𝐷2𝑖∗ −𝛾2𝐼 + 𝐷𝑇2𝑖𝐷2𝑖]
< 𝜉 [𝑅𝑒 0

∗ 𝑅𝜔]
𝑒(𝜉/𝛼)𝑇+𝑘[0,𝑇]ln(𝛽/𝛼) (𝛽𝛿2𝑒 + 𝑇𝜉𝛿2𝜔 + 𝛾2𝑑2) − 𝛼𝜀2
< 0

(57)

Now we will extend the results to design the 𝐻∞ con-
trollers, ensuring FTB of the closed-loop affine switched
system (8). Different equilibria for subsystems exist because
of the affine terms 𝑘𝑖, and hence stability analysis and𝐻∞ control are not trivial. To solve this problem, a few
results are available proposing extended state space method
in [12, 31]. However, this approach seems conservative for
system synthesis because the eigenvalues of the extended state
matrices 𝐴𝑖𝑒𝑥 related to the affine terms are not exactly the
same as for the original state matrices𝐴𝑖. For state-dependent
affine switched system, S-procedure method can be used to
reduce the conservatism. However, for time-dependent affine
switched systems, there are only few effective results. In our
investigation, we redefine exogenous signal 𝜔(𝑡) as

𝜔̃ (𝑡) = [𝜔 (𝑡)𝑘𝑖 ] (58)

Hence, the closed-loop switched system (8) can be rewrit-
ten as

̇𝑒 (𝑡) = 𝐴𝑖𝑒 (𝑡) + 𝐺𝑖𝜔̃ (𝑡) , 𝑥 (0) = 𝑥0
𝑧 (𝑡) = 𝐶𝑖𝑒 (𝑡) + 𝐷2𝑖𝜔̃ (𝑡) , 𝜔̃ (0) = 𝜔̃0 (59)

where𝐺𝑖 = [𝐺𝑖, 𝐼],𝐷2𝑖 = [𝐷2𝑖, 0]. Since in the𝐻∞ framework
∫𝑇
0
𝜔𝑇(𝑡)𝜔(𝑡)𝑑𝑡 ≤ 𝑑2 holds, the proposed extension of

the disturbance input is reasonable and we can design the𝐻∞ controllers of the equivalent closed-loop error switched
system (59) to ensure the finite-time 𝐻∞ boundedness for
original affine switched system (8).

Theorem 16. The closed-loop switched system (59) is FTB
with H∞ performance 𝛾 regarding (𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇), if there
exist constant state-feedback controller 𝑢(𝑡) = 𝐾𝑖𝑥(𝑡), positive
definite matrices 𝑄𝑖, matrices𝑊𝑖, scalars 𝜃 ≥ 1, 𝜉 ≥ 0 such that

[−𝑄𝑖 𝑄𝑖
∗ −𝑅−1𝑒 ] < 0,

[−𝜃𝑅𝑒 𝐼
∗ −𝑄𝑖] < 0

(60a)
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[[[
[

𝐴 𝑖𝑄𝑖 + 𝑄𝑖𝐴𝑇𝑖 + 𝐵𝑖𝑊𝑖 +𝑊𝑇𝑖 𝐵𝑇𝑖 − 𝜉𝑄𝑖 𝐺𝑖 𝑄𝑖𝐶𝑇𝑖 +𝑊𝑇𝑖 𝐷𝑇1𝑖
𝐺𝑇𝑖 −𝛾2𝐼 − 𝜉𝑅𝜔 𝐷𝑇2𝑖

𝐶𝑖𝑄𝑖 + 𝐷1𝑖𝑊𝑖 𝐷2𝑖 −𝐼
]]]
]
< 0 (60b)

𝑒𝜉𝑇+𝑘[0,𝑇]ln𝜃 (𝜃𝛿2𝑒 + 𝑇𝜉𝛿2𝜔 + 𝛾2𝑑2) − 𝜀2 < 0 (60c)

where 𝐾𝑖 = 𝑊𝑖𝑄−1𝑖 .
Proof. Let R = dig(𝑅𝑒, 𝑅𝜔) and 𝜂𝑖 = [𝑒𝑇(𝑡) 𝜔̃𝑇(𝑡)]𝑇, 𝑖 ∈ 𝐼.
Defining 𝑉𝑖(𝑡) = 𝑒𝑇(𝑡)𝑃𝑖𝑒(𝑡) as before, for system (59) we can
state that

𝑉̇𝑖 (𝑡) = ̇𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) + 𝑒𝑇 (𝑡) 𝑃𝑖 ̇𝑒 (𝑡)
= [𝑒 (𝑡)𝜔̃ (𝑡)]

𝑇 [𝐴𝑇𝑖 𝑃𝑖 + 𝑃𝑖𝐴𝑖 𝑃𝑖𝐺𝑖∗ 0 ][𝑒 (𝑡)𝜔̃ (𝑡)]
(61)

Assuming 𝑄𝑖 = 𝑃−1𝑖 , pre- and postmultiplying (60b) by
diag(𝑃𝑖, 𝐼, 𝐼),

[[[
[

𝐴𝑖𝑇𝑃𝑖 + 𝑃𝑖𝐴𝑖 − 𝜉𝑃𝑖 𝑃𝑖𝐺𝑖 𝐶𝑇𝑖
𝐺𝑇𝑖 𝑃𝑖 −𝛾2𝐼 − 𝜉𝑅𝜔 𝐷𝑇2𝑖
𝐶𝑖 𝐷2𝑖 −𝐼

]]]
]
< 0 (62)

Using Schur lemma, (62) can be rewritten as

[
[
𝐴𝑖𝑇𝑃𝑖 + 𝑃𝑖𝐴𝑖 − 𝜉𝑃𝑖 + 𝐶𝑇𝑖 𝐶𝑖 𝑃𝑖𝐺𝑖 + 𝐶𝑇𝑖 𝐷2𝑖

∗ −𝛾2𝐼 − 𝜉𝑅𝜔 + 𝐷𝑇2𝑖𝐷2𝑖
]
]

< 0
(63)

Since [ 𝐶𝑇𝑖 𝐶𝑖 𝐶𝑇𝑖 𝐷̃2𝑖
∗ 𝐷̃𝑇2𝑖𝐷̃2𝑖

] = [ 𝐶𝑇𝑖
𝐷̃𝑇2𝑖
] [𝐶𝑖 𝐷2𝑖] ≥ 0, we can get

[
[
𝐴𝑖𝑇𝑃𝑖 + 𝑃𝑖𝐴𝑖 𝑃𝑖𝐺𝑖

∗ −𝛾2𝐼]]
< 𝜉 [𝑃𝑖 0

∗ 𝑅𝜔] (64)

which implies that

𝑉̇𝑖 (𝑡) < 𝜉𝑒𝑇 (𝑡) 𝑃𝑖𝑒 (𝑡) + 𝜉𝑘𝑇𝑖 𝑅𝜔𝑘𝑖 + 𝛾2𝜔̃𝑇 (𝑡) 𝜔̃ (𝑡)
= 𝜉𝑉𝑖 + 𝜉𝛿2𝜔 + 𝛾2𝜔̃𝑇 (𝑡) 𝜔̃ (𝑡) (65)

Employing (60a) and using Schur complement formula,

[−𝑄𝑖 𝑄𝑖
∗ −𝑅−1𝑒 ] < 0 󳨐⇒

𝑅𝑒 < 𝑃𝑖,
[−𝜃𝑅𝑒 𝐼
∗ −𝑄𝑖] < 0 󳨐⇒

𝑃𝑖 < 𝜃𝑅𝑒

(66)

Following the proof guidelines of Theorem 14, condition
(60c) which guarantees the FTB of robust affine switched
system can be obtained.

Now we need to prove condition (9) for𝐻∞ performance
under zero-initial conditions. From (60b),

𝑧𝑇 (𝑡) 𝑧 (𝑡) − 𝛾2𝜔̃𝑇 (𝑡) 𝜔̃ (𝑡) + 𝑉̇ (𝑡) < 𝜉𝑉 (𝑡) + 𝜉𝛿2𝜔 (67)

Applying integration and iterations, and setting 𝑉(𝑡0) = 0
under zero-initial conditions, we get

0 ≤ 𝑉 (𝑡)
< 𝑇𝜃𝑘[0,𝑇]𝜉𝛿2𝜔𝑒𝜉𝑇
+ 𝜃𝑘[0,𝑇]𝑒𝜉𝑇 ∫𝑡

𝑡0

𝛾2𝜔̃𝑇 (𝜏) 𝜔̃ (𝜏) − 𝑧𝑇 (𝜏) 𝑧 (𝜏) 𝑑𝜏
(68)

Then setting 𝑡 = 𝑇, 𝑡0 = 0, we obtain that

∫𝑇
0
𝛾2𝜔̃𝑇 (𝜏) 𝜔̃ (𝜏) − 𝑧𝑇 (𝜏) 𝑧 (𝜏) 𝑑𝜏
= ∫𝑇
0
𝛾2 (𝜔𝑇 (𝜏) 𝜔 (𝜏) + 𝑘𝑇max𝑘max) − 𝑧𝑇 (𝜏) 𝑧 (𝜏) 𝑑𝜏

> 0
(69)

which illustrates that condition (9) is satisfied. We conclude
that the affine switched system (59), and hence closed-loop
affine switched system (8), is FTB with H∞ performance 𝛾.
Remark 17. Unlike the normal switched system, the existence
of multiple equilibria for affine switched systems is related
to subsystems owing to the affine terms 𝑘𝑖, which makes
asymptotic and finite-time stability analysis nontrivial. As
for the finite-time 𝐻∞ controller design, concerning with
both the external disturbance 𝜔(𝑡) and the affine terms 𝑘𝑖,
we redefined the conception of 𝐻∞ controller for affine
switched system in Definition 4, based on which the results
in this section are obtained. It is worth noting that the 𝐻∞
performance of affine switched system reduces to normal𝐻∞
performance when assuming 𝑘𝑖 = 0.
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5. Numerical Examples

Example 1. Consider the affine switched system (2) with two
modes of operation:

𝐴1 = [0.01 −2
1 0.02] ,

𝐴2 = [−0.1 −1
3 −0.1] ;

𝑏1 = [−3.98−1.16] ,

𝑏2 = [−1.8−6.4]

(70)

𝐴1 is unstable, 𝐴2 is Hurwitz stable, and eigenvalues 𝜆(𝐴1) ={0.015 ± 1.4142𝑖}, 𝜆(𝐴2) = {−0.1 ± 1.732𝑖}. Assuming desired
reference 𝑥𝑟 = [2, −2]𝑇, error tracking switched system will
be

𝐴1 = [0.01 −2
1 0.02] ,

𝐴2 = [−0.1 −1
3 −0.1] ;

𝑘1 = [ 00.8] ,

𝑘2 = [ 0
−0.2]

(71)

Evidently 𝑘max = [ 00.8 ]. Let 𝛿𝑒 = 1, 𝛿𝜔 = 0.8, 𝜀 = 5.885,𝑅𝑒 = 𝑅𝜔 = 𝐼, 𝜉 = 0.3, and 𝑇 = 5𝑠. From the FTB
condition (24), we get the average dwell time 𝜏∗𝑎 = 1.5𝑠 to
ensure the finite-time boundedness with respect to 𝜀, so that
the switching signal 𝑆 can be chosen as a periodical signal
with 𝑇𝑠 = 1.5𝑠, which implies that 𝑘[0,𝑇] = 3 and 𝑇+ = 2𝑠,𝑇− = 3𝑠 during the finite-time interval [0, 5]. Given the initial
error state 𝑒(0) = [0.5, 0.8]𝑇, the conditions 𝑒𝑇0𝑅𝑒𝑒0 ≤ 𝛿2𝑒
and 𝑘𝑇max𝑅𝜔𝑘max ≤ 𝛿2𝜔 are separately satisfied, then the error
state trajectory of error affine switched system and the value
of 𝑒𝑇𝑅𝑒𝑒 under the switching signal 𝑆 are shown in Figure 1.

It is easy to see in Figure 1 that subject system is FTB
with conditions (12a), (12b), and (12c) satisfied. Moreover,
assuming 𝜉+ = 𝜉 = 1 and using optimization process (24)
and (31), the optimal value 𝜃min = 1.0058, 𝑃1 = [ 0.8425 0.12870.1287 1.2053 ],𝑃2 = [ 1.3718 −0.0977−0.0977 1.0416 ] can be obtained. Then substituting 𝜃min
into (12c) and (25c) separately, we get

𝜀1min = 3.014,
𝜀2min = 1.923 (72)

where 𝜀1min, 𝜀2min denote the minimum bound of state
derived by Theorem 8 and Corollary 11. It is obvious that
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Figure 1: The state trajectories and the value of 𝑒𝑇(𝑡)𝑅𝑒𝑒(𝑡) under
switching signal 𝑆.

Corollary 11 is less conservative thanTheorem 8 since 𝜀2min >𝜀1min.

Example 2. Keeping in view autonomous error switched
system (10), we consider this system:

𝐴1 = [0.01 −2
1 0.02] ,

𝑘1 = [ 00.8] ,

𝐺1 = [0.250.01] ,
𝐶1 = [0.10 0.33] ,
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𝐷21 = 0.05
𝐴2 = [−0.1 −1

3 −0.1] ,

𝑘2 = [ 0
−0.2] ,

𝐺2 = [0.50.2] ,
𝐶2 = [0.3 0.01] ,
𝐷22 = 0.028

(73)

with disturbance signal:

𝜔 (𝑡) = {{{
8 0 ≤ 𝑡 ≤ 5
0 𝑒𝑙𝑠𝑒 (74)

which satisfies(∫𝑇
0
𝜔𝑇(𝑡)𝜔(𝑡)𝑑𝑡)1/2 = (∫5

0
𝜔𝑇(𝑡)𝜔(𝑡)𝑑𝑡)1/2 =8√5. Let 𝛿𝑒 = 1, 𝛿𝜔 = 0.8, 𝜀 = 21.758, 𝛾 = 0.2, and𝜉 = 0.3. From FTB condition (39c), we get the average dwell

time 𝜏∗𝑎 = 1.5𝑠 to ensure FTB with respect to 𝜀. Then for the
finite-time𝐻∞ performance, we should have

(∫𝑇
0
𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡)1/2 < 𝛾(∫𝑇

0
𝜔𝑇 (𝑡) 𝜔 (𝑡) 𝑑𝑡)1/2

≈ 3.57
(75)

The simulation resultswith initial error state 𝑒(0) = [0.5, 0.8]𝑇
are shown in Figure 2.

We observe in Figure 2 that the system is FTB, and the𝐻∞ performance satisfies

(∫𝑇
0
𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡)1/2 ≈ 2.18 < 3.57 (76)

Thus, according to Definition 4, the autonomous robust
error switched system can be regarded as finite-time 𝐻∞
bounded. Moreover, using optimization procedure (56) we
get 𝜃min = 1.932, 𝑃1,1 = [ 1.0165 0.00160.0016 1.9154 ], 𝑃2,1 = [ 2.2218 −0.2047−0.2047 1.0425 ].
Putting in (39c), we get 𝜀min = 6.314.
Example 3. Consider the affine error switched system (7)
with two modes of operation:

𝐴1 = [0.01 −2
1 0.02] ,

𝑘1 = [ 00.8] ,

B1 = [0.1−1] ,
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Figure 2:The state responds of 𝑒(t) and 𝑧(t) under switching signal𝑆.

𝐺1 = [0.250.01] ,
𝐶1 = [0.10 0.33] ,
D11 = 0.13,
𝐷21 = 0.05
𝐴2 = [−0.1 −1

3 −0.1] ,

𝑘2 = [ 0
−0.2] ,

B2 = [−10.5] ,

𝐺2 = [0.50.2] ,
𝐶2 = [0.3 0.01] ,
D12 = 0.2,
𝐷22 = 0.028
𝜔 (𝑡) = {{{

8 0 ≤ 𝑡 ≤ 5
0 𝑒𝑙𝑠𝑒

(77)
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which implies that (∫𝑇
0
𝜔𝑇(𝑡)𝜔(𝑡)𝑑𝑡)1/2 =

(∫5
0
𝜔𝑇(𝑡)𝜔(𝑡)𝑑𝑡)1/2 = 8√5 and 𝑘max = [ 00.8 ].
The objective in this example is to design a set of

robust 𝐻∞ controllers ensuring finite-time 𝐻∞ bounded-
ness of closed-loop error switched system with respect to(𝛿𝑒, 𝛿𝜔, 𝜀, 𝑅𝑒, 𝑅𝜔, 𝑇), where 𝛿𝑒 = 1, 𝛿𝜔 = 0.8, 𝛾 = 0.2,𝜀 = 4.536, 𝑅𝑒 = 𝑅𝜔 = 𝐼, 𝜉 = 0.3, and 𝑇 = 5𝑠. Setting
switching signal 𝑆 as a periodical signal with 𝑇𝑠 = 1.5𝑠, based
onTheorem 16, we calculate

𝑄1 = [1.4665 0.0957
0.0957 1.3408] ,

𝑊1 = [−1.2110 0.4831]
𝑄2 = [ 1.1617 −0.2958

−0.2958 1.7466 ] ,
𝑊2 = [3.0403 0.9730]

(78)

Then we can get the set of 𝐻∞ controllers for each
subsystem as

𝐾1 = 𝑊1𝑄−11 = [−0.8533, 0.4212] ,
𝐾2 = 𝑊2𝑄−12 = [2.8834, 1.0454] (79)

Substitute controller gains into system (8), the closed-loop
error switched system can be written as

𝐴1 = [−0.0753 −1.9579
1.8533 −0.4012] ,

𝑘1 = [ 00.8] ,

𝐺1 = [0.250.01] ,
𝐶1 = [−0.0109 0.3848] ,
𝐷21 = 0.05
𝐴2 = [−2.9834 −2.0454

4.4417 0.4227 ] ,

𝑘2 = [ 0
−0.2] ,

𝐺2 = [0.50.2] ,
𝐶2 = [0.8767 0.2191] ,
𝐷22 = 0.028

(80)
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Figure 3: The state responds of 𝑒(t) and 𝑧(t) under switching signal𝑆.

State responses under state-feedback controllers and switch-
ing signal 𝑆 are shown in Figure 3. We can observe that the
closed-loop system is FTB, and the𝐻∞ performance satisfies

(∫𝑇
0
𝑧𝑇 (𝑡) 𝑧 (𝑡) 𝑑𝑡)1/2 ≈ 0.9366

< 𝛾 (∫𝑇
0
𝜔𝑇 (𝑡) 𝜔 (𝑡) + 𝑘𝑇max𝑘max𝑑𝑡)

1/2 ≈ 3.596
(81)

Thus, according to Definition 4, the given affine switched
system can be regarded as finite-time 𝐻∞ bounded under
designed𝐻∞ controller gains.

6. Conclusion

In this paper, the problem of finite-time boundedness and
finite-time 𝐻∞ control for affine switched systems has been
investigated. Several definitions and sufficient conditions for
FTB and 𝐻∞ performance are proposed. Based on the aver-
age dwell-timemethod, the FTB conditions of affine switched
linear system with known state boundary are derived first in
this investigation. To reduce the conservatism of FTB con-
ditions, by classifying subsystems into asymptotically stable
and unstable systems, we get the improved FTB conditions
for affine switched system presented in Corollary 11.The con-
servatism of conditions under the two situations is compared.
Then applying the finite-time boundedness analysis results,
finite-time 𝐻∞ performance is discussed. Finite-time 𝐻∞
controllers are designed to ensure the corresponding closed-
loop switched system FTB with𝐻∞ performance. Numerical
examples are finally provided to validate our theoretical
results. Many real-world systems concern with finite-time
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and transient behavior; meanwhile, many engineering appli-
cations can bemodeled as affine switched systems. Therefore,
our theoretical results about finite-time boundedness of affine
switched systems are supposed to have great potential in
the application of practical switched systems. Furthermore,
the proposed results in this paper can be extended to the
nonlinear affine switched systems which will be considered
in future work.
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