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This paper studies the global existence and uniqueness of the mild solution for reaction-diffusion Hopfield neural networks
(RDHNNs) driven byWiener processes by applying a Schauder fixed point theorem and a priori estimate; then the random attractor
for this system is also studied by constructing proper random dynamical system.

1. Introduction

It is well known that the dynamics of Hopfield neural
networks have been deeply investigated because they have
been successfully employed in many areas such as pattern
recognition, associate memory, and combinatorial optimiza-
tion. The diffusion effect cannot be avoided in the neural
networks when electrons are moving in asymmetric elec-
tromagnetic field. So, the dynamical behavior of reaction-
diffusion Hopfield neural networks (RDHNNs, for short) has
been receiving much attention, recently [1–11].

But in a more realistic model, in order to describe the
propagation of an electric potential in a neuron, it is sensible
to include some noise in the system. In fact, a neural network
can be stabilized or destabilized by certain stochastic inputs.
Many scholars have been devoted to the stochastic RDHNNs
such as [2, 12, 13]. Giving a deep insight into these literatures,
we will find that most of these literatures consider the
RDHNNs with finite dimensional Wiener processes; there
are few results on the RDHNNs driven by infinite dimen-
sional Wiener processes. However, since the neurons can
be regarded as long thin cylinders, which act like electrical
cables, the infinite dimensional Wiener processes are more
favorable than standard Brownian motion.

On the other hand, attractor plays an important role in
the long time behavior for dynamical systems. The random

attractor extends the concept of a strange attractor from
deterministic to stochastic system. There has been great
interest in random attractors for stochastic partial differential
equations in recent decades. The random attractors are
compact invariant random sets attracting all the orbits of
attraction basin. They provide crucial geometric information
about their asymptotic regime as 𝑡 → ∞. They can help us
understand the chaotic behavior of the stochastic DRDHNNs
and reduce the complexity, as well as providing the statistical
properties of this system. When the global existence and
uniqueness of the solution can be assured, many scholars
pay much attention to the global stability, boundedness, and
even synchronization of the RDHNNs [1–3, 11]. However, to
the best of our knowledge, there is no result on the attractor
for RDHNNs, let alone random attractor for stochastic
RDHNNs. We hope this work can lay a solid foundation for
the future research.

So, this paper is devoted to the random attractor for the
following RDHNNs driven by Wiener processes:

d𝑢𝑖 (𝑡, x) = ( 𝑙∑
𝑗=1

𝜕𝜕𝑥𝑗 (𝐺𝑖𝑗 (x)
𝜕𝑢𝑖𝜕𝑥𝑗) − 𝑏𝑖𝑢𝑖

+ 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑓𝑗 (𝑢𝑗) + 𝐼i) d𝑡 + 𝜎𝑖d𝑊𝑖 (𝑡, x) ,
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𝑢𝑖 (𝑡, x) = 0, 𝑡 ≥ 𝑡0, x ∈ 𝜕O,
𝑢𝑖 (𝑡0, x) = 𝜙𝑖 (x) , x ∈ O ∈ R𝑙, 𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑢𝑖(𝑡, x) denote the potential of the cell 𝑖 at 𝑡 and x ∈ R𝑙.𝑏𝑖 are positive constants and denote the rate with which the𝑖th unit will reset its potential to the resting state in isolation
when it is disconnected from the network and external inputs
at 𝑡. 𝑐𝑖𝑗 are connection weights of the neural network. 𝑓𝑖
are the active functions of the neural network, which are
continuous. 𝜎𝑖 are the intensity of the noise. 𝐼𝑖 denote the𝑖th component of an external input source introduced from
outside the network to the 𝑖th neuron, which are constant
numbers. O denotes an open bounded and connected subset
of R𝑙 with a sufficiently regular boundary 𝜕O. ∇ is the
gradient. Initial data 𝜙𝑖 are F0-measurable and belong to𝐿2(O), a.e. 𝜔 ∈ Ω.

For convenience, we rewrite system (1) in the vector form

du = (∇ ⋅ (𝐺 (x) ∘ ∇u) − Bu + C𝑓 (u) + I) d𝑡
+ 𝜎dW,

u (𝑡, x) = 0, 𝑡 ≥ 𝑡0, x ∈ 𝜕O,
u (𝑡0, x) = 𝜙 (x) ,

(2)

where C = (𝑐𝑖𝑗)𝑛×𝑛, 𝜎 = diag{𝜎1, 𝜎2, . . . , 𝜎𝑛} I = (𝐼1, 𝐼2,. . . , 𝐼𝑛)𝑇, u = (𝑢1, 𝑢2, . . . , 𝑢𝑛)𝑇, ∇u = (∇𝑢1, ∇𝑢2, . . . , ∇𝑢𝑛)𝑇,
W = (𝑊1,𝑊2, . . . ,𝑊𝑛)𝑇, f̃(u) = (𝑓1(𝑢1), 𝑓2(𝑢2), . . . , 𝑓𝑛(𝑢𝑛))𝑇
is the diagonal map, ∇ is the gradient operator, B =
diag(𝑏1, 𝑏2, . . . , 𝑏𝑛), 𝜙(x) = (𝜙1(x), 𝜙2(x), . . . , 𝜙𝑛(x))𝑇, G(x) =(𝐺𝑖𝑗)𝑛×𝑙, G ∘ ∇u = (𝐺𝑖𝑗(𝜕𝑢𝑖/𝜕𝑥𝑗))𝑛×𝑙 is the Hadamard product
between matrix G and ∇u, and ∇⋅ is the divergence operator.

We will also use the following notations in the paper.

(i) (Ω,F,P) is a complete probability space with fil-
tration {F𝑡}𝑡≥0 satisfying the usual conditions (see
[1, 2, 14–18]).

(ii) W(𝑡, x) = W(𝑡, x)(𝜔) is a space-time Wiener process
with values in the separable Hilbert space 𝐾 with𝐸W = 0 and 𝐸(W, u)𝐾(W, v)𝐾 = (𝑡 ∧ s)(𝑄u, v)𝑋,∀𝑠, 𝑡 ≥ 0, u, k ∈ 𝑋, (⋅, ⋅)𝑋 denotes the inner product
of 𝑋, W(𝑡, x) = ∑∞𝑛=1√𝛼𝑛𝛽𝑛(𝑡)𝑒𝑛(x), where 𝑡 ∧𝑠 = min{𝑡, 𝑠} and the Hilbert-Schmidt operator 𝑄
is a positive definite, nuclear, symmetric, self-adjoint
operator having a finite trace tr𝑄 ≜ ∑∞𝑛=1 𝛼𝑛 < +∞
with eigenvalues 𝛼𝑛, {𝑒𝑛}∞𝑛=1 is an orthogonal basis of𝑋, and {𝛽𝑛}∞𝑛=1 is a sequence of mutually independent
standard Brownian motions in (Ω,F,P) (see [2, 14]).

(iii) L2(𝑋0, 𝑈) is the space of all Hilbert-Schmidt opera-
tors from 𝑋0 ≜ 𝑄1/2(𝑋) into 𝑈; when equipped with
the norm ‖Φ‖2 ≜ √tr(Φ𝑄Φ∗) it becomes a Hilbert
space, where Φ ∈ L2(𝑋0, 𝑈); Φ∗ denotes the adjoint
of Φ.

2. Preliminaries and Notations

In this paper, we introduce the following Hilbert spaces: 𝑈 ={𝐿2(O)}𝑛 and 𝑉 = {𝐻1(O)}𝑛; according to [14, 19–21], 𝑉 ⊂𝑈 = 𝑈 ⊂ 𝑉; 𝑈, 𝑉 denote the dual of the spaces 𝑈,𝑉 respectively, the injection continues, and the embedding
is compact; ‖ ⋅ ‖, ‹ ⋅ ‹ represent the usual norm in 𝑈, 𝑉,
respectively. Let us define the operator as follows:

𝐴 : Π (𝐴) ∈ 𝑈 → 𝑈
𝐴u = ∇ ⋅ (G ∘ ∇u) − Bu (3)

and Π(𝐴) is the domain of 𝐴 defined as Π(𝐴) = {𝐻2(O)}𝑛 ∩{𝐻10 (O)}𝑛. 𝐴 is the infinitesimal generator of an analytic
semigroup 𝑇(𝑡).

Defining the Nemytskii operator as follows:

f (u) (x) = 𝑓 (u (x)) , ∀x ∈ O. (4)

With these notations, we rewrite system (2) in the more
abstract form

du = (𝐴u + Cf (u) + I) d𝑡 + 𝜎dW,
u (𝑡0) = 𝜙. (5)

We recall that

WA (𝑡) = 𝜎∫𝑡
−∞
𝑒𝐴(𝑡−𝑠)dW (𝑠) (6)

is the solution of the Ornstein-Uhlenbeck process

du = 𝐴ud𝑡 + 𝜎dW. (7)

The regularity of (6) has been proved in [14, 22] and WA(𝑡)
has a 𝛼-Hölder continuous version with respect to 𝑡, 𝛼 < 1/4.
Furthermore, by the law of large number

lim
𝑡→±∞

WA (𝑡)|𝑡| = 0,
lim
𝑡→±∞

lnWA (𝑡)|𝑡| = 0,
a.s.

(8)

(H1) We assume that ‖f(u)‖ ≤ 𝑘1 + 𝑘2‖u‖, ‖f(u) − f(k)‖ ≤𝑘3‖u − k‖, ∀u,k ∈ 𝑈.
(H2) We assume that there exists a positive number 𝛽(O)

such that the following Poincaré inequality is valid:

‖u‖ ≤ 𝛽−1‹u‹, ∀u ∈ 𝑉. (9)

(H3) We assume that there exists 𝛼 > 0 such that 𝐺𝑖𝑗(x) ≥𝛼/𝑛𝑙, 𝑖 = 1, 2, . . . , 𝑛.
(H4) Let 𝑘4 > √2𝑘2𝑘5, with 𝑘4 = min{𝑏1, 𝑏2, . . . , 𝑏𝑛} and𝑘5 = max{|𝑐𝑖𝑗|}.
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We also need the following propositions in the following
sections.

Proposition 1. Consider the following equation:

d
d𝑡u = 𝐴u, 𝑡 ≥ 0,
u (0) = 𝜙. (10)

Suppose (H2), (H3) hold; let u(𝑡) = 𝑇(𝑡)𝜙 denote the mild
solution of (10); then 𝑇(𝑡) is a contraction map in 𝑈.
Proof. We recall that the solution of this linear equation is
u(𝑡) = 𝑒𝐴𝑡𝜙, so 𝑇(𝑡) = 𝑒𝐴𝑡. Now we take the inner product
of (10) with u(𝑡) in 𝑈, by employing the Gaussian theorem
and condition (H3), we get

(𝐴u, u) ≤ −𝛼‹u‹2 − 𝑘4 ‖u‖2 , ∀u ∈ 𝑉, (11)

where (⋅, ⋅) is the inner product in 𝑈 (see [1–3]), and we also
have

12 d
d𝑡 ‖u (𝑡)‖2 + 𝛼‹u (𝑡) ‹2 + 𝑘4 ‖u‖2 ≤ 0. (12)

By (H2), one obtains

d
d𝑡 ‖u (𝑡)‖2 + 2 (𝛼𝛽2 + 𝑘4) ‖u (𝑡)‖2 ≤ 0. (13)

By Gronwall-Bellman inequality, we have

‖u (𝑡)‖2 ≤ 𝑒−2(𝛼𝛽2+𝑘4)𝑡 𝜙2 ; (14)

by the definition of ‖𝑇(𝑡)‖ and uniform boundedness princi-
ple, we have

‖𝑇 (𝑡)‖ ≤ 𝑒−(𝛼𝛽2+𝑘4)𝑡 ≤ 1. (15)

So 𝑇(𝑡) is a contraction map.

Remark 2 (see [14]). Let 𝑇(𝑡) be a strongly continuous
semigroup and 𝐴 be the generator of 𝑇(𝑡); then we have

𝑇 (𝑡1)𝜙 − 𝑇 (𝑡2)𝜙 = ∫𝑡1
𝑡2

𝑇 (𝑠) 𝐴𝜙 d𝑠
= ∫𝑡1
𝑡2

𝐴𝑇 (𝑠)𝜙 d𝑠, ∀𝜙 ∈ Π (𝐴) .
(16)

Proposition 3 (see [2]). Let Ψ = (𝜓𝑖𝑗)𝑛×𝑛 and u =(𝑢1, 𝑢2, . . . , 𝑢𝑛)𝑇; then |Ψu|R𝑛 ≤ √𝑛‖Ψ‖𝐹‖u‖R𝑛 , where ‖u‖R𝑛
represents the usual norm of R𝑛 and ‖Ψ‖𝐹 represents the
Frobenius norm of a matrix Ψ ∈ R𝑛×𝑛; that is, ‖Ψ‖𝐹 =(∑𝑛𝑖=1∑𝑛𝑗=1 𝜓2𝑖𝑗)1/2.

Let (𝑋; 𝑑) be a complete separable metric space. We shall
recall the notions of random dynamical system and random
attractor.

Definition 4 (see [22]). Let (𝑋, 𝑑) be a complete separable
metric space. A metric dynamical system (MDS) 𝜃 ≜(Ω,F,P, {𝜃𝑡, 𝑡 ∈ 𝑅}) is a family of measure-preserving
transformations 𝜃𝑡 : Ω → Ω, 𝑡 ∈ R such that

(i) 𝜃0 = 𝑖𝑑, 𝜃𝑡 ∙ 𝜃𝑠 = 𝜃𝑡+𝑠 for all 𝑡, 𝑠 ∈ R; ∙ is the
composition operator;

(ii) the map (𝑡, 𝜔) → 𝜃𝑡(𝜔) isB(R) ⊗Fmeasurable, and𝜃𝑡P = P for all 𝑡 ∈ R, whereB(R) is the Borel 𝜎 field
of R.

Definition 5 (see [22–25]). A random dynamical system
(RDS) over 𝜃𝑡 is a measurable map 𝜑, such that

(1) 𝜑(0, 𝜔)𝑥 = 𝑥, 𝑥 ∈ 𝑋, 𝜔 ∈ Ω;
(2) 𝜑(𝑠 + 𝑡, 𝜔)𝑥 = 𝜑(𝑠, 𝜃𝑡𝜔) ∙ 𝜑(𝑡, 𝜔)𝑥, 𝑠, 𝑡 ∈ R, 𝑥 ∈ 𝑋,𝜔 ∈ Ω;
(3) (𝑡, 𝑥) → 𝜑(𝑡, 𝜔)𝑥 is continuous a.e. 𝜔 ∈ Ω;
(4) 𝜔 → 𝜑(𝑡, 𝜔)𝑥 isF-measurable for all (𝑡, 𝑥) ∈ R × 𝑋.

Definition 6 (see [26, 27]). A stochastic flow is a family of
mappings 𝑆(𝑡, 𝑠; 𝜔) : 𝑋 → 𝑋, −∞ < 𝑠 ≤ 𝑡 < ∞,
parameterized by 𝜔, such that

(𝑡, 𝑠, 𝑥, 𝜔) → 𝑆 (𝑡, 𝑠; 𝜔) 𝑥 (17)
isB(R) ⊗B(R) ⊗B(𝑋) ⊗F-measurable and
𝑆 (𝑡, 𝑟; 𝜔) ∙ 𝑆 (𝑟, 𝑠; 𝜔) 𝑥 = 𝑆 (𝑡, 𝑠; 𝜔) 𝑥,

𝑠 ≤ 𝑟 ≤ 𝑡, 𝑥 ∈ 𝑋,
𝑆 (𝑡, 𝑠; 𝜔) 𝑥 = 𝑆 (𝑡 − 𝑠, 0; 𝜃𝑠𝜔) 𝑥, 𝜔 ∈ Ω.

(18)

𝑆 is said to be a continuous stochastic flow, if 𝑥 → 𝑆(𝑡, 𝑠; 𝜔)𝑥
is continuous.

Definition 7 (see [28, 29]). A map 𝐾 : Ω → 2𝑋 is said to be
a closed random set if 𝐾(𝜔) is closed for a.e. 𝜔 ∈ Ω and the
map 𝜔 → dist(𝑥, 𝐾(𝜔)) is a.e. measurable for all 𝑥 ∈ 𝑋; dist
denotes the Hausdorff semidistance defined as dist(𝑥,A) =
inf𝑦∈A𝑑(𝑥, 𝑦) and dist(A,B) = sup𝑥∈A𝑑(𝑥,B), A,B ∈ 2𝑋.
Definition 8 (see [29, 30]). A map 𝐾 : Ω → 2𝑋 is said to be
a compact random set if 𝐾(𝜔) is compact for a.e. 𝜔 ∈ Ω and
the map 𝜔 → dist(𝑥, 𝐾(𝜔)) is a.s. measurable.

Definition 9 (see [31, 32]). A random set 𝐾(𝜔) is called an
absorbing set in 𝑋, if for all B ∈ 𝑋 and a.e. 𝜔 ∈ Ω, there
exists 𝑡B(𝜔) > 0 such that 𝑡 ≥ 𝑡B(𝜔) > 0

𝜑 (𝑡, 𝜃−𝑡𝜔)B ⊂ 𝐾 (𝜔) . (19)
Lemma 10 (Schauder fixed point theorem [33–38]). If B is a
closed bounded convex subset of a space 𝑋 and L : B → B is
completely continuous, then L has a fixed point in B.

Lemma 11 (see [39, 40]). Suppose 𝜑 is a RDS on a Polish
space 𝑋, and there exists a compact set 𝐾(𝜔) absorbing every
bounded deterministic set B ∈ 𝑋. Then the set

A (𝜔) = ⋃
B∈𝑋

⋂
𝑇≥0

⋃
𝑡≥𝑇

𝜙 (𝑡, 𝜃−𝑡𝜔)B (20)

is a random attractor for 𝜑.
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3. Existence and Uniqueness of the Solutions

Let

k (𝑡) = u (𝑡) −WA (𝑡) , (21)

whereWA(𝑡) has been defined in the previous section. Then,
from (5) and (6), k(𝑡) satisfies the equation

dk = (Ak + Cf (k +WA) + I) d𝑡,
k (𝑡0) = 𝜓, (22)

where𝜓 = 𝜙−WA(𝑡0). Let us rewrite (23) in the integral form
k (𝑡, 𝜔) = 𝑇 (𝑡)𝜓 + ∫𝑡

𝑡0

𝑇 (𝑡 − 𝑠) (Cf (k +WA) + I) d𝑠. (23)

Definition 12. If k satisfies (23), we say that the u(𝑡) is a mild
solution of (1).

Let 𝑋𝑇∗ ≜ 𝐶([𝑡0, 𝑡0 + 𝑇∗]; 𝑈), when equipped with
the norm ‖u‖𝑋

𝑇
∗
= (sup𝑡∈[𝑡0 ,𝑡0+𝑇∗]‖u(𝑡)‖2)1/2, it becomes a

Banach space. Let

Σ (𝑚, 𝑇∗) = {k ∈ 𝐶 ([𝑡0, 𝑡0 + 𝑇∗] ; 𝑈) : ‖k (𝑡)‖ ≤ 𝑚 ∀𝑡
∈ [𝑡0, 𝑡0 + 𝑇∗]} (24)

and consider an initial data 𝜓 which is F0-measurable and
belong to 𝑈, a.e. 𝜔 ∈ Ω. From now on, we are going to
discussmild solution of equation (22) by Schauder fixed point
method in the space𝑋𝑇∗ for some 𝑇∗ > 0.
Theorem 13. Assume that 𝜓 isF0-measurable and belongs to𝑈, a.e.𝜔 ∈ Ω. If conditions (H1)–(H3) hold, then for any ‖𝜓‖ <𝑚, there exists a stopping time 𝑇∗ > 0, such that (1) has a mild
solution in Σ(𝑚, 𝑇∗).
Proof. We split our proof into the following steps.

Step 1. Σ(𝑚, 𝑇∗) is a nonempty closed bounded convex set.
Let k1, k2 belong to Σ(𝑚, 𝑇∗); then for 0 ≤ 𝜆 ≤ 1
𝜆k1 + (1 − 𝜆) k2𝑋

𝑇
∗
≤ 𝜆 k1𝑋

𝑇
∗
+ (1 − 𝜆) k2𝑋

𝑇
∗

≤ 𝑚 (25)

so 𝜆k1 + (1−𝜆)k2 ∈ Σ(𝑚, 𝑇∗); hence Σ(𝑚, 𝑇∗) is a convex set.
Step 2.Tmaps Σ(𝑚, 𝑇∗) into Σ(𝑚, 𝑇∗).

Take any k in Σ(𝑚, 𝑇∗) and define z = Tk by

z (𝑡) = 𝑇 (𝑡)𝜓 + ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) (Cf (k +WA) + I) d𝑠. (26)

By the triangle inequality

‖z‖ ≤ 𝑇 (𝑡)𝜓
+ ∫
𝑡

𝑡0

𝑇 (𝑡 − 𝑠) (Cf (k +WA) + I) d𝑠 .
(27)

By Proposition 1, it follows that

‖z (𝑡)‖ ≤ 𝜓 + ∫𝑡
𝑡0

Cf (k +WA) + I d𝑠. (28)

By using Proposition 3 and norm inequality, as well as
condition (H1), we have

Cf (k +WA) ≤ √𝑛 ‖C‖𝐹 f (k +WA)
≤ √𝑛 ‖C‖𝐹 (𝑘1 + 𝑘2 k +WA

)
≤ √𝑛 ‖C‖𝐹 (𝑘1 + 𝑘2 (‖k‖ + WA

))
≤ √𝑛 ‖C‖𝐹 (𝑘1 + 𝑘2 ‖k‖𝑋

𝑇
∗
+ 𝑘2 WA

𝑋
𝑇
∗
) ;

(29)

therefore

‖z (𝑡)‖𝑋
𝑇
∗
≤ 𝜓
+ ∫𝑡
𝑡0

(𝑘5 WA
𝑋
𝑇
∗
+ 𝑘6 + 𝑘7 ‖k‖𝑋

𝑇
∗
) d𝑠

≤ 𝜓 + (𝑘6𝜇 + 𝑘7 + 𝑘8𝑚) 𝑡,
(30)

where 𝜇 = ‖WA‖𝑋
𝑇
∗
, 𝑘6 = √𝑛𝑘2‖C‖𝐹, 𝑘7 = ‖I‖ + √𝑛‖C‖𝐹𝑘1,

and 𝑘8 = √𝑛𝑘2‖C‖𝐹.
Hence ‖z(𝑡)‖ ≤ 𝑚 for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇∗], provided that

𝜓 + (𝑘6𝜇 + 𝑘7 + 𝑘8𝑚) (𝑡 − 𝑡0) < 𝑚. (31)

It is clear that, for any ‖𝜓‖ < 𝑚, there exists a 𝑇∗ satisfying
(31).

Step 3.T is a equicontinuous map of Σ(𝑚, 𝑇∗).
Let 𝑡1, 𝑡2 > 0, then by Remark 2 and Propositions 1 and 3,

we haveTk (𝑡1) −Tk (𝑡2)
= (𝑇 (𝑡1) − 𝑇 (𝑡2))𝜓
+ ∫
𝑡1

𝑡2

𝑇 (𝑡 − 𝑠) (Cf (k +WA) + I) d𝑠
≤ ∫𝑡1
𝑡2

𝑇 (𝑠) 𝐴𝜓 d𝑠
+ ∫𝑡1
𝑡2

𝑇 (𝑡 − 𝑠) (Cf (k +WA) + I) d𝑠
≤ ∫𝑡1
𝑡2

𝐴𝜓 d𝑠 + ∫𝑡1
𝑡2

(Cf (k +WA) + ‖I‖) d𝑠
≤ ∫𝑡1
𝑡2

𝐴𝜓 d𝑠 + (𝑘6𝜇 + 𝑘7 + 𝑘8𝑚) 𝑡1 − 𝑡2
≤ (𝐴𝜓 + 𝑘6𝜇 + 𝑘7 + 𝑘8𝑚) 𝑡1 − 𝑡2 ,

∀V ∈ Σ (𝑚, 𝑇∗)

(32)

soTΣ(𝑚, 𝑇∗) is an equicontinuous set.
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By the Arzelá-Ascoli theorem, for any bounded set B ⊂Σ(𝑚, 𝑇∗), the closure ofTB is compact, soT is a completely
continuous map, then by Steps 1–3 and Lemma 10, T has a
fixed point in Σ(𝑚, 𝑇∗), which is a mild solution of (1).

Theorem 14. Suppose (H1)–(H3) hold, then for any ‖𝜓‖ < 𝑚,
(1) has at most one mild solution in [𝑡0, 𝑡0 + 𝑇∗].
Proof. Let k1, k2 ∈ Σ(𝑚, 𝑇∗) be two solutions of system (23)
on [0; 𝑇] with k1(0) = k2(0) = 𝜓, and set z𝑖 = TV𝑖, 𝑖 = 1, 2,
and z = z1 − z2. Then

z (𝑡)
= 𝑇 (𝑡) (k1 (0) − k2 (0))
+ ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠)C (f (k1 +WA) − f (k2 +WA)) d𝑠.
(33)

Following the method in Step 3 of Theorem 13, we have

‖z (𝑡)‖𝑋
𝑇
∗
≤ √𝑛 ‖C‖𝐹 𝑘3𝑇∗ k1 − k2𝑋

𝑇
∗
. (34)

We take a stopping time 𝑇∗ such that

√𝑛 ‖C‖𝐹 𝑘3𝑇∗ < 1 (35)

which implies that k1(𝑡) = k2(𝑡) and 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇∗]. By the
combination ofTheorem 13, there is one uniquemild solution
u(𝑡) for (1).
Theorem 15. Suppose (H1)–(H3) hold. If k ∈ 𝐶([𝑡0, 𝑡0+𝑇]; 𝑈)
is a solution of system (23), then

‖k (𝑡)‖ ≤ 𝜓 + √𝛿 (36)

for some constant 𝜇∞ > 0, where 𝛿 = 𝑒|𝜂|𝑇(‖I‖2 +√𝑛‖C‖𝐹𝑘21 +2𝑘22√𝑛‖C‖𝐹𝜇2∞) and 𝛾 = 2𝛼𝛽2 + 2𝑘4 − √𝑛‖C‖𝐹(2𝑘22 + 1) − 1.
Proof. By employing the method in [41, 42], let {𝜓𝑚}∞𝑚=1 be a
sequence in {𝐶∞(O)}𝑛 such that

𝜓
𝑚 → 𝜓 ∈ 𝑈. (37)

Let {W𝑚A } be a sequence of regular process such that

W𝑚A (𝑡) = ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) dW𝑚 (𝑠) →WA (𝑡) (38)

in {𝐶([𝑡0, 𝑡0 + 𝑇] × O)}𝑛 a.e. 𝜔 ∈ Ω.
Let k𝑚 be the solution of

k𝑚 (𝑡) = 𝑇 (𝑡)𝜓𝑚
+ ∫𝑡
𝑡0

𝑇 (𝑡 − 𝑠) (Cf (k𝑚 +W𝑚𝐴) + I) d𝑠. (39)

By using the method in the Theorem 13, it is easy to see that
k𝑚 does exist on an interval of time [𝑡0, 𝑡0 + 𝑇𝑚] such that𝑇𝑚 → 𝑇∗ a.s. and that k𝑚 converges to k in 𝐶([𝑡0, 𝑡0 + 𝑇]; 𝑈)
[39]. Moreover k𝑚 is regular and satisfies

dk𝑚 = (𝐴k𝑚 + Cf (k𝑚 +W𝑚𝐴) + I) d𝑡. (40)

Taking the inner product of (40) with k𝑚 in 𝑈 and
employing the result of (11), we find that

12 d
d𝑡 k𝑚2 = (k𝑚, dk

𝑚

d𝑡 )
= (k𝑚, 𝐴k𝑚 + Cf (k𝑚 +W𝑚𝐴) + I)
≤ − (𝛼𝛽2 + 𝑘4) k𝑚2
+ (k𝑚,Cf (k𝑚 +W𝑚𝐴)) + (k𝑚, I) .

(41)

By the Cauchy-Schwartz inequality and Young inequality, we
get

(k𝑚, I) ≤ k𝑚 ‖I‖ ≤ 12 k𝑚2 + 12 ‖I‖2 . (42)

By using Young inequality and Proposition 3, as well as
condition (H1), one obtains

(k𝑚,Cf (k𝑚 +W𝑚𝐴)) ≤ k𝑚 Cf (k𝑚 +W𝑚𝐴)
≤ √𝑛 ‖C‖𝐹 k𝑚 f (k𝑚 +W𝑚𝐴)
≤ 12√𝑛 ‖C‖𝐹 (k𝑚2 + f (k𝑚 +𝑊𝑚𝐴 )2)
≤ 12√𝑛 ‖C‖𝐹 (k𝑚2 + 2𝑘21 + 2𝑘22 k𝑚 +W𝑚𝐴2)
≤ 12√𝑛 ‖C‖𝐹 ((4𝑘22 + 1) k𝑚2 + 2𝑘21 + 4𝑘22 W𝑚𝐴2) .

(43)

By (H2) and (H3), we deduce that

d
d𝑡 k𝑚2
≤ −2 (𝛼𝛽2 + 𝑘4) k𝑚2
+ √𝑛 ‖C‖𝐹 ((4𝑘2 + 1) k𝑚2 + 2𝑘21 + 4𝑘22 W𝑚𝐴2)
+ k𝑚2 + ‖I‖2 ≤ −𝜂 k𝑚2 + 𝜅,

(44)

where 𝛾 = 2𝛼𝛽2 + 2𝑘4 − √𝑛‖C‖𝐹(4𝑘22 + 1) − 1 and 𝜅 = ‖I‖2 +2√𝑛‖C‖𝐹𝑘21 + 4𝑘22√𝑛‖C‖𝐹‖W𝑚𝐴‖2. By the classical Gronwall
inequality, then we have

k𝑚 (𝑡)2 ≤ 𝑒−𝛾𝑡 𝜓𝑚2 + ∫𝑡
𝑡0

𝑒−𝛾𝑠𝜅 d𝑠 ≤ 𝜓𝑚2
+ 𝑒|𝛾|𝑇 (‖I‖2 + 2√𝑛 ‖C‖𝐹 𝑘21 + 4𝑘22√𝑛 ‖C‖𝐹 𝜇2𝑚,∞)
⋅ 𝑇

(45)

with 𝜇𝑚,∞ = sup𝑡∈[𝑡0 ,𝑡0+𝑇]‖W𝑚𝐴(𝑡)‖, for a.e. 𝜔 ∈ Ω.
Taking the limit as𝑚 →∞, we see that a.s.

‖k (𝑡)‖2 ≤ 𝜓2 + 𝛿. (46)

It follows that

‖k (𝑡)‖ ≤ 𝜓 + √𝛿 (47)

thus we complete the proof.
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It is easy to derive the following fromTheorems 13, 14, and
15.

Theorem 16. Let 𝜙 be given which is F0-measurable and
bounded in 𝑈, a.s.; then there exists a unique mild solution u
of (2), with u ∈ 𝐶([𝑡0, 𝑡0 + 𝑇]; 𝑈), ∀𝑇 < ∞.
4. Existence of the Random Attractor

We refer 𝜔 = W(𝑡) and Ω = {𝜔 ∈ 𝐶(R,R𝑛) | 𝜔(0) = 0}, with
P being the product measure of twoWiener measures on the
negative and positive parts of Ω. In this case, there exists a
Wiener shift 𝜃𝑡 defined as 𝜃𝑡𝜔(𝑠) = 𝜔(𝑡 + 𝑠) − 𝜔(𝑠), 𝑠, 𝑡 ∈ R,
which is an ergodic transformation.

Let k(𝑡, 𝜔; 𝑡0,𝜓) be the solution of (23) with k(0) = 𝜓 and
u(𝑡, 𝜔; 𝑡0,𝜙) is the mild solution of (1) with u(0) = 𝜙. Then,
fromTheorem 15, we know that the map 𝜓→ k(𝑡, 𝜔; 𝑡0,𝜓) is
continuous, by k(𝑡) = u(𝑡) −W𝐴(𝑡); then one can define the
maps 𝑆(𝑡, 𝑠; 𝜔) and 𝜑(𝑡, 𝜔) by
𝑆 (𝑡, 𝑡0; 𝜔)𝜙 = k (𝑡, 𝜔; 𝑡0,𝜓) +WA (𝑡, 𝜔) ,
𝜑 (𝑡, 𝜔)𝜙 = 𝑆 (𝑡, 0; 𝜔)𝜙 = k (𝑡, 0; 𝜔)𝜓 +WA (𝑡, 𝜔) . (48)

By the result of Theorem 15, 𝑆 is a continuous stochastic flow
and 𝜑 is a continuous RDS associated with (1).

4.1. Absorbing Sets in𝑈. Let us define the operator as follows:
A : Π (A) ∈ 𝑈 → 𝑈

Au = −∇ ⋅ (𝐺 (x) ∘ ∇u) (49)

andΠ(A) = Π(𝐴) = {𝐻2(O)}𝑛∩{𝐻10 (O)}𝑛.We can infer from
(10) and (49) that

𝐴u = −Au − Bu. (50)

The associated bilinear operator withA is defined as 𝑎(u, k) =(Au, k). By utilizing the result of [2], we have
𝑎 (u, u) = ∫

O

𝐺 : (∇u ∘ ∇u) d𝑥 ≥ 𝛼 ‹u‹2, (51)

where A : B is the Frobenius inner product of two 𝑛 × 𝑚
matrixes, defined as A : B ≜ ∑𝑛𝑖 ∑𝑚𝑗 𝑎𝑖𝑗𝑏𝑖𝑗.

Let 𝑡0 < −1 and 𝜓 ∈ 𝑈 be given, and let k be the solution
of equation (23). Taking the inner product of (22) with k in𝑈
we find that

12 d
d𝑡 ‖k‖2 = (k, dkd𝑡 ) = (k, 𝐴k) + Cf (k +WA) + I

≤ −𝑎 (k, k) − 𝑘4 ‖k‖2 + (k,Cf (k +WA))
+ (k, I) .

(52)

By the Cauchy-Schwartz inequality and Young inequality

(k, I) ≤ ‖k‖ ‖I‖ ≤ 𝑘44 ‖k‖2 + 1𝑘4 ‖I‖2 . (53)

By using Young inequality and (H1)

(k,Cf (k +WA)) ≤ ‖k‖ Cf (k +WA)
≤ 𝑘5 ‖k‖ f (k +WA)
≤ 𝑘44 ‖k‖2 + 𝑘

2
5𝑘4 f (k +WA)2

≤ (𝑘44 + 4𝑘
2
2𝑘25𝑘4 ) ‖k‖2

+ 2𝑘25𝑘4 (𝑘21 + 2𝑘22 WA
2) .

(54)

We deduce from (51)–(54) that

d
d𝑡 ‖k‖2 + 2𝑎 (k, k) ≤ −𝜂 ‖k‖2 + 𝑃1 (𝑡, 𝜔) , (55)

where 𝜂 = 𝑘4 − 2𝑘22𝑘25/𝑘4 > 0 and 𝑃1(𝑡, 𝜔) = (2𝑘25/𝑘4)(𝑘1 +2𝑘2‖WA‖2) + (2/𝑘4)‖I‖2. By (H4), we know that 𝜂 > 0; using
the classical Gronwall inequality, for 𝑡0 ≤ −1, we have

‖k (−1)‖2 ≤ 𝑒−𝜂 (−1−𝑡0) k (𝑡0)2
+ ∫−1
𝑡0

𝑒𝜂 (−1−𝑠)𝑃1 (𝑠, 𝜔) d𝑠
= 𝑒−𝜂 (−1−𝑡0) u (𝑡0)2
+ 𝑒−𝜂 (−1−𝑡0) WA (𝑡0)2
+ ∫−1
𝑡0

𝑒−𝜂 (−1−𝑠)𝑃1 (𝑠, 𝜔) d𝑠.

(56)

Theorem 17. Under conditions (H1)–(H4), the RDS 𝜑 defined
by (48) admits a random absorbing set in 𝑈.
Proof. Let the random variable

𝑟21 (𝜔) = 2 + ∫−1
−∞
𝑒−𝜂(−1−𝑠)𝑃1 (𝑠, 𝜔) d𝑠. (57)

By (8), we know that 𝑃1(𝑠, 𝜔) has at most polynomial growth
for 𝑠 → −∞, so 𝑟(𝜔) is finite. On the other hand, ‖WA(𝑡0)‖2
also has at most polynomial growth for 𝑡0, as 𝑡0 tending to−∞, according to (8). So, we can choose 𝑡 such that

𝑒−𝜂(−1−𝑡0) (𝜙2 + WA (𝑡0)2) ≤ 2, 𝑡0 ≤ 𝑡. (58)

By (56), (57), and (58), for all 𝜌 > 0, there exists 𝑡(𝜔) ≤ −1,
such that for all 𝑡0 ≤ 𝑡(𝜔) and 𝜙 ∈ 𝑈, with ‖𝜙‖ ≤ 𝜌, the
following inequality is satisfied:

k (−1, 𝜔; 𝑡0,𝜓)2 ≤ 𝑟21 (𝜔) . (59)

By (48) and (59), the stochastic flow of system (1) satisfies
𝑆 (−1, 𝑡0; 𝜔)𝜙 ≤ 𝑟1 (𝜔) + WA (𝑡0, 𝜔) ≜ 𝑟2 (𝜔) . (60)
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By using the relationship between stochastic flow and RDS

𝜑 (𝑡, 𝜃−𝑡𝜔) 𝐵𝑈 (0, 𝜌) = 𝑆 (𝑡, 0; 𝜃−𝑡𝜔) 𝐵𝑈 (0, 𝜌)
= 𝑆 (0, −𝑡; 𝜔) 𝐵𝑈 (0, 𝜌)
= 𝑆 (0, −1; 𝜔) 𝑆 (−1, −𝑡; 𝜔) 𝐵𝑈 (0, 𝜌)
⊂ 𝑆 (0, − 1; 𝜔) 𝐵𝑈 (0, 𝑟2 (𝜔)) , ∀𝜌 > 0,

(61)

where 𝐵𝑈(0, 𝜌) denotes the ball of𝑈 centered at 0with radius𝜌, let 𝐾1(𝜔) = 𝑆(0, −1; 𝜔)𝐵𝑈(0, 𝑟2(𝜔)); there exists 𝑡𝐵(𝜔) > 0
such that 𝑡 ≥ 𝑡𝐵(𝜔) > 0

𝜑 (𝑡, 𝜃−𝑡𝜔) 𝐵𝑈 (0, 𝜌) ⊂ 𝐾1 (𝜔) , a.e. 𝜔 ∈ Ω. (62)

By Definition 9, we get the conclusion.

Weneed the following auxiliary proposition in the follow-
ing sections.

Theorem 18. There exists a random variable 𝑟3(𝜔), 𝑟4(𝜔) > 0,
such that, for all 𝜌 > 0, there exist 𝑡(𝜔) ≤ −1, such that for all𝑡0 ≤ 𝑡(𝜔) and all𝜙 ∈ 𝑈, with ‖𝜙‖ ≤ 𝜌, the solution k(𝑡, 𝜔; 𝑡0,𝜓)
of system (22) satisfies the inequality

∫0
−1

k (𝑠, 𝜔; 𝑡0,𝜓)2 d𝑠 ≤ 𝑟3 (𝜔) ,
∫0
−1
‖𝑎 (k, k)‖ d𝑠 ≤ 𝑟4 (𝜔) .

(63)

Proof. From (55), we can get

∫0
−1
𝑎 (k, k) d𝑠 ≤ 12 ‖k (−1)‖2 + 12 ∫

0

−1
𝑃1 (𝑠, 𝜔) d𝑠. (64)

Integrating (55) over [−1, 0], we can also get

∫0
−1
‖k‖2 d𝑠 ≤ 1𝜂 ‖k (−1)‖2 + 1𝜂 ∫

0

−1
𝑃1 (𝑠, 𝜔) d𝑠. (65)

Let 𝑟3(𝜔) = (1/2)‖k(−1)‖2 + (1/2) ∫0
−1
𝑃1(𝑠, 𝜔)d𝑠, 𝑟4(𝜔) =(1/𝜂)‖k(−1)‖2 + (1/𝜂) ∫0

−1
𝑃1(𝑠, 𝜔)d𝑠, by Theorem 17, ‖k(−1)‖

is finite, and by using (8) again, we know that 𝑟3(𝜔), 𝑟4(𝜔) is
finite.

4.2. Absorbing Set in 𝑉. We now prove the existence of an
absorbing set in 𝑉. Multiplying (22) by Ak and integrating
over O, by (50), we have

(Ak, dk
d𝑡 ) = (Ak, 𝐴k + 𝐶f (k +WA) + I)

≤ − ‖Ak‖2 − (Ak,Bk)
+ ‖Ak‖ Cf (k +WA) + (Ak, I) .

(66)

Using the Dirichlet boundary condition and the Green first
identity

(Ak, dk
d𝑡 ) = 𝑎(k, dd𝑡k) = 12 d

d𝑡𝑎 (k, k) . (67)

By Gauss formula [3]

(Ak,Bk) = ∫
O

(𝐵𝐺) : (∇k ∘ ∇k) dx ≥ 𝑘4𝛼 ‹k‹2. (68)

We can also infer from the divergence theorem

(Ak, I) = − 𝑛∑
𝑖=1

∫
𝜕O
𝐼𝑖 (𝐺𝑖∇𝑢𝑖) ⋅ d𝑠 = 0. (69)

Using the Young inequality again, we get

‖Ak‖ Cf (k +WA) ≤ ‖Ak‖2 + 14 Cf (k +WA)2 ; (70)

we can deduce from Proposition 3 and condition (H1)

Cf (k +WA)2 ≤ 𝑛 ‖C‖2𝐹 f (k +WA)2
≤ 𝑛 ‖C‖2𝐹 (4𝑘22 ‖k‖2 + 2𝑘21 + 4𝑘22 WA

2) . (71)

It follows from (66)–(71) that

d
d𝑡𝑎 (k, k) ≤ −𝑘9𝑎 (k, k) + 𝑃2 (𝑡, 𝜔) , (72)

where 𝑘9 = 2𝑘4
𝑃2 (𝑡, 𝜔) = 𝑛 ‖C‖2𝐹 (2𝑘22 ‖k‖2 + 𝑘21 + 2𝑘22 WA

2) . (73)

Integrating (72) over [𝑠, 0], we have
𝑎 (k (0) , k (0)) ≤ 𝑎 (k (𝑠) , k (𝑠)) + ∫0

𝑠
𝑃2 (𝑠, 𝜔) d𝑠; (74)

integrating (72) again in 𝑠 over [−1, 0] and using (51), we have
‹k (0) ‹2 ≤ 1𝛼 ∫

0

−1
𝑎 (k (𝑠) , k (𝑠)) d𝑠

+ 1𝛼 ∫
0

−1
𝑃2 (𝑠, 𝜔) d𝑠.

(75)

Theorem 19. Under conditions (H1)–(H4), the RDS 𝜑 defined
by (48) admits an absorbing set in 𝑉.
Proof. Put the random variable

𝑟25 (𝜔) ≜ 1𝛼 ∫
0

−1
𝑎 (k (𝑠) , k (𝑠)) d𝑠 + 1𝛼 ∫

0

−1
𝑃2 (𝑠, 𝜔) d𝑠. (76)

ByTheorem 18, 𝑟5 is a finite number; then by employing (71),
for all 𝜌 > 0, there exist 𝑡(𝜔) ≤ −1, for all 𝑡0 ≤ 𝑡(𝜔) and all
𝜙 ∈ 𝑉, with ‖𝜙‖ ≤ 𝜌; the solution k(0, 𝜔; 𝑡0,𝜓) of system (23)
satisfies the inequality

‹k (0, 𝜔; 𝑡0,𝜙 −WA (0, 𝜔)) ‹2 ≤ 𝑟25 (𝜔) (77)

which also means the stochastic flow of (1) satisfies

‹𝑆 (0, 𝑡0; 𝜔)𝜙‹ ≤ 𝑟5 (𝜔) + ‹WA (𝑡0, 𝜔) ‹ ≜ 𝑟6 (𝜔) . (78)
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Figure 1: Frequency of Example 1.

By using the definition of RDS and the stochastic flow, we
have

𝜑 (𝑡, 𝜃−𝑡𝜔) = 𝑆 (𝑡, 0; 𝜃−𝑡𝜔) = 𝑆 (0, −𝑡; 𝜔) . (79)

By (78) and (79), ∀‖𝜙‖ ≤ 𝜌, for sufficiently large 𝑡
‹𝜑 (𝑡, 𝜃−𝑡𝜔)𝜙‹ ≤ 𝑟6 (𝜔) . (80)

Let 𝐾2(𝜔) = 𝐵𝑉(0, 𝑟6(𝜔)), where 𝐵𝑉(0, 𝑟6) denotes the ball of𝑉 centered at 0 with radius 𝑟6, so for all 𝐵𝑉(0, 𝜌) ∈ 𝑈, there
exists 𝑡𝐵(𝜔) > 0 such that 𝑡 ≥ 𝑡𝐵(𝜔) > 0

𝜑 (𝑡, 𝜃−𝑡𝜔) 𝐵𝑉 (0, 𝜌) ⊂ 𝐾2 (𝜔) , a.e. 𝜔 ∈ Ω. (81)

Theorem 20. Assume that (H1)–(H4) hold; then the RDS 𝜑
generated by (1) possesses a random attractor in 𝑈.
Proof. By Theorem 19, 𝜑(𝑡; 𝜔)𝜙 is absorbed by the random
set 𝐾2(𝜔). Since the embedding of 𝑉 to 𝑈 is compact, so the
bounded set 𝐾2(𝜔) is compact. A combination of Lemma 11
and Theorems 17 and 19, we get the existence of random
attractor for the RDS 𝜑.

If the active function f is a bounded Lipschitz function,
then we can choose a sufficiently large 𝑘1 such that 𝑘2 = 0,
so (H4) is satisfied automatically; then we get the following
theorem.

Corollary 21. Under conditions (H1)–(H3) and the fact that
there exists a constant 𝑘1 such that ‖f(u)‖ ≤ 𝑘1, the RDS 𝜑
defined by (48) admits a random attractor in 𝑈.

5. Example and Simulation

Example 1.

�̇�1 (𝑡, x) = Δ𝑢1 − 2𝑢1 − 2 tanh (𝑢1 (𝑡 − 1, 𝑥))
− tanh (𝑢2 (𝑡 − 1, 𝑥)) + 1.3 𝜕2𝑊𝜕𝑡𝜕𝑥 ,

�̇�2 (𝑡, x) = Δ𝑢2 − 2𝑢2 + tanh (𝑢1 (𝑡 − 1, 𝑥))
− 3 tanh (𝑢2 (𝑡 − 1, 𝑥)) + 1.5 𝜕2𝑊𝜕𝑡𝜕𝑥 ,

𝑢𝑖 (𝑡, 0) = 𝑢𝑖 (𝑡, 20) = 0, 𝑡 ≥ 0,
𝑢1 (0, x) = sin (0.2𝜋x) ,
𝑢2 (0, x) = sin (0.2𝜋x) ,

𝑥 ∈ O = [0, 20] .

(82)

Proof. In this case 𝑈 = {𝐿2(O)}2 and f(u) is a bounded
global Lipschitz continuous function with 𝑘1 = 20, 𝑘2 = 0,
and 𝑘3 = 1, ‖𝑆(𝑡)‖ ≤ 1, and Δ is the Laplace operator.𝐸𝑊 = 0 and𝑊 is the cylindricalWiener process with𝐸[𝑊(𝑠,𝑥) ∧ 𝑊(𝑡, 𝑦)] = (𝑡 ∧ 𝑠)(𝑥 ∧ 𝑦), ∀𝑠, 𝑡 ≥ 0, 𝑥, 𝑦 ∈ [0, 20],𝐸 is the expectation, and 𝑎 ∧ 𝑏 = min{𝑎, 𝑏}. Under these
assumptions, by Theorem 15, this system has a global mild
solution. Meanwhile 𝑘4 ≥ 2√2𝑘2𝑘5, so according to Theo-
rem 20, this system possesses a random attractor.

We simulate this example by using theMatlab; for detailed
information see Figures 1–3. A Crank-Nicolson method in
time and second-order center differences in space are used
to discrete this model. A Newton iterative method is used to
solve the discretized nonlinear equation. For more theories
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Figure 3: Simulation of 𝑢2 in Example 1.

about the numerical theory about SPDE, we refer to [42,
43].

The method used in this article can be extended to other
systems, such as the biological systems and fluid mechanical
systems [44–48].We can also apply thismethod to the system
driven by other types of noise, such as the G-Brown motion
[49]. By the way, some control technique may be used to
stabilize these systems with random attractor [50–54]. We
will study these problems in the future.
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