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Abstract. 
In this paper, an extension of some existing results related to finite-time stability (FTS) and finite-time boundedness (FTB) into the conformable fractional derivative is presented. Illustrative example is presented at the end of the paper to show the effectiveness of the proposed result.



1. Introduction 
In regard to the control theory area, finite-time stability investigation is largely used in different areas, for example, stabilization [1], fault estimation [2], and observer-based control [3]. Several research works were done to solve FTS and FTB problem for integer-order linear and nonlinear systems [4–7]. Nevertheless, noninteger derivatives constitute a property of many dynamic systems, so fractional order equations are the best way to describe these systems. For example, in electromagnetic systems [8] fractional order calculus has been used in economy [9], dielectric polarization [10], and image processing [11]. In recent decades, and with the growth of complex engineering systems and the development of science, the use of fractional calculus in many contexts of control theory, such as stability, FTS, has increased significantly.
Until now, FTS and FTB for fractional order systems are not well tackled in the literature. Indeed, there are only few works related to this topic. Readers can refer to [12–15] as an example of finite-time stability and finite-time boundedness of fractional order linear systems using Caputo derivative. Nevertheless, there is no works in the literature which investigate FTS and FTB of the new class of fractional order systems using conformable derivative.
Indeed, in [16], R. Khalil et al. proposed a new effective derivative called “the conformable fractional derivative”. Both Riemann Liouville and Caputo derivative share some disadvantages; for example, the property  is not satisfied for Riemann Liouville definition, the product of two functions as  and the chain rule as are not satisfied neither for Riemann Liouville derivative nor for Caputo one. In addition, the monotonicity of a function  is not deduced from the sign of . After that, in [17], T. Abdeljawad developed more properties for the conformable derivative. A lot of investigations on it are currently conducted. In addition, in regard to the physical meaning of such derivative, the work in [18] gave physical and geometrical interpretations of the fractional conformable derivative which thus indicate potential applications in physics and engineering.
In this paper, FTS and FTB, which are well tackled for integer-order LTI systems, are extended to conformable fractional order LTI systems. In addition, the design of a feedback controller for the same class of conformable fractional order systems is described. Note that the solution of LTI fractional conformable systems is given by T. Abdeljawad in [17].
The rest of the paper is organized as follows. In Section 2, preliminaries and useful results with respect to the conformable fractional order calculus, FTS, and FTB are introduced. In Section 3 the main results of the work are introduced detailing the FTS and FTB of a certain class of conformable LTI systems. To show the efficiency of the proposed approach, simulation results are presented in Section 4. Finally, some conclusions are given in Section 5.
2. Preliminaries
In this section, we recall some definitions, notations, and traditional results.
Definition 1 ([16, 17] (conformable fractional derivative)).  Consider a function . Thus, the conformable fractional derivative of  of order  is defined by for all , . If  is -differentiable in some , , and  exists, then by definition
Definition 2 ([16, 17]).  Let . The conformable fractional integral starting from a point 0 of a function  of order  is defined as 
Lemma 3 ([16, 17]).  Assume that  is continuous and , so 
Lemma 4.  Let. Consider a continuous function  such that  exist on  If  (respectively, ), for all , so  is increasing (respectively, decreasing).
Definition 5.  Let ]; the conformable fractional exponential function is defined as with .
Remark 6.  Let  be an -differentiable on  where  and . Then,  is -differentiable on  and .
In what follows, some definitions and sufficient conditions of the FTS and the FTB for the integer-order linear time invariant system are introduced. Readers can refer to [7, 12].
Definition 7.  The integer-order linear time invariant systemis said to be FTS with respect to with positive scalars  and matrix , if 
Definition 8.  Consider the integer-order linear time invariant systemwhere  is the disturbance input and satisfies ,  and  are constant matrices, then, system (8) is said to be FTB with respect to with positive scalars  and matrix , if 
Remark 9.  The FTS of integer-order systems was studied by F. Amato et al. in [7], after that Y. Ma et al. in [12] have generalized the work of Amato et al., 2001, to the Caputo fractional derivative.
3. Main Results 
Consider the conformable fractional order LTI system where  and 
Sufficient conditions of the FTS for the conformable fractional order LTI system (10) are stated through the following theorem.
Theorem 10.  For the conformable fractional order LTI system (10), assume that there exist a scalar  and a matrix , verifying where . Thus, system (10) is FTS with respect to 
Proof.  Consider ; we have From (11), we have Let . We have From (14), we obtainBased on Lemma 4, we have It yieldsKnowing that , (18) can be written as Then, The two inequalities  and (12) leads to . This ends the proof.
For the system (10), we have also the following result.
Corollary 11.  For the conformable fractional order linear time invariant system (10), assume that there exist a scalar  and a matrix , verifying where . Then, system (10) is FTS with respect to 
Based on the stability conditions presented in Theorem 10, the stabilizing controller design can be formulated. The main objective is to design a state controller  for the conformable fractional order LTI system where  and  such that the feedback systemwhere , , being FTS with respect to 
We propose the following theorem.
Theorem 12.  For the conformable fractional order linear time invariant system (23), assume that there exist a scalar , a matrix , and a matrix  verifying where . Thus, system (23) is finite-time stable with respect to  under the feedback control .
Proof.  Apply the state feedback controller  to (23) such that the conformable fractional closed-loop system isIt is clear that (25) can be rewritten asCombining (26) and using Theorem 10, the FTS of the closed-loop system (23) can be given.
Now, consider the LTI conformal fractional order system presented bywhere  and 
The following theorem provides a sufficient condition of the FTB for the conformable fractional order LTI system (29).
Theorem 13.  Consider system (29) and assume that  and two matrices , and , verifying where . Thus, system (29) is FTB with respect to 
Proof.  Suppose that . We haveTaking into account assumption (30), the pre- and post-multiplying of (30) by  giveCombining (32) and (33), we have This together with  giveswhere .
Suppose thatThen, From (35), we haveThus, based on Lemma 4 we have Then, Knowing that , the following inequality holds:From (40), we have By using (31) and (42), we getThis ends the proof.
Remark 14.  The obtained results of the FTS and the FTB for the conformable fractional order LTI systems are the generalization of the integer-order LTI systems.
Now, consider the design of state feedback controllers  to stabilize the FTB problem for the conformable fractional order LTI system where  and .
Theorem 15.  For the conformable fractional order linear time invariant system (44), assume that there exist a scalar, two matrices , and , and a matrix  such that the inequality (31) and hold, where .
Thus, system (44) is FTB with respect to under the control law .
Proof.  Applying the state feedback controller  to (44) results in the closed-loop system asIt is easy to see that (45) can be rewritten aswhich, by Theorem 13, implies that the closed-loop system (44) is FTB with respect to .
4. Numerical Example
Let us consider the conformable fractional order LTI system with a disturbance defined by with , , . The parameters are given as , , , , , and the matrix .
Applying Theorem 13, the feasible solution of the condition (30) is given by 
Therefore, system (48) is FTB with respect to 
The state trajectory over  with the initial state  is shown in Figure 1. It is easy to see that system (48) is FTB with respect to  from Figure 2.




	
	
		
			
		
	


Figure 1: The state  of system (48) versus time.






	
	
		
			
		
	


Figure 2: The trajectory of  of system (48) versus time.


5. Conclusion 
The FTS and FTB problem for integer-order systems have been subjected to several research works. However, much less interest is given to the new generalized mathematical representation, namely, conformable fractional order systems. In this paper, some existing results in the literature, related to FTS for linear integer-order systems, are extended into the new conformable fractional derivative. Finally, some simulation results are given to validate theoretical results.
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