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For affine switched systems, the existence of multiple equilibria is related to subsystems owing to the affine terms, which makes
asymptotic and finite-time stability analysis nontrivial. In this paper, the problems of finite-time boundedness (FTB) analysis and
stabilization are addressed for affine switched systems, and several definitions and sufficient conditions are proposed to study FTB
and H_, performance. At first, the definition of FTB for affine switched systems is improved concerning the affine terms and multiple
equilibria. Based on the FTB definition, sufficient conditions ensuring finite-time boundedness for affine switched systems under
a prespecified state boundary are given. Then the results are extended to solve H, finite-time boundedness problem, in which
the H,, controllers are designed to guarantee the finite-time boundedness of affine switched system with H_, performance. In our
investigation, average dwell-time approach is employed to study the time-dependent constrained switching case. Finally, several

numerical examples are given to illustrate the effectiveness of the proposed results.

1. Introduction

Switched systems are distinctive subclass of hybrid sys-
tems. They are composed of a family of continuous-time
or discrete-time subsystems with a criterion that rules the
switching among them. This switching rule can be clas-
sified as time-dependent, state-dependent, or time-state-
dependent [1]. Since many physical processes possess switch-
ing nature, and many real-world applications resort to
switching strategy to improve the control performance, the
theory and application of switched systems have received a
great attention during the recent decades. For more details
on the recent results about the basic problems in stability
and stabilization for switched systems, readers are referred
to surveys [2-4] and books [I, 5] and the references cited
therein.

The issue of stability analysis and stabilization is an
important topic for switched dynamical systems [6-10]. Find-
ing sufficient conditions ensuring the Lyapunov asymptotic
stability dealing with infinite time interval has been the major
concern for switched systems. Numerous published results
discussed the asymptotic stability analysis and stabilization

employing different variations of Lyapunov function [7, 11,
12]. Average dwell-time approach [13, 14] and Lie-algebraic
condition technique [15, 16] are effective tools for analysis of
switched systems. On the contrary, the finite-time behavior
of dynamical systems is also of interest in many practical
applications. It concerns that the states do not exceed a
certain bound during a fixed time interval, e.g., to avoid
saturations or excitation. The theory of finite-time stability
(FTS) and finite-time boundedness (FTB) focuses on the
transient response of dynamical systems over a finite-time
interval, while asymptotic behavior is for infinite time. In the
survey of recent development of this innovative theory, some
necessary and sufficient conditions for finite-time stability
and stabilization of continuous-time systems or discrete-
time systems have been provided in [17, 18]. Based upon it,
necessary and sufficient conditions for finite-time stability of
systems with impulsive effects were obtained in [19, 20]. The
authors [21, 22] applied FTS/FTB conceptions to switched
systems and compared the conservativeness among differ-
ent conditions. In [23], the mixed H_ /finite-time stability
control problem was discussed. For quadratic input-output
finite-time stability with an H., bound, [23] provided a
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necessary and sufficient condition. Then the method was
extended to robust H,, controller and filter design for
switched system with exogenous noise [24, 25]. It should
be noted that finite-time stability and Lyapunov asymptotic
stability are independent concepts: a Lyapunov asymptotic
stable system may not fulfill FTS/FTB criteria since the
transient response of a system may exceed the bound, and
vice versa [26]. In many practical applications, switching
is likely to occur in some short-time intervals, whereas for
remaining long time no switching occurs. Since Lyapunov
stability concerns with infinite time, it may not be influenced
by such short-time switching. However, the boundedness of
state may be affected by the switching. Hence, FTB criteria
are needed to be considered for designing controller and
switching laws during such applications.

Most of the existing literatures on stability issues of
switched systems are based on the premise that all subsystems
share a common equilibrium (typically the origin). On the
other hand, for affine switched system, subsystems have
different equilibria, so complex and interesting phenomena
emerge. Almost all the practical hybrid systems can be
modeled as affine switched systems. Many results like [27-30]
analyzed interesting behaviors similar to those of asymptot-
ically stable systems near an equilibrium for affine switched
systems and depicted their real-world applications. Many
extensions of the conventional stability concepts have been
obtained for affine switched systems. S-Procedure method
with the extensional state vector has been proposed in
[31, 32] to analyze the asymptotic stability for continuous
affine switched system. The relative results were extended to
discrete affine switched systems in [33]. In [34], a method
for designing switching rules driving the state of affine
switched system to a desired equilibrium was investigated.
Almost all the existing literatures on stability analysis of
affine switched systems focused on the asymptotic stability.
However, the boundedness of state for affine switched systems
under constrained dwell-time switching is also of significant
interest for affine switched systems. In FTB analysis, we also
need to deal with affine terms leading to multiple equilibria
for affine switched systems, but the investigation of this
problem lacks researchers’ interest previously. Potential of
affine switched systems theory and importance of finite-
time transient behavior from the perspective of real-world
applications are the major motivations for this investigation
presented in this paper.

The main objective in this paper is to find sufficient
conditions ensuring the FTB of affine switched systems by
switching signal and feedback controllers design and to drive
the state of affine switched system to the prescribed neighbor-
hood of a desired equilibrium during a finite-time interval.
Taking into account the influence of affine terms on FTB for
affine switched system, we propose an innovative FT'B con-
cept. Based on this definition, sufficient conditions ensuring
the affine switched system finite-time bounded are proposed.
Specifically, with the prespecified state boundary, average
dwell time and state-feedback controllers for each subsystem
are determined to guarantee the finite-time boundedness.
The paper [22] points out that the more information about
switching signal we know, the less conservative results can
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be derived. We extend this idea to switched affine systems
to further reduce the conservatism. Classifying subsystems
into asymptotically stable and unstable systems, we get the
less conservative results of finite-time boundedness for affine
switched system with the help of additional information of
switching signal. Then, results are extended to solve the FTB
problem for H_ controller design.

The rest of this paper is organized as follows. In Section 2,
definitions of finite-time boundedness and H_, finite-time
boundedness for affine switched system are revisited. Based
on these definitions, finite-time boundedness analysis and
finite-time stabilization are presented in Section 3. Then in
presence of exogenous signals, H,, finite-time boundedness
and the controllers design are investigated in Section 4. In
Section 5, several numerical examples are presented to vali-
date the proposed results. Conclusions are given in Section 6.

2. Preliminaries and Problem Formulation

For our investigation, we consider continuous-time affine
switched system described as

%(t) = A;x(t) +Bu(t) + b,

y () = Cix (¢)

x(0) = x,

@

where x(t) € R” is the system state, u(t) € R™ is the control
input, y(t) € R7is the measurement output, A;, B;, and C;
are system matrices with appropriate dimensions, constants b
are affine terms, and i(f) : R" — I = {1,--- ,m} is switching
signal. For notational simplicity, we use 7 in place of i(t).

Matrix variables A;, B;, and b, give rise to an equilibrium
(stable or unstable) for each subsystem; assuming all A; to be
nonsingular, we consider a given reference x, as the required
equilibrium for the whole system, referred to as switched
equilibrium. Without loss of generality, it is assumed that
the desirable equilibrium is different from all the equilibria
of subsystems. Now although the asymptotic stability of
affine switched system may be achieved by other types of
switching strategy such as min-switching and sliding method,
the state will not exactly converge to x, under dwell-time
constrained switching. The reason is that there always exist
time interval (dwell time is always greater than zero) in which
state must diverge from x,. In our FTB investigation, we
provide solution for boundedness of error state under dwell-
time switching, which depicts the importance and innovation
of our approach.

Here first we will extend the FTS and FTB concepts for
affine switched systems keeping in view prescribed equilib-
rium x,. In absence of control input, system (1) can be stated
as

£(1)= Ax(®) + 5, x(0) = x, ®)

Definition 1. Autonomous affine switched system (2) is said
to be finite-time bounded with respect to (,,8,, & R, R, T)
if the following inequalities hold:
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(xO - xr)T Re (xO - xr) < 85

KE Rk <82

max max —
3)
t=0

(x()-x,) R (x(t)-x,)<e 0<t<T

wherek, . = argmaxizl,m,m{kiTkai}, ki=Ax,+b,0<6, <
£0,=0,R,>0,R, >0,and T € R,

Remark 2. Given equilibrium x, and system (2), its tracking
error system can be written as

é(t) = Ae(t) +k; 4)

where e(t) = x(t) — x,, k; = b + A;x,. According to
Definition I, we can conclude that affine switched system (2)
is finite-time bounded with respect to (8,,6,,¢& R,, R, T) if
e(t)" R e(t) < € whenever eOTRee0 < 8*and kgawakmax <8
The FTB criteria of affine switched systems ensure the state
tracking the desired equilibrium x, within the boundary e.
In other words, it guarantees the error state e(t) tracking the
origin in finite-time interval. Therefore, our study about FTB
of affine switched systems can be turned into analyzing its
corresponding tracking error system. Moreover, it is worth
noting that FTB theory for general switched systems is related
to initial state x, [35, 36]; whereas for affine switched systems,
we are concerned with x, as well as the desired equilibrium
x, and affine terms b;. Thus, in the Definition I, the premise
constraint conditions are extended to both initial state x, and
k; to analyze the FTB of affine switched systems, where k; is
related to the desired equilibrium x, and affine terms b,.

Remark 3. With the state-feedback controller u(t) = K;x(t),
i € I, afine switched system (1) can be rewritten into the
following closed-loop system:

X(t)=Ax () +b, x(0)=x, (5)

where A; = A; + B,K; and the FTB analysis method can be
used directly. Similar to the significant impact of switching
laws on asymptotic stability, the switching signals affect the
finite-time boundedness of affine switched systems property
significantly. Therefore, both switching signals and robust
controllers should be designed during the FTB analysis of
affine switched systems.

On the other hand, external disturbances are inevitable to
dynamical systems. We can state affine switched system with
time-varying disturbance w(t) as

xt)=Axt)+Bu®t)+Guw({t)+b, x(0)=x, (6)

w(t) is assumed to be energy-bounded and hence for some

scalar d > 0 it satisfies the inequality IOT o' (Hwt)dt < d°.
For simplifying FTB analysis, following Definition 1 we can
transform affine switched system (6) to its error tracking
switched system as

é(t)=Ae(t)+Bu(t)+Guw ) +k;, ,x(0)=x,

(7)
z(t) = Cie(t) + Dyu (t) + Dyw (t)

where e(t) = x(t) — x,, k; = A;x, + b, x, is the desirable
reference point, z(t) € R? is the controlled output, and
the switched equilibrium of system is moved to the origin
accordingly. Considering state-feedback controller u(t) =
K;x(t), we derive the following closed-loop switched system:

é(t) = Ae(t)+Guw(t) +k, x(0)=x,
(®)
z(t) = Cie (t) + Dyw ()

where A; = A, + BK;, C; = C; + D;K;. Now we are able to
state the following definition.

Definition 4. For affine switched system (7), considering
state-feedback controller u(t) = K;x(t) and H_, performance
index y > 0, if the following two conditions are satisfied:

(1) the closed-loop error tracking switched system (8) is
finite-time bounded;

(2) under zero-initial condition, the controlled output z
satisfies the inequality

T T
J 25 (1) z(t)dt < yzj @' ()@ (t) dt
0 0
)
T
<yzj (" (1)@ (1) + Ky s ) it

max
0

where @(t) = [wT(t) k?]T, Kpax = argmaxizl’___)m{kiTkai},
then u(t) is called ‘finite-time H, controller’.
Assuming u(t) = 0, k; = 0 system (7) is expressed as
é(t)=Ae(t)+Guw(t), x(0)=x,

(10)
z(t) = Cie(t) + Dyw ()

Now Definition 4 can be reduced to the following form.
Switched system (10) is said to be H ,, finite-time bounded
with performance index y, if

(1) the error tracking switched system (10) is FTB;

(2) under zero-initial condition, the controlled output z
satisfies

T T
J 2Lz (@) dt < yzj W' () w(t)dt (11)
0 0

Based upon the above preliminaries we will focus on
how to find sufficient conditions to ensure the finite-time
boundedness of affine switched systems and address the
H_, analysis and synthesis of piecewise linear state-feedback
controllers resorting to LMI-based algorithms. The main
problems we concern in this paper can be stated as follows.

Problem 5 (finite-time boundedness for affine switched
systems). Given affine switched system (2), find sufficient
conditions ensuring the finite-time boundedness with respect
to (8,,68,,& R, R, T).



Problem 6 (state-feedback stabilization under FTB). Given
affine switched system (1), find set of static state-feedback
controllers u(t) = K;x(t) to ensure that the closed-

loop system (5) is finite-time bounded with respect to
(83) 8“), 8) Rea Rw, T)‘

Problem 7 (H,, performance and controller design). Given
affine switched system (8), analyze the H., performance
and design set of H,, controllers defined in Definition 4
to ensure the finite-time boundedness with respect to
(6,,8,,& R, R,, T) and reduce the effect of the exogenous
signal w and k; on the controlled output z to a prescribed level

V-

3. Finite-Time Boundedness and
State-Feedback Stabilization

In this section, Problems 5 and 6 are taken into consideration.
Our main aim is to find sufficient conditions and state-
feedback controllers to ensure the finite-time boundedness
of affine switched system in the form of (2). For a finite-
time interval [0, T'], we consider finite switchings k[O,T]. Each
subsystem has an (stable or unstable) equilibrium point x,; =
—Alflbi. Regarding reference point x, as an equilibrium point
for the whole system called switched equilibrium and taking
into account average dwell time, we will derive sufficient
conditions ensuring finite-time boundedness.

Theorem 8. Affine switched system (2) is finite-time bounded
with respect to (8,,0,,& R, R,,T), if there exist positive
definite matrices P, scalars o, 3 > 0, & > 0, such that

aR, < P, < R, (12a)

R0 12b
<E[0 Rw] (12b)

e(f/“)T+k[o,T]1n(l3/fX) (ﬁsj + Tf(si,) _aet <0

ATP +PA; P,
P 0

1

(12¢)

Proof. Consider the error tracking switched system (4), let
R = dig(R,,R,), 1;

Lyapunov function Vi(t) = eT(t)Pie(t). From condition (12b)
we have

T
= [eT(t) le] . We choose piecewise

Vi (t) = ¢" (t) Pe(t) + e (1) Pé(t)

[e(t)]T ATP +PA; P, [e(t)] 6T (13)
K P ol M i
Employing (12a) we derive
V,(t) < &' (e (1) Pe (t) + ak] R k;)
(14)

< foc_IVi + 583)

LetVt > 0,t, < t; < -+ < t; be the switching instant
of switched system. For overall system we can write V(¢) =
Yier 0;Vi(1),0; € {0, 1}. Now from inequality (14),
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V() <p(tt) V(L) + gaj J: ¢t 1)dr (15)

where ¢(t,7) = exp(éa” ' (t — 1)) < exp(Ea”'T), T denotes the
finite-time interval. Accordingly, the Lyapunov inequality in
single step satisfies

V() < ¢ (teon 1) %w;)
¢ (16)

738}
+E82 j ¢ (tnr7) dr

[

Suppose system switches from mode i to j at some instant ;;
then from condition (12a),

Vi) Vi)
V() Vi)
pe’ (te) Ree () _ B

ae” (tp)Re(t,) o

_ e’ (t) Pie (ti)
e’ (ti) Pe (i) W)

It is evident that S/« > 1 and following (16) iteratively we can
derive easily that

v <(£)" [otmvie)

(18)

E(8) e,

n-1

¢ (t, 1) dr]

Applying (15) and (18) we deduce

V) < (é)km} [sb(t, )V ()

3 (8) e

t kO,T
+f§ij ¢t 1)dr < <§> [ ]e(i/‘x)TV (t,)

2%

¢ (t,,7) dT:|

n-1

o (BT [ 2 QT ¢, (19)
+Zl<a> E&UJ' l¢(f,T)dT+§5we (t

—t) < (g)k[m
4 82 1T [i( )" t-tn_1>+(f_fk)]

kom kom
(B oy (B) gz
fo4

[0

e(f/a)TV (fo)

On the other hand, from condition (12a), we have

V(t)=e' (t)Pe(t) > ae” (t) Roe(t) (20)
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Using the fact that V (¢,) = eOTPie0 < BelR.ey < PO, in order
to ensure the finite-time boundedness of switched system
(4), i.e., eT(t)Ree(t) < &, the following condition should be
satisfied:

T B (1ot pr2
ae” (t)Re(t) < (—) e B0,
a
. (21
0.1]
+T ( p ) E@ie(g/“)T < ag’

«
which can be rewritten as condition (12c). Therefore, we get
(x(t) - x,)TRe(x(t) -x,) < €% and we conclude that the affine

switched system (2) is finite-time bounded which completes
the proof. O

Remark 9. When other parameters are fixed, condition (12¢)
can be described by average dwell time as [37]

-1
. B ae? 3
> =ThE(m—-%__ ->r 22
fa2ta = 2R\ ez v 182 =

where 7, = T/k/y ). In other words, the average dwell time
7, should be chosen large enough to ensure that inequality
(22) is satisfied, which is necessary to guarantee the finite-
time boundedness of affine switched system (2). Moreover,
assuming R, = I, from (12a) and (19) we deduce

Valle (1)l < e" (t) Pe (t)

Kio.r)
< \]<é> Gl B le (£,)] (23)

[04

B komy
e (B e
fo4

When ¢ — oo, T —> oo and the term
\/ T(B/a)ron £62¢%/9T on the right side of (23) will become
infinite, which explains that the affine switched system (2) is

not ultimately bounded, which illustrates FTB and ultimately
boundedness are independent concepts.

Remark 10. Once the state bound ¢ is not ascertained, the
minimum value ¢, is of interest, which can be found

through optimization problem min( ,B/a)k["’”e(g/ “)T(/S(?Z +
Tﬁéz))(x_l subject to (12a) and (12b). If we fix the parameter
Eandlet o = 1, B = Oa, the optimization problem becomes

min 0
0>1
st. R, <P <OR, (24)
AP +PA; P R, 0
¢
P, 0 0 R,

Then ¢, = \/leﬂﬂ e*T(062 + TEH2) can be derived with the
optimized value 6.

It is evident that smaller value of & gives rise to less
conservative FTB conditions. In Theorem 8, the parameter &
indicates the asymptotic stability property of each subsystem.
It is well known that when & = 0 in condition (12b), this
condition can be regarded as Lyapunov function condition
which ensures each subsystem to be asymptotic stable;
whereas when & > 0, the condition that V' (¢) must be negative
is relaxed in FTB sense, and V(¢) just should be no greater
than Vi(t) < &'V, + £82 to guarantee the boundedness
of state in finite-time interval [0,T]. The parameter £ > 0
in condition (12b) covers both the asymptotic stable and
unstable subsystems. Now let subsystems A,,---,A, be
asymptotic stable and A,,;,---,A,, are unstable, and T,
T" denote the total activation time for stable and unstable
subsystems during [0, T]. Then the less conservative results
about FTB of affine switched system can be obtained in the
following corollary.

Corollary 11. Switched system (2) is finite-time bounded
(FTB) with respect to (8,, 0, & R,, Ry, T), if there exist a set of
positive definite symmetric matrices P, i € I, scalars o > 0,
B > 0, and & > 0 such that the following conditions are
satisfied:

aR, < P, < R, (25a)
0 i<r
ATP+PA; P,
< R, 0 (25b)
P, 0 & i>r
0 R,
&/ tkon nB0) (B52 L THERG2) _qe? <0 (250)

Proof. Consider the error tracking switched system (4), let
R = dig(R,R,), 1; = [eT(t) kiT]T, i € I; we choose

piecewise Lyapunov function V;(t) = eT(t)Pie(t).
From condition (25b), we get

Vi(t) = ¢ (t) Pe(t) + e (t)Pe(t)

[e(t)]T ATP.+PA, P [e(t)]
LK b 0L Kk
0 i<r (26)
< =
Enl Ry, i>r
0 i<r
\ll(t) < E-f—
;Vl +E8 it



LetVt > 0,1, < --- < t; be the switching instant of switched
system, and V(t) = Y,.; 6;V(t),0; € {0, 1}. From inequalities
(25a) and (26), we have

V()
oV (t) i) <r (27

v cee [ sendr i)
where ¢(t, 7) = exp(E*a ! (t— 1)) < exp(§Ta”' T™). Following
(27) iteratively

kon
V(t)<(é> CTY (1)
04
. (28)
07) A
o1 (B e

By the same proof line in Theorem 8, we know that in order
to ensure the finite-time boundedness of switched system
(4), i.e., eT(t)Ree(t) < &%, the following condition should be
satisfied:

ae” (t)Rye(t) <V (t)

kory .
< (E) & 10Ty, (t,)

a (29)
B \Fem R,
+T (—) E+5Z)e(£ [T o ye?
a
Since V(t,) = el Pey < Pet Ryey < fS72, we have
ko ko, -
<E> o€ 1T g5 ot (E) £ 52 1T
o a (30)

< 0682

which can be rewritten as (25c¢). Hence, (x(t) — x,)TRe(x(t) -
x,) < &* and proof is complete. O

Remark 12. Similar to the optimization problem of state
bound e described in Remark 10, the optimal value ¢, ;,, can be
found according to min(/a)*07 LT (B2 + THE S )™
subject to (25a) and (25b). We fix the parameter £ and let
a = 1, B = Oa, the optimization problem becomes

min 6
6>1
st. R, <P <OR, G31)
A[P+PA; B [Re 0 ]
<&
j2 0 0 R,

Then the minimum ¢, = \/Gk[oﬂ e T (062 + T*E+8?2) can

be derived with the optimized value 6. Since T < T,
comparing the value of the optimal state bound e_;, in
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Theorem 8 and Corollary 11, we know that, by classifying
subsystems into asymptotically stable and unstable, the FTB
conditions derived in Corollary 11 are less conservative than
that in Theorem 8.

Constituting state-feedback controller of the form u(t) =
K;x(t), affine switched system (1) can be transformed into the
closed-loop form of (5) and Definition I of FTB can be used
directly. Now we will consider problem-2 to provide sufficient
conditions for finite-time state-feedback stabilization.

Theorem 13. For affine switched system (1) holding Defini-
tion 1, if there exist state-feedback controllers u(t) = K;x(t),
positive definite matrices Q;, matrices X;, and scalars 0 > 1,
& > 0 such that

-Q Q]
<0,
S
(32a)
[—GRe I
<0
* —Qi-
AQ; + QiA,T +B,X; + XiTBiT -8 I <0 (32b)
1 _ERw i
Tk 00 (952 T T&Si}) <0 (320

then closed-loop system (5) is FTB with respect to (8,, 0, & R,,
R, T) with K; = X,Q; .

Proof. Assume x, is the switched equilibrium point of affine
switched system (1). Applying coordinate transformation we
can get its corresponding error tracking switched system as

é(t) = Aje(t) + Bu (1) + k, (33)

where k; = A;x, + b, and e(t) = x(t) — x,. Then under the
state-feedback controllers u(t) = K;e(t), and the closed-loop
error system can be written as

é(t) = Ae(t) +k; (34)

where A; = A; + B,K,. From Remark 2, we know that FTB
analysis and finite-time control can be realized employing
tracking error system. Hence, we consider the closed-loop
error system (34) here to design the controllers stabilizing the
system (1) in finite-time interval.

Let 2 = dig(R,,R,), 1; = [eT(t) kiT]T, we choose

piecewise Lyapunov function V;(t) = eT(t)Pie(t) for each
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subsystem; then the derivative of V; along the solution of

system (34) is described as

T
Vi) =" (O Pe(®) +e" () Pe(t) = [ezit)]

e(t) e®)1”
PR

e(t)
]

A B+ PA, P
P 0

1

T
AP+ KiTBiTPi +PA;+PBK; P,
P 0

1

Letting Q; = P!, pre- and postmultiplying (32b) by
diag(P,, I) we get
PA;+ A{P,+ BBK; + K/B/F, &P, P,
<0 (36)
Pi _ERw

Due to condition (32a) and Schur’s complement formula [38],
we deduce

<0=

-Q @
x* -R'

R, < P.

e 1’

(37)
[—GRe I
£ -Q

]<0:>

i
P, < 0R,

Now using (36), from (35) we can derive

. &P 0
T i _ ¢ T ) T )
Vi (t) < n [ 0 wa] n; =& (t) Pe (t) + &k; R k; G8)

<&V, +E5]

By the same proof guidelines of Theorem 8, FIB condi-
tions (32a) and (32c¢) of closed-loop error system (34) can be
derived. Accordingly we get (x(¢) — x,)TRe(x(t) -x,) < e,
which proves that the affine switched system (1) is finite-time
bounded under state-feedback controllers u(t) = Kje(t). O

4. H_ Performance Analysis and Controller
Design of Affine Switched Systems

Based upon FTB investigation of previous section, our main
aim now is to design a set of H controllers to solve Problem
7. As stated in Remark 2, finite-time H_, control can be
realized through tracking error system, and this will be the
main focus in this section. For the sake of simplicity, we firstly
consider the autonomous error switched system in the form
of (10) assuming that k; = 0, u(t) = 0 and the corresponding
theorem is stated as follows; then we will show how to remove
the assumption and extend the results to the general affine
switched system with exogenous signal input.

Theorem 14. Given autonomous robust switched system (10),
if there exist positive definite matrices P, scalars o > 0, 8 > 0,
and & > 0 such that

aR, < P, < R, (39a)

A;‘Fpi +PA; + C?Ci PG; + CiTDzi

2 T

* —y°I + D;,D,;

221 (39b)
Y
<&
* Rw

ST RonnBle) (382 1 TES. +9*d*) —ae” <0 (39¢)

then this system is finite-time bounded with H, performance
y with respect to (8,3, & R,, Ry, T).

Proof. Let £ = dig(R,,R,), #; = [eT(t) wT(t)]T, and we opt
Lyapunov function V;(t) = eT(t)Re(t) and

Vi(t) = ¢" (t) Pe(t) + e (t) Pé(t)

[e(t) "TATP, + PA, PG, [e(t)] (40)
e x 0 |lo@)

Si c'c cp, ] _ [cf .

ince [ D;Dﬁ] = [D;] [C; Dy] > 0, condition (39b)

implies that

A{P + PA; PG,

R, 0 i
<£[* Rw] (41)

From (40) and (41), V;(t) < &' (t)R,e(t) + &52 + y*w’ () (t)
and together with condition (39a), we get

% —yzl

Vi (t) < ;eT (t) Pe (t) + &2 + Yo" () w (1)

- gvi +82 +y'w" (Hw(t)

(42)

LetVt > 0,t, < - -+ < t; be the switching instants, and V (¢) =
Ve 0:Vi(1), 6; € {0, 1}, where 6; is the indication function for
activated subsystem. From inequality (42), we have

V) <o (L) V (5)

t (43)
+ J ¢ (1) [E0L +7'0" (Dw(n)]dr

where ¢(t, 7) = exp((&/a)(t—7)) < exp((y/a)T). Accordingly,
the Lyapunov inequality in single step satisfies

4 (tk+1)
V(&)

< ¢ (tonrte) M (t) (44)

+ th“ ¢ (i 7) [E82 + 20" (D w (1)) dr

bk



Let system switch from mode i to j at instant t,(0 < t; < T);
then condition (39a) implies that

vg) Vi) e’ (t) Pe (ty.)

V() Vit €' (1) Pe (1)

ﬁe (t)Re(ty) B

el () Re(t,) «

(45)

Noting that S/« > 1, following relation (44) iteratively, we
can derive

<(5) {sb(rk,to)vuo)

<
+i<§> (te-t,) (46)

n=1

n-1

: j ¢ (t,,7) [E05 + 7’0" (D) w (7)] dr}

Applying (43) and (46), the following inequality is obtained:

V) < (g)m {¢>(t, )V ()

() e

n=1

: j ¢ (£, 7) [0, + 7Y’ (D w (1)) dr}

n-1

j b (6,0 [862 + v’ () w ()] dr

< < g >k[m TV (1) + Zk: < g >k[m_n (47)

n=1

: rn ¢ (t,7) [+’ (1) @ (1) dr

n-1

t Ko,y
/9T J 583) + ysz (Nw(r)dt < <E>
123

o

kio,r) Ko,y
.e<fm>Tv(to)+(é) o (£)
« «

/T [ Jw (T)w('r)d'r]

to
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Using the fact JOT o (T)w(t)dt < d?, (47) can be rewritten as

AN
V(t) < (—) eV (t,)
04
K,
T <E> " g2 leleaT (48)
04
ko
N (E) Pl

o

On the other hand, from condition (39a), we have
V(t) = e (t)Pe(t) > ae” (t) Roe(t) (49)

Since V(t)) = e’ (ty)Pe(t,) < Be'(ty)R.e(ty) < B> we
conclude that in order to ensure FTB for system (10) such that
eT(t)Ree(t) < &, the following condition should be satisfied:

T BT 1ot pr2
ae (t)R,e(t) < <—> e B3,
[0
kio,r
er(E) e (50)
[04

kio.r)
+ <E> Y 2@ < e’

[0 4

which can be rewritten as condition (39c). Hence, FTB
analysis for system (10) is completed.

Considering 2L ()z(t) - ysz(t)w(t) + V(t), from (39a)
and (39b) we deduce

T 2T : [e(t) ]T
zZ Bzt -yw Hw®)+V ()=
w (t)
ATP.+ PA; +C/C; PG, + CTD2,] [e (t) ]
* DTDZI yzl w(t)

e®] R 07[e®)] ¢ ,
<E[w(t>] [ Rw] [w(t)]<§v(t)+€6“’:>

V() <& 'V (1) + 8 - 2T () z(t) + Y0 () w (1)

(51)

Integrating both sides of (51) and through iterations, we can
deduce

V() < <§>kl0ﬂ [‘/’ (tisto) V (to) + HZZ <§>_n

' (/) (tk’ tn)

t (52)
. J [E(Si + ysz Do) -2 (1)z (T)]

n—

¢ (t,T) dT:|
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where ¢(t,7) = exp(Ea(t — 7)) < exp(éa'T). Then
following the proof line of Theorem 8, we get

komy ko)
0<V ()< <E> Ty (1) + T<E>
04 04
2 T ﬁ Foor)
2 elElaT <_) (53)
04

. &/T Jt Yo @) 2" (1) z(x)dr

Since the zero-initial condition, we have V(0) = 0; thus,

o

<E>k[m JEfar J't 2,7 (0w (1) - 2T (1) z (1) dr
. y (54)

>0

Setting t = T, t, = 0, the H_, performance condition (11) is
satisfied which completes the proof. O

Remark 15. The parameter y is H,, performance index and
its minimum value y,,;, is often of interest from practical
viewpoint; hence, we can state the optimization problem as

min yz
(55)
st. (39a),(39b), (39¢)

Similarly, fulfilling FTB criteria, minimum value of state
bound e, is also desired, which can be found as the
optimization problem: min(ﬁ/a)k["’”e(g/ “)T(ﬁ5§ + T&Si +
y2d2 Yo ! subject to (39a) and (39b). If we fix the parameter &

andlet« = 1, f = O, then we can state optimization problem
as

min 6
6>1

st. R,<P <0OR,

AzTPi +PA; + CiTCi PG; + CiTDzi (56)
* ~y*I + Dy,D,;
R, 0
[
* Rw

and e, = \/Gk[o,ﬂ et (0682 + TES? + y*d?) is derived with the
optimized value of 6. We can adopt a convex combination of

Ymin and €min a8 ](P) = pygnin + (1 - P)sxznin’ 0< P <landa
more general convex optimization problem can be stated as

min ] (p)
st. R, <P <0OR,

T T
AP+ PA; +C[C; PG, +C{Dy
« —yzl + D;DZi
R, 0
<& [ ‘ ]
* R,
/T +kpo,In(B/a) (ﬁéﬁ + Tiéf, + Vzdz) - ag’

<0

(57)

Now we will extend the results to design the H,, con-
trollers, ensuring FTB of the closed-loop affine switched
system (8). Different equilibria for subsystems exist because
of the affine terms k;, and hence stability analysis and
H_,, control are not trivial. To solve this problem, a few
results are available proposing extended state space method
in [12, 31]. However, this approach seems conservative for
system synthesis because the eigenvalues of the extended state
matrices A,,, related to the affine terms are not exactly the
same as for the original state matrices A;. For state-dependent
affine switched system, S-procedure method can be used to
reduce the conservatism. However, for time-dependent affine
switched systems, there are only few effective results. In our
investigation, we redefine exogenous signal w(t) as

w k(t)]

1

w(t) = [ (58)

Hence, the closed-loop switched system (8) can be rewrit-
ten as

é(t)=Ae()+Ga(t), x(0)=x,

_ _ (59)
where G; = [G;, I], D,; = [D,;, 0]. Since in the H,, framework
I()T o' ®w(t)dt < d* holds, the proposed extension of
the disturbance input is reasonable and we can design the
H_, controllers of the equivalent closed-loop error switched
system (59) to ensure the finite-time H,, boundedness for
original affine switched system (8).

Theorem 16. The closed-loop switched system (59) is FTB
with H, performance y regarding (8,, 8, & R, R, T), if there
exist constant state-feedback controller u(t) = K;x(t), positive
definite matrices Q;, matrices W;, scalars 0 > 1, & > 0 such that

[—Qi Q;

(60a)
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AQ + QiA;'F +BW, + WiTBiT -§Q;
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= T, wTpT
G; QC; +W; Dy

G'if _,}/21 _ ERw ﬁ; <0 (60b)
C.Q, + D,W, Dy -1
AT +io:nnd (982 + TE&?U N yzdz) _ <o (60c¢)

where K, = W,Q; .

Proof. Let £ = dig(R,,R,) and #; = [eT(t) (’Z)T(t)]T,i el

Defining V,(t) = eT(t)Re(t) as before, for system (59) we can
state that

Vi(t) = ¢é" () Pe(t) + e’ (t) P (1)

AP +PA, PG,

_[e(t) g
- ) )

e(t) (61)
@(t) [

@ (t)

Assuming Q; = P!, pre- and postmultiplying (60b) by
diag(Pi)Ial))

A/ P+PA -t PG C
G'P, ~y’I-&R, Dy | <0  (62)
C; D, -1

Using Schur lemma, (62) can be rewritten as

ZiTPi + Pizi — &P, + EiTEi Piéi + 6?521'
% ~y*I - &R, + DLD,; | (63)

<0
T

—T— —T— — .
Since [Cf G G D ] = [ < ] [Ci Dzi] > 0, we can get
* DyDy Dy

(64)

ZiTPi +Pizi Piéi [Pi 0 ]
<&
* I * R,
which implies that
V,(t) < & (t) Pe (t) + Ek] R k; +y’@" (1) @ (t)
=&V, + 8, +y’@ (@ ()

Employing (60a) and using Schur complement formula,

-Q @
. 0=

* —Re

R, <P,
(66)

-0R, I

<0=
*

Following the proof guidelines of Theorem 14, condition
(60c) which guarantees the FTB of robust affine switched
system can be obtained.

Now we need to prove condition (9) for H , performance
under zero-initial conditions. From (60b),

ZM)zt)-y'@ Q@)+ V() <EV () +E  (67)

Applying integration and iterations, and setting V(t,) = 0
under zero-initial conditions, we get

0V ()
ko) £82 5T
<TONES e (68)
t
+ grom T J ychT M@ ((1) -z (1) z(r)dr
ty
Then setting t = T, t, = 0, we obtain that
T
J ych)T (no(r) - Zr (t)z (1) dT
0
(69)

max

T
= J Y (0" (1) 0 (1) + koykmay) = 2" (1) 2 (1) dT
0

>0

which illustrates that condition (9) is satisfied. We conclude
that the affine switched system (59), and hence closed-loop
affine switched system (8), is FTB with H_, performance y.

O

Remark 17. Unlike the normal switched system, the existence
of multiple equilibria for affine switched systems is related
to subsystems owing to the affine terms k;, which makes
asymptotic and finite-time stability analysis nontrivial. As
for the finite-time H,, controller design, concerning with
both the external disturbance w(t) and the affine terms k;,
we redefined the conception of H,, controller for affine
switched system in Definition 4, based on which the results
in this section are obtained. It is worth noting that the H_,
performance of affine switched system reduces to normal H_,
performance when assuming k; = 0.
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5. Numerical Examples

Example 1. Consider the affine switched system (2) with two
modes of operation:

[0.01 -2
Al = >
1 0.02
[-0.1 -1
A, = ;
| 3 -0.1
(70)
[-3.98
b = ,
| -1.16
. [-1.8
7 | -64

A, is unstable, A, is Hurwitz stable, and eigenvalues A(A ) =
{0.015 + 1.4142i}, A(A,) = {-0.1 £ 1.732i}. Assuming desired

reference x, = [2,-2]", error tracking switched system will
be

[0.01 -2
A1: >
1 0.02
0.1 -1
A, = ;
| 3 -0.1
(71)
3 [0
" los)’
B} [0
7 02

Evidently k., = [ %] Letd, = 1,8, = 0.8, ¢ = 5.885,
R, = R, = I,¢§ = 03,and T = 5s. From the FTB
condition (24), we get the average dwell time 7, = 1.5s to
ensure the finite-time boundedness with respect to ¢, so that
the switching signal S can be chosen as a periodical signal
with T; = 1.5s, which implies that ko) = 3 and T* = 2s,
T~ = 3s during the finite-time interval [0, 5]. Given the initial
error state e(0) = [0.5, 0.8]T, the conditions egReeO < 85
and kI R k.. < 82 are separately satisfied, then the error
state trajectory of error affine switched system and the value
of e’ R e under the switching signal S are shown in Figure 1.

It is easy to see in Figure 1 that subject system is FIB
with conditions (12a), (12b), and (12c) satisfied. Moreover,
assuming ¢* = & = 1 and using optimization process (24)
and (31), the optimal value 0., = 1.0058, P, = [ 58325 0-1287 ],
Py = [ %558 %577 | can be obtained. Then substituting 6

min
into (12¢) and (25c) separately, we get
€y = 3.014,
(72)
& = 1.923
where &0, &min denote the minimum bound of state
derived by Theorem 8 and Corollary 11. It is obvious that

11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t(s)

t(s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t(s)

FIGURE 1: The state trajectories and the value of e’ (£)R e(t) under
switching signal S.

Corollary 11 s less conservative than Theorem 8 since &,,,,;, >

€1min-

Example 2. Keeping in view autonomous error switched
system (10), we consider this system:

[0.01 -2
A, = ,
1 0.02
L [0
" los)’
[0.25
G, = ,
[0.01
C, =[0.10 0.33],
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D,, = 0.05
[-0.1 -1
A, = ,
| 3 -01
‘ [0
2 -02]”
G '0.5]
> lo2)’
C, =103 0.01],
D,, = 0.028
(73)
with disturbance signal:
8§ 0<t<5
w(t) = (74)
0 else

which satisfies([| @’ (Dw()dD)"> = ([ o (He(B)dD)? =

8V5. Letd, = 1,5, = 08, & = 21758,y = 0.2, and
& = 0.3. From FTB condition (39c¢), we get the average dwell
time 7, = 1.5s to ensure FTB with respect to €. Then for the
finite-time H_, performance, we should have

<LT 2Lz () dt) <y <JT o () w (1) dt)

0
= 3.57

1/2 1/2

(75)

The simulation results with initial error state e(0) = [0.5,0.8]"
are shown in Figure 2.

We observe in Figure 2 that the system is FTB, and the
H_, performance satisfies

(JOT )z dt)

Thus, according to Definition 4, the autonomous robust
error switched system can be regarded as finite-time H,
bounded. Moreover, using optimization procedure (56) we

- _ [ L0165 0.0016 _ [ 22218 —0.2047
get O = 1.932, Py = [ 0086 09134 |» Py = [ 5555047 Toids |-
Putting in (39¢), we get &, = 6.314.

1/2
~2.18 < 3.57 (76)

Example 3. Consider the affine error switched system (7)
with two modes of operation:

[0.01 -2
A = ,

1 0.02

Mathematical Problems in Engineering

z(t)

FIGURE 2: The state responds of e(t) and z(t) under switching signal
S.

0.25
G, = ,
0.01

C, =[0.10 0.33],

D,, =0.13,
D,, = 0.05
B r-0.1 -1
S T
. 0
> -02]”
B -_1]
> los|’
o '0.5]
> o2’
C, =[0.3 0.01],
Dy, =02,
D,, = 0.028
8 0<t<5
w(t) =
0 else

(77)
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which  implies  that (_[OT o (B)w(t)dt)"? =
(J; @O0 = 8V5 and Ky = [ &

The objective in this example is to design a set of
robust H,, controllers ensuring finite-time H_, bounded-
ness of closed-loop error switched system with respect to
(0.,6,,6 R, R, T), where §, = 1,5, = 08,y = 0.2,
€ = 4536,R, = R, = I,{ = 03,and T = 5s. Setting
switching signal S as a periodical signal with T, = 1.5s, based
on Theorem 16, we calculate

1=

1.4665 0.0957
0.0957 1.3408]°

W, = [~1.2110 0.4831]
(78)
1.1617 —-0.2958
Qz = ]

| -0.2958 1.7466

W, = [3.0403 0.9730]

Then we can get the set of H,, controllers for each
subsystem as

K, = W,Q;" = [-0.8533,0.4212],
(79)
K, = W,Q," = [2.8834,1.0454]

Substitute controller gains into system (8), the closed-loop
error switched system can be written as

o _[00753 19579
" 1.8533 —0.4012]°
L
" los)’
[0.25
G, = ,
0.01

C, =[-0.0109 0.3848],

D,, = 0.05
(80)

_ [-2.9834 -2.0454

A, =

| 44417 0.4227

L]0

2 -02)’

o _[05

27 o2’

C, = [0.8767 0.2191],

D, = 0.028

13

0 0.5 1 1.5 2 2.5
t(s)
e (t)
— (1)
2
1.5} B
s 1
N5t
0F
705 1 1 1 1
0 0.5 1 1.5 2 2.5

t(s)

FIGURE 3: The state responds of e(t) and z(t) under switching signal
S.

State responses under state-feedback controllers and switch-
ing signal S are shown in Figure 3. We can observe that the
closed-loop system is FTB, and the H,, performance satisfies

<LT L)z @) dt)

T
<y <j W (1w () + kﬁakaaxdt>

0

12
=~ 0.9366
(81)
12
=~ 3.596

Thus, according to Definition 4, the given affine switched
system can be regarded as finite-time H, bounded under
designed H, controller gains.

6. Conclusion

In this paper, the problem of finite-time boundedness and
finite-time H,, control for affine switched systems has been
investigated. Several definitions and sufficient conditions for
FTB and H,, performance are proposed. Based on the aver-
age dwell-time method, the FTB conditions of affine switched
linear system with known state boundary are derived first in
this investigation. To reduce the conservatism of FTB con-
ditions, by classifying subsystems into asymptotically stable
and unstable systems, we get the improved FTB conditions
for affine switched system presented in Corollary 11. The con-
servatism of conditions under the two situations is compared.
Then applying the finite-time boundedness analysis results,
finite-time H_, performance is discussed. Finite-time H_,
controllers are designed to ensure the corresponding closed-
loop switched system FTB with H_ performance. Numerical
examples are finally provided to validate our theoretical
results. Many real-world systems concern with finite-time
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and transient behavior; meanwhile, many engineering appli-
cations can be modeled as affine switched systems. Therefore,
our theoretical results about finite-time boundedness of affine
switched systems are supposed to have great potential in
the application of practical switched systems. Furthermore,
the proposed results in this paper can be extended to the
nonlinear affine switched systems which will be considered
in future work.
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