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The existence of two periodic solutions of the Riccati’s equation when the coeflicients are w-periodic and have different signs is
obtained. One of these solutions is unstable on R and the other one is attractive on some region. Finally, an example is presented.

1. Introduction
The nonlinear Riccati type first-order differential equation

d—x:a(t)x2+b(t)x+c(t) o))
dt

plays an important role in fluid mechanics and the theory
of elastic vibration. There are a lot of research about this
equation [1-6]: in [1, 2], the sufficient conditions of the
existence of periodic solutions of the system were given; also
in [1], the stability of periodic solutions of (1) was obtained,
and there is no globally asymptotic stable periodic solution;
[3] studied some special types of Riccati equations and got
the general solution and the existence of periodic solutions of
(1); [4] studied (1) with characteristic multiplier; [5] studied
the high dimensional Riccati equation and obtained some
sufficient conditions of the existence of periodic solutions of
the equation; [6] obtained some criteria for the existence of
periodic solutions of (1).

An extensive study of the set of periodic solutions of (1)
was initiated in [7] and continued in [8-12]. In those papers
the coefficients are real. The complex ones were considered
in [13, 14]. The problem of nonexistence of periodic solutions
was investigated in [9, 12, 15-19]. There are some papers
(e.g., [20-24]) where stability and asymptotic behaviour of
solutions were considered.

Recently, M. R. Mokhtarzadeh, M. R. Pournaki, and A.
Razani [25] dealt with scalar Riccati differential equations
and assumed that a, b, and ¢ are w-periodic continuous

real functions on R and give certain conditions to guarantee
the existence of at least one periodic solution for (1); Pawel
Wilczynski [26] gave a few sufficient conditions for the
existence of two periodic solutions of the Riccati ordinary
differential equation in the plane and gave also examples
of the equation without periodic solutions for the Riccati
ordinary differential equation.
Consider a class of Riccati equation as follows:

Z—f=p(r)x2+q(t>, )

where p(t), q(t) are w—periodic continuous functions, about
the existence of periodic solutions of (2); there are two results.

Proposition 1 (see [1]). Consider (2), suppose
p®q@) <0, 3)

and then (2) has two w-periodic continuous solutions
P1(£), p,(£), and

Y1) >0>9,(). (4)
Proposition 2 (see [6]). Consider the following equation:

d

=2 g, 5)

where q(t) is an w—periodic continuous function, if

q+R (1) <0, (6)
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and then (5) has two w—periodic continuous solutions y,(t),
Y,(t), and

1) >R()>p, (), (7)

where g = (1/) [, qO)dt, r(t) = q(t) - G R'(t) = r(t),
(1/w) [, R(®)dt = 0.

There are also articles on the periodic solutions of Riccati
equation (2)(see [27, 28]).

It is well known that scholars often use the fixed point the-
ory to study the existence of periodic solutions on differential
equation (see [29-31]).

Stimulated by the works of [29-31], in this paper, we
consider (2), and by using the fixed point theory, we obtain
the existence of two periodic continuous solutions of Riccati
type equation: one is attractive on some region and unstable
on another region, and another is unstable. We give the ranges
of the size of the two periodic continuous solutions: one is
positive, another is negative; they are symmetrical about x =
0, and following are our main results.

Conclusion. Consider (2), p(t), q(t) are w—periodic continu-
ous functions, suppose that the following conditions hold:

(Hl) P(f) < 0’
(HZ) Q(f) > 0’

and then (2) has two w—periodic continuous solutions, y, (t),
Y,(t), and

q(t) .. q()
J"m =nl0= J @

(8)

9)
t t
—\/— inf a® <P, (t) £ —q]- su &;
te(0.w] p (£) tefo,0] P (£)
meanwhile, we get the stability of two periodic solutions of
(2).
Then, we consider (1) and give two results about the

existence of two periodic solutions on (1). These conclusions
generalize the relevant conclusions of related papers.

2. Some Lemmas, Definitions,
and Abbreviations

Lemma 3 (see [32]). Consider the following (10)

dx
E=a(t)x+b(t), (10)

where a(t),b(t) are w-periodic continuous functions. If
J.:) a(t)dt + 0,then (10) has a unique w—periodic continuous
solution y(t), mod(y) < mod(a(t),b(t)), and n(t) can be
written as follows.

Jt eLt ATy () ds, Jw a(t)dt <0
n (t) = "o P Ow (H)
- J el ey, (s)ds, J a(t)dt>0

0
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Lemma 4 (see [33]). Suppose that an w—periodic function
sequence {f,(t)} is convergent uniformly on any compact
set of R, f(t) is an w—periodic function, and mod(f,) C
mod(f)(n=1,2,---); then {f,(t)} is convergent uniformly on
R.

Lemma 5 (see [34]). SupposeV is a metric space, C is a convex
closed set of V, its boundary is 0C; if T : V. — Visa
continuous compact mapping, such that T(0C) c C, then T
has a fixed point on C.

Definition 6 (see [33, page 43]). Suppose f(t) is an w—peri-
odic continuous function on R; then

a(f)) = Lw Fye™ar (12)

must exists,a( f, A) is called the Fourier coefficient of f(t), the
A such that a(f,A) # 0 is called the Fourier index of f(t).
There is a countable set Af,when A€ Af, a(f,A) # 0,aslong
as A ¢ Ay, there must be a(f,A) = 0, and Agis called the
exponential set of f(t).

Definition 7 (see [33, page 47]). A set of real numbers
composed of linear combinations of integer coefficients of
elements in A ( is called a module or a frequency module of

f(t), which is denoted as mod( f); that is,

mod ( f)
N . (13)
= ylyzZ;njAj,nj,NGZ,Nzl,)tjeAf .
j=

For the sake of convenience, suppose that f(t) is an w-
periodic continuous function on R; we denote

fm = sup f(1),

te[0,w]
(14)

f= tei[%i ]f (t).
3. Periodic Solutions of Riccati’s
Type Equation

Theorem 8. Consider (2), p(t),q(t) are w—periodic continu-
ous functions, and suppose that the following conditions hold:

(Hl) P(f) < 0’
(HZ) ‘J(f) > 0’

(15)

and then (2) has two w—periodic continuous solutions.
(1) One w—periodic continuous solution is y,(t),

q) - q

(1) <, (t)S\j—<—>, (16)
\] <P M ' P/

and y,(t) is attractive if given initial value on D, = {x(t;) |
x(ty) > 1/(ty) + y,(to)}, and unstable if given initial value on
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and hence we have

D, = {x(ty) | x(t,) < 1/{(ty) + y,(t,)}, where x(t,) is any
given initial value of (2) and
_ " f 2pem@ar © q(t)
¢(1) J; e p(s)ds. (17) L p ) ((p(t) \/ p(t))dt<0 (25)

(2) Another w—periodic continuous solution is y,(t)
Since p(t), ¢(t), q(t) are w—periodic continuous functions, it

follows that

1
Y, () = O] +y(6),
- (18)
-(4 -(4 )
V() sno=-(2). b0 (w0 -29).
and y,(t) is unstable on R. (26)
(t) (t)
Proof. By (H,), (H,), (2) can be turned into p®)| @)+ p(t) _m
x| 10 S9N )
dt - p(t) p@® ) are w—periodic continuous functions; by (25), according to
Lemma 3, (23) has a unique positive w—periodic continuous
solution as follows

(1) Suppose

p®}.  (20) .
®) J ls PO V=gDTPTNdT

S={pt) e C(R,R) | p(t+w)=
Given any ¢(t), y(t) € S, the distance is defined as follows
(27)
N £) =y ()],
ppv) t:;i]W() 1401 (1) (p(s)+\/ q(s) \j a6) ;.
p(s) p(s)
and thus (S, p) is a complete metric space. Take a convex
closed set of S as follows:
and
_ q
- {<p(t) es| J—(—) =0
P M ( )
(22) mod () ¢ mod (p(t) < (t) + \] 1 (t)) p®
g\/—<%> , mod(go)cmod(p,q)}. (28)
L o
. (t) + _ﬂ _ﬂ
Given any ¢(t) € B and considering the following equation 4 p ) p® )
d (1) (t)
d_f =p(@) (x _ \] A2 0 > < ) + \j :l)(t) ) By (22), it follows that
B q(t) 23
P (q’(t) J (f>> ) mod(p(t)<¢<t)+J—@>> ¢ mod (p,q)
40
(t) q () —
-p@® (fP(t) + \/ KAy > \]——, t) (t) (29)
p ) (t) A2 DN I AS2)
p mod(p(t)(go(t)+\/ p(t)>\/ p(t)>
by (H,) and (22), we get that
¢ mod (p,q),
sz\/_ <ﬂ> <p(@) (so(t) + J—%)
P/L p (24) and hence we have
_(4
< 2Pum <p>M <0 mod (1) ¢ mod (p,q). (30)



By (22), (24), and (27), we get

t
0t > _\j _ ( % ) j ! PG TETP ()
M -0

q(s)
' <‘P(5) + \j‘ﬁ) ds
- q ' I PP+ =g pD)dr d( @

o ()

> [ P(r)(rp(r)ﬂ/—q(r)/p(r))dr]t
ul

—00

> 1 el p(r)(w(rw—q(r)/p(r))dr]

> —1 —ezﬁmPM\/—(q/P)MdT] = \]_(ﬂ) )
aml Py

and

t
7t < _\/_ <%) J oli PO gD PN »(s)

(oo 1)

@)L

(o[22 -
-F(0)
@)1

el p(T)((p(T)ﬂ/—q(T)/p(T))dT]
(9 [
p/pt

o2l m——uz/pndr} _ \/_ <ﬂ>
P/
and hence, #(t) € B.

Define a mapping as follows

ol PO TP < J ! (@)
S

[ p(r><¢<r>+V—qm/p(r))dr]t

—00

(To) () = - Jt ol PO T)+W)drp )

q(s) q(s)
as) 4,
(g"(SHJ p())J PG

and thus, given any ¢(t) € B, (To)(t) € B;hence T : B — B.
Now, we prove that the mapping T is a compact operator.

(33)
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Consider any sequence {¢, ()} ¢ B(n=1,2,---); then we

have the following.

J‘(%)M =0 < \]_<%>L’ (34)

mod (¢,) ¢ mod (p,q).(n=1,2,---)

On the other hand, (T'g,)(t) = x%(t) satisfies

dx%(t)_ q(t)
BT —P(t)<¢n(f)+\] ()> (1)

B q@®)\ | 9@
P(t)<90n(f)+\] P(f)>\/ FICH
thus we have

d
xgon (t) S4PL<%> 5 (36)
L

dt
mod (x% (t)) cmod(p,q),

(35)

and hence {dx(p (t)/dt} is uniformly bounded; therefore,
{x (t)} is uniformly bounded and equicontinuous on R. By
the "theorem of Ascoli-Arzela, for any sequence {x (t)} C B,
there exists a subsequence (also denoted by {x (t)}) such
that {xq, (1)} is convergent uniformly on any compact set
of R. Also combined with Lemma 4, {x (t)} is convergent
uniformly on R; that is to say, T is relat1vely compact on B.

Next, we prove that T' is a continuous operator.

Suppose {¢, ()} € B, ¢(t) € B, and

() — @), (k— 00) (37)

and by (33),we have
(Tey) (8) = (To) )]

t
_ ‘_ J I PO (@r(T)++—q(7)/ p(7) P (s) <§0k (s)

J e J 90
p(s) p(s)
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t

-0

+¢g@ Jq@
p(s) p(s)

t t
J ekl PO NZTDTEDT () (4 (5)
—00

q(s)
o) |- 1

N N ar oy U
+ e
00

eIl PGP, () < o (s)

_ .[ () (g( T)‘H/W)d‘l’) p(s) <(P (S)

q(s) q(s)
A BB AR
J p(s))J P ‘

J't j ()@ (D) + =g p(D))d
—00

q(s)
-¢(s)) \]—m s

P () (g (s)

+jm5(Lzﬂﬂ(%Cﬂ—wh»dﬁzwﬂ<¢@>
+\]_& \jq(s) )
p(s) (s)

t
where & is  between el PO HEAEDTPEdT

el PO VEA@IPONMT thys € is between 2 p; /—(q/p), (t—s)
and 2p,/—(q/p)p(t — s), and hence we have

(38)

Kwam4mmmgremﬁwmml

'Jq@
p(s)
+ r 2P NP)(t9) (Jt lp (D) dT) lp ()|
q(s) ?

12
<WQ+JPU>J IOk

_ r AP TPt \/_ < % ) ds
o .

p ()]

’M%@

<

5
' 2o N=alPmt=9) (p _ o 2 _ (4
+2Looe (t s)pL( <P>L>d5
- (q/P)L
P (P9) =
- (q/P)M
2
-(q/
+ PL( (q P)L) > P((Pk,q))
2(pa\-(a/p),)
(39)
By (37), it follows that
(Tor) () — (Te) (1), (k — o0) (40)

and, therefore, T is continuous; by (33), it is easy to see that
T(0B) ¢ B, and according to Lemma 5, T has at least a
fixed point on B; the fixed point is the w—periodic continuous
solution y; (¢) of (2), and

J‘(%)MS’“U)SJ_<%>L (41)

y(@)=x#) -y (), (42)

Let

where x(t) is the unique solution of (2) with initial value
x(ty) = xy and p,(¢) is the periodic solution of (2);
differentiating both sides of (42) along the solution of (2), we
get

dy _dx(t) dp(@®
dt dt dt

=p@®) (x@®) +y @) (x () -
=p(t)(x(t) -
=2p () y; (1) (x (1) -

=p® (X ®) -y 1)
7 (©)
Y1 (6 +2y; (1) (x (8) -
7 ®)

y ()
=2pON O y+pt) )y

y(®) (43)

+p () (x(t) -

This is Bernoulli’s equation; let u(t) = y_l(t), and it can be
turned into the following equation

d
= 2O Ou-p ). (44)

Note that

<=2p(t)y, ()
(45)




according to Lemma 3, (44) has a unique w—periodic contin-
uous solution as follows

+00 ;
o= elronipgas e
t
it is easy to know

J'+OO
t

+00 ¢
= J; e J; 20 (1)dx |p (S)l ds

- Lt 2P(r)y1(r)d1p (S) ds

(47)

N
- j " o TP g
t

_ P
2pm \/_ (@/P)u

t
and thus the infinite integral J':OO le” I, 20 (Ddr p(s)lds
is convergent; thereby, the infinite integral {(t) =

t
0 o I 2pem p(s)ds is convergent.

In addition,
C(t) > j « e—v—(q/P)M Lt ZP(T)d‘rP (s)ds

+
t

+00

_ 1 [ 2V | p(r)dr]
2\/_ (@/p)y -

_ 1 [ 2V=@/Ph [, P _ 1]
2¢=(a/p)y -

= ;— —ez‘/WJ.:OO p(mydr 1]

t

(48)

1 [ 2@ [ pudr _ ]

) 2= (alp)y -

1

2\~ (q/P)M,

and
+00 ¢
¢ < L e TP 200 () g

+00

_ ! [ ~2v=arp ! p(r)dr]
2y~ (a/p), -

_ 1 [ 2V@IP) [, P _ 1]

2\~ (a/p), -

1 —62\/—(q/P)L I:OO p(dr _ 1]

) 2\/_(q/P)L )

t
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1 [ez V=GP J P _

) 2y~ (a/p),

1
2\/_ (q/P)L,
(49)
and thus we have
—% SC(f) S—;. (50)
24~ (/) 24~ (4/p),

By (46), we know (44) has a unique w—periodic continuous
solution {(t), and by the transformations u(¢) = y"1 ®), y(t) =
x(t) — y,(t),we know (2) has another w—periodic continuous
solution y,(t) as follows

1

Y, (8) = m +y(8). (51)
Since vy, (t), y,(t) are periodic solutions of (2), we have
dy, (t)
dt
(t) (t) 52
- _ -2 _a®0)
=p(®) <Y2 (t) \] p(t)> (Yz () + \/ P(f)>’
dy, (t)
dt
(53)

- _la® 90
_P(t)<h(t) \j p(t)><”(t)+\/ p(t))'

Since y,(#) is a periodic solution of (2), we only consider its
maximum and minimum values in a cycle; suppose y, (t]) is
the minimum value of y,(t), y,(t;) is the maximum value of
y,(t), t] is the minimum value point of y,(¢), and ¢; is the
maximum value point of y, (t), where 0 < t’f, t; < w; then we
have

dh(ff)_
i
(54)
le(t;)z
dt ’
thus it follows that
. q(t))
t)=1\|- ,
)= -5
(55)
. q(t;)
t,)=1\|— ,
)= -
and it is easy to see that
. q(t}) J(q)
t,y)=1\|— >4 = = )
() \] @) 2\ o),
(56)
. q(t) \j <q>
t,)=1|- <Aq -1 = ).
n) \j p(5) p/y
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From (46), let
d(1/¢®) _ _C—de (t)
dt dt (57)

== (2pWOp (O - p (1) =0,

then we get that the possible extremum of 1/{(¢) satisfying

C(i*) =2y, (t"), (0<t" <w) (58)
SO
1 %
=2 ,
C (tr) Vl (tl ) (59)
1 *
=_2 ,
C(t;) YI (tz)
thus we have
0 _ 1
W
) (60)
AR 5]

and it is easy to see that ¢}, t; are also extreme points of {(t),
{(t}) is the maximum value of {(t), {(¢;) is the minimum
value of {(¢), and thus 1/{(¢]) is the minimum value of 1/{(t)
and 1/{(t}) is the maximum value of 1/{(t). By (51), it follows

that
L = - * [ [ g
((t’f) YI (tl) < \] < ) > (61)

yz(t;)=yl<r;>+@=—yl(t;)z—J—(g)L, (62)

1,(t1), y,(t5) are two possible extremums of y,(¢); moreover,
let

Y2 (61) =y (1)) +

d
% = p®) Y2 +q(t) =0, (63)

and then we get the following equation that all possible
extreme points t* of function y,(¢) satisfy

. q(t’) .
t") == . (0t cw). (64)
1) =1 0z <0
Take the negative sign of (64); since they are the possible
extremums of y,(t), by (61), (62), and (64), we get

|- ﬂ) < (t)<_\j_<ﬂ> (65)
\] <P L 2= P/ m

(2) We prove the stability of two periodic solutions y,(¢)
and y,(t) of (2).

First, we prove the stability of the periodic solution v, (t)
of (2).

Itis easy to know that the unique solution u(t) of (44) with
initial value u(t;) = u, is

t t t
u(t) = e I 2p(s)yl(s)dsu0 _ J' ) 2p(‘r)y1(‘r)d‘rp ()ds  (66)
t

0

t +00 t
=e L ZP(S)yl(S)dsuo - J ¢ L 2pom (T)dTP (s)ds
to

+00 t d
N J o lapem@ar o (g g
t
_ o 2pomds, (67)

¢ +00
e _[‘0 2p(s)y,(s)ds J - J-sto 2p(7)y, (T)d‘rp (S) ds
to

+00 . 4
+ J o lapem@ar o (g g
t

= eI PO [y (1)) + 2 (0. 9

By (42) and u(t) = y_l(t), the unique solution y(t) of (43)
with initial value

1
y (to) = a) x (to) =71 (o) (69)
is
1
y) =—
e TR O I 40!
. (70)

& PPN 11 (e () =y, (1)) — T (10)] + C )
By (42), we have

|x (£) =y, ()]

1 (71)
& PR 1 (e (1) =y (1))~ C (80)] + S )]
By (45), we have

= L’U 2p(s)y, (s)ds

— 400 (t — +00). (72)

Following we will discuss the sign of 1/(x(t,) — y,(t,)) — {(t,)
in three cases:
(i) If 1/(x(ty) — y,(to)) — C(t,) < O,that is

tho) +9; (tg) < x(ty) <y () (73)

by (50), (71), and (72), it follows that
|x () =y, ()] — 0, (t — +00), (74)

and, therefore, the w—periodic solution y, (¢) of (2) is attrac-
tive if given the initial value 1/{(t,) + y,(t,) < x(t) < y;(to)-



(ii) If
1

x(ty) =1 (to)

from (71), (68), (72), and (69), we have

- (t) >0, (75)

|x(@®) -y, )| = (t)| (76)
u (+00) — +00, (77)

1
u(ty) = (78)

x (o) = y1 (o)
Now, we discuss u(t,) in two cases.
(I) If 1/(x(ty) — y1(ty)) > 0, then x(t,) > y,(¢,); thus we
have
u(ty) =uy >0, (79)
from (66), (79), when t > t,, it follows that
u(t) >0, (80)
by (76), (77), we have
|x(@®) =y, ()] — 0, (t— +00), (81)

and thus the w—periodic solution y, () of (2) is attractive if
given the initial value

x(ty) > 1 (t) - (82)
If x(t)) = y,(ty), then x(t) = y,(£), (81) also holds; by (i)

and (I) of (ii), the unique w—periodic solution y, (t) of (2) is
attractive if given the initial value

20 €D, = {x0) 1x(0)> s e )

(IT) If 1/(x(ty) — 4 (o)) < O, then
x(t) < y1 (t)» (84)

thus u(t,) = 1/(x(ty) — y:(ty)) < 0, by (77), and according to
zero point theorem, there exists at™ > £, such that

u(th)
_ I (2a(s)y (s))ds [ ( ]
—e - to) (85)
(to) " (to) ’
+{(t7) =0,
therefore, when t — t*, we have
o iy QaOR©T(E)ds [ 1 ¢ fo)]
x(to) = 11 (to) (86)

+C(t*) — 0,
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thus
|x () =y, ()] — +00, (t—1"), (87)
by (75) and (84), it follows that
1
x(ty) < m + 11 (t) (88)

and thus the periodic solution y, (t) of (2) is unstable if initial
value x(t,) < 1/C(t,) + y;(ty)-

(iil) If 1/(x(ty) =y, (8))—C (to) = 0, thatis, x(¢,) = 1/{(ty)+
y1(t,), at this time, the unique solution x(t) of (2) with initial
value x(t,) = 1/{(t,)+y,(t,) is just the periodic solution y, (1),

|x@®) -y ®)] = (89)

[{0]] ( )|
and vy, (t) is also unstable.
By (II) of (ii) and (iii), we get that if given the initial value

x(t) € D, = {xao) () <

y,(t) is unstable.

Next, we prove the stability of the periodic solutions y,(t)
of (2).

By (51), it follows that

C(to) + "1 (to)} > (90)

x(t) -y (1) -

1
|x () -y, ()] = ml

91)

where x(t) is the unique solution of (2) with initial value
x(ty) = x,. From the above proof, we know that when x(t,) €
Dy, |x(t) — y,(H)] — 0,(t — +00), that is to say, given any
e > 0,thereisaT > 0, such that |x(t) -y, (t)| < east > t,+T,
so, when t > t, + T, we have

|[x (&) =y, (®)] > T (t)| -8 (92)
and, therefore, it follows that
1
|x (&) -y, ()] = ol (93)

Note that |{(t)| is bounded and positive on R, and thus y,(t)
is unstable if x(t,) € D;.

When x(t,) € D,, there are two cases.

(D Ifx(ty) < 1/C(ty) +y,(ty), by (87), there existsat™ > ¢,

such that
% (#) =y (O] — +oo, (t—17) (94)

since |{(¢)] is bounded and positive on R, we have

(6 =y, ()] = |x (&) (t)—#

(95)

> |x (t) -y, (1)] - +00,

Ic“( T
(t—t")

and thus y,(t) is unstable.
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(I) If x(ty) = 1/(tp) + y,(t,), by (89),

[x®) -y O] =y, (O -y ()] = (96)

(0] (t)l
y,(t) is also unstable.

Thus y,(t) is unstable if x(t,) € D,.

Therefore, the w—periodic solution y,(t) of (2) is unstable
onD,uUD, =R.

This is the end of the proof of Theorem 8. O

Theorem 9. Under the conditions of Theorem 8, (2) has exactly
two w—periodic continuous solutions: y,(t) and y,(t).

Proof. The proof of the existence of y, (t) and y,(t) is seen in
Theorem 8; now, we prove that (2) has exactly two w—periodic
continuous solutions: y,(¢) and y,(t).

We know that if x(t,) = y,(t,), the unique solution of (2)
is y;(¢), and if x(t,) = p,(t,) = 1/{(t,) + y,(f,).the unique
solution of (2) is y,(¢).

(i) If x(ty) < p,(ty) = 1/C(ty) + y1(t,), by (87), the unique
solution x(t) of (2) satisfies

lx (t)] — +00, (t—t") (97)

and thus x(¢) cannot be a periodic solution.
(i) If x(2y) > y,(ty) = 1/(t,) + y;(t,), we know that y, (¢)
is attractive; thus the unique solution x(t) of (2) is satisfied

| (1) -

and hence x(t) cannot be a periodic solution; otherwise, there
is a certain 6 > 0 such that

n@®| —0, (— +o0) (98)

lx(®) -y )] >8>0 (99)

foranyt € R.

Therefore, (2) has exactly two w—periodic continuous
solutions, y; (¢) and y,(¢).

This is the end of the proof of Theorem 9. O

Theorem 10. Consider (2), p(t), q(t) are w—periodic continu-
ous functions, suppose that the following conditions hold:

(H,) p(t) >0,

(Hy) q@) <0,

and then (2) has two w—periodic continuous solutions.
(1) One w—periodic continuous solution is y,(t),

q ) - q
=] <v (t)s\j—<—> , (101)
\] <P M ' P/
and y,(t) is unstable on R.
(2) Another w-periodic continuous solution is y,(t),

(100)

y, (t) = C(t) + (),

v,

(102)

and y,(t) is attractive if given initial value on D, = {x(t,) |
x(to) < y,(ty)}, and it is unstable if given initial value on D, =
{x(ty) | x(ty) = y,(ty)}, where x(t,) is any given initial value
of (2), and

(@) =- [ ¢ [ 2pom@ar p(s)ds. (103)

Proof. By (H,), (H,), (2) can be turned into

d_x_ _ﬂ _ﬂ 104
pm( \jp(t)><x+\/p(t)>' (104

(1) Suppose
={p)eCRR|pt+w)=9®)}.  (105)
Given any @(t), y(t) € S, the distance is defined as follows:

plpy) = Sup lo () =y (®)], (106)

and thus (S, p) is a complete metric space. Take a convex
closed set of S as follows

_ {(p(t)€S| J—(%)Msg)(t)
< \/T%)L mod (¢) ¢ mod (P,q)]’~

Given any ¢(t) € B, consider the following equation

dx q(t) q(t)
E"’“’(’“ J <t>>< o Jp(t))
_ q()
—p(t)< “”J (t)>
) a0 [a®
“”("’“”J (t))J P

By (H;) and (107), we get that

0< sz\]@ <p@® <90(t) + J%)
i (3),

and hence we have

pr(t) (fp(t) + \/—%)dt > 0. (110)

Since p(t), ¢(t), q(t) are w—periodic continuous functions, it
follows that

(107)

(108)

(109)

q()

P(t)<§0(f)+\/ p(t))’
q(t) q(t)

p) (‘P(t)+\j (t)) \]—m

(111)
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are w—periodic continuous functions; by (110), according to
Lemma 3, (108) has a unique positive w—periodic continuous
solution as follows

0 () = j:w ol PNote T o
—o\ [0 (112)
qls q(s
. 40 [46)
<<P(s)+\] p(s))\/ s <
and
mod (1) < mod <<p @

(113)

40 40 [40
+J G )’””("’“”J p(s)N p(s)>‘
By (107), it follows that

mod(go(‘r) + J—%) c mod(p.q),

a)\ | a0 (114)
m0d<P(S) <‘P(5) + \/ P(S)> \j m)

¢ mod (p.q),

and hence we have

mod (1) ¢ mod (p,q). (115)

By (109), (107), and (112), we get

I PO (@) +y=q(0)p(D)dr »(s) ( ¢ (s)

(116)

t

| < 1 > [e [\, @@ =a@ T _ 1]
P/m

) [e— [ po)g(r)+ TN _ 1]
M

.- _<i> [ezL*“pLﬂq‘/p_)Mdr_l]:\/_(1) )
P/m P/m

Mathematical Problems in Engineering

and

(@) < \j ( . ) ® I PO+ VG pN () < 0 (s)
L t
q(s)
QM P
. J 40 ) .

t t
B \j_ ( % ) L ot PO =GN 4 < J (D)

L s

q(7)
. <(p(‘l‘) + \j—m> d‘l‘)

S \j_ (ﬂ) [eﬂ @) (@(r)+ v—q<r>/p(r))dr]
P/

117)

+00

t

_ \j_ ( q ) [ oo PO+ TR PN _ 1]
P/L

B \j_ ( q ) [ o I PGP _ 1]
P/

and, hence, 7(t) € B.
Define a map as follows

+00
(To) () = J oJL o) TR (o
t

q(s) q(s)
: A
("’(SHJ p(s))J 6

and thus if given any ¢(t) € B, then (Tp)(t) € B, and hence
T:B— B.
Now, we prove that the mapping T is a compact operator.
Consider any sequence {¢,(t)} ¢ B(n = 1,2,---), then it
follows that

Foo (B

mod (¢,) ¢ mod (p,q).(n=1,2,---)

(118)

On the other hand, (T'p,)(t) = X, (t) satisfies

dx%(t)_ q(t)
—ar —P(t)<%(t)+\/ ()> (1)

_ 90\ | a®)
p(t)(<pn(t>+J p(ﬂN el
thus we have

d
M S4PM<_Q> N
P/m (121)

dt
mod (x% (t)) cmod(p,q),

(120)
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and hence {dx(p (t)/dt} is uniformly bounded; therefore,
{x(p ()} is uniformly bounded and equicontinuous on R. By
the theorem of Ascoli-Arzela, for any sequence {x,, ()} € B,
there exists a subsequence (also denoted by {x (t)}) such
that {x (t)} is convergent uniformly on any compact set
of R. Also combined with Lemma 4, {x,, (t)} is convergent
uniformly on R; that is to say, T is relatlvely compact on B.

Next, we prove that T is a continuous operator.

Suppose {¢, ()} € B, ¢(t) € B, and

o) — @), (k— 00) (122)

by (118), we have

|(Tey) (t) - (To) (1)]

J .[ P (pr()+ \/W)d‘l’p (S) <(Pk (5)
q(s) q(s)

d
Jp@)Jp@s
J»+00 T)((p T)+W)d7p(s) <§0($)
J e Jquu
p(s) p(s)

J f PO @(1)+y=q(D)p(D)dr

- CIOFS
<P(s))\/ ok

N roo < o PO VTP
t

P () (i ()

(123)
IP(T )@@+ \—q@)/p()dr ) (s) (90 (s)

q(s) q(s)
_4Y d
+Jpw>J u>|

J f PO @(1)+y=q(D)p(D)dr
t

- CION
<P(s))\/ ok

P () (i ()

" J:OO ¢ <£ P@) (¢ (1) -9 (1) dT) p(s)

q(s) q(s)
as|,
<¢®+JPU>J @>1

11

t
where & is  between el PO@D+V=@pNdT g

eLt PEPEHN=4@POMT (g € is between 2N/ p).(t-s)
and 2p; \/—(q/p)(t — ), hence we have

|(T‘Pk) (1) - (To) (t)| < L 2PN P (t-9) ()
1\] eZPL\/W(t—S)

p(s)

(J Pmldf) (fp(s)+\/ P((5;>

q(s)
- \]—m%’ P (96 9)

_ J»+oo PP \]_ < g) ds (124)
¢ P/
+2 J+OO E_ZPL\/W(S—Q (5 _ t)
2 q
P (— (—) )ds P (%0 9)
P/
(2wl -Gt
2
2P\~ (q/P)M 2 (PL \— (q/P)M)
P (Pe9)
by (122), it follows that
(Toy) (1) — (To) (), (k — o) (125)

and, therefore, T' is continuous. By (118), it is easy to see that
T(0B) ¢ B, and according to Lemma 5, T has at least a fixed
point on B; the fixed point is the periodic continuous solution
y1(t) of (2), and

G o (G,

y()=x@) -y @),

(126)

Let
(127)
where x(t) is the unique solution of (2) with initial value

x(ty) = xg, and y, (¢) is the periodic solution of (2); differenti-
ating both sides of (127) along the solution of (2), we get

dy _dx(t) dyl (t) 2
pri =p (O -y )
=p@®) (x (@) +y, @) (x () -y, (1))
=p () (x () =y, () + 2y, (1) (x (1) =y, (1))
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=2p () () (x(6) =y, (1))
+p @) (x(®) -y, ®)

=2pOy (1) y+p(t) Y
(128)

This is Bernoulli’s equation. Let u(t) = y"l(t), and it can be
turned into the following equation

du

—=2pM)y, Ou-p().

T (129)

Note that

—2pM\/— <%>L <-2pOy @) < _ZPL\j_ (%)M (130)

<0,

according to Lemma 3, (129) has a unique periodic continu-
ous solution as follows

(@) =- jt ¢ [ 2@ p(s)ds, (131)

—00

it is easy to know that
t
I.

t ¢
- J e 2PEm @ (g
—00

e L2pmir (ol g

(132)

t
< J NI g Py
—00

2p- (q/P)M,

t _ t
and thus the infinite integral _[_00 le X 2P(T)Vl(r)dhp(s)lds
is convergent; thereby, the infinite integral {(t) =
b - [Lpm@dr -
J_Ooe s 4 p(s)ds is convergent.
In addition,

JOES jt & VTP [ 260 p () g
o1 [v@mul p(r)dr]t
2= (pla)y o0
S S PR e—zmﬁwm)dr]
2+~ (pla) (133)
NS S P e—NWJ_tprdr]
2= (pla)y -
1
2\ (Pl

Mathematical Problems in Engineering

and
t 13
C) < - J, & VTP [ 20 (4 g
___ L [ P(r)dr]t
2\/_(p/q)L i o0
S S RN o p(r)dr]
2v-(pla), - (134)
<1 - e—zmjﬁmmf]
2 \/_ (P/Q)L i
1

) _2\/_(P/CI)L’

thus we have

1 1
T T 135
2= (p/a)ys 2+~ (p/a), (1)

by (131), we know that (129) has a unique periodic continuous
solution {(t), and by the transformations u(¢) = y"1 ), y(t) =
x(t) -y, (t),we know that (2) has another periodic continuous
solution y,(t) as follows

<{(t)<-

1
Y, (8) = m +y (). (136)
Since y, (t), y,(t) are periodic solution of (2), we have
dy, (t)
dt
(t) (t) 7
- _ -2 _a\
—P(t)<)/2(f) \j P(t)> (Yz(t)+ \/ P(t)>’
dy, (t)
dt
(138)

- _.a® 940
_P(t)<h(t) \j p(t)><”(t)+\/ p(t))'

Since y, () is a periodic solution of (2), we only consider its
maximum and minimum values in a cycle. Suppose y, (t]) is
the minimum value of y, (t), y,(t;) is the maximum value of
y,(t), t] is the minimum value point of y, (), and t; is the
maximum value point of y, (t), where 0 < t],¢; < w; then we
have

dy, (fi‘)
dt

dy, (t;)

dt ’

=0,
(139)
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thus it follows

t)=1— ,
)= -2 "
. q(t;)
t,)=1|— ,
)= {3
and it is easy to see that
. q(17) \/ q
t)=1— 4= >
i) =y = (2,
(141)
. q(ty) \/ q
t,)=1|— <AL= .
ni = 5= (3),
From (131), let
dA/L®) _2d
dt dt (142)

= (2p O OLE) - p (1) = 0.

Then we get that the possible extremums of 1/{(¢) satisfy

Fm (), 0=rse) )
SO
1 *
B ,
C (tr) Vl (tl ) (144)
1 *
) ,
C(f;) "1 (tz)
thus we have
* 1
AETR)
| (145)
)= ————,
¢ ? ) 2y, (t;)

and it is easy to see that t],t; are also extreme points of {(t),
{(t}) is the maximum value of {(t), and {(¢}) is the minimum
value of {(¢); thus 1/{(t}) is the minimum value of 1/{(¢) and
1/{(t;) is the maximum value of 1/{(¢). By (136), it follows
that

B =1 () gy = 0 (6) < J(g)M (146)

y2<f;>=yl(t;)+71;)=—yl (@z—J—(g)L, (147)

1,(t]1), y,(t5) are two possible extremums of y,(t). Moreover,
let

d
% =p®) Y +q() =0, (148)

13

and then we get from the following equation that all possible
extreme points t* of function ¥y, (t) satisfy

y2 (£) =i\jm

, (149)
p (")

(0<t' <w).

Take the negative sign of (149). Since they are the possible
extremums of y,(t), by (146), (147), and (149), we get

_\/T%L <y ()< ‘\j‘ <%>M'

(2) We prove the stability of two periodic solutions ¥, (t)
and y,(t) of (2).

First, we prove the stability of the periodic solution y,(t)
of (2).

It is easy to know that the unique solution u(t) of (115)
with initial value u(t,) = u, is

(150)

t t ¢
() = & o 2PN, J e lPOn@dTy (g ac 1)
to
t
= o By 2pem s,

ty t
+ J e L ZP(T)Yl(T)dTP (s) ds
—co

t
_ J e Lt ZP(T)Yl(T)dTP (s) ds
—co

(152)
o o 2PN s "
t t,
4+ o 2PN J o [P 2@ p(s)ds
-0
t t
- J e 2P @, (g g
-0
_ o OmO e ). (153)

By (127) and u(t) = y"l(t), the unique solution y(t) of (128)
with initial value

1
y (to) = el x(to) =71 (o) (154)
is
1
y(t)=—
e LO 2p(s)yi (s)ds [uo ¢ (to)] +L(t)
. (155)

e IO (1 () <y, (1) - L)) + )
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By (127), (136), and (151), we have
|x () =y, (t)]

1

-1 (o))

e_ J.:o 2p(In (s [1/ (.X (tO) - ( (to)] + C (t) (156)

1

c|

By (130), we have

o o 2pGmGds (t — +00). (157)

Following we discuss the sign of 1/(x(t,) — y;(¢,)) — {(£,) in
following cases:

(i) If 1/(x(ty) — y1(ty)) — C(ty) < O, that is,

1
((to) +71 (t) < x(t) <1 (to) (158)
by (135), (156), and (157), it follows that
lx(®) -1, (] — 0, (t— +c0), (159)

and, therefore, the w—periodic solution y,(t) of (2) is attrac-
tive if given the initial value 1/{(t,) + y;(to) < x(to) < y;(t,)-

(ii) If 1/ (x(ty) =y, (8)) = (to) = Ojthat s, x(t,) = 1/{(t,) +
1 (£,), at this time, the unique solution x(¢) of (2) with initial
value x(t,) = 1/{(t,)+y,(t,) is just the periodic solution y, (¢),

and |x(t) — y,()| = 0.
(iii) If
1

oy 70 e

from (156), (153), (157), and (154), we know
|x(®) -y, ()| = l OI0) (t) (161)
u)-(@) — 0, (t— +00) (162)
u(ty) = : (163)

x(t)) =1 (to)‘

Now, we discuss u(t,) in two cases.

(D If 1/(x(ty) — y1(ty)) < 0, then x(¢,) < y,(£,). Thus we
have
u(t,) <0, (164)
from (151), when t > ¢, it follows that
u(t) <u(ty) <0, (t>t,) (165)
therefore, we have
|x () =y, ®)] — 0, (t — +00), (166)
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and thus the w—periodic solution y,(t) of (2) is attractive if
given the initial value

x(ty) <1 (to). (167)

By (i), (ii), and (I) of (iii), the w—periodic solution y,(t) of (2)
is attractive if given the initial value

x(ty) € Dy ={x(to) | x () <n (t)}.  (168)
(ID) If 1/(x(ty) — y1(ty)) > 0, then
x(ty) > 11 (to) (169)
thus
(1) = =t >0 (170)
O x(t) -1 (t)
by (165), there isa t* > t,, such that
u(t*) <0, (t">ty) (171)

according to zero point theorem, there exists a t* € (to,t),
such that

. 5 2 (s)ds 1
N P ENC Rl I
+{(t") =0,
therefore, when t — t*, we have
S Er AR I
— 0,
and thus
|x () =y, )] — +c0, (t—1t"). (174)
By (160) and (169), it follows that
x(to) > 1 (to) » (175)

and thus the periodic solution y,(t) of (2) is unstable if initial
value x(t,) > y,(,).

(iiii)In addition, if x(¢,) = y,(t,), then x(¢) = y,(¢), and
we have

x (£) =y, (1)] = (176)

[140]] (t)l

7,(t) is unstable.
By (II) of (iii) and (iiii), we get that if given the initial value

x(t) € Dy = {x (ty) | x (to) = 11 (t0)}»

7,(t) is unstable.

(177)
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Next, we prove the stability of the periodic solutions v, (t)
of (2).

1 1
lx(t) ! (t)| = .X(f) N (t) - m + ml
=x®O -y, O+ C(t) (178)
— @) -y, @),

IC (t)l

when x(t;) € D,,|x(t) — y,(t)] — 0,(t — +00); that is to
say, givenany € > 0, thereisaT > 0, such that [x(t)-y,(t)| < €
ast >t,+7T,s0,whent >t,+ T, wehave

therefore, it follows that
1
|x () =y, )] > o (180)

and note that |{(¢)| is bounded and positive on R, so y,(t) is
unstable if x(t,) € D;.
When x(t,) € D,, there are two cases:
(D) If x(to) > y,(ty), by (174), there exists a t* > t,, such
that
|x (£) =y, )| — +00, (t —1t") (181)

since |{(#)| is bounded and positive on R, by (136), we have

|x () =y )] = [x (&) =y, (£) + ==

C (t)
(t—t")
and thus y, (¢) is unstable.
(I1) If x(t,) = y,(ty), by (176),
x@®) =y ()] = |y ()~ 1y, (®)] = (183)

|C()|

1 (t) is also unstable.

Thus vy, (t) is unstable if x(t,) € D,.

Therefore, the w—periodic solution y, (¢) of (2) is unstable
onD,|JD,=R

This is the end of the proof of Theorem 10. O

Theorem 11. Under the conditions of Theorem 10, (2) has
exactly two w—periodic continuous solutions, y,(t) and y,(t).

Proof. The proof of the existence of y,(t) and y,(t) is seen
in Theorem 10. Now, we prove that (2) has exactly two
w—periodic continuous solutions, y,(¢) and y,(t).

We know that if x(¢,) = y,(t,), the unique solution of
(2) is y; (t), and if x(t,) = y,(t,) = {(ty) + y,(t,), the unique
solution of (2) is y,(¢).
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(I) If x(t) > y,(ty), by (174), the unique solution x(t) of
(2) satisfies

|x ()] — +00, (t—1t7) (184)

and thus x(¢) cannot be periodic solution.

(IT) If x(ty) < y,(t,), we know that y,(t) is attractive; thus
the unique solution x(t) of (2) is satisfied |x(t) — y,(t)] — 0
ast — 400, and hence x(t) cannot be periodic solution;
otherwise, there is a certain § such that |x(¢) — y,(t)]| > & > 0
foranyt € R.

Therefore, (2) has exactly two w-periodic continuous
solutions, y, (¢) and y,(t).

This is the end of the proof of Theorem 11. O

4, Periodic Solutions on Riccati’s Equation

From the proofs of Theorems 8-11, we can get two results
about the existence of periodic solutions on (1).

Theorem 12. Consider (1); a(t), b(t), c(t) are w—periodic con-
tinuous functions, and a(t),b(t) are derivable on R; suppose
that the following conditions hold:

(Hl) a(t) <0,

(H,) 4a” (t)c(t) —a(t)b* (t) +2a ()b (t) (185)

—24' Ob() >0,

and then (1) has exactly two w—periodic continuous solutions.

Proof. (1) can be turned into

X 2
I =a(t)x"+b(t)x+c(t)

=al(t) (x + zé;(g) )2 +

(186) can be also turned into

d(x+b(t)/2a(t) b(t) \
A e (x 515)

sa®yc(t) -2 (@) db)/2a0)
4a (D) " dt

b)) \
=a(t) <x+ 2a(t)>
(OB () +2a ()b ()
a? (t)

86
4a(t)c(t) - b* (t) )

4a(t)

(187)

. 4> () c(t) —a —24 ()b ()

Let
b(t)

u=x+ 220) (188)

then (187) is turned into

d_u =al(t) u?
(189)
O ) +2a)b ) -2d (Ob@®)

4> () c(t) —a
" 42 (1)
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By (H,), (H,), (189) satisfies all the conditions of Theorems
8 and 9; according to Theorems 8 and 9, (189) has exactly
two w—periodic solutions ¥y, (), y,(t); and by (188), (186) has
exactly two w—periodic solutions

_ b(t)
G@B) =y @®- 2a)
b(o) (190)
GO =y, ®) - a0
Similarly, we can get the following. O

Theorem 13. Consider (1); a(t), b(t), c(t) are w—periodic con-
tinuous functions, and a(t), b(t) are derivable on R; suppose
that the following conditions hold:
(Hy) a(t) >0,
(H,) 4a* (t)c(t) —a(t)b* (t) +2a ()b (t) (191)
-24" ()b(@) <0,

and then (1) has exactly two w—periodic continuous solutions.

Proof. The proof is similar to that of Theorem 12, so we omit
it here. O

5. Example

The following example shows the feasibility of our main
results.

Example 1. Consider the following equation:

d
ax (=2 +sint) x* + 3 — cost.

7 (192)

Here, p(t) = -2 + sint,q(t) = 3 — cost, and it is easy to

calculate that
\/— <ﬂ> =0.9194,
P/m

-

Clearly, conditions (H,)-(H,) of Theorems 8 and 9 are
satisfied. It follows from Theorems 8 and 9 that (192) has
exactly two 2m—periodic continuous solutions y, (t) and y,(t),

0.9194=\j—<g) Syl(t)s\j—<g> =1.7761, (194)
P/m P/

and y,(t) is attractive on D; = {x(ty) | x(t,) < 1/{(t,) +
11 (to)}, and unstable on D, = {x(t,) | x(¢,) > 1/{(ty)+y;(to)}s
where x(t,) is any given initial value of (192), and

(o=

(193)

+

0] ¢ ) 4
¢~ [ 22wsinty @) (=2 + sin s) ds. (195)
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X’'=(=2+sin(t)) *x*x+(3—cos(t)),x(0)=—1.08

FIGURE 1: The curve of the solution of (192) with initial value x(0) =
—1.08.

x 1083 xX’=(-2+sin(t))*x*x+(3—cos(t)),x(0)=-1.09

70 0.5 1 15 2 2.5

t

FIGURE 2: The curve of the solution of (192) with initial value x(0) =
—1.09.

(2) Another w—periodic continuous solution is y, (),

17761 = —\/— <%>L 0% _\]@ (196)

=-0.9194,

and y,(t) is unstable on R.

From this example, using Matlab, we can deduce the value
-1.09 < ,(0) = 1/{(0) + y,(0) < —1.08; when initial value
x(0) > —1.08, the solution curve of (192) tends to the curve
of the periodic solution y,(¢) as t is achieved at a certain
value (see Figure 1); when initial value x(0) < -1.09, the
solution curve of (192) arrives at +o0o at some time t* (see
Figure 2).
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6. Concluding Remarks

In this paper, when the coeflicient functions of Riccati’s type
equation satisfy

p)gq(t) <0, (197)
we obtain the existence and more accurate range of two
periodic solutions of the equation by means of the fixed point
theorem. This is a great improvement on the paper [1, 6]
and provides a criterion for judging the existence and size
range of periodic solutions of the equation, which has great

application value in engineering technological and physical
fields.
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