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Rebate is a traditional type of promotion, and it can benefit manufacturers and retailers with expanded demands. However, the
impact of leadership strategy in rebate competition on supply chain members and rebate decision is still somewhat unclear.
Our paper focuses on a horizontal competition with respect to both rebate and leadership between two manufacturers selling
substitutable products through a common retailer to consumers who are heterogeneous in their price sensitivity. Furthermore, we
investigate the impacts of leadership strategy on profits and study rebate decision under different strategies. Our research indicates
that Bertrand-Nash game benefits the retailer, but hurts manufacturers, while Stackelberg game benefits manufacturers but hurts
the retailer, which shows no difference from previous studies. In addition, the sequential-move Stackelberg game could eliminate
the classic prisoners’ dilemma in rebate decision, which is also influenced by fixed cost control.

1. Introduction

Rebate is a very fashionable type of sale promotion in con-
sumers’ daily lives. Companies offer rebates as a promotion,
especially in electronic and automotive industries for several
reasons. In some cases, rebates are used to increase sales,
expand demands, decrease inventories, and even coordinate
supply chain [1, 2]. According to an industrial study, 50% of
retailers and 48% ofmanufacturers use rebates as part of their
customer loyalty and promotions mix [3]. A survey of UK
shopper behavior [4] shows about one in three customers is
interested in rebates on consumer packagedmerchandise and
three in four customers want cash back rebates on appliances
and electronics. Particularly, rebate decision is commonly
decided as a strategy by competing manufacturers, such as
Canon and Epson, who both launch a rebate promotion.
However, among Dell, HP, and Sony, Dell and HP phase out
their rebate promotion, but Sony goes on to offer rebates
instead [5].

This paper is closely related to the literature on rebate
programs in supply chain management. Most researches in
the field focus on rebate decisions with uncertain demand in
a newsvendor framework. Aydin and Porteus [6] developed

two rebate forms with uncertain demand, which is multi-
plicative, from manufacturer to retailer and from manufac-
turer to customer with endogenousmanufacturer rebates and
retail pricing. Demarag et al. [7] employed a game theoretical
model to examine the impact of retailer incentive and cus-
tomer rebate promotions on the manufacturer’s pricing and
the retailer’s ordering. Furthermore, they studied a setting
with two manufacturers and two retailers. They found that
customer rebates can bemore profitable in some cases, unlike
themonopoly case where the manufacturers are always better
off with retailer incentives. Demarag et al. [8, 9] considered
a risk-averse retailer and formally modeled it by adopting
the Conditional-Value-at-Risk (CVaR) decision criterion.
Geng and Mallik [10] used a game-theoretic framework
to investigate the joint decision of offering mail-in rebates
(MIR) with stochastic demand, and they showed both parties
offering MIR, only one party offering MIR, and neither
offering MIR can be the equilibrium. Arcelus et al. [11] also
examined the impact of direct rebates to the end customer
from the manufacturer and/or from the retailer upon the
profitability and effectiveness of the policies of both channels.
They showed all three scenarios were equally profitable or the
retailer-only rebate policy was dominant.
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There are a number of papers in this stream that consider
a one-manufacturer-one-retailer relationship. Gerstner and
Hess [12] examined four types of price promotions with two
consumer segments: trade deals only, manufacturer rebates
only, combination of them, and retailer rebates. They showed
that manufacturer rebates played a positive role not only in
price discrimination but also in retail participation. Chen et
al. [13] used case study comparing rebates with coupons and
showed that the rebate’s ability of price discriminated among
consumers. Lu and Moorthy [14] studied the difference
between rebate and coupon when the uncertain redemption
costs were resolved and identified. They showed that rebates
aremore efficient in price discrimination than coupons. Chen
et al. [15] investigated a two-stage game with a manufacturer
and a retailer and characterized the impact of a manufacturer
rebate on the expected profits of both members in the supply
chain. Cho et al. [16] determined the equilibrium of a vertical
competition game between the manufacturer and the retailer
with three decisions, including regular price, rebate, and its
value, and investigated how competition affects the rebate
decisions. Khouja and Jing [17] developed a Stackelberg game,
in which a manufacturer offered cash mail-in rebates as a
leader with a retailer as a follower.

In the latest literature, Huang et al. [18] suggested that
rebate competition among manufacturers or retailers can be
studied for future research. Ha et al. [19] are the first to
consider a multistage game, including two manufacturers
selling substitutable products through a common a retailer
with slippage effect. Our study is the most close to theirs.
However, in their model, two competing manufacturers just
moved simultaneously and redemption rate was not involved
in consumer’s utility functions, which did not conform to the
reality. Thus their model setup is also quite different from
ours.

Our research is also closely related to the endogenous
timing of strategy, which refers to a member’s relative ability
to control the decision-making process in the supply chain.
For example, Apple is considered to be the Manufacturer-
Stackelberg leader [20], whileWal-Mart generally is regarded
as the Retailer-Stackelberg leader [21]. A great deal of studies
examined the leadership strategy under specific duopoly
games settings, such as pricing setting duopoly [22–33],
quantity setting duopoly [34–36], and other duopolies. Gal-
Or [22] first demonstrated how two identical players moved
sequentially in a game when their reaction functions were
upwards or downwards sloping. Amir and Stepanova [24]
utilized a first-versus second-mover advantage in differenti-
ated product Bertrand duopoly and showed that a firm with
larger cost than its rival had a first-mover advantage. Chen
et al. [32] examined the competition among retailers about
product return strategies and leadership strategies. Moreover,
most of the researches have concentrated on the impact of
factors on leadership strategies. Mago and Dechenaux [37]
investigated the impact of firm size asymmetry and found
that large firm was subjected to be the price leader. Hirata
andMatsumura [38] showed that firms with higher cost were
more likely to be the Stackelberg leader. Wang et al. [39]
utilized the endogenous timing of strategies to model the
efficient-responsive choice for two firms, and they showed

that moving simultaneously can be an equilibrium. Niu et
al. [40] analyzed the price leadership of two manufacturers
and showed that the market size had a major impact on
equilibrium. Chen et al. [32] examined how competing retail-
ers should choose leadership strategies with product return
strategies and the impact of them. They found Money-Back
Guarantee (MBG) returns policy significantly influenced
the leadership strategy. Our paper contributes to this body
of work by examining leadership strategy in manufacturer
competition with both of wholesale prices and rebate values
duopoly setting.

In our study, we examined how the leadership strategies
affected the profits of supply chain members and rebate
decisions from a horizontal competitive perspective referring
to two manufacturers and one retailer with certain demand.
To address these questions, we developed a multistage
game model, in which two manufacturers sell substitutable
products through a common retailer to consumers who are
heterogeneous in their price sensitivity. The two competing
manufacturers faced the same redemption rate, but played the
gamewith different leadership strategies, which are Bertrand-
Nash game strategy and sequential-move Stackelberg game
strategy, respectively. We discussed how manufacturers may
decide leadership strategies, either moving simultaneously, or
moving first as the leader, ormoving second as the follower. In
addition, we investigated how they made the rebate decisions
with different leadership strategies.

Our contributions to the literature are twofold. First,
we demonstrated that leadership strategy has an opposite
impact on profits for manufacturers and retailer in rebate
competition, which coincides with previous studies, and in
most cases, manufacturers have the second-move advantages
to decide the wholesale prices and rebate values. Second,
sequential-move Stackelberg strategy could eliminate the
classic prisoners’ dilemma scenario in rebate decision, which
is also influenced by fixed cost control.

2. The Benchmark Model

2.1. The Model Setting. We consider the duopoly model
involving two manufacturers (indexed by 𝑋 or 𝑌) selling
substitutable products through a common retailer (he) to
consumers who are heterogeneous in their price sensitivity,
where the manufacturers are viewed as to be the Stackelberg
leaders and the retailer is the follower. We assume that
each manufacturer (she) has to make a rebate decision
whether to offer a rebate project before other decisions, as it
takes time to design and launch the rebate project. We also
assume that the manufacturers can move simultaneously or
sequentially when determining wholesale prices and rebate
values. We denote the duopoly’s price leadership strategy as
L = {B,X,Y}, that is, three basic games: a simultaneous
game (Bertrand-Nash game, denoted as a superscript 𝐵),
a sequential-move Stackelberg game with manufacturer 𝑋
as the leader (manufacturer 𝑋 Stackelberg, denoted as a
superscript 𝑋), or a sequential-move Stackelberg game with
manufacturer 𝑌 as the leader (manufacturer 𝑌 Stackelberg,
denoted as a superscript 𝑌).
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Moreover, we consider that the manufacturer 𝑖 (𝑖 = 𝑋,𝑌)
bears a fixed cost 𝐹𝑖, which captures the costs related to
designing a rebate project, launching a rebate promotion and
advertising. Without loss of generality, we assume that the
unit variable rebate cost, the unit manufacturing cost, and the
unit selling cost are constant and normalized to zero.

The supply chain model we study can be described as a
multistage game with the following sequence of events:

(1) Each manufacturer 𝑖 in the duopoly needs to decide
her rebate project, either offering the rebate (𝑅) or
not offering the rebate (𝑁) with a related fixed cost 𝐹𝑖.
There are four combinations of the twomanufactures.
We denote the manufacturers’ rebate decision as Z =
ZXZY = {NN,NR,RN,RR}. The first and second
letters denote manufacturer X’s and manufacturer Y’s
rebate decisions, respectively, where ZX = {R,N} and
ZY = {R,N}.

(2) After observing the rebate project decision, eachman-
ufacturer 𝑖 determines her wholesale price and rebate
value if a rebate project is offered, according to the
leadership strategy between the two manufacturers.
If the leadership strategy is L = B, both manufac-
turers decide their wholesale price (𝑝𝐵𝑍𝑋 , 𝑝𝐵𝑍𝑌 ) and
rebate values (𝑟𝐵𝑍𝑋 , 𝑟𝐵𝑍𝑌 ), if rebate projects are offered
simultaneously; if the leadership strategy is L = 𝑋,
anticipating manufacturer Y’s wholesale price and
rebate value if a rebate is offered, manufacturer 𝑋
announces her wholesale price (𝑝𝑋𝑍𝑋 ) and rebate value
(𝑟𝑋𝑍𝑋 ) if a rebate is offered, and then manufacturer Y
announces her wholesale price (𝑝𝑋𝑍𝑌 ) and rebate value
(𝑟𝑋𝑍𝑌 ) if a rebate is offered; if the leadership strategy
is L = Y, similarly, manufacturer Y announces her
wholesale price (𝑝𝑌𝑍𝑌 ) and rebate value (𝑟𝑌𝑍𝑌 ) if a rebate
is offered, and then manufacturer 𝑋 announces her
wholesale price (𝑝𝑌𝑍𝑋 ) and rebate value (𝑟𝑌𝑍𝑋 ) if a rebate
is offered.

(3) Given the wholesale prices and rebate values (if
rebates are offered), the retailer determines his retailer
prices 𝑝𝑖 for both products.

(4) The manufacturers produce to meet their demands
and the firms acquire their payoffs.

2.2. The Demand Functions. Lu and Moorthy [14] argued
that consumers with different income might have different
redemption costs because they differed in their opportunity
cost of time, and consumers may incur different redemption
costs. Chen et al. [15] pointed out through some studies
that consumers systematically exhibited overconfidence in
the personal forecast. Such optimistic bias we call “slippage,”
which can let customers overestimate their likelihood of
redeeming a rebate offer and make an error in estimating
the effort involved in the redemption. Tasoff and Letzler
[41] further investigated that experimental results showed the
expected redemption rates exceed actual redemption rates
by 49% because of stamp and envelope costs, the cost of

time, loss of the form, and so forth, which explained high
redemption cost.

As mentioned by Cai [42], rebates helped discriminate
consumers who were heterogeneous in their price sensitivity,
as not every consumer redeems the rebates. We develop
two segments with consumers who are heterogeneously
rebate-sensitive and rebate-insensitive. The rebate-sensitive
consumers incur a lower redemption cost 𝐶𝐿, and the rebate-
insensitive consumers incur a higher redemption cost𝐶𝐻 for
the complexity of the redemption steps or their higher cost of
time, where 0 ≤ 𝐶𝐿 < 𝐶𝐻. We derive the demand functions
by following the similar approach from Ha et al. [19], which
is also developed from Zhang et al. [27] and Chung [30]. The
utility function of a representative consumer is given by

(𝑞𝐿𝑍𝑋 + 𝑞𝐿𝑍𝑌 ) 𝑎 − 12 [(𝑞𝐿𝑍𝑋 )2 + (𝑞𝐿𝑍𝑌 )2 + 2𝛾𝑞𝐿𝑍𝑋 𝑞𝐿𝑍𝑌 ]
− (𝑝𝐿𝑍𝑋 −max [𝑚𝑟𝐿𝑍𝑋 , (𝑟𝐿𝑍𝑋 − 𝐶)]) 𝑞𝐿𝑍𝑋
− (𝑝𝐿𝑍𝑌 −max [𝑚𝑟𝐿𝑍𝑌 , (𝑟𝐿𝑍𝑌 − 𝐶)]) 𝑞𝐿𝑍𝑌 ,

(1)

where 𝑎 is the market size, 𝑞𝐿𝑍𝑖 , 𝑝𝐿𝑍𝑖 , and 𝑟𝐿𝑍𝑖 are, respectively,
the consumption quantity, retail price, and rebate value
of product 𝑖 produced by manufacturer 𝑖, and C is the
consumer’s estimated redemption cost. Here 𝛾 ∈ [0, 1),
generally interpreted as the competition intensity between
the manufacturers, captures the substitutability of the two
products.

Particularly, in order to take “slippery effect” into account
to differentiate the consumers heterogeneous in their rebate
sensitivity, we consider the redemption rate 𝑚 ∈ (0, 1] in the
utility function; that is, we assumewhen𝐶 = 𝐶𝐿 = 0, the con-
sumers are rebate-sensitive and will incur a 100% redemption
rate (𝑚 = 1), and when 𝐶 = 𝐶𝐻, the redemption cost is very
high such that the consumers are rebate-insensitive and will
incur a redemption rate less than 100% (𝑚 ∈ (0, 1)), instead of
being prohibited from redeeming rebate. For the purpose of
tractability, let the proportion of rebate-sensitive consumers
be identical to rebate-insensitive consumers in the market (if
not, too many parameters will be stacked in formulas).

So the utility function of a representative rebate-sensitive
consumer is given by

(𝑞𝐿𝑍𝑋 + 𝑞𝐿𝑍𝑌 ) 𝑎 − 12 [(𝑞𝐿𝑍𝑋 )2 + (𝑞𝐿𝑍𝑌 )2 + 2𝛾𝑞𝐿𝑍𝑋 𝑞𝐿𝑍𝑌 ]
− (𝑝𝐿𝑍𝑋 − 𝑟𝐿𝑍𝑋 ) 𝑞𝐿𝑍𝑋 − (𝑝𝐿𝑍𝑌 − 𝑟𝐿𝑍𝑌 ) 𝑞𝐿𝑍𝑌 .

(2)

Given 𝑝𝐿𝑍𝑖 and 𝑟𝐿𝑍𝑖 , the optimal consumption quantities 𝑡𝐿𝑍𝑖
for the rebate-sensitive consumers are given by the following
demand functions:

𝑡𝐿𝑍𝑋 = (1 − 𝛾) 𝑎 − (𝑝𝐿𝑍𝑋 − 𝑟𝐿𝑍𝑋 ) + 𝛾 (𝑝𝐿𝑍𝑌 − 𝑟𝐿𝑍𝑌 )1 − 𝛾2 , (3)

𝑡𝐿𝑍𝑌 = (1 − 𝛾) 𝑎 − (𝑝𝐿𝑍𝑌 − 𝑟𝐿𝑍𝑌 ) + 𝛾 (𝑝𝐿𝑍𝑋 − 𝑟𝐿𝑍𝑋 )1 − 𝛾2 . (4)
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The utility function of a representative rebate-insensitive
consumer is given by

(𝑞𝐿𝑍𝑋 + 𝑞𝐿𝑍𝑌 ) 𝑎 − 12 [(𝑞𝐿𝑍𝑋 )2 + (𝑞𝐿𝑍𝑌 )2 + 2𝛾𝑞𝐿𝑍𝑋 𝑞𝐿𝑍𝑌 ]
− (𝑝𝐿𝑍𝑋 − 𝑚𝑟𝐿𝑍𝑋 ) 𝑞𝐿𝑍𝑋 − (𝑝𝐿𝑍𝑌 − 𝑚𝑟𝐿𝑍𝑌 ) 𝑞𝐿𝑍𝑌 .

(5)

Given 𝑝𝐿𝑍𝑖 , the optimal consumption quantities 𝑘𝐿𝑍𝑖 for
the rebate-insensitive consumers are given by the following
demand functions:

𝑘𝐿𝑍𝑋 = (1 − 𝛾) 𝑎 − (𝑝𝐿𝑍𝑋 − 𝑚𝑟𝐿𝑍𝑋 ) + 𝛾 (𝑝𝐿𝑍𝑌 − 𝑚𝑟𝐿𝑍𝑌 )1 − 𝛾2 , (6)

𝑘𝐿𝑍𝑌 = (1 − 𝛾) 𝑎 − (𝑝𝐿𝑍𝑌 − 𝑚𝑟𝐿𝑍𝑌 ) + 𝛾 (𝑝𝐿𝑍𝑋 − 𝑚𝑟𝐿𝑍𝑋 )1 − 𝛾2 . (7)

Let𝐷𝐿𝑍𝑖 = (1/2)(𝑡𝐿𝑍𝑖 +𝑘𝐿𝑍𝑖 ) as the total demand of product𝑖.
3. Prices and Rebate Values Decision under
Leadership Strategy

For given rebate decision (𝑍) and leadership strategy (𝐿) from
two manufacturers, we solve for the equilibrium retail prices,
wholesale prices, and rebate values (if rebates are offered) by
optimizing the retailer’s profit function and manufacturers’
profit functions and obtain the firms’ profit. Particularly, the
fixed cost of a rebate project is not involved in manufacturers’
profit functions because it is a sunk cost and does not have
any impact on manufacturers’ price and rebate values or
leadership strategy.

Given 𝜔𝐿𝑍𝑖 and 𝑟𝐿𝑍𝑖 , the retailer maximizes his profit (𝜋𝐿𝑍𝑅 )

(𝑝𝐿𝑍𝑋 − 𝜔𝐿𝑍𝑋 )𝐷𝐿𝑍𝑋 + (𝑝𝐿𝑍𝑌 − 𝜔𝐿𝑍𝑌 )𝐷𝐿𝑍𝑌 , (8)

by choosing the following best-response function:

𝑝𝐿𝑍𝑖 (𝜔𝐿𝑍𝑖 , 𝑟𝐿𝑍𝑖 ) = 14 [2𝑎 + 2𝜔𝐿𝑍𝑖 + (1 + 𝑚) 𝑟𝐿𝑍𝑖 ] , (9)

where the Hessian matrix is negative due to 𝜕2𝜋𝐿𝑍𝑅 /𝜕𝑝𝐿𝑍2𝑖 =
−2/(1 − 𝛾2) < 0 and (𝜕2𝜋𝐿𝑍𝑅 /𝜕𝑝𝐿𝑍21 )(𝜕2𝜋𝐿𝑍𝑅 /𝜕𝑝𝐿𝑍22 ) −(𝜕2𝜋𝐿𝑍𝑅 /𝜕𝑝𝐿𝑍1 𝜕𝑝𝐿𝑍2 )(𝜕2𝜋𝐿𝑍𝑅 /𝜕𝑝𝐿𝑍2 𝜕𝑝𝐿𝑍1 ) = 4/(1−𝛾2) > 0 for any𝛾 ∈ [0, 1); thus the profit of the retailer satisfies the second-
order condition for a maximum.

Given rebate decision (𝑍) and leadership strategy (𝐿)
from two manufacturers, by optimizing the manufacturers’
profit functions over 𝜔𝐿𝑍𝑖 and 𝑟𝐿𝑍𝑖 (if rebates are offered),
we derive a unique optimal equilibrium of them; then the
corresponding 𝑝𝐿𝑍𝑖 , 𝐷𝐿𝑍𝑖 , 𝜋𝐿𝑍𝑖 , and 𝜋𝐿𝑍𝑅 can also be acquired.
All the results under different hypothesis leadership strategies
are summarized in Table 1, and detailed manufacturers’ profit
functions and related derivations are shown in Proof A in the
Appendix.

where 𝑔(𝛾), 𝑠(𝑚), and V𝑒(𝑚, 𝛾), 𝑒 = 1, . . . , 22, are given in
Table 3 (𝑔(𝛾) > 0, 𝑠(𝑚) > 0, and V𝑒(𝑚, 𝛾) > 0).

3.1. Bertrand-Nash Game Scenario. As benchmark case, we
first consider the Bertrand-Nash game between the two
competing manufacturers; that is, two manufacturers move
simultaneously to decide wholesale prices and rebate val-
ues. The unique optimal equilibrium results, presented in
Table 1(a), indicate the following rank orders in wholesale
prices and profits for manufacturers shown in Lemma 1,
rebate values, retail prices, and demands for consumers
shown in Lemma 2, and profits for retailer shown in Lemma 3
(proofs of all the lemmas are given in Proof B in Appendix,𝑖 = 𝑋,𝑌).
Lemma 1. For 𝐿 = 𝐵,

(1) 𝜔𝐵𝑁𝑅𝑋 (𝜔𝐵𝑅𝑁𝑌 ) < 𝜔𝐵𝑁𝑁𝑖 < 𝜔𝐵𝑅𝑅𝑖 , 𝜋𝐵𝑁𝑅𝑋 (𝜋𝐵𝑅𝑁𝑌 ) < 𝜋𝐵𝑁𝑁𝑖 <𝜋𝐵𝑅𝑅𝑖 ;
(2) 𝜔𝐵𝑁𝑅𝑋 (𝜔𝐵𝑅𝑁𝑌 ) < 𝜔𝐵𝑁𝑁𝑖 < 𝜔𝐵𝑅𝑁𝑋 (𝜔𝐵𝑁𝑅𝑌 ), 𝜋𝐵𝑁𝑅𝑋 (𝜋𝐵𝑅𝑁𝑌 ) <𝜋𝐵𝑁𝑁𝑖 < 𝜋𝐵𝑅𝑁𝑋 (𝜋𝐵𝑁𝑅𝑌 ).
Lemma 1 implies that the rank orders of profits for

manufacturers accord with the ones of wholesale prices,
which indicates that manufacturers’ profits greatly depend on
wholesale prices. And all the rank orders are intuitive, except
that the comparison of wholesale prices or profits for manu-
facturers under 𝑍 = {𝑅𝑅} and 𝑍 = {𝑅𝑁} for manufacturer𝑋 (𝑍 = {𝑁𝑅} for manufacturer 𝑌) is related to 𝛾 as seen in
Figure 1, which is different from the previous research. When
the competition between manufacturers is less intense, the
wholesale prices or profits formanufacturers under𝑍 = {𝑅𝑅}
are higher than 𝑍 = {𝑅𝑁} for manufacturer 𝑋 (𝑍 = {𝑁𝑅}
for manufacturer 𝑌) shown in Figures 1(a) and 1(b). And
when the competition is more intense, the result is just on the
contrary shown in Figures 1(c) and 1(d), which illustrates that
one of the two manufacturers will taper off offering a rebate
when the competition becomes more intense.

Lemma 2. For 𝐿 = 𝐵,
(1) 𝑟𝐵𝑅𝑁𝑋 (𝑟𝐵𝑁𝑅𝑌 ) < 𝑟𝐵𝑅𝑅𝑖 ;
(2) 𝑝𝐵𝑁𝑅𝑋 (𝑝𝐵𝑅𝑁𝑌 ) < 𝑝𝐵𝑁𝑁𝑖 < 𝑝𝐵𝑅𝑁𝑋 (𝑝𝐵𝑁𝑅𝑌 ) < 𝑝𝐵𝑅𝑅𝑖 ;
(3) 𝐷𝐵𝑁𝑅𝑋 (𝐷𝐵𝑅𝑁𝑌 ) < 𝐷𝐵𝑁𝑁𝑖 < 𝐷𝐵𝑅𝑅𝑖 < 𝐷𝐵𝑅𝑁𝑋 (𝐷𝐵𝑁𝑅𝑌 ).
Lemma 2 shows that the rank orders of rebate values,

retail prices, and demands for consumers under different
scenarios of 𝑍 = {𝑅𝑅, 𝑅𝑁,𝑁𝑅,𝑁𝑁} are not affected by
the intensity of competitive rivalry. The intuition is that
when the competition is more intense, manufacturers cannot
lower the rebate values with decreasing wholesale prices,
because the higher rebate values would raise the redemption
rate intrinsically to help manufacturers maintain a healthy
profit margin (𝜔 − 𝑚𝑟) for the rebate-sensitive consumers.
Consequently, higher wholesale prices and rebate values
definitely induce higher retail prices, but lower demands for
consumers.

Lemma 3. For 𝐿 = 𝐵, 𝜋𝐵𝑁𝑁𝑅 < 𝜋𝐵𝑅𝑁𝑅 (𝜋𝐵𝑁𝑅𝑅 ) < 𝜋𝐵𝑅𝑅𝑅 .

As indicated in Lemma 3, the rank order of profits for
retailer is also not related to 𝛾. But it should be noted that
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(d) Manufacturers’ profits

Figure 1: Equilibrium wholesale prices and manufacturers’ profits under 𝐿 = 𝐵 versus 𝛾 (a = 10,𝑚 = 1/2).

more intense competition will prohibit manufacturers from
offering a rebate; consequently the retailer may be worse
off, so he should be prudent to intensify the manufacturer
competition. That is to say, the profits for retailer are up to
manufacturers’ rebate decision.

Similarly, we reveal the optimal solutions of sequential-
move Stackelberg game scenario in Table 1(b), where either

manufacturer 𝑋 moves first as a leader (𝐿 = 𝑋), or
manufacturer 𝑌 moves first as a leader (𝐿 = 𝑌) in
the second-stage game. For the succinctness and integrity
of analysis, this paper just presents the rank orders of
prices and rebate values decision, as well as demands
and profits under sequential-move Stackelberg game in
Appendix.
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(b) Wholesale prices

Figure 2: Equilibrium wholesale prices under 𝐿 = {𝐵, 𝑋, 𝑌} versus 𝛾 (𝑎 = 10,𝑚 = 1/2).

3.2. Impact of Leadership Strategy. Before examining the
effect of leadership strategy onmanufacturers and retailer, we
compare the prices and rebate values decision of sequential-
move Stackelberg game with that of Bertrand-Nash game.

With equilibrium solutions in Table 1, the comparisons of
wholesale prices and rebate values for manufacturers under𝐿 = {𝐵,𝑋,𝑌} are summarized in Lemmas 4 and 5.

Lemma 4. For 𝐿 = {𝐵,𝑋,𝑌},
(1) 𝜔𝐵𝑁𝑁𝑖 < 𝜔𝑌𝑁𝑁𝑋 (𝜔𝑋𝑁𝑁𝑌 ) < 𝜔𝑋𝑁𝑁𝑋 (𝜔𝑌𝑁𝑁𝑌 );
(2) 𝜔𝐵𝑍𝑋 (𝜔𝐵𝑍𝑌 ) ≤ 𝜔𝑋𝑍𝑋 (𝜔𝑌𝑍𝑌 ) < 𝜔𝑌𝑍𝑋 (𝜔𝑋𝑍𝑌 );
(3) 𝜔𝐵𝑅𝑁𝑋 (𝜔𝐵𝑁𝑅𝑌 ) = 𝜔𝑌𝑅𝑁𝑋 (𝜔𝑋𝑁𝑅𝑌 ).
From parts (1) and (2), where 𝑍 = {𝑅𝑅} or 𝑍 = {𝑁𝑅}

for manufacturer 𝑋 (𝑍 = {𝑅𝑁} for manufacturer 𝑌), the
wholesale prices under sequential-move Stackelberg game are
not lower than the ones under Bertrand-Nash game; that
is, both manufacturers will reduce wholesale prices if they
decide to move simultaneously. The insight is indicative of
the fact that Nash game intensifies the competition between
the two manufacturers, whereas Stackelberg game softens
it. From part (3), the rank order between the wholesale
prices of taking a leadership position and acting as a follower
competitor or moving simultaneously is subject to 𝛾, shown
in Figure 2. It can be inferred that when one manufacturer
decides to offer a rebate while another does not, the level
of competition is critical to the choice of leadership strat-
egy.

Lemma 5. For 𝐿 = {𝐵,𝑋,𝑌}, 𝑟𝑋𝑍𝑋 (𝑟𝑌𝑍𝑌 ) < 𝑟𝐵𝑍𝑋 (𝑟𝐵𝑍𝑌 ) ≤𝑟𝑌𝑍𝑋 (𝑟𝑋𝑍𝑌 ).
Lemma 5 is unsurprisingly intuitive that manufacturers

prefer to take the advantage of follower to determine the
rebate values for adjusting the profit margin (𝜔−𝑚𝑟) flexibly
and accordingly inducing a rosy perceived price to stimulate
more demand from the rebate-seeking segment. Although
in our paper setting manufacturers determine the wholesale
prices and rebate values at the same time, the rebate values
may be set a little later than wholesale prices in reality.
Similarly, Nash game can trigger more intensity between the
two manufacturers than Stackelberg game.

As the wholesale prices and rebate values are acknowl-
edged, the rank orders of retail prices and demands for con-
sumers can be implied that, for any 𝑍 = {𝑁𝑁,𝑅𝑁,𝑁𝑅, 𝑅𝑅},
the impact of leadership strategy on retail prices is identical
to the wholesale prices, except that 𝑝𝑌𝑅𝑁𝑋 (𝑝𝑋𝑁𝑅𝑌 ) is exactly
higher than 𝑝𝑋𝑅𝑁𝑋 (𝑝𝑌𝑁𝑅𝑌 ) for all values of 𝛾, as retail prices
are codetermined by wholesale prices and rebate values.
With regard to demands for consumers, for any 𝑍 ={𝑁𝑁,𝑅𝑁,𝑁𝑅,𝑅𝑅}, 𝐷𝑋𝑍𝑋 (𝐷𝑌𝑍𝑌 ) ≤ 𝐷𝐵𝑍𝑋 (𝐷𝐵𝑍𝑌 ) ≤ 𝐷𝑌𝑍𝑋 (𝐷𝑋𝑍𝑌 ),
which is similar to the rank order of rebate values and
indicates the insight above. With these results of prices and
rebate values decision presented in Lemmas 4 and 5 under
the three game scenarios (𝐿 = {𝐵,𝑋,𝑌}), we observe the
following proposition about the impact of leadership strategy
on manufacturers’ profits and the retailer’s profits, shown in
Figures 3 and 4.
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Figure 3: Equilibrium manufacturers’ profits under 𝐿 = {𝐵,𝑋, 𝑌} versus 𝛾 (𝑎 = 10,𝑚 = 1/2).

Proposition 6. For any 𝑍, 𝜋𝐵𝑍𝑋 (𝜋𝐵𝑍𝑌 ) ≤ 𝜋𝑋𝑍𝑋 (𝜋𝑌𝑍𝑌 ) <𝜋𝑌𝑍𝑋 (𝜋𝑋𝑍𝑌 ), except for 𝑍 = {𝑅𝑁}(𝑍 = {𝑁𝑅}).
Proposition 6 investigates the impact of leadership strat-

egy on manufacturers’ profits. The rank order of these is

intuitive according to the analysis above. Inmost cases of𝑍, it
is widely shared thatmanufacturers can reap huge fruitswhen
acting as a follower-competitor, and moving simultaneously
will induce the lowest profits; that is, Nash game will intensify
the competition between two manufacturers to lower the
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(b) Retailer’s profits
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(c) Retailer’s profits

Figure 4: Equilibrium retailer’s profits under 𝐿 = {𝐵, 𝑋, 𝑌} versus 𝛾 (𝑎 = 10, 𝑚 = 1/2).

profits, but Stackelberg game softens it to increase the profits.
While under 𝑍 = {𝑅𝑁} for manufacturer 𝑋 (𝑍 = {𝑁𝑅} for
manufacturer𝑌) as depicted in Figure 3(d), themanufacturer
who offers a rebate can seize the initiative to determine the
highest wholesale price and the lowest rebate values to make

more profits with high level of competition. Consequently,
when one manufacturer knows her rival does not offer a
rebate, she should take the advantage of competition to move
first for favorable profits. In addition, one in particular is
that, unlike Nash strategy, the manufacturers will not cease
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Table 2: Payoff matrix of rebate decision.

Manufacturer𝑋\Manufacturer𝑌 𝑍𝑌 = 𝑅 𝑍𝑌 = 𝑁𝑍𝑋 = 𝑅 𝜋𝐿𝑅𝑅𝑋 − 𝐹𝑋, 𝜋𝐿𝑅𝑅𝑌 − 𝐹𝑌 𝜋𝐿𝑅𝑁𝑋 − 𝐹𝑋, 𝜋𝐿𝑅𝑁𝑌𝑍𝑋 = 𝑁 𝜋𝐿𝑁𝑅𝑋 , 𝜋𝐿𝑁𝑅𝑌 − 𝐹𝑌 𝜋𝐿𝑁𝑁𝑋 , 𝜋𝐿𝑁𝑁𝑌

offering a rebate as the competition becomes more intense
under sequential-move Stackelberg strategy (i.e.,𝜔𝐿𝑅𝑁𝑖 (𝜋𝐿𝑅𝑁𝑖 )< 𝜔𝐿𝑅𝑅𝑖 (𝜋𝐿𝑅𝑅𝑖 ), 𝐿 = {𝑋,𝑌}).
Proposition 7. For any𝑍 = {𝑁𝑁,𝑅𝑁,𝑁𝑅,𝑅𝑅}, 𝜋𝑋𝑍𝑅 (𝜋𝑌𝑍𝑅 ) ≤𝜋𝐵𝑍𝑅 (𝜋𝐵𝑍𝑅 ).

Proposition 7 indicates the impact of leadership strategy
on retailer’s profits. The rank order of them is opposite
to manufacturer’s. In other words, the retailer could make
a larger profit with more intense competition induced by
the Nash game between the two competing manufacturers
compared with Stackelberg game. More interestingly, the
retailer’s profit is first decreasing and then increasing as
competition becomes more intense depicted in Figure 4(c),
when manufacturer 𝑖 moves first on rebate offered. This can
be explained as follows. More intense competition induces
the wholesale price (𝜔𝑋𝑅𝑁𝑌 ) to decrease and the demand(𝐷𝑋𝑅𝑁𝑌 ) to increase sharply, which generates much higher
profits from product 𝑗 than product 𝑖 (𝑖, 𝑗 = 𝑋,𝑌). What
is more, under Stackelberg game, the retailer could take
positive actions to intensify the manufacturer competition
without concern about either manufacturer ceasing offering
a rebate as competition between two manufacturers grows
more intense, which is different from Nash game.

From Propositions 6 and 7, and the above discussion, our
results show that leadership strategy has a great impact on
manufacturers and retailer; particularly, the Bertrand-Nash
game could damage the manufacturers’ profits compared
with the sequential-move Stackelberg game, whereas benefit-
ing the retailer.The insight is obvious that the same leadership
strategy could impose opposite influences on manufacturers
and retailer, and conflict of interest always exists between
manufacturer and retailer.

4. Rebate Decision

To distinguish the impact of leadership strategy on rebate
decision, we first study the Bertrand-Nash game scenario
(𝐿 = 𝐵); that is, the two competing manufacturers simulta-
neously decide whether to incur a fixed cost to offer a rebate
or not.Without loss of generality, we assume𝐹𝑌 ≤ 𝐹𝑋. We use
the same approach byHa et al. [19] to institute a normal game
with the manufacturers as game players, and a payoff matrix
shown in Table 2. Similarly, we presume that a manufacturer
will offer a rebate if she is neutral.

Let𝐻1 ≡ 𝜋𝐵𝑅𝑁𝑋 (𝜋𝐵𝑁𝑅𝑌 ) − 𝜋𝐵𝑁𝑁𝑖 ,𝐻2 ≡ 𝜋𝐵𝑅𝑅𝑖 − 𝜋𝐵𝑁𝑅𝑋 (𝜋𝐵𝑅𝑁𝑌 ),
and𝐻3 ≡ 𝜋𝐵𝑅𝑅𝑖 −𝜋𝐵𝑁𝑁𝑖 , where𝐻1, 𝐻2,𝐻3 are the functions of𝛼,𝑚, 𝛾. We can present 0 < 𝐻1 < 𝐻2 and 0 < 𝐻3 < 𝐻2 from
Proposition 6; particularly, the comparison of 𝐻1 and 𝐻3 is

correlated to 𝛾. The following proposition demonstrates the
equilibrium rebate structure and it is depicted in Figure 5(a).

Proposition 8. (1) If 𝐻1 < 𝐹𝑌 and 𝐻2 < 𝐹𝑋, 𝑍 = {𝑁,𝑁}
will be the unique equilibrium; (2) if 𝐹𝑌 < 𝐻1 and 𝐹𝑋 < 𝐻2,𝑍 = {𝑅, 𝑅}will be the unique equilibrium; (3) if𝐻1 ≤ 𝐹𝑖 ≤ 𝐻2,
there will be two equilibria, 𝑍 = {𝑅, 𝑅} and 𝑍 = {𝑁,𝑁}. If𝐻1 < 𝐻3 < 𝐹𝑖 < 𝐻2, 𝑍 = {𝑁,𝑁} will be Pareto optimal,
and 𝑍 = {𝑅, 𝑅} will be Pareto optimal if 𝐻1 < 𝐹𝑖 < 𝐻3 <𝐻2; (4) if 𝐻2 < 𝐹𝑋 and 𝐹𝑌 ≤ 𝐻1, 𝑍 = {𝑁,𝑅} will be the
unique equilibrium; (5) with more intention, 𝐻3 < 𝐻1. (a) If𝐻3 < 𝐻1 < 𝐹𝑖, 𝑍 = {𝑁,𝑁} will be Pareto optimal; (b) if𝐻3 <𝐹𝑖 < 𝐻1, there will be the classical prisoners’ dilemma (where𝐹𝑌 < 𝐹𝑋).

Proposition 8 investigates that neither manufacturers will
offer a rebatewhen their fixed costs are high; both of themwill
offer a rebatewhen they incur lowfixed costs. Otherwise, only
themanufacturer incurring a lower fixed costwill offer rebate.
Particularly the unique equilibrium with 𝐻1 < 𝐻3 is not
absolutely the same as the one with 𝐻3 < 𝐻1. That is to say,
when the competition is less intense, the unique equilibrium
is 𝑍 = {𝑅, 𝑅} with less high fixed costs; otherwise the unique
equilibrium is 𝑍 = {𝑁,𝑁}. When the competition is more
intense,𝑍 = {𝑁,𝑁} is unique optimal with higher fixed costs;
otherwise 𝑍 = {𝑅, 𝑅} is unique optimal; however, both of the
two manufacturers would be better off with 𝑍 = {𝑁,𝑁}.This
is the classical prisoners’ dilemma, which indicates that when
a manufacturer offers rebate, the competitive manufacturer
had to act so; otherwise she will be worse off.

Next, we work on the sequential-move game scenario
(𝐿 = {𝑋,𝑌}); that is, the two competing manufacturers
move sequentially to decide whether to offer rebate. Similarly,
let 𝐻𝐿1,𝑖 ≡ 𝜋𝐿𝑅𝑁𝑖 − 𝜋𝐿𝑁𝑁𝑖 , 𝐻𝐿2,𝑖 ≡ 𝜋𝐿𝑅𝑅𝑖 − 𝜋𝐿𝑁𝑅𝑖 , and𝐻𝐿3,𝑖 ≡ 𝜋𝐿𝑅𝑅𝑖 − 𝜋𝐿𝑁𝑁𝑖 , where 𝐻𝐿1,𝑖, 𝐻𝐿2,𝑖, 𝐻𝐿3,𝑖 are the functions
of 𝛼,𝑚, 𝛾. We can show 0 < 𝐻𝐿1,𝑖 < 𝐻𝐿3,𝑖 < 𝐻𝐿2,𝑖 from
the manufacturers’ profits under 𝐿 = {𝑋,𝑌}. The following
proposition demonstrates the equilibrium rebate structure
under 𝐿 = 𝑋 (the results of 𝐿 = 𝑌 are symmetric to 𝐿 = 𝑋)
and it is depicted in Figure 5(b).

Proposition 9. (1) If𝐻𝑋1,𝑌 < 𝐹𝑌 and𝐻𝑋2,𝑋 < 𝐹𝑋, 𝑍 = {𝑁,𝑁}
will be the unique equilibrium; (2) if𝐹𝑌 < 𝐻𝑋1,𝑌 and𝐹𝑋 < 𝐻𝑋2,𝑋,𝑍 = {𝑅, 𝑅} will be the unique equilibrium; (3) if 𝐻𝑋1,𝑖 ≤ 𝐹𝑖 ≤𝐻𝑋2,𝑖,𝑍 = {𝑁,𝑁} and𝑍 = {𝑅, 𝑅}will be the only two equilibria.𝑍 = {𝑁,𝑁} will be Pareto optimal, if𝐻𝑋1,𝑖 < 𝐻𝑋3,𝑖 < 𝐹𝑖 < 𝐻𝑋2,𝑖,
and 𝑍 = {𝑅, 𝑅} will be Pareto optimal if 𝐻𝑋1,𝑖 < 𝐹𝑖 < 𝐻𝑋3,𝑖 <𝐻𝑋2,𝑖; (4) if 𝐻𝑋2,𝑋 < 𝐹𝑋 and 𝐹𝑌 ≤ 𝐻𝑋1,𝑌, 𝑍 = {𝑁,𝑅} will be the
unique equilibrium (where 𝐹𝑌 < 𝐹𝑋).
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Table 3

Notation Expression
𝑔(𝛾) 𝛾4(1 + 3𝛾) − 4𝛾2(4 + 5𝛾) + 32(1 + 𝛾)
𝑠(𝑚) −8𝑚2 + 8𝑚 − 1
V1(𝑚, 𝛾) 2𝑚(1 − 𝑚)(−2 + 𝛾)2 − 1 + 𝛾
V2(𝑚, 𝛾) 4𝑚(1 − 𝑚)(4 − 𝛾2) − 2 + 𝛾2
V3(𝑚, 𝛾) 𝑚(1 − 𝑚)(8 + 4𝛾) − 1 − 𝛾
V4(𝑚, 𝛾) 4𝑚2(−6 + 𝛾 + 2𝛾2) − 2𝑚(−14 + 3𝛾 + 5𝛾2) − 𝛾
V5(𝑚, 𝛾) 32𝑚3(𝑚 − 2)(2 + 𝛾)2 − 8𝑚(2 + 3𝛾 + 𝛾2) + 8𝑚2(18 + 19𝛾 + 5𝛾2) + 1 + 𝛾
V6(𝑚, 𝛾) 𝑚(𝑚 − 1)(8 − 4𝛾2) − 1 + 𝛾2
V7(𝑚, 𝛾) 𝑚(1 − 𝑚)(32 − 16𝛾2) − (𝛾2 − 2)2
V8(𝑚, 𝛾) 8𝑚3(𝛾(2 − 𝛾) + 4) − 2𝑚2(𝛾(20 − 7𝛾) + 36)

+𝑚(𝛾(13 − 4𝛾) + 22) − (1 + 𝛾)(5 − 2𝛾)
V9(𝑚, 𝛾) 4𝑚3(12 − 𝛾(2 − (7 − 𝛾)𝛾)) − 2𝑚2(52 − 𝛾(8 − (31 − 3𝛾)𝛾))

+𝑚(2 − 𝛾(9 − (39 − 4𝛾)𝛾)) + (1 + 𝛾)(2𝛾(4 − 𝛾) − 7)
V10(𝑚, 𝛾) 4𝑚(1 − 𝑚)(2 + 𝛾)(2 − 𝛾2) − (1 + 𝛾)(2 − 𝛾)
V11(𝑚, 𝛾) 4𝑚(1 − 𝑚)(4 + (𝛾 − 2)𝛾) − (1 + 𝛾)(2 − 𝛾)
V12(𝑚, 𝛾) 𝑚(1 − 𝑚)(8 + 8𝛾 + 2𝛾2) − 1 − 𝛾
V13(𝑚, 𝛾) 4𝑚5(−1 + 𝛾)(−4 − 2𝛾 + 𝛾2)2 − 12𝑚4(−1 + 𝛾)(−4 − 2𝛾 + 𝛾2)2 + 2𝑚3(−104 + 133𝛾2 − 35𝛾4 + 6𝛾5)

−4𝑚2(−24 + 33𝛾2 − 10𝛾4 + 𝛾5) + 𝑚(−17 + 28𝛾2 − 11𝛾4) + (−1 + 𝛾2)2
V14(𝑚, 𝛾) 8𝑚4(32 + 32𝛾 − 16𝛾2 − 20𝛾3 + 𝛾4 + 3𝛾5) − 16𝑚3(32 + 32𝛾 − 16𝛾2 − 20𝛾3 + 𝛾4 + 3𝛾5)

+4𝑚2(80 + 80𝛾 − 42𝛾2 − 49𝛾3 + 4𝛾4 + 7𝛾5) − 4𝑚(16 + 16𝛾 − 10𝛾2 − 9𝛾3 + 2𝛾4 + 𝛾5) + (2 + 𝛾 − 𝛾2)2
V15(𝑚, 𝛾) 4𝑚(1 − 𝑚)(4 + 2𝛾 − 𝛾2) − 2 − 2𝛾 + 𝛾2 + 𝛾3
V16(𝑚, 𝛾) 8𝑚2(−6 + 𝛾 + 3𝛾2) + 2𝑚(28 − 6𝛾 − 16𝛾2 + 𝛾3 + 𝛾4) + 𝛾(−2 + 𝛾2)
V17(𝑚, 𝛾) 4𝑚(1 − 𝑚)(−12 + 2𝛾 + 7𝛾2 − 𝛾3) + 6 − 7𝛾2 + 2𝛾4
V18(𝑚, 𝛾) 16𝑚4(32 + 32𝛾 − 16𝛾2 − 20𝛾3 + 𝛾4 + 3𝛾5) − 32𝑚3(32 + 32𝛾 − 16𝛾2 − 20𝛾3 + 𝛾4 + 3𝛾5)

+8𝑚2(72 + 76𝛾 − 34𝛾2 − 50𝛾3 − 𝛾4 + 8𝛾5 + 𝛾6) − 8𝑚(8 + 12𝛾 − 2𝛾2 − 10𝛾3 − 3𝛾4 + 2𝛾5 + 𝛾6) + (1 + 𝛾)(−2 + 𝛾2)2
V19(𝑚, 𝛾) 4𝑚(1 − 𝑚)(4 + 2𝛾 − 𝛾2) − 2 − 𝛾 + 𝛾2
V20(𝑚, 𝛾) 16𝑚4(12 − 2𝛾 − 7𝛾2 + 𝛾3) − 8𝑚3(52 − 10𝛾 − 31𝛾2 + 5𝛾3)

+4𝑚2(62 − 11𝛾 − 39𝛾2 + 6𝛾3) − 2𝑚(14 + 𝛾 − 12𝛾2 + 𝛾3) + 𝛾(1 − 𝛾2)
V21(𝑚, 𝛾) 𝑚4(16 + 8𝛾 − 4𝛾2) + 𝑚3(−32 − 16𝛾 + 8𝛾2) + 𝑚(−2 − 𝛾 + 𝛾2) + (18 + 9𝛾 − 5𝛾2)

V22(𝑚, 𝛾)
256𝑚8(32 + 32𝛾 − 16𝛾2 − 20𝛾3 + 𝛾4 + 3𝛾5) − 1024𝑚7(32 + 32𝛾 − 16𝛾2 − 20𝛾3 + 𝛾4 + 3𝛾5)

+128𝑚6(408 + 412𝛾 − 210𝛾2 − 265𝛾3 + 14𝛾4 + 41𝛾5) − 128𝑚5(328 + 340𝛾 − 182𝛾2 − 235𝛾3 + 14𝛾4 + 39𝛾5)
+32𝑚4(558 + 610𝛾 − 359𝛾2 − 482𝛾3 + 35𝛾4 + 90𝛾5) − 64𝑚3(62 + 74𝛾 − 51𝛾2 − 72𝛾3 + 7𝛾4 + 16𝛾5)

+8𝑚2(1 + 𝛾)2(60 − 43𝛾 − 40𝛾2 + 27𝛾3) − 8𝑚(1 + 𝛾)3(4 − 7𝛾 + 3𝛾2) + (−1 + 𝛾)2(1 + 𝛾)3

Proposition 9 develops that the equilibrium rebate struc-
ture under sequential-move Stackelberg game scenario is
approximately the same as that under Bertrand-Nash game
scenario, except for the absence of classical prisoners’
dilemma under 𝐿 = {𝑋,𝑌}. The comparison of 𝐻𝐿1,𝑖 and 𝐻𝐿3,𝑖
is not referred to how intense the competition is between the
two manufacturers; that is, 𝐻𝐿1,𝑖 < 𝐻𝐿3,𝑖 for all values of 𝛾;
and both manufacturers will not be in the prisoners’ dilemma
with intense competition under sequential-move Stackelberg
strategy.

Corollary 10. Suppose 𝐹𝑋 = 𝐹𝑌 = 𝐹. (1) When 𝐹 < 𝐻𝐿1,𝑖,𝑍 = {𝑅, 𝑅} is the unique equilibrium; (2) when𝐻𝐿1,𝑖 ≤ 𝐹 ≤ 𝐻𝐿2,𝑖,𝑍 = {𝑁,𝑁} and 𝑍 = {𝑅, 𝑅} are the only two equilibria, and if

𝐻𝐿3,𝑖 < 𝐹, 𝑍 = {𝑁,𝑁} is Pareto optimal; otherwise 𝑍 = {𝑅, 𝑅}
is Pareto optimal; (3) when𝐻𝐿2,𝑖 < 𝐹, 𝑍 = {𝑁,𝑁} is the unique
equilibrium.

However, compared with Figure 5(a), Figure 5(b) shows
great differences between different leadership strategies. In
Figure 5(a), the largest region is 𝑍 = {𝑅, 𝑅} and 𝑍 = {𝑁,𝑁}
has the smallest region under 𝐿 = 𝐵, which is consistent with
Proposition 6. By contrast, the definite region of 𝑍 = {𝑅, 𝑅}
under 𝐿 = 𝑋 consequently decreases as the definite region of𝑍 = {𝑁,𝑁} and the indefinite region greatly increase, which
does not accord with the conclusion that manufacturers
would make the most profits under 𝑍 = {𝑅, 𝑅}. Both of the
two competing manufacturers could be less likely to decide to
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Figure 5: Equilibrium rebate decision under 𝐿 = 𝐵 and 𝐿 = 𝑋 (𝑎 = 10, 𝑚 = 1/2, 𝛾 = 1/2).

offer a rebate when they play the sequential-move Stackelberg
game; to a great extent, manufacturers’ profits depend on
their fixed cost, whereas the manufacturers make more profit
with the Nash strategy allowing them to compensate the fixed
cost.

5. Conclusion

In this research, we develop leadership strategy in manu-
facturer rebate competition with heterogeneous consumers.
Compared with previous research, we take the redemption
rate into the consumer utility functions, which is more
realistic. We first study the prices and rebate values decision
under different leadership strategies, and next we focus on
the profits for manufacturers and retailer, and the impact of
leadership strategy on them. Then we investigate the manu-
facturer rebate decision under these leadership strategies and
their effect on it.

Our analysis reveals some initial and counterintuitive
results. The manufacturers will not phase out their rebate
programs as the competition between them becomes intense
under sequential-move Stackelberg strategy, compared with
Bertrand-Nash strategy. We also observe that although
sequential-move Stackelberg strategy could eliminate the
classic prisoners’ dilemma in manufacturer rebate decision,
which is also influenced by fixed cost control, as a result,man-
ufacturers could gain more under sequential-move Stackel-
berg strategy if they well control the fixed costs.

Our findings present some interesting managerial
insights to practitioners. With rebate competition, except
for the scenario of one manufacturer offering a rebate, the
manufacturers could be better off as a price follower rather
than a price leader. Compared with Bertrand-Nash strategy,
the retailer could take more positive actions to intensify the
competition between manufacturers without being worse

off, because of manufacturers’ continuously offering rebates
in such a condition under sequential-move Stackelberg
strategy.

Our model has a few limitations, such as zero redemp-
tion cost for the rebate-sensitive consumers and a constant
redemption rate for consumers and manufacturers. These
values can be nonzero or nonconstant and subject to a certain
distribution. In addition, our paper just considers the leader-
ship strategy between the two competing manufacturers, but
does not take the price leadership betweenmanufacturers and
retailer into consideration with a symmetric or asymmetric
relationship, as well as the scenario that the retailer could
offer a rebate or both of the manufacturers and retailer
offer a rebate cooperatively. We leave these issues for future
investigation.

Appendix

A. Proof A

(1) For 𝑍 = {𝑁𝑁,𝑅𝑁,𝑁𝑅,𝑅𝑅}, and with demand functions
for consumers (3), (4), (6), and (7), we can derive the profit
function of manufacturers

𝜋𝐿𝑍𝑖 = 12𝜔𝐿𝑍𝑖
∗ (1 − 𝛾) 𝑎 − 𝑝𝐿𝑍𝑖 + 𝑚 ∗ 𝑟𝐿𝑍𝑖 + 𝛾 (𝑝𝐿𝑍𝑗 − 𝑚 ∗ 𝑟𝐿𝑍𝑗 )1 − 𝛾2
+ 12 (𝜔𝐿𝑍𝑖 − 𝑚𝑟𝐿𝑍𝑖 )
∗ (1 − 𝛾) 𝑎 − 𝑝𝐿𝑍𝑖 + 𝑟𝐿𝑍𝑖 + 𝛾 (𝑝𝐿𝑍𝑗 − 𝑟𝐿𝑍𝑗 )1 − 𝛾2 ,

𝑖, 𝑗 = 𝑋,𝑌.

(A.1)
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(1) If 𝐿 = 𝐵, the Hessian matrix is negative due to 𝜕2𝜋𝐵𝑍𝑖 /𝜕𝜔𝐵𝑍2𝑖 = −1/(1 − 𝛾2) < 0, 𝜕2𝜋𝐵𝑍𝑖 /𝜕𝑟𝐵𝑍2𝑖 = −(3 − 𝑚)𝑚/4(1 −
𝛾2) < 0 and (𝜕2𝜋𝐵𝑍𝑖 /𝜕𝜔𝐵𝑍2𝑖 )(𝜕2𝜋𝐵𝑍𝑖 /𝜕𝑟𝐵𝑍2𝑖 ) − (𝜕2𝜋𝐵𝑍𝑖 /𝜕𝜔𝐵𝑍𝑖 𝜕𝑟𝐵𝑍𝑖 )(𝜕2𝜋𝐵𝑍𝑖 /𝜕𝑟𝐵𝑍𝑖 𝜕𝜔𝐵𝑍𝑖 ) = (−8𝑚2+8𝑚−1)/16(1−𝛾2) >0 for any 𝑚 ∈ ((2 − √2)/4, (2 + √2)/4) and 𝛾 ∈ [0, 1).
Thus the profit of manufacturer 𝑖 satisfies the second-order
condition for a maximum. We conclude that there exists a
unique optimal pair (𝜔𝐵𝑍𝑖 , 𝑟𝐵𝑍𝑖 ), which is given by resolving𝜕𝜋𝐵𝑍𝑖 /𝜕𝜔𝐵𝑍𝑖 = 0 and 𝜕𝜋𝐵𝑍𝑖 /𝜕𝑟𝐵𝑍𝑖 = 0 simultaneously (if
rebates are offered). We obtain

𝜔𝐵𝑁𝑁𝑖 = (1 − 𝛾) 𝑎
2 − 𝛾 ,

𝜔𝐵𝑅𝑁𝑋 = 𝑎𝑚 (5 − 4𝑚) (1 − 𝛾) (2 + 𝛾)
V2 (𝑚, 𝛾) ,

𝑟𝐵𝑅𝑁𝑋 = 2𝑎 (1 − 𝛾) (2 + 𝛾)
V2 (𝑚, 𝛾) ;

𝜔𝐵𝑅𝑁𝑌 = 𝑎V3 (𝑚, 𝛾) (1 − 𝛾)
V2 (𝑚, 𝛾) ,

𝜔𝐵𝑁𝑅𝑋 = 𝑎V3 (𝑚, 𝛾) (1 − 𝛾)
V2 (𝑚, 𝛾) ;

𝜔𝐵𝑁𝑅𝑌 = 𝑎𝑚 (5 − 4𝑚) (1 − 𝛾) (2 + 𝛾)
V2 (𝑚, 𝛾) ,

𝑟𝐵𝑁𝑅𝑌 = 2𝑎 (1 − 𝛾) (2 + 𝛾)
V2 (𝑚, 𝛾) ,

𝜔𝐵𝑅𝑅𝑖 = 𝑎𝑚 (5 + 2𝑚 (2 − 𝛾) − 2𝛾) (1 − 𝛾)
V1 (𝑚, 𝛾) ,

𝑟𝐵𝑅𝑅𝑖 = 2𝑎 (1 − 𝛾)
V1 (𝑚, 𝛾) .

(A.2)

(2) If 𝐿 = 𝑋, for given (𝜔𝑋𝑍𝑋 , 𝑟𝑋𝑍𝑋 ), manufacturer 𝑌’s profit
function is concave in 𝜔𝑋𝑍𝑌 and 𝑟𝑋𝑍𝑌 as 𝜕2𝜋𝑋𝑍𝑌 /𝜕𝜔𝑋𝑍2𝑌 =
−1/(1 − 𝛾2) < 0 and 𝜕2𝜋𝑋𝑍𝑌 /𝜕𝑟𝑋𝑍2𝑌 = −(3 − 𝑚)𝑚/4(1 −𝛾2) < 0, for which the Hessian matrix is negative for any𝑚 ∈ ((2 − √2)/4, (2 + √2)/4) and 𝛾 ∈ [0, 1), suggesting that
there exists a unique optimal solution (𝜔𝑋𝑍𝑌 , 𝑟𝑋𝑍𝑌 ), which can
be obtained by solving 𝜕𝜋𝑋𝑍𝑌 /𝜕𝜔𝑋𝑍𝑌 = 0 and 𝜕𝜋𝑋𝑍𝑌 /𝜕𝑟𝑋𝑍𝑌 = 0
simultaneously (if rebates are offered). Then,

𝜔𝑋𝑁𝑁𝑌 = 12 (𝑎 − 𝑎𝛾 + 𝛾𝜔𝑋𝑁𝑁𝑋 ) ,

𝜔𝑋𝑅𝑁𝑌 = 14 (2𝑎 − 2𝑎𝛾 − 𝛾𝑟𝑋𝑅𝑁𝑋 − 𝑚𝛾𝑟𝑋𝑅𝑁𝑋 + 2𝛾𝜔𝑋𝑅𝑁𝑋 ) ,

𝜔𝑋𝑁𝑅𝑌 = −(−5𝑚 + 4𝑚2) (−𝑎 + 𝑎𝛾 − 𝛾𝜔𝑋𝑁𝑅𝑋 )
1 − 8𝑚 + 8𝑚2 ,

𝑟𝑋𝑁𝑅𝑌 = 2 (−𝑎 + 𝑎𝛾 − 𝛾𝜔𝑋𝑁𝑅𝑋 )
1 − 8𝑚 + 8𝑚2 ,

𝜔𝑋𝑅𝑅𝑌 = −𝑚(10𝑎 − 8𝑎𝑚 − 10𝑎𝛾 + 8𝑎𝑚𝛾 − 3𝛾𝑟𝑋𝑅𝑅𝑋 + 𝑚𝛾𝑟𝑋𝑅𝑅𝑋 + 10𝛾𝜔𝑋𝑅𝑅𝑋 − 8𝑚𝛾𝜔𝑋𝑅𝑅𝑋 )
2 (1 − 8𝑚 + 8𝑚2) ,

𝑟𝑋𝑅𝑅𝑌 = −2𝑎 − 2𝑎𝛾 − 𝛾𝑟𝑋𝑅𝑅𝑋 + 3𝑚𝛾𝑟𝑋𝑅𝑅𝑋 − 4𝑚2𝛾𝑟𝑋𝑅𝑅𝑋 + 2𝛾𝜔𝑋𝑅𝑅𝑋1 − 8𝑚 + 8𝑚2

(A.3)

Substituting (A.3) into 𝜋𝑋𝑍𝑋 , we can prove that the Hessian
matrix is negative due to

𝜕2𝜋𝑋𝑍𝑋𝑁𝑋𝜕𝜔𝑋𝑍𝑋𝑁2𝑋

= − 2 − 𝛾22 (1 − 𝛾2) < 0,

𝜕2𝜋𝑋𝑍𝑋𝑁𝑋𝜕𝑟𝑋𝑍𝑋𝑁2𝑋

= −𝑚(6 − 𝛾2 − 𝑚(2 + 𝛾2))
8 (1 − 𝛾2) < 0,

𝜕2𝜋𝑋𝑍𝑋𝑁𝑋𝜕𝜔𝑋𝑍𝑋𝑁2𝑋

𝜕2𝜋𝑋𝑍𝑋𝑁𝑋𝜕𝑟𝑋𝑍𝑋𝑁2𝑋

− 𝜕2𝜋𝑋𝑍𝑋𝑁𝑋𝜕𝜔𝑋𝑍𝑋𝑁𝑋 𝜕𝑟𝑋𝑍𝑋𝑁𝑋
𝜕2𝜋𝑋𝑍𝑋𝑁𝑋𝜕𝑟𝑋𝑍𝑋𝑁𝑋 𝜕𝜔𝑋𝑍𝑋𝑁𝑋

= (−2 + 16𝑚 − 16𝑚2 + 𝛾2) (2 − 𝛾2)
64 (−1 + 𝛾2)2 > 0

(A.4)
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for any 𝑚 ∈ ((2 − √2)/4, (2 + √2)/4) and 𝛾 ∈ [0, 1),

and
𝜕2𝜋𝑋𝑍𝑋𝑅𝑋𝜕𝜔𝑋𝑍𝑋𝑅2𝑋

= 1 − 𝛾2 + 4𝑚(−2 + 𝛾2) − 4𝑚2 (−2 + 𝛾2)
(1 − 8𝑚 + 8𝑚2) (−1 + 𝛾2) < 0,

𝜕2𝜋𝑋𝑍𝑋𝑅𝑋𝜕𝑟𝑋𝑍𝑋𝑅2𝑋

= (−3 + 𝑚)𝑚(−1 + 𝛾2 − 4𝑚(−2 + 𝛾2) + 4𝑚2 (−2 + 𝛾2))
4 (1 − 8𝑚 + 8𝑚2) (−1 + 𝛾2) < 0,

𝜕2𝜋𝑋𝑍𝑋𝑅𝑋𝜕𝜔𝑋𝑍𝑋𝑅2𝑋

𝜕2𝜋𝑋𝑍𝑋𝑅𝑋𝜕𝑟𝑋𝑍𝑋𝑅2𝑋

− 𝜕2𝜋𝑋𝑍𝑋𝑅𝑋𝜕𝜔𝑋𝑍𝑋𝑅𝑋 𝜕𝑟𝑋𝑍𝑋𝑅𝑋
𝜕2𝜋𝑋𝑍𝑋𝑅𝑋𝜕𝑟𝑋𝑍𝑋𝑅𝑋 𝜕𝜔𝑋𝑍𝑋𝑅𝑋

= (15 − 4𝑚 − 4𝑚2) (−1 + 𝛾2 − 4𝑚 (−2 + 𝛾2) + 4𝑚2 (−2 + 𝛾2))2
16 (1 − 8𝑚 + 8𝑚2)2 (−1 + 𝛾2)2 > 0

(A.5)

for any𝑚 ∈ ((2−√2)/4, (2+√2)/4) and 𝛾 ∈ [0, 1), suggesting
that there exists a unique optimal solution (𝜔𝑋𝑍𝑋 , 𝑟𝑋𝑍𝑋 ), which
can be obtained by solving 𝜕𝜋𝑋𝑍𝑋 /𝜕𝜔𝑋𝑍𝑋 = 0 and 𝜕𝜋𝑋𝑍𝑋 /𝜕𝑟𝑋𝑍𝑋 =0 simultaneously.

𝜔𝑋𝑁𝑁𝑋 = 𝑎 (1 − 𝛾) (2 + 𝛾)
2 (2 − 𝛾2) ,

𝜔𝑋𝑅𝑁𝑋 = 𝑎𝑚(−10 + 8𝑚 + 𝛾2) (−2 + 𝛾 + 𝛾2)
V7 (𝑚, 𝛾) ,

𝑟𝑋𝑅𝑁𝑋 = 2𝑎 (−2 + 𝛾 + 𝛾2) (𝛾2 − 2)
V7 (𝑚, 𝛾)

𝜔𝑋𝑁𝑅𝑋 = 𝑎 (1 − 𝛾) V3 (𝑚, 𝛾)2V6 (𝑚, 𝛾) ,
𝜔𝑋𝑅𝑅𝑋 = 𝑎𝑚 (5 − 2𝑚 (2 + 𝛾) + 3𝛾) (1 − 𝛾)

V6 (𝑚, 𝛾) ,
𝑟𝑋𝑅𝑅𝑋 = 2𝑎 (1 + 𝛾) (1 − 𝛾)

V6 (𝑚, 𝛾) .

(A.6)

With (A.6) and (A.3), we can obtain

𝜔𝑋𝑁𝑁𝑌 = 𝑎 (1 − 𝛾) (4 + 2𝛾 − 𝛾2)
4 (2 − 𝛾2) ,

𝜔𝑋𝑅𝑁𝑌 = 𝑎 (1 − 𝛾) V15 (𝑚, 𝛾)
V7 (𝑚, 𝛾) ,

𝜔𝑋𝑁𝑅𝑌 = 𝑎𝑚 (5 − 4𝑚) (1 − 𝛾) V19 (𝑚, 𝛾)2V6 (𝑚, 𝛾) 𝑠 (𝑚) ,
𝑟𝑋𝑅𝑁𝑌 = 𝑎 (1 − 𝛾) V19 (𝑚, 𝛾)

V6 (𝑚, 𝛾) 𝑠 (𝑚) ,
𝜔𝑋𝑅𝑅𝑌 = 𝑎𝑚 (1 − 𝛾) V8 (𝑚, 𝛾)

V6 (𝑚, 𝛾) 𝑠 (𝑚) ,

𝑟𝑋𝑅𝑅𝑌 = 2𝑎 (1 − 𝛾) [2𝑚 (2 + 𝛾)2 (1 − 𝑚) − (1 + 𝛾)]
V6 (𝑚, 𝛾) 𝑠 (𝑚) .

(A.7)

(3) If 𝐿 = 𝑌, because of the symmetry, for given (𝜔𝑌𝑍𝑌 , 𝑟𝑌𝑍𝑌 ),
we can prove manufacturer 𝑋’s profit function is concave in𝜔𝑌𝑍𝑋 and 𝑟𝑌𝑍𝑋 similarly and theHessianmatrix is negative, sug-
gesting that there exists a unique optimal solution (𝜔𝑌𝑍𝑋 , 𝑟𝑌𝑍𝑋 ),
which can be obtained by solving 𝜕𝜋𝑌𝑍𝑋 /𝜕𝜔𝑌𝑍𝑋 = 0 and𝜕𝜋𝑌𝑍𝑋 /𝜕𝑟𝑌𝑍𝑋 = 0 simultaneously (if rebates are offered). Then,

𝜔𝑌𝑁𝑁𝑋 = 12 (𝑎 − 𝑎𝛾 + 𝛾𝜔𝑌𝑁𝑁𝑌 ) ,
𝜔𝑌𝑅𝑁𝑋 = −(−5𝑚 + 4𝑚2) (−𝑎 + 𝑎𝛾 − 𝛾𝜔𝑌𝑅𝑁𝑌 )

1 − 8𝑚 + 8𝑚2 ,
𝑟𝑌𝑅𝑁𝑋 = 2 (−𝑎 + 𝑎𝛾 − 𝛾𝜔𝑌𝑅𝑁𝑋 )

1 − 8𝑚 + 8𝑚2 ,
𝜔𝑌𝑁𝑅𝑋 = 14 (2𝑎 − 2𝑎𝛾 − 𝛾𝑟𝑌𝑁𝑅𝑌 − 𝑚𝛾𝑟𝑌𝑁𝑅𝑌 + 2𝛾𝜔𝑌𝑁𝑅𝑌 ) ,
𝜔𝑌𝑅𝑅𝑋 = −𝑚(10𝑎 − 8𝑎𝑚 − 10𝑎𝛾 + 8𝑎𝑚𝛾 − 3𝛾𝑟𝑌𝑅𝑅𝑌 + 𝑚𝛾𝑟𝑌𝑅𝑅𝑌 + 10𝛾𝜔𝑌𝑅𝑅𝑌 − 8𝑚𝛾𝜔𝑌𝑅𝑅𝑌 )

2 (1 − 8𝑚 + 8𝑚2) ,
𝑟𝑌𝑅𝑅𝑋 = −2𝑎 − 2𝑎𝛾 − 𝛾𝑟𝑌𝑅𝑅𝑌 + 3𝑚𝛾𝑟𝑌𝑅𝑅𝑌 − 4𝑚2𝛾𝑟𝑌𝑅𝑅𝑌 + 2𝛾𝜔𝑌𝑅𝑅𝑌1 − 8𝑚 + 8𝑚2

(A.8)
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Substituting (A.3) into 𝜋𝑌𝑍𝑌 , we can prove that 𝜋𝑌𝑍𝑌 is concave
in (𝜔𝑌𝑍𝑌 , 𝑟𝑌𝑍𝑌 ), suggesting that there exists a unique opti-
mal solution (𝜔𝑌𝑍𝑌 , 𝑟𝑌𝑍𝑌 ), which can be obtained by solving𝜕𝜋𝑌𝑍𝑌 /𝜕𝜔𝑌𝑍𝑌 = 0 and 𝜕𝜋𝑌𝑍𝑌 /𝜕𝑟𝑌𝑍𝑌 = 0 simultaneously.

𝜔𝑌𝑁𝑁𝑌 = 𝑎 (1 − 𝛾) (2 + 𝛾)
2 (2 − 𝛾2) ,

𝜔𝑌𝑅𝑁𝑌 = 𝑎 (1 − 𝛾) V3 (𝑚, 𝛾)2V6 (𝑚, 𝛾) ,
𝜔𝑌𝑁𝑅𝑌 = 𝑎𝑚 (−10 + 8𝑚 + 𝛾2) (−2 + 𝛾 + 𝛾2)

V7 (𝑚, 𝛾) ,
𝑟𝑌𝑁𝑅𝑌 = 2𝑎 (−2 + 𝛾 + 𝛾2) (𝛾2 − 2)

V7 (𝑚, 𝛾) ,
𝜔𝑌𝑅𝑅𝑌 = 𝑎𝑚 (5 − 2𝑚 (2 + 𝛾) + 3𝛾) (1 − 𝛾)

V6 (𝑚, 𝛾) ,
𝑟𝑋𝑅𝑅𝑋 = 2𝑎 (1 + 𝛾) (1 − 𝛾)

V6 (𝑚, 𝛾) .

(A.9)

With (A.8) and (A.9), we can obtain

𝜔𝑌𝑁𝑁𝑋 = 𝑎 (1 − 𝛾) (4 + 2𝛾 − 𝛾2)
4 (2 − 𝛾2) ,

𝜔𝑌𝑅𝑁𝑋 = 𝑎𝑚 (5 − 4𝑚) (1 − 𝛾) V19 (𝑚, 𝛾)2V6 (𝑚, 𝛾) 𝑠 (𝑚) ,
𝑟𝑌𝑅𝑁𝑋 = 𝑎 (1 − 𝛾) V19 (𝑚, 𝛾)

V6 (𝑚, 𝛾) 𝑠 (𝑚) ,
𝜔𝑌𝑁𝑅𝑋 = 𝑎 (1 − 𝛾) V15 (𝑚, 𝛾)

V7 (𝑚, 𝛾) ,
𝜔𝑌𝑅𝑅𝑋 = 𝑎𝑚 (1 − 𝛾) V8 (𝑚, 𝛾)

V6 (𝑚, 𝛾) 𝑠 (𝑚) ,
𝑟𝑌𝑅𝑅𝑋 = 2𝑎 (1 − 𝛾) [2𝑚 (2 + 𝛾)2 (1 − 𝑚) − (1 + 𝛾)]

V6 (𝑚, 𝛾) 𝑠 (𝑚) .

(A.10)

B. Proof B

Proof of Lemma 1. With wholesale prices and profits of the
two manufacturers shown in Table 1(a), for 𝐿 = 𝐵 and 𝑎 > 0,𝑚 ∈ ((2 − √2)/4, (2 + √2)/4), 𝛾 ∈ [0, 1),
𝜔𝐵𝑅𝑅𝑖 − 𝜔𝐵𝑁𝑁𝑖 = 𝑎 (1 − 𝛾) (1 − 𝛾 + 𝑚 (2 − 𝛾))

(𝛾 − 1+2𝑚 (−2 + 𝛾)2 (1 − 𝑚)) (2 − 𝛾)
> 0,

𝜔𝐵𝑅𝑁𝑋 − 𝜔𝐵𝑁𝑁𝑖 = 𝑎 (1 − 𝛾) (2 − 𝛾2 + 𝑚(4 − 𝛾2))
(2 − 𝛾) (−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚))

> 0,
𝜔𝐵𝑁𝑁𝑖 − 𝜔𝐵𝑁𝑅𝑋 = 𝑎 (1 − 𝛾) 𝛾

(2 − 𝛾) (−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚))
> 0;

𝜋𝐵𝑅𝑅𝑖 − 𝜋𝐵𝑁𝑁𝑖
= 𝑎2 (−1 + 𝛾)2
2 (𝛾 − 1 + 2𝑚 (−2 + 𝛾)2 (1 − 𝑚)) (−2 + 𝛾)2 (1 + 𝛾)

> 0,
𝜋𝐵𝑅𝑁𝑋 − 𝜋𝐵𝑁𝑁𝑖

= 𝑎2 (1 − 𝛾)
2 (1 + 𝛾) (

2 (1 − 𝑚)𝑚 (8 (1 − 𝑚)𝑚 − 1) (2 + 𝛾)2
(−2 + 𝛾2 + 4 (−1 + 𝑚)𝑚 (−4 + 𝛾2))2

− 1
(−2 + 𝛾)2) > 0,

𝜋𝐵𝑁𝑁𝑖 − 𝜋𝐵𝑁𝑅𝑋
= 𝑎2 (1 − 𝛾) 𝛾 (−4 − 𝛾 + 2𝛾2 + 8𝑚 (4 − 𝛾2) (1 − 𝑚))
2 (−2 + 𝛾)2 (1 + 𝛾) (−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚))2

> 0.

(B.1)

Proof of Lemma 2. With rebate values ofmanufacturers, retail
prices, and demands of consumers shown in Table 1(a), for𝐿 = 𝐵 and 𝑎 > 0, 𝑚 ∈ ((2 − √2)/4, (2 + √2)/4), 𝛾 ∈[0, 1),

𝑟𝐵𝑅𝑅𝑖 − 𝑟𝐵𝑅𝑁𝑋 = 2𝑎 (1 − 𝛾)( 1
𝛾 − 1 + 2𝑚 (−2 + 𝛾)2 (1 − 𝑚) −

2 + 𝛾−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚)) > 0;

𝑝𝐵𝑅𝑅𝑖 − 𝑝𝐵𝑅𝑁𝑋 = 𝑎 (1 − 𝛾) 𝛾 (−1 + 8𝑚2 + 𝑚 (6 − 4𝛾2) + 4𝑚3 (−4 + 𝛾2))
2 (𝛾 − 1 + 2𝑚 (−2 + 𝛾)2 (1 − 𝑚)) (−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚)) > 0,

where 𝛾 < √1 − 6𝑚 − 8𝑚2 + 16𝑚3−4𝑚 + 4𝑚3 ,
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𝑝𝐵𝑅𝑁𝑋 − 𝑝𝐵𝑁𝑁𝑖 = 𝑎 (1 − 𝛾) (3 − 𝛾2 + 𝑚(4 − 𝛾2))
(2 − 𝛾) (−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚)) > 0,

𝑝𝐵𝑁𝑁𝑖 − 𝑝𝐵𝑁𝑅𝑋 = 𝑎 (1 − 𝛾) 𝛾
2 (2 − 𝛾) (−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚)) > 0;

𝐷𝐵𝑅𝑁𝑋 − 𝐷𝐵𝑅𝑅𝑖 = 𝑎 (1 − 𝑚)𝑚𝛾3
(𝛾 − 1 + 2𝑚 (−2 + 𝛾)2 (1 − 𝑚)) (1 + 𝛾) (−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚)) > 0,

𝐷𝐵𝑅𝑅𝑖 − 𝐷𝐵𝑁𝑁𝑖 = 𝑎 (1 − 𝛾)
2 (𝛾 − 1 + 2𝑚 (−2 + 𝛾)2 (1 − 𝑚)) (2 − 𝛾) (1 + 𝛾) > 0,

𝐷𝐵𝑁𝑁𝑖 − 𝐷𝐵𝑁𝑅𝑋 = 𝑎𝛾2 (2 − 𝛾) (1 + 𝛾) (−2 + 𝛾2 + 4𝑚 (4 − 𝛾2) (1 − 𝑚)) > 0.
(B.2)

Proof of Lemma 3. With retail prices and demands of con-
sumers shown in Table 1(a), for 𝐿 = 𝐵 and 𝑎 > 0, 𝑚 ∈((2 − √2)/4, (2 + √2)/4), 𝛾 ∈ [0, 1),
𝜋𝐵𝑅𝑅𝑅 − 𝜋𝐵𝑅𝑁𝑅 = −25 (−44 + 36𝛾 + 4𝛾3 − 7𝛾4 + 3𝛾5)4 (1 + 𝛾) (2 − 2𝛾 + 𝛾2)2

> 0,
𝜋𝐵𝑅𝑁𝑅 − 𝜋𝐵𝑁𝑁𝑅 = 25 (12 − 8𝛾 − 7𝛾2 + 3𝛾3)

4 (−2 + 𝛾)2 (1 + 𝛾) > 0
(B.3)

Proof of Lemmas 4 (part(1) and part(2)) and 5. With whole-
sale prices and rebate values of the two manufacturers shown
in Table 1, for 𝐿 = {𝐵,𝑋,𝑌}, the comparisons of them,
respectively, are depicted in Figures 6 and 7.

Although some results of the above are obtained by
assuming 𝑎 = 10, 𝑚 = 1/2 (identical to Ha et al. [19] for
better comparison), one can easily find from the equilibrium
results that the results are not affected by different 𝑎 and 𝑚
values.

The rank orders of prices and rebate values decision, as
well as demands and profits under sequential-move Stackel-
berg game:

For 𝐿 = {𝑋,𝑌},
(1) Wholesale price:

𝜔𝐿𝑁𝑅𝑋 (𝜔𝐿𝑅𝑁𝑌 ) < 𝜔𝐿𝑁𝑁𝑋 (𝜔𝐿𝑁𝑁𝑌 ) < 𝜔𝐿𝑅𝑁𝑋 (𝜔𝐿𝑁𝑅𝑌 ) <𝜔𝐿𝑅𝑅𝑋 (𝜔𝐿𝑅𝑅𝑌 ).
(2) Rebate value:

𝑟𝐿𝑅𝑁𝑋 (𝑟𝐿𝑁𝑅𝑌 ) < 𝑟𝐿𝑅𝑅𝑋 (𝑟𝐿𝑅𝑅𝑌 ).

(3) Retail price:

𝑝𝐿𝑁𝑅𝑋 (𝑝𝐿𝑅𝑁𝑌 ) < 𝑝𝐿𝑁𝑁𝑋 (𝑝𝐿𝑁𝑁𝑌 ) < 𝑝𝐿𝑅𝑁𝑋 (𝑝𝐿𝑁𝑅𝑌 ) <𝑝𝐿𝑅𝑅𝑋 (𝑝𝐿𝑅𝑅𝑌 ).
(4) Demand:

(1) 𝐷𝑋𝑁𝑅𝑋 (𝐷𝑌𝑅𝑁𝑌 ) < 𝐷𝑋𝑅𝑅𝑋 (𝑝𝑌𝑅𝑅𝑌 ) < 𝐷𝑋𝑅𝑁𝑋 (𝐷𝑌𝑁𝑅𝑌 );
(2) 𝐷𝑋𝑁𝑅𝑋 (𝐷𝑌𝑅𝑁𝑌 ) < 𝐷𝑋𝑁𝑁𝑋 (𝐷𝑌𝑁𝑁𝑌 ) < 𝐷𝑋𝑅𝑁𝑋 (𝐷𝑌𝑁𝑅𝑌 );
(3) 𝐷𝑌𝑁𝑅𝑋 (𝐷𝑋𝑅𝑁𝑌 ) < 𝐷𝑌𝑁𝑁𝑋 (𝐷𝑋𝑁𝑁𝑌 ) < 𝐷𝑌𝑅𝑅𝑋 (𝐷𝑋𝑅𝑅𝑌 ) =𝐷𝑌𝑅𝑁𝑋 (𝐷𝑋𝑁𝑅𝑌 ).

(5) Profit:

(1) 𝜋𝑋𝑁𝑅𝑋 (𝜋𝑌𝑅𝑁𝑌 ) < 𝜋𝑋𝑁𝑁𝑋 (𝜋𝑌𝑁𝑁𝑌 ) < 𝜋𝑋𝑅𝑁𝑋 (𝜋𝑌𝑁𝑅𝑌 ) <𝜋𝑋𝑅𝑅𝑋 (𝜋𝑌𝑅𝑅𝑌 )
(2) 𝜋𝑌𝑁𝑅𝑋 (𝜋𝑋𝑅𝑁𝑌 ) < 𝜋𝑌𝑅𝑁𝑋 (𝜋𝑋𝑁𝑅𝑌 ) < 𝜋𝑌𝑅𝑅𝑋 (𝜋𝑋𝑅𝑅𝑌 );
(3) 𝜋𝑌𝑁𝑅𝑋 (𝜋𝑋𝑅𝑁𝑌 ) < 𝜋𝑌𝑁𝑁𝑋 (𝜋𝑋𝑁𝑁𝑌 ) < 𝜋𝑌𝑅𝑅𝑋 (𝜋𝑋𝑅𝑅𝑌 );
(4) 𝜋𝑋𝑁𝑁𝑅 (𝜋𝑌𝑁𝑁𝑅 ) < 𝜋𝑋𝑅𝑁𝑅 (𝜋𝑌𝑁𝑅𝑅 ) < 𝜋𝑋𝑁𝑅𝑅 (𝜋𝑌𝑅𝑁𝑅 ) <𝜋𝑋𝑅𝑅𝑅 (𝜋𝑌𝑅𝑅𝑅 ).
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(c) Wholesale prices

Figure 6: Comparison of wholesale prices under 𝐿 = {𝐵,𝑋, 𝑌} versus 𝛾 (𝑎 = 10,𝑚 = 1/2).
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Figure 7: Comparison of rebate values under 𝐿 = {𝐵,𝑋, 𝑌} versus 𝛾 (𝑎 = 10,𝑚 = 1/2).
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