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Simplified 3D Spencer’smethod is proposed to evaluate the stability of slopes under earthquake force and a random search algorithm
is used to determine the critical slip surface. A computer code was written in Matlab to determine the critical slip surface and
calculate its safety factor and direction of sliding (DOS). The applicability of the presented code is verified by reanalyzing three
slope stability problems. Then, a comparison is made to investigate the effects of the direction of earthquake force on the factor
of safety and the DOS of the critical slip surface. Accounting for the effects of the direction of earthquake force, the difference in
safety factors, and the DOS can be up to 40% and 40∘, respectively. Finally, a parametric study is also conducted to determine the
effects of the soil strength parameters (𝑐, 𝜑). It is found that the effective cohesion 𝑐 and friction angle 𝜑 of the soil have nearly
no influence on the unique DOS of the critical surface. Application of the presented approach into 3D slopes under quasistatic load
is straightforward.

1. Introduction

Estimating the slope stability remains one of the most impor-
tant problems for geotechnical engineers. Slope stability
analyses have usually been performed using two-dimensional
(2D) simulation [1–4]. However, in most cases, the geometry
of the slopes has three-dimensional (3D) characteristics,
such as corners, conical heaps, and dams in narrow valley.
Traditional 2D methods do not consider 3D effects resulting
conservatism in the analysis of slope stability under complex
condition [5].

Recently, various 3D slope stability methods have been
proposed to obtain more reasonable solutions. These 3D
analysis methods can be divided into three categories:
limit equilibrium method, limit analysis method, and finite
element method. The limit equilibrium method is most
widely used in practice to analyze the stability of slopes. A
number of 3D limit equilibrium methods, based on simple
extension of convention 2D methods, have been proposed
to estimate the 3D effects on the safety of slope [6–8]. All
these methods assumed the sliding body to move along the
plane of symmetry. Such an assumption, however, can lead

to miscalculation of the factor of safety for slopes under
asymmetrical conditionals, such as the complex geometry,
variable soil stratigraphy, external loading, seismic forces, or
other factors [9, 10].

Huang and Tsai [9] introduced the DOS that defines the
direction of movement of the sliding mass in the horizontal
plane and proposed a new 3D Bishop’s method that satisfies
two-direction moment equilibrium. Based on this new con-
cept of ‘two-direction equilibrium’, a number of researchers
proposed various 3D asymmetrical slope stabilities analy-
sis methods [10, 13–15]. Among these methods, simplified
Spencer’s method proposed by Wan et al. [15] satisfies all the
force equilibrium and two-direction moment equilibrium.
This method has relatively rigorous theoretical basis. The
method presented by Wan et al. [15] is further exploited to
investigate the stability of 3D slopes under quasistatic load.

Slope failure induced by earthquake loads can lead to
serious damage and loss of lives. For example, the Wenchuan
earthquake (Ms=8.0) on May 12th, 2008, directly caused
more than 15000 landslides which resulted in more than
20000 deaths. Since the mid-1970s, increasing attention has
been directed toward the stability analysis of slopes under
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Figure 1: Direction of earthquake force.
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Figure 2: Discretization of a failure mass.

earthquake forces [17–19]. At present, there are four methods
for seismic stability analysis of slopes: pseudo-static method,
Newmark sliding block analysis method, numerical analysis
method, and testing method.The conventional pseudo-static
method is still widely applied for evaluating the effects of
earthquake forces on the stability of a slope [20, 21]. Under
three-dimensional conditions, earthquake forces can act in
all three directions-along two horizontal directions (x and y)
and the vertical direction (z) as shown in Figure 1. Most of the
pseudostatic analyses have involved the consideration of the
horizontal earthquake forceQh, and vertical earthquake force
Qv. However, previous studies assumed that the horizontal
earthquake force Qh is parallel to the x-axis and neglected
the effects of the direction of earthquake force 𝜃e on the slope
safety. To improve the accuracy of 3D slope stability analysis,
the effects of the direction of the earthquake force on 3D slope
stability analysis should be taken into account.

In this paper, the method presented by Wan et al. [15] is
further exploited to evaluate the stability of 3D slopes under
quasistatic load. An efficient optimization method proposed
by Chen [22] is attempted to determine the critical slip

surface of slopes.The effect of the direction of the earthquake
force on the factor of safety and the DOS of the critical
slip surface is also investigated. The difference in factor of
safety and the DOS is compared to investigate the effects
of the direction of earthquake force on the safety of 3D
slopes. A parametric study is also conducted to show the
effects of the soil strength parameters (effective cohesion 𝑐,
effective friction angle 𝜑) on the DOS of the critical slip
surface.

2. Formulation of 3D Spencer’s Method

As with other 3D limit equilibrium methods, the potential
failuremass of a slope is discretized into a number of columns
with vertical interface. Figure 2 illustrates the internal and
external forces acting on the various faces of the column ith.
To establish the force andmoment equilibrium equations, the
following assumptions are included:

(1) The conventional definition for factor of safety F
reduces the available shear strength parameters 𝑐 and
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𝜙 by the following equations to bring the slope to a
limiting state.

𝑐𝑑 =
𝑐

𝐹
(1)

tan 𝜙𝑑 =
tan 𝜙

𝐹
(2)

where 𝑐 and 𝜙 are the effective cohesion and friction
angle of the soil, respectively; 𝑐𝑑 and 𝜙𝑑 are soil strength
parameters necessary to maintain the structure in limit
equilibrium, respectively.

(2) The horizontal shear forces,Hxi and Hzi, are assumed
to 0. Such an assumption was also adopted by Hungr
[6], Huang and Tsai [9] and Cheng and Yip [10].
The following relationships between the intercolumn
vertical shear forces (Xxi and Xyi) and the normal
force (Exi and Eyi) of ith column are assumed:

𝑋𝑥𝑖 = 𝐸𝑥𝑖𝜆𝑥 (3)

𝑋𝑦𝑖 = 𝐸𝑦𝑖𝜆𝑦 (4)

where 𝜆x and 𝜆y are shear force factors in the x- and y-
directions, respectively.

(3) Soil columns are assumed to move in the same
direction, i.e. the DOS is unique on the x-y plane
for all columns. The unique DOS, a, is equal to the
angle between positive x-axis and the projection of
the shear forceTi on the base of each soil column in x-
y plane (measured counterclockwise from the positive
x-axis).

(4) The pseudostatic method is adopted by the writ-
ers in the present formulation and by many other
researchers [20, 21]. The horizontal earthquake force,

Qhi, is assumed to act towards the center of the col-
umn. The components of the horizontal earthquake
forces, Qhxi and Qhyi, can be expressed as

𝑄ℎ𝑥𝑖 = 𝑄ℎ𝑖 ∗ cos (𝜃𝑒) = 𝑊𝑖 ∗ 𝐾ℎ ∗ cos (𝜃𝑒) (5)

𝑄ℎ𝑦𝑖 = 𝑄ℎ𝑖 ∗ sin (𝜃𝑒) = 𝑊𝑖 ∗ 𝐾ℎ ∗ sin (𝜃𝑒) (6)

where Kh is the pseudostatic acceleration coefficient
and 𝜃e is the angle between positive x-axis and the
earthquake force Qhi (measured counterclockwise
from the positive x-axis).

The unit vector, (mxi,myi, andmzi), for the shear force Ti
of the ith column can be determined by

𝑚2𝑥 + 𝑚2𝑦 + 𝑚2𝑧 = 1

𝑚𝑥 ∗ 𝑛𝑥 + 𝑚𝑦 ∗ 𝑛𝑦 + 𝑚𝑧 ∗ 𝑛𝑧 = 0

𝑚𝑥 = tan 𝑎 ∗ 𝑚𝑦

(7)

where (nxi, nyi, nzi) is unit vector for the normal force Ni
of the ith column.

Establish the vertical and horizontal force equilibrium for
the ith column in x, y, and z-directions, as

− 𝑊𝑖 + 𝑁𝑖 ∗ 𝑛𝑧𝑖 + 𝑇𝑖 ∗ 𝑚𝑧𝑖 + 𝑋𝑥𝑖 − 𝑋𝑥𝑖+1 + 𝑋𝑦𝑖

− 𝑋𝑦𝑖+1 = 0
(8)

𝑁𝑖 ∗ 𝑛𝑥𝑖 + 𝑇𝑖 ∗ 𝑚𝑥𝑖 + 𝐸𝑥𝑖 − 𝐸𝑥𝑖+1 − 𝑄ℎ𝑥𝑖 = 0 (9)

𝑁𝑖 ∗ 𝑛𝑦𝑖 + 𝑇𝑖 ∗ 𝑚𝑦𝑖 + 𝐸𝑦𝑖 − 𝐸𝑦𝑖+1 − 𝑄ℎ𝑦𝑖 = 0 (10)

By substituting (3), (4), (9), (10), and Mohr-Coulomb’s
failure criterion 12 into (8), the effective normal force,Ni,, can
be expressed as

𝑁𝑖 =
𝑊𝑖 − 𝑄ℎ𝑥𝑖 ∗ 𝜆𝑥 − 𝑄ℎ𝑦𝑖 ∗ 𝜆𝑦 + (𝑢𝑖 ∗ 𝐴 𝑖 ∗ tan 𝜙𝑑 − 𝑐𝑑 ∗ 𝐴 𝑖) ∗ (−𝑚𝑥𝑖 ∗ 𝜆𝑥 − 𝑚𝑦𝑖 ∗ 𝜆𝑦 + 𝑚𝑧𝑖)

−𝑛𝑥𝑖 ∗ 𝜆𝑥 − 𝑛𝑦𝑖 ∗ 𝜆𝑦 + 𝑛𝑧𝑖 + tan 𝜙
𝑑
∗ (−𝑚𝑥𝑖 ∗ 𝜆𝑥 − 𝑚𝑦𝑖 ∗ 𝜆𝑦 + 𝑚𝑧𝑖)

(11)

where Ai is the area of the column base.
The shear force Ti can be determined by application of

Mohr-Coulomb’s failure criterion.

𝑇𝑖 = (𝑁𝑖 − 𝑢𝑖 ∗ 𝐴 𝑖) ∗ tan 𝜙𝑑 + 𝑐𝑑 ∗ 𝐴 𝑖 (12)

Considering the overall force equilibrium in the x- and
y-directions

𝑆 = ∑(𝑁𝑖 ∗ 𝑛𝑥𝑖 + 𝑇𝑖 ∗ 𝑚𝑥𝑖 − 𝑄ℎ𝑥𝑖) = 0 (13)

𝑍 = ∑(𝑁𝑖 ∗ 𝑛𝑦𝑖 + 𝑇𝑖 ∗ 𝑚𝑦𝑖 − 𝑄ℎ𝑦𝑖) = 0 (14)

Establishing the overall moment equilibrium equation
about the x- and y-axis, respectively,

𝑀𝑦 = ∑(−𝑊𝑖 ∗ 𝑥𝑖 + 𝑄ℎ𝑥𝑖 ∗ 𝑧𝑒𝑖 − 𝑁𝑖 ∗ 𝑛𝑥𝑖 ∗ 𝑧𝑖 + 𝑁𝑖

∗ 𝑛𝑧𝑖 ∗ 𝑥𝑖 − 𝑇𝑖 ∗ 𝑚𝑥𝑖 ∗ 𝑧𝑖 + 𝑇𝑖 ∗ 𝑚𝑧𝑖 ∗ 𝑥𝑖) = 0
(15)

𝑀𝑥 = ∑(−𝑊𝑖 ∗ 𝑦𝑖 + 𝑄𝑦𝑖 ∗ 𝑧𝑒𝑖 − 𝑁𝑖 ∗ 𝑛ℎ𝑦𝑖 ∗ 𝑧𝑖 + 𝑁𝑖

∗ 𝑛𝑧𝑖 ∗ 𝑦𝑖 − 𝑇𝑖 ∗ 𝑚𝑦𝑖 ∗ 𝑧𝑖 + 𝑇𝑖 ∗ 𝑚𝑧𝑖 ∗ 𝑦𝑖) = 0
(16)

where xi, yi, and zi are coordinate values of the center of a
column base; zei is the z- coordinate of the center of a column.
The unknowns, namely, F, 𝜆x, 𝜆z, and a, can be obtained by
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solving the system of equations consisting of (13), (14), (15),
and (16).

The presented Spencer’s method can be simplified to
Bishop’s method by considering only moment equilibrium
equations (15) and (16) about axes parallel to x- and y-axis
direction, respectively. Similarly, presented Spencer’s method
can be simplified to Janbu’s simplified method by considering
only force equilibrium equations (13) and (14) in x- and y-
axis direction, respectively. One more assumption that the
intercolumn vertical shear force (Xxi and Xyi) is neglected is
made in Bishop’s and Janbu’s simplified method. The normal
force Ni can be expressed as

𝑁𝑖 =
𝑊𝑖 + (𝑢𝑖 ∙ 𝐴 𝑖 ∙ tan 𝜙𝑑 − 𝑐𝑑 ∙ 𝐴 𝑖) ∙ 𝑚𝑧𝑖

𝑛𝑧𝑖 + tan 𝜙𝑑 ∙ 𝑚𝑧𝑖
(17)

3. Optimization Procedure

The studies dealing with slope stability analysis within the
framework of limit equilibrium involves two sequential steps:
calculating the factor of safety for a given slip surface and
determining the critical slip surface and its corresponding
minimum factor of safety. Factor of safety is calculated by the
proposed limit equilibrium method. Optimization process is
used to determining the shape and location of the critical slip
surface. The slip surface is commonly assumed to be a par-
ticular shape, such as spherical, ellipsoidal, and nonuniform
rational B-splines. This paper introduces a general ellipsoidal
shape as the shape of failure in 3D analysis. This ellipsoid can
rotate on the x-y plane and the rotated ellipsoid is presented
as equation.

[cos 𝜃 ∗ (𝑥 − 𝑋𝑐) − sin 𝜃 ∗ (𝑦 − 𝑌𝑐)]
2

𝑅2𝑥

+
[cos 𝜃 ∗ (𝑦 − 𝑌𝑐) + sin 𝜃 ∗ (𝑥 − 𝑋𝑐)]

2

𝑅2𝑦

+
(𝑧 − 𝑍𝑐)

2

𝑅2𝑧
= 1

(18)

where 𝜃 is the rotation angle of the ellipsoid in the x–y plane;
Xc, Yc, and Zc, are coordinates of the center of the ellipsoid
in the x-, y-, and z-directions, respectively; Rx, Ry, and Rz are
semiradiuses of the ellipsoid in the x-, y-, and z -directions,
respectively.

An optimization technique proposed by Chen [22] that
was found to be effective in previous work by Gao et al. [23]
is used to find theminimum factor of safety. In this technique,
a random search algorithm is used to find an initial estimate
slip surface as the starting point in search of the global
minimum, and then a minimization procedure is carried out
until the bandwidths of the search variables become less than
predefined values.The procedure is proposed to consist of the
following steps.

Step 1. Generate a slip surface Z0(Xc,Yc, Zc,Rx, Ry,Rz, 𝜃) and
calculate its factor of safety F0.

Step 2. Generate a new slip surface Z1 and its factor of safety
F1. The coordinates of Z1 are determined by

𝑍1𝑖 = 𝑍0𝑖 + 𝑙𝑖 ∙ 𝑢 (0, 1) (19)

where Z1 is a new slip surface; l𝑖 is the bandwidths of the
search variables; u(0,1) is a random number ranging between
-1 and 1.

Step 3. Compare F0 and F1. If F1 ≤F0, Z0 and F0 are replaced
by Z1, F1, respectively.

Step 4. Repeat Steps 2-3 and Z0 and F0 are renewed until the
number of trials reached a specified value N, then l𝑖 = l𝑖/2.

Step 5. Repeate Step 4 until the l𝑖 < 𝜀.

4. Results and Discussion

Example 1. Example 1 is a homogeneous, laterally symmetri-
cal slope.The geometry and material properties of Example 1
are shown in Figure 3. This example was analyzed by Zhang
[16] using Bishop’s, Janbu’s simplified and Spencer’s method.
In these methods, a special ellipsoid slip surface (Ry=Rx, 𝜃=0)
was employed to determine the critical slip surface and its
corresponding minimum factor of safety. The same example
was performed to verify the performance of random search
method in determining the minimum factor of safety.

Based on Bishop’s, Janbu’s simplified, and Spencer’s
method, random search method was applied to determine
the critical slip surface and the corresponding minimum
factor of safety.The results obtained by the presentedmethod,
compared to those provided by Zhang [16] using Bishop’s,
Janbu’s simplified, and Spencer’s method are listed in Tables
1, 2, and 3, respectively. The calculated DOS are equal to 0∘,
which is the same as expect. The critical slip surface obtained
by the presented method and those provided by Zhang [16]
are illustrated in Figure 4. It can be seen from Tables 1, 2, and
3 that the minimum factors of safety obtained by presented
method is slightly smaller than those provided by Zhang [16].

Example 2. Example 2 is performed to validate the perfor-
mance of the random research in determining the minimum
factor of safety and its corresponding critical slip surface.This
example was first analyzed by Alkasawneh et al. [11] to study
the effects of different search techniques on the minimum
factor of safety and was reanalyzed by Kalatehjari et al. [12] to
verify the application of particle swarm optimization (PSO).
Figure 5 illustrates the geometry, strength parameters, and
unit weight of Example 2. For validation, a comparison of the
minimum safety factors is summarized in Table 4.The critical
slip surface obtained by presented method is illustrated in
Figure 6. The results obtained by the presented study are
close to those of Alkasawneh et al. [11] and Kalatehjari et
al. [12]. The difference between the result of this study and
that of Kalatehjari et al. [12] is 1.6%. Moreover, the difference
between the results of current study and the results proposed
byAlkasawneh et al. [11] for 2D and 3D analysis are 0.18% and
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Figure 3: Geometry and properties of Example 1.
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Figure 4: The calculated critical slip surface compared with those provided by Zhang [16].

Table 1: Comparisons of F and critical slip surface for Example 1 (Bishop’s method).

Ry (m) 24.4 48.8 73.2 97.6
Zhang Current Zhang Current Zhang Current Zhang Current

F 2.246 2.237 2.155 2.133 2.133 2.112 2.130 2.104
Xc (m) 13.59 13.76 13.57 13.88 13.52 13.94 13.52 13.93
Zc (m) 26.01 27.83 25.64 28.12 25.67 28.14 25.68 28.42
Rx (m) 22.31 24.19 22.45 24.95 22.25 24.96 22.70 25.34
Note.The same special ellipsoid slip surface (Ry=Rx, 𝜃=0) used by Zhang is adopted in this paper.
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Table 2: Comparisons of F and critical slip surface for Example 1 (Janbu’s simplified method).

Ry (m) 24.4 48.8 73.2 97.6
Zhang Current Zhang Current Zhang Current Zhang Current

F 2.068 2.066 1.971 1.961 1.951 1.938 1.944 1.929
Xc (m) 14.23 14.2 14.1 14.3 14.1 14.5 14.23 14.6
Zc (m) 24.32 24.37 23.37 24.59 23.4 24.71 23.34 24.68
Rx (m) 21.34 21.67 20.97 22.48 21.03 22.87 20.91 22.78
Note.The same special ellipsoid slip surface (Ry=Rx, 𝜃=0) used by Zhang is adopted in this paper.

Table 3: Comparisons of F and critical slip surface for Example 1 (Spencer’s method).

Ry (m) 24.4 48.8 73.2 97.6
Zhang Current Zhang Current Zhang Current Zhang Current

F 2.243 2.233 2.143 2.129 2.129 2.108 2.132 2.100
Xc (m) 13.5 13.9 13.6 14.0 13.1 14.01 13.36 13.9
Zc (m) 26.99 25.62 28.05 25.71 28.4 24.11 28.44 26.99
Rx (m) 22.46 23.59 22.16 24.76 22.65 25.26 22.46 25.36
Note.The same special ellipsoid slip surface (Ry=Rx, 𝜃=0) used by Zhang is adopted in this paper.
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0.06%, respectively.The calculated unique DOS is equal to 0∘,
which is the same as Kalatehjari et al. [12].

Example 3. To further investigate the ability of the present
method to determining the 3D shape and unique DOS of
the critical slip surface, a hypothetical 3D slope problem
is designed and analyzed. The geometry of Example 3 and
its geomechanical properties are shown in Figure 7. This
example involves four different 3D models, as shown in
Figure 8. The unique DOS of the four cases can be predicted
because the boundaries of slopes were constant and the face
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c = 29 kN/Ｇ2

 = 20∘

 = 18.8 kN/Ｇ3

24.4

12.2

0 12.2 24.4 36.6 48.8

z (m)

Figure 7: Geometry and properties of Example 3.

was rotated 10∘ clockwise in x-y plane in each step of the
example. The minimum factors of safety should be equal to
each other for all the models. Table 5 shows the minimum
factors of safety and the unique DOS for all conditions.
Figure 9 shows the critical slip surfaces for Example 3. The
maximum difference between the unique DOS obtained by
the present method and those logically estimated is less than
0.2∘, which demonstrates the ability of the proposed method
to determining the unique DOS of the critical slip surface.
Theminimumsafety factors of the fourmodels are not exactly
equal to each other, but the maximum difference is less than
0.01%.This difference may be attributed to the discretization
of the slidingmass and the different gridwidths.This problem
can be minimized by sufficiently small grid width. These
results demonstrate the ability of the presented method to
determining the 3D shape, minimum factor of safety, and
unique DOS of the critical slip surface.

Example 4. Example 4 is selected to investigate the effects
of the earthquake force and its direction on the minimum
factor of safety and the unique DOS of the critical slip
surface. The geometry of this example is symmetry about
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Figure 9: Critical slip surfaces for Example 3.

Table 4: Comparison of F for Example 2.

F (2D) F (3D)
Alkasawneh et al. [11] 1.70 (PLAXIS) 1.80 (PLAXIS)
Kalatehjari et al. [12] 1.77 (Bishop)
current(Ry=50) 1.697 (Spencer) 1.799 (Spencer)

Table 5: Comparison of F and DOS for Example 3.

model Slope angle to x-axis(∘) F Difference (%) DOS
expected obtained

1 0 2.1987 0.001 0.001 0.01
2 10 2.1989 0.009 10.00 9.80
3 20 2.1986 0.005 20.00 19.93
4 30 2.2000 0.056 30.00 29.94



8 Mathematical Problems in Engineering

c = 29 kN/Ｇ2

 = 20∘

 = 18.8 kN/Ｇ3

x

z
y

o

Qℎ e

Figure 10: Three-dimensional model for Example 3.
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Figure 11: Difference of factor of safety with various 𝜃𝑒.

the neutral plane, but the earthquake force acting on this
slope is asymmetry as shown in Figure 10. The pseudo-static
acceleration coefficient Kh is set equal to 0.1, 0.2, and 0.3, and
the direction of the earthquake force 𝜃e ranges from 0∘ to 90∘.

Figure 11 presents the difference in the factor of safety
F/F0 (where F is the factor of safety with variable 𝜃e, and
F0 is the factor of safety with 𝜃e =0) between considering
and neglecting the direction of earthquake force. It can be
seen from (5) that the components of seismic force in the
direction of x-axis Qhxi decrease the increase of 𝜃e. A smaller
Qhxi generates a failure surface with a larger factor of safety.
Thus, the factor of safety increases with the increase of 𝜃e,
as is shown in Figure 11. It can be seen that the difference
in factor of safety (F/F0) slightly increases as the direction
of earthquake force increases when 𝜃e ≤30∘ and then tends
to increase obviously. The direction of earthquake force (𝜃e)
has significant effects on the difference in factor of safety.
Neglecting the effects of the direction of earthquake force
on the factor of safety can lead to overestimation in 3D
slope stability analysis. Typically, the difference can reach a
maximum value of 40.5% when the direction of earthquake
force 𝜃e=90∘ and the pseudo-static acceleration coefficient
Kh=0.3.
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Figure 12: Results of DOS considering 𝜃𝑒.

Figure 12 shows the effects of the direction of earthquake
force (𝜃e) on the unique DOS of the critical slip surface. It
can be seen from (6) that the components of seismic force
in the direction of y-axis Qhyi increase with the increase of
𝜃e, which results in an increase of the DOS as is shown
in Figure 12. When the earthquake force acts parallel to
the x-axis (𝜃e =0, Qhyi=0), the DOS is equal to 0∘ which is
the same as predicated. It can be seen that as 𝜃e and Kh
increased, the value of the DOS increased linearly. Neglecting
the effects of the direction of earthquake force (𝜃e) can lead
to miscalculation of the DOS of the critical slip surface.
Typically, when 𝜃e=90∘ and Kh=0.3, the miscalculation of the
DOS can be up to over 40∘.

Figure 13 illustrates the difference in the unique DOS of
critical slip surface between different geomechanical proper-
ties (𝑐, 𝜑). The results of Figure 9 point toward the same
trends that the unique DOS increases as the direction of
earthquake force (𝜃e) increases. It also found out that all the
values DOS are consistent with each other, the maximum
difference between which are less than 0.5∘. It means that
the geomechanical properties have little effects on the unique
DOS of critical slip surface.

The calculated results indicated that the 3D analysis yields
a conservative estimate for the factor of safety when the
direction of the earthquake force is assumed to parallel to the
x-axis. It is conservative because the effects of the direction
of earthquake force are not included in the analysis. The
3D analysis neglecting the direction of earthquake force is
appropriate for slope design because it yields a conservative
estimate for the factor of safety. A 3D analysis considering
the effects of direction of earthquake force is recommended
for the backanalysis of 3D slope failures so that the back-
calculated shear strength reflects the effects of direction of
earthquake force.The backcalculated shear strength then can
be used in remedial measures for failed slopes or slope design
at sites with similar conditions.
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Figure 13: Effects of strength parameters (𝑐, 𝜑) on DOS: (a) 𝐾h = 0.1, (b) 𝐾h = 0.2, and (c) 𝐾h = 0.3.

5. Conclusion

Simplified 3D Spencer’s method with a random search tech-
nique was proposed to assess the stability of slopes under
quasistatic load. A computer code was developed in Matlab
to carry out the calculations. In addition, a meaningful
comparison is made to investigate the effects of the direction
of the earthquake force on the factor of safety and the DOS.
Based on the results presented, the following conclusions can
be made:

(1) The differences in factor of safety F/F0 increase with
an increase in the pseudostatic acceleration coeffi-
cient Kh and the direction of earthquake force 𝜃e
values. Neglecting the effects of 𝜃e on the factor of
safety can lead to overestimation in 3D slope stability
analysis.

(2) The direction of earthquake force 𝜃e has obvious
influence on the unique DOS of the critical slip
surface. The DOS of the critical slip surface increases
linearly with an increase in 𝜃e and Kh values.

(3) The effective cohesion 𝑐 and friction angle 𝜑 of the
soil have nearly no influence on the unique DOS of
the critical surface.
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of earth and rockfill dams,” Géotechnique, vol. 29, no. 3, pp. 215–
263, 1979.

[18] M. Garevski, Z. Zugic, and V. Sesov, “Advanced seismic slope
stability analysis,” Landslides , vol. 10, no. 6, pp. 729–736, 2013.

[19] A. Johari, S. Mousavi, and A. Hooshmand Nejad, “A seismic
slope stability probabilistic model based on Bishop’s method
using analytical approach,” Scientia Iranica. Transaction A, Civil
Engineering, vol. 22, no. 3, pp. 728–741, 2015.

[20] R. Baker, R. Shukha, V. Operstein, and S. Frydman, “Stability
charts for pseudo-static slope stability analysis,” Soil Dynamics
and Earthquake Engineering, vol. 26, no. 9, pp. 813–823, 2006.

[21] F. Zhang, Y. Gao, Y. Wu et al., “Effects of vertical seismic
acceleration on 3D slope stability,” Earthquake Engineering and
Engineering Vibration, vol. 15, no. 3, pp. 487–494, 2016.

[22] Z. Y. Chen, “Random trials used in determining global mini-
mum factors of safety of slopes,”CanadianGeotechnical Journal,
vol. 29, no. 2, pp. 225–233, 1992.

[23] Y. F. Gao, F. Zhang, G. H. Lei, and D. Y. Li, “An extended limit
analysis of three-dimensional slope stability,”Géotechnique, vol.
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