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Energy is the lifeline and the base of development of social economy in every country or area.However, with the increasing depletion
of fossil energy, it is imperative for business managers and government policy makers to seek and utilize new energy resources for
keeping the national economy development sustained, rapid, and healthy. As a new energy resource,wind energy is developing with
a high speed in the world for the reasons that it is an abundant natural resource with the characteristics of renewable, low cost, and
no pollution. But in reality, forecasting wind speed accurately is continuously a challenging subject in the field of the wind energy
development for a long time. In this paper, a novel ensemble wind speed forecasting model based on machine leaning models and
hybrid models with data preprocessing technology is proposed to forecast the wind speed effectively in the Longdong area of Loess
Plateau in China; numerical results show that the ensemble model has better precision, adaptability, and robustness.

1. Introduction

The modernization of the world economy is benefiting
from fossil fuels, such as oil, natural gas, coal, and nuclear
fission in a wide range of applications. However, with the
increasing gradually energy consumption and approaching
depletion of traditional fossil fuel, the world is facing energy
crisis. In the latter 20th century, there occurred three oil
crises in the world, which inflicts a great impact on the
world economy. Therefore, the development of new energy
is imperative. In recent years, renewable energy (such as
wind, solar, geothermal, biomass, tidal, and hydropower) has
received increasing attention. As one of the environmentally
friendly and reproducibility energy resources, wind energy,
which is generated by atmospheric motions, becomes an
important renewable and sustainable new resource. The
rapid development of wind energy conversion technology
has made wind energy become an important part of the
strategy of sustainable development in many countries. The
global wind power industry installed another 63,013MW, an
increase of 22% in 2015. Among them, the Chinese wind
power installed 30,500MW, accounted for 28.4 % of global
wind power installation capacity [1].

Wind speed directly influences the generation of wind
power and wind speed forecasting plays a decisive role in
the wind energy domain; it is distinctly important that
predicting the wind speed accurately is very important
for farm owners such as power grid operation scheduling
and also crucial for the control, maintenance, and resource
planning of wind energy conversion systems and just only
predicts accurately the wind speed of wind farm to prevent
effectively the adverse effects and increase competitiveness in
the electricity market. Accordingly, many significant studies
have been devoted to developing efficient forecasts for wind
speed such as conventional statistical models and machine
learning models [2–7]. The most commonly used traditional
statistical model is the autoregressive integrated moving
average (ARIMA) model and the generalized autoregressive
conditional heteroskedasticity (GARCH) that uses historical
data to establish a forecasting model, which can capture the
linear relationship of the time series dataset well. Cadenasa
and Rivera [8] forecasted the short-term wind speed in the
region of La Venta, Oaxaca, Mexico, by using the technique
of ANN. Guo et al. [9] forecasted the long-term wind
speed in the Zhangye Area of China by using the ARMA
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and GARCH forecasting models based on the first definite
season index method. The forecasting errors are analyzed
and compared with the ones obtained from the ARMA
and GARCH model. The conventional statistical model uses
historical data to establish a forecasting model, which can
capture the linear relationship of the training dataset well,
but the prediction precision of statistical model is lower
owing to the stochastic nature and intrinsic complexity of
wind speed. With the development of artificial techniques,
artificial intelligence models such as BPNN, SVM, and RBF
have been proposed to develop forecasting wind speed
models [6, 10, 11]. In fact, wind speed prediction is a
realistic and challenging issue. Wind exists because the sun
unevenly heats the surface of the earth’s surface. Thus, the
wind speed may be closely related to other meteorological
parameters such as temperature, barometric pressure, airflow,
and humidity, and it also could be easily influenced by
the landform and geomorphology parameters. Due to the
chaotic and intrinsic complexity of weather parameters, no
single method or model can perform well in the forecasting
process. In order to improve prediction accuracy, hybrid
models based on conventional statistical models combined
with artificial intelligent models being proposed. Shukur
and Lee [10] developed a hybrid model of Kalman filter
(KF) and artificial neural network (ANN) based on ARIMA
using daily wind speed data from Iraq and Malaysia. The
effectiveness of ARIMA was applied to determine the inputs
structure of KF and artificial neural network (ANN). Hu et
al. [11] constructed a hybrid forecasting model, which com-
bines the ensemble empirical mode decomposition (EEMD)
and the support vector machine (SVM), to improve the
quality of wind speed forecasting; the mean monthly wind
speed of three wind farms located in Northwest China
is forecasted by the proposed hybrid method. Guo et al.
[12] proposed a hybrid seasonal autoregression integrated
moving average and least square support vector machine
(SARIMA-LSSVM) model to predict the mean monthly
wind speed in Hexi Corridor of China. Wang et al. [13]
developed a novel approach named WTT–SAM–RBFNN
for short-term wind speed forecasting by applying wavelet
transform (WT) technique into hybrid model which hybrids
the seasonal adjustment method (SAM) and the RBFNN;
the wind speed in Northwest China is used to evaluate the
forecasting accuracy of the proposed approach. Jing Shi et
al. [14] proposed two hybrid models, namely, ARIMA–ANN
and ARIMA–SVM, to forecast the wind speed and power
generation in USA; the forecasting performance is compared
with the single ARIMA, ANN, and SVM forecasting models.
At present, the combination approaches are widely adopted
to improve forecasting accuracies and many researchers have
devoted themselves to the study of combination forecasts.
There are numerous articles discussing combining different
models and the application of them, at the same time, some
parameter selection and optimization technique combined
with data processing strategy are adopted such as weighting-
based combined approaches, data preprocessing technique
combined approaches, parameter selection and optimization
technique combined approaches, and data postprocessing
technique combined approaches [15]. Zhao W. et al. [16]

proposed a time varying weight combining method to pre-
dict the monthly electricity consumption in China. Xiao
et al. [17] constructed two combination models, the no-
negative constraint theory (NNCT) combination model and
the artificial intelligence algorithm combination model to
forecast the wind speed in Chengde region of China. At the
same time, they reviewed the combined models for wind
speed predictions and classified the combined wind speed
forecasting approaches.

In summary, the combination forecasts are grouped into
the constant weight combination forecast method or the
variable weight combination forecast method [18–21]. Since
the precision ofwind speed predictmodel is closely correlated
with the stabilization of the wind speed time series and
the traditional weighting-based combined approaches, the
classical single models have little effect on the suppression
of the noise and the predictions results may not be very
exact.

In reality, with the wind speed that is often nonlin-
ear, irregular, and nonstationary, current forecasting models
based on combining the single models or hybrid models
based on data preprocessing technique could not adapt to
various time series data. However, these models are not
able to take care of both the importance of the model
parameter optimization and the data preprocessing tech-
nology, which lead to poor forecasting accuracy. In this
paper, to deal with the highly noisy and intrinsic com-
plexity of the wind speed time series, single models (BP
neural network (BPNN), Support Vector Machine (SVM),
and Extreme Learning Machine (ELM)) and hybrid models
based on ensemble empirical mode decomposition method
(EEMD) and BPNN (EEMD-BPNN), EEMD-SVM, and
EEMD-ELM are used to forecast the daily average wind
speed one year ahead. The forecasting model of BPNN,
SVM, ELM, EEMD-BPNN, EEMD-SVM, and EEMD-ELM
is combined with the traditional combination method based
on the proposed no-negative constraint theory (NNCT),
and the genetic algorithm (GA) for weights based on
NNCT (GA-NNCT) is used to determine the submodels
weights. The proposed decomposition ensemble forecasting
model is used to predict the daily average wind speed and
compared with the model of BPNN, SVM, ELM, EEMD-
BPNN, EEMD-SVM, EEMD-ELM, and TCM. The goal of
this document is to provide a novel decomposition ensem-
ble forecasting model with higher wind speed forecast-
ing accuracy in the Longdong area of Loess Plateau in
China.

The rest of this paper is organized as follows: EEMD
method is briefly described in Section 2 and BPNN, SVM,
ELM, BPNN, SVM, and ELM are briefly introduced in
Section 3. In Section 4, the main method of hybrid models
EEMD-BPNN, EEMD-SVM, and EEMD-ELM is presented.
TheGA-NNCTmodel for wind speed forecasting is proposed
in Section 5. In Section 6, the unique geographical location
and climate characteristics of the study area and the proposed
ensemble approaches are briefly introduced. The three exper-
imental simulations and the effectiveness of the proposed
methodology are discussed in Section 7. Finally, Section 8
concludes the researches of this study.
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2. Data Preprocessing Technology

In reality, the wind speed time series are nonstationary,
irregular, and highly noisy due to the fact that wind speeds are
influenced by a variety of factors. Predicting wind speed with
the time series directly often has large error; this weakness
can be counterbalance by using EEMD.

EEMD is an empirical, intuitive, direct, and self-adaptive
data processing method which is extended from EMD to
overcome the intrinsic drawback of mode mixing; it is
suitable in decomposing nonlinear and nonstationary signal
sequences [22, 23]. The main purpose of EEMD is to extract
the intrinsic mode functions (IMFs) from the original time
series. IMFsmust satisfy the following conditions: (1) in each
whole function, the number of maxima and minima and
number of zero crossings must be equal or different at the
most by one and (2) the functions must be symmetric with
respect to local zero mean. With the above definition for the
IMF, the function can be decomposed as follows [22, 23]:(1) Find out all the maximum points of the original signal𝑥(𝑡) and fit the upper envelope line of the original signal
through the cubic spline function.(2)Calculate the mean value of upper and lower envelope
line represented as𝑚1(𝑡) and the first intrinsic mode function
(IMF) is calculated asℎ1 (𝑡) = 𝑥 (𝑡) − 𝑚1 (𝑡) (1)(3) Repeat the above process for 𝑘 times for ℎ1(𝑡) untilℎ1(𝑡) accords with the requirement of IMF that the mean
value tends to be zero; that is,ℎ𝑘 (𝑡) = ℎ𝑘−1 (𝑡) − 𝑚𝑘 (𝑡) . (2)

The first component of IMF 𝑓1(𝑡) = ℎ𝑘(𝑡) signifies the
component with the highest frequency of signal 𝑥(𝑡).(4) Separate 𝑓1(𝑡) from 𝑥(𝑡) and the residual signal
without the component of high frequency 𝑓1(𝑡) is denoted as𝑟1 (𝑡) = 𝑥 (𝑡) − 𝑓1 (𝑡) (3)

where 𝑟1(𝑡) is regarded as the original signal and repeat
the first three steps; the second component of IMF 𝑓1(𝑡) is
obtained. Repeat 𝑛 times and 𝑛 IMFs are gained.𝑟2 (𝑡) = 𝑟1 (𝑡) − 𝑓2 (𝑡) ,𝑟3 (𝑡) = 𝑟2 (𝑡) − 𝑓3 (𝑡) ,...𝑟𝑛 (𝑡) = 𝑟𝑛−1 (𝑡) − 𝑓𝑛 (𝑡) .

(4)

When the termination condition is achieved, the repeat stops.
The original signal 𝑥(𝑡) can be repressed as

𝑥 (𝑡) = 𝑛∑
𝑖=1

𝑓1 (𝑡) + 𝑟𝑛 (𝑡) (5)

where 𝑟𝑛(𝑡) is the residual function representing the average
trend of signal. Each component of IMF𝑓1 (𝑡), 𝑓2(𝑡), ⋅ ⋅ ⋅ , 𝑓𝑛(𝑡)

separately includes the components of signal with different
time scale features. EEMD defines the true IMF components
as the mean of an ensemble of trials and each trial consists
of the decomposition results of the signal plus a white noise
of finite amplitude. The effect of the added white noise can
be controlled by 𝜀𝑛𝑒 = 𝜀/√𝑁𝐸, where 𝑁𝐸 is the number of
ensemble members, 𝜀 is the amplitude of the added noise,
and 𝜀𝑛𝑒 is the final standard deviation of error, defined as the
difference between the input signal and the corresponding
IMFs.

In this paper, the algorithm of EEMD consisted of the
following steps.

Step 1. Add a white noise series to the wind speed time series.

Step 2. Decompose the wind speed time series with added
white noise into IMFs using the EMD algorithm.

Step 3. Repeat Step 1 and Step 1 iteratively with different white
noise each time.

Step 4. The IMFs are obtained as the final results.

3. Individual Forecasting Models

TheBPNN, SVM, and ELMalgorithm are a class of effectively
artificial intelligence algorithm, used extensively in some
practical application fields including function approxima-
tion, prediction and automatic control, optimization, and
pattern classification [9, 10, 24, 25].These methods have high
precision in terms of either simulation or the result of the
prediction with satisfactory results. In this paper, BPNN,
SVM, and ELM are used to forecast the daily wind speed,
respectively.The principle of BPNN, SVM, and ELM is briefly
presented as follows.

3.1. Backpropagation Neural Network (BPNN). The BPNN
has been widely used in linear and nonlinear regressions
for data fitting and estimating model parameters, especially
in uncovering nonlinearity between inputs and the outputs,
even in the absence of sufficient information about the
relationship between them [13]. The goal of any training
algorithm is to minimize the global mean sum squared error𝐸 between the real network output 𝑧𝑙 and the desired output𝑡𝑙, defined as 𝐸 = 12∑

𝑙

(𝑡𝑙 − 𝑧𝑙)2 (6)

where

𝑧𝑙 = 𝑓(∑
𝑗

V𝑙𝑗𝜑(∑
𝑗

𝑤𝑗𝑖𝑥𝑖 − 𝜃𝑗) − 𝜃𝑙) , (7)

𝑤𝑗𝑖 is the weight of the connection from input 𝑖 to neuron 𝑗,
V𝑙𝑗 is the weight of the connection from neuron 𝑗 to output𝑙, 𝑥𝑖 is input signal, 𝜃𝑙, 𝜃𝑗 are the threshold, and 𝑓(⋅), 𝜑(⋅) are
activation function. Typical activation functions of BPNN
are logistic sigmoid function, hyperbolic tangent sigmoid
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function, and linear function. In this paper, the activation
function 𝑓 (𝑥) = 21 + exp (−2𝑥) − 1. (8)

To achieve better prediction results, we use the
Hecht–Nelson method to determine the node number
of the hidden layer: when the node number of the input
layer is 𝑛, the node number of the hidden layer is 2𝑛 + 1,
with 𝑛 input neurons, 2𝑛 + 1 hidden neurons and one output
neuron. To ensure the quality of forecast results, we adopt
normalized method to treat the input and output data in
advance of training the network; the formula is

x󸀠 = {𝑥󸀠𝑖} = 𝑥𝑖 − 𝑥𝑖min𝑥𝑖max − 𝑥𝑖min
, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. (9)

In this paper, the logistic sigmoid function is adopted
as activation function and the node number of the hidden
layer is determined by the Hecht–Nelson method. The input
and output data are normalized in advance of training the
network to ensure the quality of forecast results.

3.2. Support Vector Machine (SVM). SVM is widely used to
solve classification recognition and forecasting problems in
terms of the limited sample sizes. The main idea of SVM
for regression is to map the data into a high-dimensional
feature space via nonlinear mapping and to present a linear
regression model in this feature space [4]. The regression
formula is 𝑓 (𝑥) = 𝑚∑

𝑖=1

𝑤𝑖𝜑𝑖 (𝑥) + 𝑏 (10)

Based on the structural risk minimization principle, the
coefficients {𝑤𝑖}, 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑚 can be obtained from the
data by optimizing the following quadratic programming
problem:

min
𝑤,𝑏,𝜁

12 ‖𝑤‖2 + 𝐶 𝑛∑
𝑖=1

(𝜉𝑖 + 𝜉∗𝑖 )
𝑠.𝑡. 󵄨󵄨󵄨󵄨𝑦𝑖 − ⟨𝑤 ⋅ Φ (𝑥)⟩ − 𝑏󵄨󵄨󵄨󵄨 ≤ 𝜀 + 𝜉𝑖,𝜉𝑖 ≥ 0, 𝜉∗𝑖 ≥ 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑛

(11)

where 𝜉𝑖, 𝜉∗𝑖 are slack variable and 𝜀 is the predetermined
maximum allowed deviation between the actual value and
the estimated one. By solving the optimization problem, the
estimation function can be obtained as follows:𝑓 (𝑥, 𝛼, 𝛼∗) = 𝑁∑

𝑖=1

(𝛼𝑖 − 𝛼𝑖∗) 𝑘 (𝑥𝑖, 𝑥) + 𝑏 (12)

with
𝑁∑
𝑖=1

(𝛼𝑖∗ − 𝛼𝑖) = 0, 0 ≤ 𝛼𝑖∗, 𝛼 ≤ 𝐶, (13)

where 𝛼𝑖 and 𝛼𝑖∗, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 are Lagrange multipliers
that can be obtained by solving the dual form of (11) and the
kernel function 𝑘(𝑥𝑖, 𝑥) represents the inner product in the

D-dimensional feature space and meets Mercer’s condition.
In this paper, the kernel function

𝑘 (𝑥𝑖, 𝑥) = exp{−󵄩󵄩󵄩󵄩𝑥 − 𝑥𝑖󵄩󵄩󵄩󵄩22𝜎2 } . (14)

3.3. Extreme Learning Machine (ELM). ELM is a single-
hidden layer feed forward neural network; it accomplishes
the learning process in two steps. First, the input weights
and hidden biases are initialized with random numbers.
Second, the output weights are calculated through an inverse
operation on the hidden layer output matrix. The output
function of ELM can be formulated as

𝑓 (𝑥) = 𝑙∑
𝑖=1

𝛼𝑖𝐺 (𝑥; 𝑤𝑖, 𝑏𝑖) , (15)

where 𝛼 = (𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑙) is the output weight vector and 𝑙
is the number of hidden nodes, 𝑤𝑖 is the input weight vector
that connects the 𝑖-th hidden node and input nodes, 𝑏𝑖 is the
bias of the 𝑖-th hidden node, and 𝐺 is the activation function
satisfying ELM universal approximation capability theorems;
there are two kinds of hiddennodes that are usually employed
in ELM [24, 25]. One is additive hidden nodes and the other
is RBF hidden nodes. In this paper, the RBF is adopted as
activation function, which can be formulated as

𝐺(𝑥; 𝑤𝑖, 𝑏𝑖) = 𝐺(󵄩󵄩󵄩󵄩𝑥 − 𝑤𝑖󵄩󵄩󵄩󵄩𝑏𝑖 ) . (16)

For a training set (𝑥𝑘, 𝑦𝑘)𝑙𝑘=1, the output weight vector 𝛼 can
be determined by𝛼̂ = 𝐻+𝑌 = (𝐻𝑇𝐻)−1𝐻𝑇𝑌, (17)

where

𝐻 = (𝐺(𝑥1; 𝑤1, 𝛽1) ⋅ ⋅ ⋅ 𝐺 (𝑥1; 𝑤𝑙, 𝛽𝑙)... ⋅ ⋅ ⋅ ...𝐺 (𝑥𝑚; 𝑤1, 𝛽1) ⋅ ⋅ ⋅ 𝐺 (𝑥𝑚; 𝑤𝑙, 𝛽𝑙)) (18)

and𝐻+ is the Moore–Penrose generalized inverse of𝐻.
4. Hybrid Models

The BPNN, SVM, and ELM are useful methodologies and
have been successfully applied to time series prediction with
satisfactory prediction results in various fields [3, 4, 6, 8, 9],
but these models still have difficulties with higher wind speed
forecasting accuracy. Furthermore, due to the characteristics
of the highly noisy and intrinsic complexity of the original
wind speed series, the single model cannot completely catch
the characteristics of the data in a real problem. In order to
improve the precision of wind speed forecasting effectively,
there are a lot of hybrid models that have been proposed,
and the accuracy of wind speed forecasts was effectively
improved, such as the traditional combined approaches, data
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preprocessing method, parameter optimization technique,
and data postprocessing algorithms [13–20, 26]. In this paper,
there are three hybrid forecasting models called EEMD-
BPNN, EEMD-SVM, and EEMD-ELM with the functions of
decomposition, denoise, and forecasting modeling capabili-
ties that are proposed.

The original wind speed time series is decomposed by
EEMD into several independent intrinsic mode functions
(IMFs) which are the various frequency subseries and one
residual series. The IMF1 is regarded as white noise series,
and it can be neglected since IMF1 is the most disordered
and unsystematic part of the wind speed series; it sometimes
has a great disturbance for the forecasting precision of
wind speed, and then these simple subseries are separately
modeled by BPNN, SVM, and ELM models, respectively,
such that the tendencies of these subseries can be predicted.
Finally, aggregating the prediction results of all subseries of
BPNN, SVM, and ELMmodels, respectively, to produce three
ensemble fitness and forecasting results for the original wind
speed series, these models can be denoted by EEMD-BPNN,
EEMD-SVM, and EEMD-ELM.

5. Genetic Algorithms (GA) for
Weights Based on No-Negative Constraint
Theory (GA-NNCT)

Many studies have shown that the forecasting risk of single
model can be reduced and the forecasting accuracy can be
improved by combining forecasts from conceptually different
individual model [11–15, 17, 20]. Mathematically, the tradi-
tional combination model can be expressed as

y𝑐,𝑡 = 𝑚∑
𝑗=1

𝑤𝑗𝑦𝑗,𝑡, 𝑡 = 1, 2, ⋅ ⋅ ⋅ . (19)

where 𝑦𝑐,𝑡 denote the combined output at time 𝑡 of the
combining methods, 𝑦𝑗,𝑡 denote the unbiased out-of-sample
forecast for time series 𝑥𝑡 which is obtained by the 𝑗𝑡ℎ
individual model,𝑚 is the number of the component models,
and 𝑤𝑗 is the weight on the 𝑗𝑡ℎ component model. These
weights are all constrained to be𝑤𝑗 ∈ [0, 1] and have to meet
the requirement:

𝑚∑
𝑗=1

𝑤𝑗 = 1. (20)

The best weight 𝑤𝑗, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑚 of the traditional combina-
tion method (TCM) can be obtained by solving the following
quadratic programming problem:

min 𝑜𝑏𝑗 = 𝑇∑
𝑡=1

𝑒2𝑐,𝑡 = 𝑇∑
𝑡=1

𝑚∑
𝑗=1

𝑚∑
𝑖=1

𝑤𝑖𝑤𝑗𝑒𝑗,𝑡𝑒𝑖,𝑡,
𝑠.𝑡. 𝑚∑

𝑗=1

𝑤𝑗 = 1,
𝑤𝑗 ≥ 0, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑚.

(21)

where 𝑒𝑗𝑡 = 𝑥𝑡 − 𝑦𝑗,𝑡, 𝑡 = 1, 2, ⋅ ⋅ ⋅ 𝑇 denote the residual of the𝑗𝑡ℎ individual model at time 𝑡.

With this model the forecasting risk of single neural
network can be reduced and the forecasting accuracy can be
improved. The results of the traditional combination model
indicate that if the forecasting accuracy of submodels is
largely different or similar, the weight of the best forecast
result would be assigned 1 and the worst would be assigned 0.
Such a theory seems very plausible, but, due to the character-
istics of nonlinear, stochastic, and nonstationary wind speed,
the forecasting performance of TCM is unsatisfied and could
not further improve the prediction ability. To overcome the
shortcomings of the TCM, the negative weights are assigned
to the forecasting results of submodels, which is the central
idea of no-negative constraint theory (NNCT). And the way
it will work is that if the forecasting series trend is opposite
that of the original series trend, a negative weight is assigned
to the forecast; otherwise, a positive weight is assigned. The
literature research numerical results show that the prediction
effect is raised when negative weights are assigned [15, 17].

The genetic algorithm (GA) is a heuristic and stochastic
optimization algorithm for solving optimization problems
and nonlinearity mapping based on evolution theory and
genetic principle [27]. Compared with classical methods, the
GA has much superiority and practical value that quickly
converges to the optimal solution by the genetic manipula-
tions, which make GA in searching for the best weight in the
ensemble forecasting model for wind speed forecasting. In
this paper, the GA-NNCT are given as

min 𝑜𝑏𝑗 = 𝑇∑
𝑡=1

𝑒2𝑐,𝑡 = 𝑇∑
𝑡=1

𝑚∑
𝑗=1

𝑚∑
𝑖=1

𝑤𝑖𝑤𝑗𝑒𝑗,𝑡𝑒𝑖,𝑡,
𝑠.𝑡. 𝑚∑

𝑗=1

𝑤𝑗 ≈ 1,
𝑤𝑗 ∈ [−1, 1] .

(22)

The best weights 𝑤𝑗, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑚 of GA-NNCT can be
determined by using the GA, in which the encoding length
can be determined by the number of combined models when
the maximum iteration is 1000, the chromosome population
is 30, the crossover probability (pc) is 0.2, and the mutation
rate (pm) is 0.1. In addition, in this study the chromosomes
of GA-NCT are encoded in [0, 1] and the chromosomes
of GA-NNCT are encoded in [−1, 1]. Selection chooses the
better individual (weight) from the initial population that
can be applied to the subsequent iteration according to
the lowest fitness value. Crossover exchanges part of the
chromosomes between a pair of parent individuals with the
pc and produces two new individuals (weights). Mutation
generates new individuals by changing one or some gene
values of the chromosomes according the pm.

6. Study Area and Experimentation Design

In this section, the unique geographical location and climate
characteristics of the Longdong area of Loess Plateau in
China area and construction situations about a series of wind
power projects are introduced. The simulation processes
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Table 1: The numerical characters of the wind speed time series for study area.

Mean Median Variance Skewness Kurtosis Minimum Maximum
Wind turbine I 2.0366 1.9000 0.6302 1.1229 0.0427 0.3000 5.9000
Wind turbine II 2.0093 2.0000 0.3840 1.0479 0.0526 0.3000 6.9000
Wind turbine III 2.1484 2.0000 0.4757 0.9260 0.0432 0.7000 5.4000

are designed and the evaluation criteria of the proposed
ensemble forecasting models are introduced.

6.1. Study Area and Available Data. The Longdong area of
Loess Plateau in China is 36∘ 1󸀠-37∘ 9󸀠 latitude and 106∘ 21󸀠-
107∘ 44󸀠 Longitude. It is a part of the gully region along the
midstream of the Yellow River in China. The flat top is less
than 10% of the plateau. Its topography is mainly made of
highland (9.24%), hills and mountains (61.11%), river beach
(2.38%), and valley slope (27.27%). The plateau extends from
the northwest to the southeast, the highest point is 2,089
meters altitude, and the lowest point is 885 meters altitude.
The relative elevation is 1,204 meters, with a vertical slope
of about 0.58%. It is 207km from the north to the south
and 208km from the east to the west, with average annual
rain fall of about 300 mm and an annual average sunshine
of 2,600 hours. It is a mountainous areas that lies in the
convergence zone of the Mu Us Desert and Loess Plateau.
Its special geographical features and long-term agricultural
practices have caused serious soil erosion and degradation
of the environment. Because of its special geographical envi-
ronment and backward economic development, the Loess
Plateau in Longdong area is classified as one of the key regions
of the national poverty alleviation plan.

The climate of the Longdong area in Loess Plateau is
temperate continental monsoon, which is suitable for the
construction of wind power. With the state’s call for the
construction of new energy and poverty reduction, the
local government adjusts the industrial structure, optimizes
the allocation of resources, and develops new energy. In
June 2011, the Loess Plateau in Longdong area started the
construction of million kilowatt wind power base, planning
a total installed capacity of about 100MW. The first phase of
construction capacity is 49.5MWand 110KVbooster station is
built transforming the power fromTianshui fort substation to
the national power grid. Since being put into operation in late
June 2012, equipment is in good condition and grid connects
power normally. In October 2012, it has been generating
more than 1000 KWH. In November 2014, six wind power
plants with a total installed capacity of 1,050 MW started
construction. To the end of April of 2015, the cumulative
generating of Maojing fort substation is 481million KWH
and another installed capacity of 20MWwind farm has been
started construction [28].

Therefore, in order to optimize network management,
forecast wind strength, and electricity load and build bigger
wind power plants, there is an urgent need for predicting
wind speed. In this paper, three time series from three
different fort substations in Longdong area of the Loess
Plateau from 1 January, 2007, to 31 December, 2015, are

selected to investigate the effectiveness and superiority of the
proposed combination model. The dataset from 1 January,
2007, to 31 December, 2014, is used as the training set in the
predicting procedure, and the set from 1 January, 2015, to 31
December, 2015, is used as the test set. Figure 1 shows the
geographic location, topography, and morphology of study
area and wind speed curves that are nonlinear, irregular, and
nonstationary. Table 1 shows the numerical characters of the
wind speed time series for wind turbine I, wind turbine II,
and wind turbine III.

6.2. Experimentation Design and Evaluation Criteria. The
wind speed dataset in Longdong area of the Loess Plateau was
simulated by the proposed ensemble GA-NNCT forecasting
models. The flowchart of ensemble approaches is shown in
Figure 2 and the following steps show the simulation process.

Step 1. Three single models, BPNN, SVM, and ELM are used
to forecast the daily wind speed; the forecasting accuracies of
these three models are compared.

Step 2. EEMD is employed to decompose the original time
series data into a number of independent IMFs and one
residual series. The highest frequency bandIMF1 is discarded
as white noisy signals to make preparations for next stage.

Step 3. The rest of IMFs are forecasted independently by
using BPNN, SVM, and ELM; the predicted results are
aggregated into an ensemble result, respectively. There are
three hybrid models based on the data preprocessing tech-
niques including EEMD-BPNN, EEMD-SVM, and EEMD-
ELM that are constructed and the errors of the models are
compared.

Step 4. The forecasting results of the BPNN, SVM, ELM,
EEMD-BPNN, EEMD-SVM, and EEMD-ELM are selected
and the GA-NNCT is used to optimize the weight of the
component models, respectively; the daily wind speeds are
predicted and the errors of the above models are compared.

In order to quantitatively determine the best model,
the mean square error (MSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE) are used to
evaluate the forecasting precision of the ensemble model;
these measures are as follows:

MSE = 1𝑛 𝑛∑𝑖=1 (𝑥𝑖 − 𝑥𝑖)2 (23)

MAE = 1𝑛 𝑛∑𝑖=1 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖󵄨󵄨󵄨󵄨 , (24)
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Figure 1: Daily average wind speed curves in the Longdong area of the Loess Plateau in China.

MAPE = 1
n

𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖𝑥𝑖 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 × 100%, (25)

where𝑥𝑖 and 𝑥𝑖 represent the 𝑖𝑡ℎ actual and forecasted values,
respectively, and 𝑛 is the sample size. The MSE and MAE
reveal the average variance between the forecast value and
the true value while the MAPE, as unit-free measure, has

good sensitivity for small changes in data, does not display
data asymmetry, and has very low outlier protection. The
deviation between actual values and forecasting values are
measured by those evaluation criteria; therefore, the smaller
values of evaluation index mean the better performance of
the model. If the results are not consistent with each other,
the MAPE will be selected as the final benchmark.
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Figure 2: Flowchart for the ensemble approaches.

7. Results and Discussions

Wind speed is the essential factor which affects the wind
power output and just only predicts accurately thewind speed
of wind farm to prevent effectively the adverse effects and
increase competitiveness in the electricity mark.

Compared with the traditional linear module, the ma-
chine leaning models have better precision and adaptability.

Although the machine learning algorithms eliminate the
limitations of traditional regressionmethods and can forecast
the daily wind speedwith higher accuracy, it can be seen from
Figure 2 that the wind speed time series are nonstationary
and highly noisy due to the fact that wind speeds are affected
by a variety of factors; predicting wind speed with the noisy
data may be subject to large errors.
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Figure 3: The forecasting performance of submodels in experiment I for wind turbine I.

In order to improve prediction accuracy, hybrid models
are based on data preprocessing technique combined with
artificial intelligent models being proposed and used in the
wind speed forecasting field. In this study, the EEMD is used
as a noise cancellation method and the daily average wind
speed series are decomposed into several independent IMFs.
IMF1 is neglected since it is the highest frequency band,
which is regarded as white noise series. The BPNN, SVM,
and ELM are used to forecast each independent IMFs and
the prediction results of all subseries of BPNN, SVM, and
ELM models are aggregated, respectively, to produce three
forecasting results for the original wind speed series.

7.1. Experiment I: Daily Wind Speed Forecasted by the Sub-
models. Experiment I was designed to verify the effectiveness
of the single machine leaning models and hybrid models
using the wind turbine I dataset. If the hybrid models are
adaptability and robustness, it can be concluded that the
hybrid models EEMD-BPNN, EEMD-SVM, and EEMD-
ELM are effective in forecasting the daily wind speed. The
experiment processes are clearly shown in the following.

Step 1. There are three popular single machine learning
models including BPNN, SVM, and ELM which are used to
forecast the daily wind speed; the forecasting accuracies of
these three models are compared.

Step 2. EEMD is employed to decompose the original data
into a number of independent IMFs and one residual series.
The highest frequency bandIMF1 is discarded as white noisy
signals to make preparations for next stage.

Step 3. Three hybrid models including EEMD-BPNN,
EEMD-SVM, and EEMD-ELM are used to forecast the daily
average wind speed.

Step 4. Thecomparisons of forecasting accuracy for themean
daily wind speed in the wind turbine I of Longdong area of
the Loess Plateau in China are made between the submodels
BPNN, SVM, ELM, EMD-BPNN, EEMD-SVM, and EEMD-
ELM.

Figure 3 shows the forecasting daily wind speed and
the evaluation criteria of different submodels. In order to
investigate these submodels predicting precision in different
time scale, the evaluation criteria of MSE, MAE, and MAPE
in each season are listed in Table 2. As shown in Table 2, the
following main conclusion can be obtained:

(a) The forecasting accuracies of EEMD-BPNN, EEMD-
SVM, and EEMD-ELM are all higher than the BPNN,
SVM, and ELM, respectively, which means that the
hybrid models based on data preprocessing method
have better forecasting performance than the corre-
sponding single machine leaning model.

(b) The hybrid models prediction accuracy can be
improved significantly based on data preprocessing
technology and single machine leaning model, but
none of forecasting models fits all application condi-
tions properly.

As shown in Table 2, compared with BPNN, SVM, and
ELM, theMAPEof EEMD-BPNN, EEMD-SVM, andEEMD-
ELM decreased about 3.10% to 5.42% in the first three-
quarters of 2015, and, in the fourth season, the MAPE
of EEMD-BPNN, EEMD-SVM, and EEMD-ELM decreased
about 6.55% to 10.51%,which indicate EEMD-BPNN, EEMD-
SVM, and EEMD-ELM with a better accuracy compared
to BPNN, SVM, and ELM in each season. In different
seasons, the results in Table 2 show that the model prediction
accuracies of the hybridmodels are a little different fromeach
other. If the MAPE is selected as the evaluation criterion,
the minimum MAPE of EEMD-BPNN, EEMD-SVM, and
EEMD-ELM indicates that the corresponding hybrid model
has the best performance for forecasting daily average wind
speed in each season. In fourth season, the minimum MAPE
of EEMD-BPNN, EEMD-SVM, and EEMD-ELM is 24.06%,
which means that the forecast stability of hybrid models with
the nonstationary data need to be improved, although the
data preprocessing technology has perfect effect on improv-
ing the forecasting accuracy. The evaluation criteria of MSE,
MAE andMAPEof submodels in year 2015 are calculated and
the results are shown inTable 7. Among single submodels, the
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MAPE of BPNN, SVM, and ELM shows that the prediction
precision of the SVM is the highest, ELM model is in the
second place, and the BPNN is in the end. Comparing with
single BPNN, SVM, and ELM, the forecasting accuracy of
EEMD-BPNN, EEMD-SVM, and EEMD-ELM increased to
6.148%, 4.26%, and 6.22%, respectively. Overall, numerical
results in Table 7 show the MAPE of EEMD-ELM is 21.24%,
which means that the submodel EEMD-ELM has excellent
forecasting performance.

In summary, the single machine learning algorithm has
its unique advantages in the wind speed prediction, but
the forecasting accuracy needs to be improved. The data
preprocessing technology is an efficient method in improving
the forecasting accuracy. The forecasting performance is dif-
ferent in various time scales when comparing the forecasting
performance of the forecast submodels BPNN, SVM, ELM,
EEMD-BPNN, EEMD-SVM, and EEMD-ELM. In order to
achieve a better forecast effect, it is important to choose
different forecasting model for distinctive performance fea-
tures or characteristics in different time scales. However,
none of forecasting models fits all application conditions,
which makes the integrated navigation technology much
more important.

To demonstrate the forecasting performance of the pro-
posed model in terms of forecasting accuracy, the Wilcoxon
signed-rank test is implemented. The Wilcoxon signed-rank
test is a nonparametric procedure employed in hypothesis
testing situations and is used to compare the significant differ-
ences in terms of central tendency between two datasets with
the same size [29, 30]. Table 4 shows the results of Wilcoxon
signed-rank test for wind turbine I; the levels of Wilcoxon
signed-rank test are all smaller than the significance level
0.01, which represents that the test indicates not to accept
the null hypothesis and the data preprocessing technology
has significant contribution in improving the forecasting
accuracy.

7.2. Experiment II: Daily Wind Speed Forecasted by the TCM
Model. The numerical results in Tables 2 and 7 show that
individual forecasting model or the hybrid models are not
ideal when they are applied to daily wind speed predicting
in the Longdong area of the Loess Plateau as the forecasting
trend has segmental instability to the original nonstationary
time series. In order to reduce the forecasting risk of single
model and improve the forecasting accuracy, the forecast-
ing model of BPNN, SVM, ELM, EEMD-BPNN, EEMD-
SVM, and EEMD-ELM is combined with the TCM and
the forecasting performance of TCM is compared with the
model of BPNN, SVM, ELM, EEMD-BPNN, EEMD-SVM,
and EEMD-ELM. According to formula (14), the best weight
is assigned to submodels and the forecasting performance
of TCM should be statistically significant, but, as shown in
Table 7, the MAPE of TCM for wind turbine I is 21.68%,
which is higher than the EEMD-BPNN, EEMD-SVM, and
EEMD-ELM that means the forecasting performance of
TCM is no better than the hybrid models; this effect is
utterly alien from the one we have intended. The results
indicate that the prediction results of TCM are unsatisfied
and could not further improve the prediction ability. In order

to investigate whether this kind of circumstance is caused
by the unique climate characteristics of wind turbine I or
not, experiment II was designed by using wind turbine II
dataset; simultaneously the numerical results can also be used
to verify the adaptability and robustness of the ensemble
TCMmodel. If the ensemble TCMmodel is adaptability and
robustness, it can be concluded that the proposed approach
has excellent performance in forecasting the wind speed.The
experiment processes are demonstrated as follows.

Step 1. There are six submodels including BPNN, SVM, ELM
EEMD-BPNN, EEMD-SVM, and EEMD-ELM that are used
to forecast the wind speed using wind turbine II data.

Step 2. The forecasting results of submodels for wind turbine
I and wind turbine II are combined by using TCM, respec-
tively, and the error of the above models is compared.

The prediction results of TCM for wind turbine II are
shown in Figure 4 and the MSE, MAE, and MAPE of
experiment II for wind turbine II in each season are shown
in Tables 3 and 7.

As shown in Tables 3 and 7, the following conclusion can
be obtained.

(a) The forecasting accuracy of EEMD-BPNN, EEMD-
SVM, and EEMD-ELM for wind turbine II is all higher
than the BPNN, SVM, and ELM in different time scales,
respectively.

(b) TheMAPE of TCM for wind turbine II are all smaller
than the MAPE of BP, SVM, and ELM in different time
scales, respectively, which means that the TCM have better
performance than the single machine leaning models.

(c) Comparing with EEMD-BPNN, EEMD-SVM, and
EEMD-SVM, the MAPE of TCM for wind turbine I and
wind turbine II are not less than the MAPE of EEMD-
BPNN, EEMD-SVM, and EEMD-SVM in different time
scales, whichmeans that the forecasting performance of TCM
has weak adaptability and robustness.

In summary, comparing with BPNN, SVM, and ELM, the
EEMD-BPNN, EEMD-SVM, EEMD-ELM, and TCM model
have higher forecasting precision for wind turbine I and
wind turbine II. Although the data preprocessing technol-
ogy (EEMD) and the combination method have obviously
effect on improving the forecasting accuracy, the forecasting
adaptability and robustness of EEMD-BPNN, EEMD-SVM,
EEMD-ELM, and TCM model with the nonstationary data
need to be improved. The adaptability of TCM, especially, is
not ideal, although in some cases it may be acceptable.

Similar to experiment I, the Wilcoxon signed-rank test
is implemented to demonstrate the significant contribution
of the proposed TCM model in experiment II in terms of
forecasting accuracy; the results of Wilcoxon signed-rank
test in Table 5 shows that the hat the TCM have better
performance than the single machine leaning models such as
BPNN, SVM, and ELM. The levels of Wilcoxon signed-rank
test between TCM and EEMD-SVM or TCM and EEMD-
ELM are all smaller than the significance level 0.01, but the P
value between TCM and EEMD-SVM is 0.653, which means
that the adaptability of TCM is not ideal, although in some
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Figure 4: The forecasting performance of Experiment II for wind turbine II.

Table 3: TheMSE, MAE and MAPE of experiment II for wind turbine II in each season.

Season Evaluation criteria BPNN SVM ELM EEMD-BPNN EEMD-SVM EEMD-ELM TCM

First season
MSE(m/s) 0.2642 0.2569 0.2627 0.1676 0.1634 0.1652 0.1657
MAE(m/s) 0.4149 0.4101 0.4131 0.3461 0.3435 0.3438 0.3441
MAPE(%) 25.18% 24.33% 25.06% 19.51% 19.40% 19.42% 19.34%

Second season
MSE(m/s) 0.4851 0.4941 0.5156 0.3117 0.2966 0.2945 0.2949
MAE(m/s) 0.5322 0.5309 0.5445 0.4414 0.4371 0.4283 0.4334
MAPE(%) 34.23% 33.33% 35.01% 26.46% 26.47% 25.89% 26.12%

Third season
MSE(m/s) 0.3199 0.3034 0.321 0.1554 0.1529 0.1567 0.1577
MAE(m/s) 0.445 0.4289 0.4399 0.3237 0.3193 0.3233 0.3260
MAPE(%) 29.33% 27.90% 29.11% 19.65% 19.64% 19.71% 19.85%

Fourth season
MSE(m/s) 0.3599 0.3288 0.3399 0.1619 0.1555 0.1610 0.1585
MAE(m/s) 0.4777 0.4527 0.4639 0.3195 0.3196 0.3254 0.3226
MAPE(%) 35.55% 33.46% 34.68% 20.57% 20.65% 21.18% 21.08%

Table 4: Results of Wilcoxon signed-rank test for wind turbine I.

Comparison R+ R- P-value Comparison R+ R- P-value
EEMD-BPNN vs. BPNN 320 45 0.001 TCM vs. EEMDBPNN 359 6 0.001
EEMD-SVM vs. SVM 321 44 0.001 TCM vs. EEMD-SVM 353 12 0.001
EEMD-ELM vs. ELM 316 49 0.001 TCM vs. EEMD-ELM 315 50 0.001
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Table 5: Results of Wilcoxon signed-rank test wind turbine II.

Comparison R+ R- P-value Comparison R+ R- P-value
TCM vs. BPNN 258 107 0.001 TCM vs. EEMD-BPNN 170 195 0.653
TCM vs. SVM 240 125 0.001 TCM vs. EEMD-SVM 242 123 0.001
TCM vs. ELM 259 106 0.001 TCM vs. EEMD-ELM 217 148 0.001

Forecasting result by GA-NNCT for wind turbine I 
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Figure 5: The forecasting performance of Experiment III for wind turbine I, wind turbine II, and wind turbine III.

cases it has obviously effect on improving the forecasting
accuracy.

7.3. Experiment III: Daily Wind Speed Predicted by the GA-
NNCT Model. The results of experiment II show that the
TCM has weak adaptability and poor robustness, but wind
speed is a key parameter in the wind energy system; how to
improve the forecasting accuracy of wind speed forecasting
models has an important effect on the wind generation. Usu-
ally, the forecasting of wind speed with higher precision is a
challenging task. In this section, experiment III was designed
to verify the forecasting performance of the ensemble GA-
NNCTmodel using wind turbine I, wind turbine II, and wind
turbine III datasets.

The experiment processes are designed as the follows.

Step 1. TheGA-NNCT are used to forecast wind speed using
wind turbine I and wind turbine II datasets.

Step 2. The models including BPNN, SVM, ELM, EEMD-
BPNN, EEMD-SVM, EMD-ELM, TCM, and GA-NNCT are
used to forecast the wind speed using the wind turbine III
dataset.

Step 3. The evaluation criteria of above models are compared
in different time scale.

The MSE, MAE, and MAPE of BPNN, SVM, ELM,
EEMD-BPNN, EEMD-SVM, EMD-ELM, TCM, and GA-
NNCT are shown in Tables 6 and 7. The prediction results
and errors of GA-NNCT in three wind turbines are shown in
Figure 5. The MAPE is selected as the final benchmark and
the main findings are listed below:

(a) All the three numerical experiment results illustrate
that the advantage of ensemble model GA-NNCT
is very obvious and the forecasting performance is
superior to the best single machine leaning model in
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Table 8: Results of Wilcoxon signed-rank test wind turbine III.

Comparison R+ R- P-value Comparison R+ R- P-value
GA-NNCT vs. BPNN 213 152 0.001 GA-NNCT vs. EEMD-BPNN 339 26 0.001
GA-NNCT vs. SVM 247 118 0.001 GA-NNCT vs. EEMD-SVM 331 34 0.001
GA-NNCT vs. ELM 201 164 0.001 GA-NNCT vs. EEMD-ELM 198 167 0.021

different time scale as shown in Tables 6 and 7. The
calculation results show that some improvements of
the predicting precision have been achieved.

(b) The MAPE of GA-NNCT are all smaller than the
MAPE of EEMD-BPNN, EEMD-SVM, and EEMD-
ELM in every time scale, which means that the
combination GA-NNCT model has excellent fore-
casting performance among the six submodels in
wind turbine I, wind turbine II, and wind turbine III.

(c) The MSE, MAE, and MAPE of TCM in wind turbine
III prove again that the forecasting performance of
TCM has weak adaptability and poor robustness
in different time scale. Comparing with TCM, the
MAPE of GA-NNCT are all smaller than TCM,which
means that the ensemble model GA-NNCT performs
much better than the TCM, which indicates that GA-
NNCT has the higher adaptability and robustness in
wind speed forecasting.

As shown in Table 6, the MAPE of EEMD-BPNN,
EEMD-SVM, and EEMD-ELM are all smaller than BPNN,
SVM, and ELM in each season, respectively, for wind turbine
III in year 2015, and the decrease range of the MAPE is
big in first season, second season, and fourth season; the
range of MAPE decreased about 1.23% to 5.25%. But in the
fourth season, the MAPE of EEMD-BPNN, EEMD-SVM,
and EEMD-ELM are decreased about 0.04% to 0.85%, which
indicate EEMD-BPNN, EEMD-SVM, and EEMD-ELM with
a better accuracy compared to BPNN, SVM, and ELM in
each season. In different seasons, the results in Table 6 show
that the forecasting performance of TCM is no better than
the hybrid models, even worse than the single machine
leaning models sometimes.TheMAPE of TCM are all greater
than the hybrid models in each season, which indicate that
the TCM has weak adaptability and robustness for wind
speed forecasting in wind turbine III. Compared with the
hybrid models and TCM, the advantage of ensemble model
GA-NNCT is very obvious in each season; the forecasting
performance is superior to the best hybrid model as shown in
Table 6. The MAPE of GA-NNCT decreased about 0.52% to
3.12% in different seasons. In experiment III, the wind speed
forecasting models which developed in this paper, the MAPE
of GA-NNCT show that the prediction precision of the GA-
NNCT is the highest and the hybrid models are in the second
place. The prediction precision of TCM and single machine
learning models need to be compared in different situations.

The MSE, MAE, and MAPE of BPNN, SVM, ELM,
EEMD-BPNN, EEMD-SVM, EMD-ELM, TCM, and GA-
NNCT for the wind turbine I, wind turbine II, and wind
turbine III in year 2015 are shown in Table 7. The MAPE of
GA-NNCT is 20.56%, 19.94%, and 21.98% for wind turbine

I, wind turbine II, and wind turbine III, respectively, which
are all smaller than the submodels and TCM. Compared to
the submodels, the decrease range of the MAPE is 0.68% to
6.9% for wind turbine I in year 2015. As for wind turbine II
and wind turbine III, the decrease range of theMAPE is 1.61%
to 11.16% and 0.56% to 3.37%, respectively, which indicate
that the GA-NNCT model can forecast the daily wind speed
with better forecasting performance in the Longdong area of
Loess Plateau in China. The numerical results of experiment
I, experiment II, and experiment III show thatGA-NNCThas
high robustness and adaptive ability.

Finally, the Wilcoxon signed-rank test is conducted to
ensure the significant contribution in terms of forecasting
accuracy improvement for the proposed GA-NNCT model.
The test results in Table 8 show that the proposed GA-
NNCT model almost reaches a significance level in terms
of forecasting performance than other alternative compared
models in experiment III, which means that GA-NNCT has
high prediction accuracy and adaptive ability of wind speed
forecasting.

8. Conclusions

Energy is always playing an important part in the develop-
ment of national and regional economics.With the increasing
depletion of fossil energy, the renewable energy development
is raised rapidly in the various countries’ energy development
program. Wind energy becomes an important renewable
and sustainable new resource due to the character of being
environmentally friendly and reproducibility. However, wind
speed is a key parameter in the wind energy system, and the
prediction of wind speed is always a challenging issue; no
single method or model can performwell in all situations; lit-
erature reviews show that the sole use of artificial intelligence
model or the hybrid models based on data preprocessing
technology and proper single model could not adequately
forecast the wind speed with favorable performance. In this
paper, three popular single models including BPNN, SVM,
and ELM as well as three hybrid forecasting models based
on data preprocessing including EEMD-BP, EEMD-SVM,
and EEMD-ELM are used to forecast the daily average wind
speed; the numerical results show that the accuracies of these
models need to be further improved; then these submodels
BPNN, SVM, ELM, EEMD-BP, EEMD-SVM, and EEMD-
ELM are selected by the TCM and GA-NNCT, respectively;
the wind speed is predicted using these ensemble models and
the experimental data agreed with themodel predictions.The
numerical results show that the proposed combination model
GA-NNCT has high prediction accuracy. This study can be
a helpful tool for wind park management and conversion
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of wind power to electricity in the Longdong area of Loess
Plateau in China.
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