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Time domain stochastic wave dynamic analyses of offshore structures are computationally expensive. Considering the wave-
induced fatigue assessment for such structures, the combination of many environmental loading cases and the need of long time-
series responses make the computational cost even more critical. In order to reduce the computational burden related to the
wave-induced fatigue analysis of Steel Catenary Risers (SCRs), this work presents the application of a recently developed hybrid
methodology that combines dynamic Finite Element Analysis (FEA) and Artificial Neural Networks (ANN). The methodology
is named hybrid once it requires short time series of structure responses (obtained by FEA) and imposed motions (evaluated
analytically) to train anANN. Subsequently, theANN is employed to predict the remaining response time series using the prescribed
motions imposed at the top of the structure by the floater unit. In this particular work, themethodology is applied aiming to predict
the tension and bending moments’ time series at structural elements located at the top region and at the touchdown zone (TDZ)
of a metallic riser. With the predicted responses (tensions and moments), the stress time series are determined for eight points
along the pipe cross sections, and stress cycles are identified using a Rainflow algorithm. Fatigue damage is then evaluated using SN
curves and the Miner-Palmgren damage accumulation rule. The methodology is applied to a SCR connected to a semisubmersible
platform in a water depth of 910 m. The obtained results are compared to those from a full FEA in order to evaluate the accuracy
and computer efficiency of the hybrid methodology.

1. Introduction

As the oil industry faces the challenge of production on harsh
environments, the design of offshore structures requires
progressively a better understanding of the environment and
the use of more sophisticated numerical methods, capable
of representing the nonlinearities involved in the dynamic
analysis of such structures. Both requirements, however, can
lead to very high computational costs.

This is a consequence of the combination of refined
numerical models and the need of several long stochastic
time domain simulations that are needed to assure reliable
statistics for the response parameters investigated.This aspect
can be crucial in thewave-induced fatigue analysis of risers or
in early design stages, where many structural configurations
should be analyzed.

Depending on the water depth, geometric configuration,
finite element mesh refinement, use of nonlinear physical
properties, and nonlinear beam element formulation, a single
3-hour FEM-based stochastic dynamic analysis of a SCR can
demand more than 3 hours of computational processing in
a modern desktop computer. As, in the design practice, the
wave-induced riser fatigue analysis requires the stochastic
dynamic analysis for many load cases (sea state conditions),
the computer burden of this analysis is tremendous.

One of the most promising alternatives to evaluate
dynamic responses of marine structures with a significant
reduction in computational time is the utilization of hybrid
methods combining FEA with Artificial Neural Networks
(ANNs) [1–7]. The basic idea of these methods is to employ
the remarkable capacity of learning, generalization, and pre-
diction of neural networks to replace the onerous numerical
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Figure 1: Steel riser fatigue procedure.

integration of a time domain dynamic analysis by finite
elements method. In the most usual application, short time
series of motions (imposed at the top of the structure by
the floater unit) and the corresponding induced structure
responses (provided by the FEA) can be used to train an
ANN. Then, once the floater motions can be evaluated
analytically, the remaining of the response time series is
predicted by the ANN.

Guarize et al. [1] applied the hybrid ANN-FEAmethodol-
ogy in the prediction of the dynamic top tension of amooring
line and in the evaluation of the DNV-LRFD utilization
factor [8] in the sagbend zone of a SLWR (Steel Lazy-Wave
Riser). Both structures were connected to a FPSO (Floating,
Production, Storage, and Offloading unit). The predictions
showed very good agreement with the FEA results, and the
computational time was reduced by a factor of about 20
times. Pina et al. [2] presented hybrid methods which use
dynamic autoregressive models applied to the prediction of
risers and mooring lines’ top tensions. Christiansen et al.
[3, 4] used a similar hybrid methodology in the prediction of
top tensions for the fatigue assessment of a mooring line with
a substantial reduction in the total simulation time. Chaves
et al. [5] studied the application of the hybrid method in the
prediction of tension and curvatures in the bend stiffener
region of a flexible riser and used these results to perform
a fatigue verification. Kim [6, 7] employed a NARX-based
Volterra model for the prediction of dynamic response of
slender marine structures, also obtaining good results.

This work presents an application of a hybrid ANN-
FEA method for the prediction of axial tension and bending
moments at the top region and at the touchdown zone of
a SCR connected to a semisubmersible platform, in order
to reduce computational costs of time domain stochastic
simulations. To the authors’ knowledge, the previous works
did not employ a similar approach to predict the load effects
for riser points near the TDZ nor to evaluate the total fatigue
damage in this region.

The methodology is then used for all load cases (sea
states) in order to evaluate fatigue damage in these critical
regions. The fatigue results and also the computational costs
of the hybrid method and those of the usual FEA approach
are compared.

2. Stochastic Time Domain Fatigue
Assessment of Metallic Risers

Steel risers are structures composed of welded segments of
conventional steel pipes [9] and used for oil or gas production
and for gas exportation. The most common configurations
are the free hanging catenary (SCR) and the lazy-wave
(SLWR, Steel Lazy-Wave Riser).

The wave-induced fatigue analysis of such structures is
traditionally divided into two steps: the global and the local
analysis. In the global analysis, a nonlinear FE-based time
domain stochastic dynamic simulation is employed for each
loading case to get the corresponding time series of axial
tensions and bending moments along the riser. Usually, the
global analysis is performed using a decoupled procedure,
where the floater unit motions are computed separately in
a first step and then imposed as prescribed displacements at
the top of the riser finite element model. Subsequently, in the
local analysis, the global responses (axial tension and bending
moments) are used to compute the stress time series in some
points of the riser cross sections. The procedure is illustrated
in Figure 1. For a metallic riser, the normal stress time series𝜎(t) in any point of a cross section can be determined by the
following expression [10]:

𝜎 (t) = T (t)
A
+ My (t) r sin (𝜃)

Iy
+ Mz (t) r cos (𝜃)

Iz
(1)

where T, My, and Mz are the axial tension and the bending
moments, respectively, A and I are the cross sectional area
and inertia moments, and r and 𝜃 are the radius and the
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Figure 2: ANN architecture.

angle that determines the point where the stress is being
computed on the cross section. For fatigue assessment, it is
recommended that at least eight points in the internal and
external circumferences should be analyzed [10].

After obtaining stresses time series, a cycle counting
procedure, such as the Rainflow technique [11], is applied to
identify and count the stress cycles for the fatigue damage
assessment.The fatigue damage at any point of a cross section
is evaluated bymeans of S-N curves and theMiner-Palmgren
damage accumulation rule [12]. Through this procedure, the
annual fatigue damage is computed as

D1−yr = 2920
NST∑
j=1

NC
j

∑
i=1

(Sij)m
K
⋅ 𝛾j (2)

where 2920 is the total number of 3-h sea states in one year,
NC

j is the number of stress cycles identified by the Rainflow
algorithm in the jth 3h-loading case (sea state), NST is the total
number of loading cases (sea states) considered in the fatigue
analyses, Si

j is the ith stress range of the jth loading case, m and
K are the S-N curve parameters, and, finally, 𝛾j is the annual
relative frequency of occurrence of the respective loading
case (∑j 𝛾j = 1). Commonly, the number of loading cases
is very large due to the wave scatter diagrams discretization
(mainly for the waves periods) and when all wave directions
are considered.The fatigue life (in years) is simply the inverse
of the annual fatigue damage.

As mentioned before, the large amount of loading cases
combined with the need of long response time series for
statistical consistency in the identified stress cycles makes
the global analysis the most time-consuming phase of riser
fatigue assessment. By using ANNs to predict the global riser
response, the procedure presented in this work aims to reduce
the computational time associated with this specific phase of
the metallic riser fatigue verification.

3. Artificial Neural Networks

Artificial Neural Networks (ANNs) constitute a form of
mathematical processing of information with architecture

and operation similar to the biological neural networks. The
main feature of the ANNs is the learning ability, which in
practical terms results in applications such as pattern recog-
nition, clustering, classification, optimization, and function
approximation, among others [13].The use of ANNs has been
increasing lately to help solving many engineering problems;
for instance, see [14–16].

In this work, ANNs are employed to define a mathemat-
ical function relating the floating displacements imposed at
the riser top with its global responses: axial tension T and
bending moments My and Mz. For such application, the
ANN must be trained, using the data and results of a very
short simulation provided by the FEA.Then the ANN is used
to predict longer loading responses time series.

3.1. ANN Architecture. The most usual ANN architecture
applied to function approximation uses three layers: input
layer, hidden layer, and output layer. The configuration is
outlined on Figure 2. The first layer reads the inputs values
of the network. The output layer delivers the responses of
the network. The hidden and output layers are composed
of neurons (numerical functions). Each connection between
elements in neighboring layers contains a weight (synapse
weighting). Linked to the hidden and output layers there are
also bias parameters, with unitary values.

A neuron j in the hidden layer, for instance, receives an
input uj, given by

uj = wIH
0,j ⋅ 1 + I∑

i=1
(wIH

i,j ⋅ xi) (3)

where I is the number of network inputs, wIH
0,j is the bias

weight of the input layer, wIH
i,j is the weight between the input

i and the respective neuron j in the hidden layer (j = 1 . . . J,
J is the total number of hidden layer neurons), and xi is the i
network input. Each neuron returns an output yj denoted by

yj = 𝜑H (uj) = 𝜑H(wIH
0,j ⋅ 1 + I∑

i=1
(wIH

i,j ⋅ xi)) (4)
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where 𝜑H(.) is the so-called activation function, usually
sigmoid functions like hyperbolic tangent and the logistic
functions. For an ANNwith a single output R, this parameter
is determined by

R = 𝜑O (v) = 𝜑O(wHO
0 ⋅ 1 +

J∑
j=1
(wHO

j ⋅ yj)) (5)

where 𝜑O(.) is the activation function of the neuron in
the output layer, usually a linear function. The remaining
parameters are defined similarly to those in the hidden layer
(see (3)).

3.2. Training. Considering the ANN previously presented
and considering the inputs and outputs as time series, the
relation between the inputs xi and the output R can be written
as

R (W, t) = f (W, x (t)) (6)

where x(t) is a vector containing the time series of the inputs
and W is a matrix containing all ANN connecting weights.
Given a sample set of inputs (time series) and the corre-
sponding outputs, the network weights W can be obtained
in such a way that the network output is in agreement to
the given outputs sample. This weights adjustment is made
by means of an optimization method and is called neural
network training. Commonly the optimization problem is
expressed by the minimization of the mean square error E,
defined as

E (W) = 1
N

N∑
t=1
(R (W, t) − v (t))2

= 1
N

N∑
t=1
(f (W, x (t)) − v (t))2

(7)

where N is the length (number of data points) of the training
sample time series and v(t) is the desired output sample. An
iterative optimization procedure, such as the steepest descend
method [13], can be employed to obtain optimum values for
the weightsW. Usually the weights are initialized using small

random values. Each iteration in the optimization procedure
is called epoch, and the input and output time-series are
normalized to facilitate the training procedure [17, 18].

Generally, two types of errors can occur during the
network training.One is related to the early training stopping,
far from the optimum set of weights and originating high
prediction errors. The other happens when the ANN is
overtrained and it adapts too much to the training set
(overfitting). Both situations lead to high prediction errors
for new inputs (nontrained data) [13, 17, 18]. Thus, there is
an optimum level of training to be achieved. The procedure
applied to avoid these errors is to separate part of the training
set for the training itself (weights update) and the other part
for validation, with separated error functions. Commonly
the network error follows the patterns exhibited in Figure 3.
The training process must be stopped when the error for the
validation set begins to increase [17]. This detail avoids the
overfitting and ensures a good network generalization for
new inputs.

4. ANN Model for Global Riser
Analysis Responses

The goal of this work is to apply ANNs for predicting the
global riser responses, using an ANN as a surrogate model
for the computationally expensive FEA. For a given element
of the riser finite element mesh, ANNs are trained to predict
the axial tension T and bending moments My and Mz
independently:

T (t) = fT (WT, x (t))
My (t) = fMy (WMy, x (t))
Mz (t) = fMz (WMz, x (t))

(8)

where WT,WMy, and WMz are the optimal weights achieved
during the ANN training phase for the three responses and
x(t) are the ANN inputs, i.e., the prescribed translational
and rotational floater motions at the riser top. Given the
dynamic nature of the analysis, the memory effect of the
system (riser) must be taken into account in the ANN
model. This aspect can be accomplished in the model by
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different approaches, e.g., AutoRegressive model (AR) and
the EXogenous inputs model (EX). The model employed in
this work is a Nonlinear AutoRegressive with eXogenous
inputs (NARX) neural network [2]. Then, for the present
work, the inputs of a ANN-NARX model consist of the
top motions imposed by the floater in the considered time
instant, the past values of these displacements, and also the
corresponding past values of the respective global response
(output). Considering that the time series are discretized at
equal time steps Δt, then the ANN-NARX model is defined
as

R (t) = fR

[[[[[[[[[[[[[[
[

{x (t) , x (t − Δt) , . . . , x (t −NxΔt)} ,
{y (t) , y (t − Δt) , . . . y (t − NyΔt)} ,{z (t) , z (t − Δt) , . . . , z (t − NzΔt)} ,{rx (t) , rx (t − Δt) , . . . , rx (t −NrxΔt)} ,
{ry (t) , ry (t − Δt) , . . . , ry (t − NryΔt)} ,{rz (t) , rz (t − Δt) , . . . , rz (t −NrzΔt)} ,{R (t − Δt) , . . .R (t −NRΔt)}

]]]]]]]]]]]]]]
]

(9)

where R(t) represents either T(t), My(t), or Mz(t); x(t), y(t),
and z(t) represent the global translational motions imposed
by the floater; rx(t), ry(t), and rz(t) represent the rotational
displacements; Nx, Ny, Nz, Nrx, Nry, and Nrz are the number
of time steps delays for the imposed displacements and NR
is the number of time steps delays of the response R(t). In
Figure 4 an ANN implemented with the NARX model is
outlined.

The ANNs developed in this work were trained and
applied using the Neural Networks Toolbox� in MATLAB�
[19]. A hyperbolic tangent function was used as activation
function for the neurons in the hidden layer, a linear function
was used for the neuron in the output layer, the time series
were normalized to have zero mean and unitary standard
deviation, the weights were initiated randomly, and the
training algorithmutilizedwas the Levenberg-Marquardt [18,
19].

5. Hybrid ANN-FEA Methodology

The main goal of the hybrid ANN-FEA methodology is to
be able to conciliate the dynamic model complexity with
a reduction of its computational cost. The methodology
is named hybrid since a FEA short simulation is used to
determine the complex relation between the nonlinear riser

response and the top end motions (ANN training). The
hybrid ANN-FEA procedure is schematically presented in
Figure 5.

Once the floater prescribed motions at the riser top are
easily determined by means of the floater RAOs (Response
Amplitude Operators), a short length FEA simulation is
performed in order to obtain the riser global dynamic
response time series. Then, these time series of inputs (top
displacements) and outputs (riser responses) are used as
training and validation sets for the ANN. After training, the
ANN is used to predict the remaining global response, based
on the complete time series of the top prescribed motions.
In this way, the ANN replaces the onerous FEA numerical
integration for a large part of the simulation length.

As usual, in the everyday riser design practice, the low-
frequency floater motions were not considered in the present
work (only static offsets were taken into account). However, if
it is desired to include low-frequencymotions in the analysis,
the proposed hybrid FEM-ANN methodology can still be
used. In this case, it is only necessary to provide time series
of motions and responses used for training and verification,
and time series of motions used for prediction, which include
the low and wave frequency components. These motions can
be obtained, for instance, from a simplified 3D floater motion
dynamic analysis (see Guarize [1]).

In this work, the hybrid methodology is applied individ-
ually for some elements located at the top and TDZ regions
of a SCR, which are the most critical points for fatigue.
Individual ANNs are trained and used for each element,
for each response parameter considered (T(t), My(t), and
Mz(t)) and for each loading case. This choice of a specific
ANN for each loading case takes into consideration that
there is a different “catenary” configuration for each load
condition and, as a consequence, the TDZ position can
change substantially. In general, SCRs present nonlinear and
remarkably high bending moments in the touchdown zone
(TDZ), but the TDZ is not the same for all loading cases.
For instance, a segment that belongs to the TDZ in a “far”
loading case may not be affected by bending in a “near”
loading case. Then, considering many loading conditions,
the stress response for a given riser point in the touchdown
zone is not well behaved as it almost is for the suspended
riser segment. Therefore, an ANN trained for predicting the
riser stresses at the TDZ, employing the combination of
different signals from different sea state conditions, may not
lead to good results for sea states not present in the training
process.
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6. Case Study

The hybrid ANN-FEA procedure is applied to compute the
wave-induced fatigue life of some elements at the top and at
the TDZ region of a steel catenary riser (SCR) (see Figure 6).
This metallic riser is described by Senra [20] and consists
of a 10.7 gas export SCR connected to a semisubmersible
platform in a water depth of 910m. The SCR model has a
flexjoint in the connection. The physical and geometrical
properties of the model are found in Table 1, while the
information about the finite element mesh employed is

presented in Table 2. The semisubmersible platform heading
is 20∘ (in relation to true north) and the riser azimuth is 192.11∘
(see Figure 6).

The loading cases selected to perform the fatigue analysis
are defined by static offsets and current and wave loadings.
The same current profile was adopted for all loading cases
considered in the fatigue analysis. This profile is triangular
with a superficial velocity of 0.7 m/s, propagating to the
south direction. The offset magnitude is a function of the
significant wave height Hs of the respective load case, and it
is proportional to 2.5% of the SWL (Still Water Level) for the
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Table 1: SCR properties.

Parameter Value
External Diameter (m) 0.273 (10.7”)
Internal Diameter (m) 0.232 (9.13”)
Elasticity Module (kN/m2) 2.07E+08
Specific Weight (kN/m3) 77.00
Internal Fluid Weight (kN/m3) 2.00 (gas)
Top Internal Pressure (MPa) 18.00
Soil vertical stiffness (kN/m) 1000.00
Riser Top Angle 21.67∘

Riser Azimuth 192.11∘

highest significant wave height of the wave scatter diagram.
The offset direction is coincident with the wave propagation
direction. The waves selected are divided into 8 incidence
directions, with 11 waves (sea states) for each direction.
The frequency of occurrence for each incidence direction is
presented in Table 3, while the irregular wave parameters and
their frequency of occurrence for each direction are found in
Table 4. The JONSWAP spectrum was adopted to represent
the sea surface elevation. Then, the fatigue analysis requires
the irregular wave simulations for 88 loading cases. In fact,
this is a simplified representation of wave data which was
employed in order to make all comparisons performed in
this work possible. Once the current is the same and the
offset is defined by the significant wave height, the loading
case is identified herein by the wave name. Specifically, a
loading case identified as NE03 is a case where the wave has
a northeast incidence direction, a significant wave height Hs
of 1.25m, a spectral peak period Tp of 7.02s, and an annual
frequency of occurrence of 2.17% (Tables 3 and 4).

A usual FEA-based fatigue analysis was initially per-
formed for comparison purposes and it was also used to
identify the elements with the lower fatigue life at the top
and TDZ regions, ensuring that the hybrid methodology is
applied (and evaluated) to the critical structure points. The

fatigue assessment of the entire structure was based on the
DNV E S-N curve [21].

6.1. ANN Architecture and Training. As it can be observed
from the definition of an ANN, the architecture of the
network is defined by the number of neurons in the hidden
layer and the time-series steps delays. As said before, a specific
ANN is established for each response parameter, for each
loading case, and for each element along the structure. In this
work an iterative process, described below, was employed to
define the architecture of each ANN.

It is assumed that the number of delays is the same for all
input and output time series, so the two open parameters to
define the ANN architecture are the number of step delays
and the number of neurons in the hidden layer. Based on
initial tests and previous works [1–3, 5], a sequential trial
set of numbers for these two parameters is specified. The
sets employed were as follows (hidden neurons/delays): 10/10,
10/5, 10/2, 12/10, 12/5, 12/2, 15/10, 15/5, 15/2, 20/10, 20/5,
20/2, 5/10, 5/5, 5/2, 10/1, 12/1, 20/1, 3/10, 3/5, 3/2, 5/30, 5/40,
and 5/50. The effectiveness of a given architecture (for each
response loading case in a structure point) is assessed by
comparing the ANN predicted response (trained with one of
the trial sets) with the “true” FEA-based response used for
training the network.

The assessment is performed based on statistical results,
as described in Algorithm 1. If the trained ANN results satisfy
the conditions specified in Algorithm 1, the ANN is taken
as the surrogate model for the hybrid method. If not, other
attempts are made using the same trial architecture, given
the random weights initialization [17, 18]. If the maximum
attempts per trial set are reached without complying with the
conditions, the following trial set is evaluated, as outlined
in Algorithm 1. The acceptable tolerances given in Algo-
rithm 1 were determined by means of initial trial and error
tests.

The time series were discretized in steps of 0.25s and
the FEM-based simulation (used for training/validation) was
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Table 2: SCR finite element mesh.

Seg Length (m) Number of elements Element initial length (m) Element final length (m)
1 1.102 14 0.08 0.08
2 10 112 0.08 0.10
3 200 364 0.10 1.00
4 600 600 1.00 1.00
5 150 171 1.00 0.75
6 150 240 0.75 0.50
7 500 1000 0.50 0.50
8 200 160 0.50 2.00
9 255.847 73 2.00 5.00

For each loading case response do
nset = 1
While [nt <= MaxTries and nset <= QttSet] do
Train ANN
Apply ANN
if [Dif𝜇 <= Dmean and Dif𝜎 <= Dstd and Difmax <= Dmax and FlagSp = 1] do

TestFlag = 1
else do

TestFlag = 0
end
if [TestFlag = 1] do
nt = 1000, nset = 1000 (successful training!)

elseif [TestFlag = 0 and nt <MaxTries and nset <= QttSet] do
nt = nt +1

elseif [TesteFlag = 0 and nt = MaxTries and nset < QttSet] do
nt = 1
nset = nset + 1

elseif [TesteFlag = 0 and nt = MaxTries and nset = QttSet] do
nt = 1000, nset = 1000 (unsuccessful training!)

end
end

nt = current number of attempt per trial set
nset = current trial set number
MaxTries = maximum number of attempt per trial set (5)
QttSet = trial sets quantity (24)
Dmean = acceptable difference for mean (5%)
Dstd = acceptable difference for standard deviation (8% for axial tension, 6% for moments)
Dmax = acceptable difference for maximum observed value (300% for axial tension, 200% for moments)
FlagSp = Energy spectrum flag, equal to 1 if no significant energy is observed in high frequencies, for ANN response

Dif𝜇 = 100%.
𝜇training − 𝜇ANN

𝜇training
Dif𝜎 = 100%.

𝜎training − 𝜎ANN
𝜎training

Difmax = 100%.
Maxtraining −MaxANN


Maxtraining𝜇training, 𝜇ANN = mean values of the training and predicted time series𝜎training, 𝜎ANN = standard deviation values of the training and predicted time series

Maxtraining,MaxANN = observed maximum values of the training and predicted time series

Algorithm 1: ANN training procedure.
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Figure 8: Relative differences for the response standard deviation values (critical riser top element).

500s long. The training is done using 80% of the sample,
while the remaining 20% is used for validation. The training
is stopped when the validation error starts to increase.

The time spent in this batch training procedure is quite
low, mainly for those points located close to the riser top,
where usually the first ANN architecture trial leads to very
good results. For some TDZ response cases, the searching for
a good configuration results in more verifications and tests
of different ANN configurations; however the training time
spent is very low when compared to the full-fatigue FEA
(generally speaking, no more than 1 minute of CPU time is
spent to train an ANN).

6.2. ANN Predicted Responses. With the trained ANNs avail-
able, the riser global responses (axial tension and bending
moments) were predicted till 10800 seconds (3 hours), and
the obtained results were compared with those obtained
by the complete FEA, for the elements with the lowest
fatigue lives at the top and TDZ regions, the critical ones.
The results are compared through the relative difference
for any response statistical parameter estimation or fatigue
damage by the generic relationship: ((HybridANN−FEAResult−
FEA Result)/|FEA Result|) ∗ 100%.

In Figures 7 and 8 the relative differences for the mean(𝜇) and standard deviation (𝜎) of the response parameters



10 Mathematical Problems in Engineering

Ab
so

lu
te

 V
al

ue
 fo

r M
ea

n

Tension - EE
MY - EE
MZ - EE
Tension - NE
MY - NE
MZ - NE
Tension - NN
MY - NN
MZ - NN

Tension - NW
MY - NW
MZ - NW
Tension - SE
MY - SE
MZ - SE
Tension - SS
MY - SS
MZ - SS

Tension - SW
MY - SW
MZ - SW
Tension - WW
MY - WW
MZ - WW

#02 #03 #04 #05 #06 #07 #08 #09 #10 #11#01
Pair Hs/Tp index

10−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103

Re
lat

iv
e D

iff
er

en
ce

 (%
)

Figure 9: Relative differences for the response mean values (critical riser TDZ element).
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Figure 10: Relative differences for the response standard deviation values (critical riser TDZ element).

(absolute values) are presented, respectively, for each loading
case, for the critical element cross section at the riser top.
Figures 9 and 10 present the same results for the riser critical
cross section located at the TDZ. As can be observed from the
figures, the relative differences found for the axial tension are,
in general, lower than those for the bending moments. The
differences are larger for the critical point located at the TDZ
than those for the riser top. This is expected since the TDZ is
strongly influenced by nonlinearities due to the complex soil-
structure interaction. However, for the majority of the cases,
the differences can be considered low.

6.3. Fatigue Analysis Results. From the predicted global
responses, the stress time series are determined for the
selected SCR elements. Figure 11 shows a short window of a
stress time series obtained by the hybrid ANN-FEA method
and the corresponding one provided by the full FEA for the
most critical point on the element with the lowest fatigue life
at the top.The stress time series is taken from the loading case
that contributes most to the total fatigue damage. Figure 12
shows similar comparison for the riser TDZ critical element
cross section. As can be seen, the agreement between the
ANN prediction and FEA results is remarkable.
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Figure 11: Stresses time series, critical point, and loading case in the riser critical element at top.
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Figure 12: Stresses time series, critical point, and loading case in the riser critical element at TDZ.

Table 3: Waves incidence directions.

Incidence Direction Frequency (%)
NN North 26.0
NE Northeast 9.0
EE East 1.5
SE Southeast 1.5
SS South 10.0
SW Southwest 23.0
WW West 13.0
NW Northwest 16.0

Sum: 100.0

Table 5 presents the correlation coefficients betweenANN
predicted and FEA stress time series for each loading case in
the most critical point of the cross section at the riser top.
Table 6 presents similar results for the riser critical element
at the TDZ. For the riser top, in general, there is a very
good correlation between both results. The lower correlation
values are observed for loading cases withmild waves. For the
TDZ region the results are also good, although some lower
correlation values are observed for some scattered loading
cases. In these cases, the combination of the top imposed

displacements and the offset leads to considerable nonlinear
responses for the specific element, especially for the My
bending moment.

Figure 13 presents the annual fatigue damage for the
loading cases related to waves coming from north direction
(the direction with the highest accumulated damage) for the
riser top critical element. Figure 14 shows similar results for
the critical element located at the TDZ. These two figures
show very good agreement between the hybrid methodology
and the FEA results for the computed fatigue damage.

Finally, in Figure 15 the fatigue life computed by the
hybrid ANN-FEA methodology is plotted together with the
results given by the full FEA and also with the relative
differences (%) for all cross sections elements evaluated on
the top region. Figure 16 shows similar results for all cross
sections located at the TDZ where fatigue results have been
assessed. It is observed that the fatigue life differences are
lower for the top region, where the maximum difference is
2.2%. For the elements located at the TDZ, higher differences
are found (maximum difference is 11.0%). However, for the
elements near the region with the lowest fatigue life in the
TDZ, the maximum difference observed was lower, i.e., 3.2%.

The fatigue damage and life of the critical riser elements
identified by both methods are summarized in Table 7. For
the top zone, the critical riser point identified for both
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Table 4: Wave parameters.

Index # Hs (m) Tz (s) Tp (s) Occurrence Frequency (%)
01 0.25 3.75 4.95 1.74E-03
02 0.75 4.75 6.33 3.40E+00
03 1.25 5.25 7.02 2.41E+01
04 1.75 6.25 8.41 3.33E+01
05 2.25 6.75 9.11 2.21E+01
06 2.75 7.25 9.81 1.05E+01
07 3.25 7.75 10.51 4.20E+00
08 3.75 8.25 11.21 1.60E+00
09 4.25 8.75 11.91 5.63E-01
10 4.75 9.25 12.62 2.01E-01
11 5.25 9.75 13.32 3.40E-02

Sum: 100.0

Table 5: Stress correlation coefficients (riser top cross section).

Index EE NE NN NW
# Hs (m) Tp (s)
01 0.25 4.95 0.9952 0.9332 0.8018 0.9759
02 0.75 6.33 0.9994 0.9787 0.9631 0.9977
03 1.25 7.02 0.9995 0.9846 0.9845 0.9833
04 1.75 8.41 0.9992 0.9977 0.9975 0.9984
05 2.25 9.11 0.9993 0.9982 0.9954 0.9986
06 2.75 9.81 0.9992 0.9985 0.9976 0.9990
07 3.25 10.51 0.9975 0.9990 0.9982 0.9992
08 3.75 11.21 0.9985 0.9986 0.9988 0.9979
09 4.25 11.91 0.9989 0.9965 0.9983 0.9992
10 4.75 12.62 0.9981 0.9984 0.9987 0.9978
11 5.25 13.32 0.9978 0.9987 0.9976 0.9986

Index SE SS SW WW
# Hs (m) Tp (s)
01 0.25 4.95 0.9613 0.7846 0.7549 0.9841
02 0.75 6.33 0.9740 0.8935 0.9230 0.9991
03 1.25 7.02 0.9791 0.9328 0.9841 0.9992
04 1.75 8.41 0.9968 0.9939 0.9977 0.9977
05 2.25 9.11 0.9983 0.9964 0.9988 0.9988
06 2.75 9.81 0.9992 0.9988 0.9973 0.9989
07 3.25 10.51 0.9994 0.9981 0.9992 0.9980
08 3.75 11.21 0.9994 0.9988 0.9993 0.9982
09 4.25 11.91 0.9993 0.9991 0.9967 0.9976
10 4.75 12.62 0.9994 0.9984 0.9993 0.9980
11 5.25 13.32 0.9974 0.9989 0.9991 0.9786

methods is the same, but for the TDZ the hybrid ANN-FEA
method identified a point which is 1.0 meter far apart from
the critical one identified by FEA. Despite this, in practical
terms, the distance is too short (given the SWL and the riser
length) and the values estimated are in closer agreement.

7. Conclusions and Final Remarks

In this paper the use of a hybrid ANN-FEAmethodology was
investigated with the aim of speeding up the wave-induced

fatigue analysis of Steel Catenary Risers. In general, at least
for early design stages, this methodology predicted quite
good global responses for elements evaluated on top and
TDZ regions of the SCR investigated. Consequently, the
estimated fatigue lives for these regions were also predicted
with very good accuracy. The higher differences occur in
some elements located at the TDZ. However, for the critical
element in this region (lowest fatigue life), the predicted
results were as good as the ones obtained for the SCR
top.
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Table 6: Stress correlation coefficients (riser TDZ cross section).

Index EE NE NN NW
# Hs (m) Tp (s)
01 0.25 4.95 0.9922 0.9489 0.9253 0.9857
02 0.75 6.33 0.9985 0.9968 0.9983 0.9972
03 1.25 7.02 0.9970 0.9699 0.9986 0.9986
04 1.75 8.41 0.9953 0.9992 0.9992 0.9858
05 2.25 9.11 0.9971 0.9966 0.9990 0.9971
06 2.75 9.81 0.9963 0.9980 0.9979 0.9944
07 3.25 10.51 0.9940 0.9970 0.9893 0.9917
08 3.75 11.21 0.9744 0.9614 0.9520 0.9909
09 4.25 11.91 0.9597 0.8650 0.9805 0.9948
10 4.75 12.62 0.9803 0.9356 0.9851 0.9520
11 5.25 13.32 0.9776 0.9610 0.9954 0.9728

Index SE SS SW WW
# Hs (m) Tp (s)
01 0.25 4.95 0.9906 0.9343 0.9438 0.9897
02 0.75 6.33 0.9806 0.8037 0.9570 0.9803
03 1.25 7.02 0.9722 0.9613 0.7965 0.9669
04 1.75 8.41 0.9742 0.9888 0.9808 0.9615
05 2.25 9.11 0.9843 0.9934 0.9892 0.9671
06 2.75 9.81 0.9890 0.9956 0.9930 0.9789
07 3.25 10.51 0.9907 0.9959 0.9940 0.9827
08 3.75 11.21 0.9934 0.9919 0.9952 0.9803
09 4.25 11.91 0.9902 0.9937 0.9955 0.9446
10 4.75 12.62 0.9458 0.9894 0.9750 0.9457
11 5.25 13.32 0.9533 0.9898 0.9729 0.9360

Table 7: Fatigue damage and life (riser top and TDZ critical points).

Region Method Dist. from top (m) Annual Damage Fatigue Life (yr)

Top ANN-FEA 1.10 2.39E-02 41.8
FEA 1.10 2.43E-02 41.1

TDZ ANN-FEA 1341.60 6.68E-03 149.8
FEA 1342.60 6.63E-03 150.9
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Figure 13: Fatigue damage for north direction waves. Riser top critical element.
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Figure 14: Fatigue damage for north direction waves. Riser TDZ critical element.
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Figure 15: Fatigue lives and relative differences for elements at top riser.

In this work, for each riser element, each loading case,
and each global response, an ANN was trained using a
500 s long response time series provided by FEA. Then,
the predicted response is generated by the ANN till 10800
seconds using the displacements determined analytically by
RAOs. Once the computational time associated with the
fatigue damage evaluation and the ANNs training is very
low compared to the full global FEA, the hybrid ANN-FEA
method can be approximately 20-22 times faster than the
usual FEA procedure. The results obtained in this study are
very encouraging to go further in this topic, focusing mainly
on the development of an automatic procedure to set up the
ANN architecture, training, and evaluation, in order to make
the practical application of the methodology easier.
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