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The existence of two periodic solutions of the Riccati’s equation when the coefficients are 𝜔-periodic and have different signs is
obtained. One of these solutions is unstable on 𝑅 and the other one is attractive on some region. Finally, an example is presented.

1. Introduction

The nonlinear Riccati type first-order differential equation

𝑑𝑥𝑑𝑡 = 𝑎 (𝑡) 𝑥2 + 𝑏 (𝑡) 𝑥 + 𝑐 (𝑡) (1)

plays an important role in fluid mechanics and the theory
of elastic vibration. There are a lot of research about this
equation [1–6]: in [1, 2], the sufficient conditions of the
existence of periodic solutions of the system were given; also
in [1], the stability of periodic solutions of (1) was obtained,
and there is no globally asymptotic stable periodic solution;
[3] studied some special types of Riccati equations and got
the general solution and the existence of periodic solutions of
(1); [4] studied (1) with characteristic multiplier; [5] studied
the high dimensional Riccati equation and obtained some
sufficient conditions of the existence of periodic solutions of
the equation; [6] obtained some criteria for the existence of
periodic solutions of (1).

An extensive study of the set of periodic solutions of (1)
was initiated in [7] and continued in [8–12]. In those papers
the coefficients are real. The complex ones were considered
in [13, 14].The problem of nonexistence of periodic solutions
was investigated in [9, 12, 15–19]. There are some papers
(e.g., [20–24]) where stability and asymptotic behaviour of
solutions were considered.

Recently, M. R. Mokhtarzadeh, M. R. Pournaki, and A.
Razani [25] dealt with scalar Riccati differential equations
and assumed that a, b, and c are 𝜔-periodic continuous

real functions on R and give certain conditions to guarantee
the existence of at least one periodic solution for (1); Pawel
Wilczynski [26] gave a few sufficient conditions for the
existence of two periodic solutions of the Riccati ordinary
differential equation in the plane and gave also examples
of the equation without periodic solutions for the Riccati
ordinary differential equation.

Consider a class of Riccati equation as follows:𝑑𝑥𝑑𝑡 = 𝑝 (𝑡) 𝑥2 + 𝑞 (𝑡) , (2)

where 𝑝(𝑡), 𝑞(𝑡) are 𝜔−periodic continuous functions, about
the existence of periodic solutions of (2); there are two results.

Proposition 1 (see [1]). Consider (2), suppose𝑝 (𝑡) 𝑞 (𝑡) < 0, (3)

and then (2) has two 𝜔−periodic continuous solutions𝛾1(𝑡), 𝛾2(𝑡), and 𝛾1 (𝑡) > 0 > 𝛾2 (𝑡) . (4)

Proposition 2 (see [6]). Consider the following equation:𝑑𝑥𝑑𝑡 = 𝑥2 + 𝑞 (𝑡) , (5)

where 𝑞(𝑡) is an 𝜔−periodic continuous function, if
𝑞 + 𝑅2 (𝑡) < 0, (6)
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and then (5) has two 𝜔−periodic continuous solutions 𝛾1(𝑡),𝛾2(𝑡), and 𝛾1 (𝑡) > 𝑅 (𝑡) > 𝛾2 (𝑡) , (7)

where 𝑞 = (1/𝜔) ∫𝜔0 𝑞(𝑡)𝑑𝑡, 𝑟(𝑡) = 𝑞(𝑡) − 𝑞, 𝑅(𝑡) = 𝑟(𝑡),(1/𝜔) ∫𝜔0 𝑅(𝑡)𝑑𝑡 = 0.
There are also articles on the periodic solutions of Riccati

equation (2)(see [27, 28]).
It is well known that scholars often use the fixed point the-

ory to study the existence of periodic solutions on differential
equation (see [29–31]).

Stimulated by the works of [29–31], in this paper, we
consider (2), and by using the fixed point theory, we obtain
the existence of two periodic continuous solutions of Riccati
type equation: one is attractive on some region and unstable
on another region, and another is unstable.We give the ranges
of the size of the two periodic continuous solutions: one is
positive, another is negative; they are symmetrical about 𝑥 =0, and following are our main results.

Conclusion. Consider (2), 𝑝(𝑡), 𝑞(𝑡) are 𝜔−periodic continu-
ous functions, suppose that the following conditions hold:(𝐻1) 𝑝 (𝑡) < 0,

(𝐻2) 𝑞 (𝑡) > 0, (8)

and then (2) has two 𝜔−periodic continuous solutions, 𝛾1(𝑡),𝛾2(𝑡), and
√− sup
𝑡∈[0,𝜔]

𝑞 (𝑡)𝑝 (𝑡) ≤ 𝛾1 (𝑡) ≤ √− inf
𝑡∈[0,𝜔]

𝑞 (𝑡)𝑝 (𝑡) ,
−√− inf
𝑡∈[0,𝜔]

𝑞 (𝑡)𝑝 (𝑡) ≤ 𝛾2 (𝑡) ≤ −√− sup
𝑡∈[0,𝜔]

𝑞 (𝑡)𝑝 (𝑡) ; (9)

meanwhile, we get the stability of two periodic solutions of
(2).

Then, we consider (1) and give two results about the
existence of two periodic solutions on (1). These conclusions
generalize the relevant conclusions of related papers.

2. Some Lemmas, Definitions,
and Abbreviations

Lemma 3 (see [32]). Consider the following (10)𝑑𝑥𝑑𝑡 = 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) , (10)

where 𝑎(𝑡), 𝑏(𝑡) are 𝜔−periodic continuous functions. If∫𝜔0 𝑎(𝑡)𝑑𝑡 ̸= 0,then (10) has a unique 𝜔−periodic continuous
solution 𝜂(𝑡), mod(𝜂) ⊂ mod(𝑎(𝑡), 𝑏(𝑡)), and 𝜂(𝑡) can be
written as follows.

𝜂 (𝑡) = {{{{{{{
∫𝑡
−∞

𝑒∫𝑡𝑠 𝑎(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠, ∫𝜔
0

𝑎 (𝑡) 𝑑𝑡 < 0
− ∫+∞
𝑡

𝑒∫𝑡𝑠 𝑎(𝜏)𝑑𝜏𝑏 (𝑠) 𝑑𝑠, ∫𝜔
0

𝑎 (𝑡) 𝑑𝑡 > 0 (11)

Lemma 4 (see [33]). Suppose that an 𝜔−periodic function
sequence {𝑓𝑛(𝑡)} is convergent uniformly on any compact
set of 𝑅, 𝑓(𝑡) is an 𝜔−periodic function, and mod(𝑓𝑛) ⊂
mod(𝑓)(𝑛 = 1, 2, ⋅ ⋅ ⋅ ); then {𝑓𝑛(𝑡)} is convergent uniformly on𝑅.
Lemma5 (see [34]). Suppose𝑉 is ametric space, 𝐶 is a convex
closed set of 𝑉, its boundary is 𝜕𝐶; if 𝑇 : 𝑉 → 𝑉 is a
continuous compact mapping, such that 𝑇(𝜕𝐶) ⊂ 𝐶, then 𝑇
has a fixed point on 𝐶.
Definition 6 (see [33, page 43]). Suppose 𝑓(𝑡) is an 𝜔−peri-
odic continuous function on 𝑅; then

𝑎 (𝑓, 𝜆) = ∫𝜔
0

𝑓 (𝑡) 𝑒−𝑖𝜆𝑡𝑑𝑡 (12)

must exists,𝑎(𝑓, 𝜆) is called the Fourier coefficient of 𝑓(𝑡), the𝜆 such that 𝑎(𝑓, 𝜆) ̸= 0 is called the Fourier index of 𝑓(𝑡).
There is a countable set Λ 𝑓,when 𝜆 ∈ Λ 𝑓, 𝑎(𝑓, 𝜆) ̸= 0, as long
as 𝜆 ∉ Λ 𝑓, there must be 𝑎(𝑓, 𝜆) = 0, and Λ 𝑓 is called the
exponential set of 𝑓(𝑡).
Definition 7 (see [33, page 47]). A set of real numbers
composed of linear combinations of integer coefficients of
elements in Λ 𝑓 is called a module or a frequency module of𝑓(𝑡), which is denoted as mod(𝑓); that is,
mod (𝑓)

= {{{𝜇 | 𝜇 = 𝑁∑
𝑗=1

𝑛𝑗𝜆𝑗, 𝑛𝑗, 𝑁 ∈ 𝑍+, 𝑁 ≥ 1, 𝜆𝑗 ∈ Λ 𝑓}}} . (13)

For the sake of convenience, suppose that 𝑓(𝑡) is an 𝜔-
periodic continuous function on 𝑅; we denote

𝑓𝑀 = sup
𝑡∈[0,𝜔]

𝑓 (𝑡) ,
𝑓𝐿 = inf
𝑡∈[0,𝜔]

𝑓 (𝑡) . (14)

3. Periodic Solutions of Riccati’s
Type Equation

Theorem 8. Consider (2), 𝑝(𝑡), 𝑞(𝑡) are 𝜔−periodic continu-
ous functions, and suppose that the following conditions hold:

(𝐻1) 𝑝 (𝑡) < 0,
(𝐻2) 𝑞 (𝑡) > 0, (15)

and then (2) has two 𝜔−periodic continuous solutions.
(1) One 𝜔−periodic continuous solution is 𝛾1(𝑡),

√− ( 𝑞𝑝 )
𝑀

≤ 𝛾1 (𝑡) ≤ √− ( 𝑞𝑝 )
𝐿
, (16)

and 𝛾1(𝑡) is attractive if given initial value on 𝐷1 = {𝑥(𝑡0) |𝑥(𝑡0) > 1/𝜁(𝑡0) + 𝛾1(𝑡0)}, and unstable if given initial value on
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𝐷2 = {𝑥(𝑡0) | 𝑥(𝑡0) ≤ 1/𝜁(𝑡0) + 𝛾1(𝑡0)}, where 𝑥(𝑡0) is any
given initial value of (2) and

𝜁 (𝑡) = ∫+∞
𝑡

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠. (17)

(2) Another 𝜔−periodic continuous solution is 𝛾2(𝑡),
𝛾2 (𝑡) = 1𝜁 (𝑡) + 𝛾1 (𝑡) ,

−√− ( 𝑞𝑝 )
𝐿

≤ 𝛾2 (𝑡) ≤ −√− ( 𝑞𝑝 )
𝑀

, (18)

and 𝛾2(𝑡) is unstable on 𝑅.
Proof. By (𝐻1), (𝐻2), (2) can be turned into

𝑑𝑥𝑑𝑡 = 𝑝 (𝑡) (𝑥 − √− 𝑞 (𝑡)𝑝 (𝑡) ) (𝑥 + √− 𝑞 (𝑡)𝑝 (𝑡) ) . (19)

(1) Suppose

𝑆 = {𝜑 (𝑡) ∈ 𝐶 (𝑅, 𝑅) | 𝜑 (𝑡 + 𝜔) = 𝜑 (𝑡)} . (20)

Given any 𝜑(𝑡), 𝜓(𝑡) ∈ 𝑆, the distance is defined as follows:

𝜌 (𝜑, 𝜓) = sup
𝑡∈[0,𝜔]

𝜑 (𝑡) − 𝜓 (𝑡) , (21)

and thus (𝑆, 𝜌) is a complete metric space. Take a convex
closed set of S as follows:

𝐵 = {𝜑 (𝑡) ∈ 𝑆 | √− ( 𝑞𝑝 )
𝑀

≤ 𝜑 (𝑡)
≤ √− ( 𝑞𝑝 )

𝐿
, mod (𝜑) ⊂ mod (𝑝, 𝑞)} . (22)

Given any 𝜑(𝑡) ∈ 𝐵 and considering the following equation

𝑑𝑥𝑑𝑡 = 𝑝 (𝑡) (𝑥 − √− 𝑞 (𝑡)𝑝 (𝑡) ) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) )
= 𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) 𝑥

− 𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) √− 𝑞 (𝑡)𝑝 (𝑡) ,
(23)

by (𝐻1) and (22), we get that

2𝑝𝐿√− ( 𝑞𝑝 )
𝐿

≤ 𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) )
≤ 2𝑝𝑀√− ( 𝑞𝑝 )

𝑀
< 0, (24)

and hence we have

∫𝜔
0

𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) 𝑑𝑡 < 0. (25)

Since 𝑝(𝑡), 𝜑(𝑡), 𝑞(𝑡) are 𝜔−periodic continuous functions, it
follows that

𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) ,
𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) √− 𝑞 (𝑡)𝑝 (𝑡)

(26)

are 𝜔−periodic continuous functions; by (25), according to
Lemma 3, (23) has a unique positive 𝜔−periodic continuous
solution as follows

𝜂 (𝑡) = − ∫𝑡
−∞

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠)
⋅ (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠, (27)

and

mod (𝜂) ⊂ mod(𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) , 𝑝 (𝑡)
⋅ (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) √− 𝑞 (𝑡)𝑝 (𝑡) ) .

(28)

By (22), it follows that

mod(𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) )) ⊂ mod (𝑝, 𝑞) ,
mod(𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) √− 𝑞 (𝑡)𝑝 (𝑡) )

⊂ mod (𝑝, 𝑞) ,
(29)

and hence we have

mod (𝜂) ⊂ mod (𝑝, 𝑞) . (30)
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By (22), (24), and (27), we get

𝜂 (𝑡) ≥ −√− ( 𝑞𝑝 )
𝑀

∫𝑡
−∞

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠)
⋅ (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) 𝑑𝑠
= √− ( 𝑞𝑝 )

𝑀
∫𝑡
−∞

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑑 (∫𝑡
𝑠

𝑝 (𝜏)
⋅ (𝜑 (𝜏) + √− 𝑞 (𝜏)𝑝 (𝜏) ) 𝑑𝜏)
= √− ( 𝑞𝑝 )

𝑀
[𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏]𝑡

−∞

= √− ( 𝑞𝑝 )
𝑀

[1 − 𝑒∫𝑡−∞ 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏]
≥ √− ( 𝑞𝑝 )

𝑀
[1 − 𝑒2 ∫𝑡−∞ 𝑝𝑀√−(𝑞/𝑝)𝑀𝑑𝜏] = √− ( 𝑞𝑝 )

𝑀
,

(31)

and

𝜂 (𝑡) ≤ −√− ( 𝑞𝑝 )
𝐿

∫𝑡
−∞

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠)
⋅ (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) 𝑑𝑠
= √− ( 𝑞𝑝 )

𝐿
∫𝑡
−∞

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑑 (∫𝑡
𝑠

𝑝 (𝜏)
⋅ (𝜑 (𝜏) + √− 𝑞 (𝜏)𝑝 (𝜏) ) 𝑑𝜏)
= √− ( 𝑞𝑝 )

𝐿
[𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏]𝑡

−∞

= √− ( 𝑞𝑝 )
𝐿

[1 − 𝑒∫𝑡−∞ 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏]
≤ √− ( 𝑞𝑝 )

𝐿
[1 − 𝑒2 ∫𝑡−∞ 𝑝𝐿√−(𝑞/𝑝)𝐿𝑑𝜏] = √− ( 𝑞𝑝 )

𝐿
,

(32)

and hence, 𝜂(𝑡) ∈ 𝐵.
Define a mapping as follows

(𝑇𝜑) (𝑡) = − ∫𝑡
−∞

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠)
⋅ (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠)𝑑𝑠, (33)

and thus, given any 𝜑(𝑡) ∈ 𝐵, (𝑇𝜑)(𝑡) ∈ 𝐵; hence 𝑇 : 𝐵 → 𝐵.
Now, we prove that the mapping 𝑇 is a compact operator.

Consider any sequence {𝜑𝑛(𝑡)} ⊂ 𝐵(𝑛 = 1, 2, ⋅ ⋅ ⋅ ); then we
have the following.

√− ( 𝑞𝑝 )
𝑀

≤ 𝜑𝑛 (𝑡) ≤ √− ( 𝑞𝑝 )
𝐿
,

mod (𝜑𝑛) ⊂ mod (𝑝, 𝑞) . (𝑛 = 1, 2, ⋅ ⋅ ⋅ ) (34)

On the other hand, (𝑇𝜑𝑛)(𝑡) = 𝑥𝜑𝑛(𝑡) satisfies
𝑑𝑥𝜑𝑛 (𝑡)𝑑𝑡 = 𝑝 (𝑡) (𝜑𝑛 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) 𝑥𝜑𝑛 (𝑡)

− 𝑝 (𝑡) (𝜑𝑛 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) √− 𝑞 (𝑡)𝑝 (𝑡) ,
(35)

thus we have 𝑑𝑥𝜑𝑛 (𝑡)𝑑𝑡  ≤ 4𝑝𝐿 ( 𝑞𝑝 )
𝐿

,
mod (𝑥𝜑𝑛 (𝑡)) ⊂ mod (𝑝, 𝑞) , (36)

and hence {𝑑𝑥𝜑𝑛(𝑡)/𝑑𝑡} is uniformly bounded; therefore,{𝑥𝜑𝑛(𝑡)} is uniformly bounded and equicontinuous on 𝑅. By
the theorem of Ascoli-Arzela, for any sequence {𝑥𝜑𝑛(𝑡)} ⊂ 𝐵,
there exists a subsequence (also denoted by {𝑥𝜑𝑛(𝑡)}) such
that {𝑥𝜑𝑛(𝑡)} is convergent uniformly on any compact set
of R. Also combined with Lemma 4, {𝑥𝜑𝑛(𝑡)} is convergent
uniformly on R; that is to say, 𝑇 is relatively compact on 𝐵.

Next, we prove that 𝑇 is a continuous operator.
Suppose {𝜑𝑘(𝑡)} ⊂ 𝐵, 𝜑(𝑡) ∈ 𝐵, and

𝜑𝑘 (𝑡) → 𝜑 (𝑡) , (𝑘 → ∞) (37)

and by (33),we have(𝑇𝜑𝑘) (𝑡) − (𝑇𝜑) (𝑡)
= − ∫𝑡

−∞
𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑𝑘 (𝑠)

+ √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
+ ∫𝑡
−∞

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑 (𝑠)
+ √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
= ∫
𝑡

−∞
𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑𝑘 (𝑠)

+ √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
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− ∫𝑡
−∞

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑 (𝑠)
+ √− 𝑞 (𝑠)𝑝 (𝑠)) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
= ∫
𝑡

−∞
𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑𝑘 (𝑠)

− 𝜑 (𝑠)) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
+ ∫𝑡
−∞

(𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏
− 𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏) 𝑝 (𝑠) (𝜑 (𝑠)
+ √− 𝑞 (𝑠)𝑝 (𝑠)) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
= ∫
𝑡

−∞
𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑𝑘 (𝑠)

− 𝜑 (𝑠)) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
+ ∫𝑡
−∞

𝑒𝜉 (∫𝑡
𝑠

𝑝 (𝜏) (𝜑𝑘 (𝜏) − 𝜑 (𝜏)) 𝑑𝜏) 𝑝 (𝑠) (𝜑 (𝑠)
+ √− 𝑞 (𝑠)𝑝 (𝑠)) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠 ,

(38)

where 𝜉 is between 𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏 and𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏; thus 𝜉 is between 2𝑝𝐿√−(𝑞/𝑝)𝐿(𝑡−𝑠)
and 2𝑝𝑀√−(𝑞/𝑝)𝑀(𝑡 − 𝑠), and hence we have

(𝑇𝜑𝑘) (𝑡) − (𝑇𝜑) (𝑡) ≤ ∫
𝑡

−∞
𝑒2𝑝𝑀√−(𝑞/𝑝)𝑀(𝑡−𝑠) 𝑝 (𝑠)

⋅ √− 𝑞 (𝑠)𝑝 (𝑠)𝑑𝑠
+ ∫𝑡
−∞

𝑒2𝑝𝑀√−(𝑞/𝑝)𝑀(𝑡−𝑠) (∫𝑡
𝑠

𝑝 (𝜏) 𝑑𝜏) 𝑝 (𝑠)
⋅ (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠 𝜌 (𝜑𝑘, 𝜑)
≤ − ∫𝑡

−∞
𝑒2𝑝𝑀√−(𝑞/𝑝)𝑀(𝑡−𝑠)𝑝𝐿√− ( 𝑞𝑝 )

𝐿
𝑑𝑠

+ 2 ∫𝑡
−∞

𝑒2𝑝𝑀√−(𝑞/𝑝)𝑀(𝑡−𝑠) (𝑡 − 𝑠) 𝑝2𝐿 (− ( 𝑞𝑝 )
𝐿
) 𝑑𝑠

⋅ 𝜌 (𝜑𝑘, 𝜑) = ( 𝑝𝐿√− (𝑞/𝑝)𝐿2𝑝𝑀√− (𝑞/𝑝)𝑀
+ 𝑝2𝐿 (− (𝑞/𝑝)𝐿)2 (𝑝𝑀√− (𝑞/𝑝)𝑀)2) 𝜌 (𝜑𝑘, 𝜑) .

(39)

By (37), it follows that

(𝑇𝜑𝑘) (𝑡) → (𝑇𝜑) (𝑡) , (𝑘 → ∞) (40)

and, therefore, 𝑇 is continuous; by (33), it is easy to see that𝑇(𝜕𝐵) ⊂ 𝐵, and according to Lemma 5, 𝑇 has at least a
fixed point on 𝐵; the fixed point is the 𝜔−periodic continuous
solution 𝛾1(𝑡) of (2), and

√− ( 𝑞𝑝 )
𝑀

≤ 𝛾1 (𝑡) ≤ √− ( 𝑞𝑝 )
𝐿
. (41)

Let

𝑦 (𝑡) = 𝑥 (𝑡) − 𝛾1 (𝑡) , (42)

where 𝑥(𝑡) is the unique solution of (2) with initial value𝑥(𝑡0) = 𝑥0, and 𝛾1(𝑡) is the periodic solution of (2);
differentiating both sides of (42) along the solution of (2), we
get

𝑑𝑦𝑑𝑡 = 𝑑𝑥 (𝑡)𝑑𝑡 − 𝑑𝛾1 (𝑡)𝑑𝑡 = 𝑝 (𝑡) (𝑥2 (𝑡) − 𝛾21 (𝑡))
= 𝑝 (𝑡) (𝑥 (𝑡) + 𝛾1 (𝑡)) (𝑥 (𝑡) − 𝛾1 (𝑡))
= 𝑝 (𝑡) (𝑥 (𝑡) − 𝛾1 (𝑡) + 2𝛾1 (𝑡)) (𝑥 (𝑡) − 𝛾1 (𝑡))
= 2𝑝 (𝑡) 𝛾1 (𝑡) (𝑥 (𝑡) − 𝛾1 (𝑡))

+ 𝑝 (𝑡) (𝑥 (𝑡) − 𝛾1 (𝑡))2
= 2𝑝 (𝑡) 𝛾1 (𝑡) 𝑦 + 𝑝 (𝑡) 𝑦2.

(43)

This is Bernoulli’s equation; let 𝑢(𝑡) = 𝑦−1(𝑡), and it can be
turned into the following equation

𝑑𝑢𝑑𝑡 = −2𝑝 (𝑡) 𝛾1 (𝑡) 𝑢 − 𝑝 (𝑡) . (44)

Note that

0 < −2𝑝𝑀√− ( 𝑞𝑝 )
𝑀

≤ −2𝑝 (𝑡) 𝛾1 (𝑡)
≤ −2𝑝𝐿√− ( 𝑞𝑝 )

𝐿
, (45)
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according to Lemma 3, (44) has a unique 𝜔−periodic contin-
uous solution as follows

𝜁 (𝑡) = ∫+∞
𝑡

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠, (46)

it is easy to know

∫+∞
𝑡

𝑒−∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
= ∫+∞
𝑡

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏 𝑝 (𝑠) 𝑑𝑠
≤ − ∫+∞
𝑡

𝑒2𝑝𝑀√−(𝑞/𝑝)𝑀(𝑠−𝑡)𝑝𝐿𝑑𝑠
= 𝑝𝐿2𝑝𝑀√− (𝑞/𝑝)𝑀 ,

(47)

and thus the infinite integral ∫+∞𝑡 |𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝(𝑠)|𝑑𝑠
is convergent; thereby, the infinite integral 𝜁(𝑡) =∫+∞𝑡 𝑒−∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝(𝑠)𝑑𝑠 is convergent.

In addition,

𝜁 (𝑡) ≥ ∫+∞
𝑡

𝑒−√−(𝑞/𝑝)𝑀 ∫𝑡𝑠 2𝑝(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
= 12√− (𝑞/𝑝)𝑀 [𝑒−2√−(𝑞/𝑝)𝑀 ∫𝑡𝑠 𝑝(𝜏)𝑑𝜏]+∞

𝑡

= 12√− (𝑞/𝑝)𝑀 [𝑒−2√−(𝑞/𝑝)𝑀 ∫𝑡+∞ 𝑝(𝜏)𝑑𝜏 − 1]
= 12√− (𝑞/𝑝)𝑀 [𝑒2√−(𝑞/𝑝)𝑀 ∫+∞𝑡 𝑝(𝜏)𝑑𝜏 − 1]
≥ 12√− (𝑞/𝑝)𝑀 [𝑒2√−(𝑞/𝑝)𝑀 ∫+∞𝑡 𝑝𝐿𝑑𝜏 − 1]
= − 12√− (𝑞/𝑝)𝑀 ,

(48)

and

𝜁 (𝑡) ≤ ∫+∞
𝑡

𝑒−√−(𝑞/𝑝)𝐿 ∫𝑡𝑠 2𝑝(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
= 12√− (𝑞/𝑝)𝐿 [𝑒−2√−(𝑞/𝑝)𝐿 ∫𝑡𝑠 𝑝(𝜏)𝑑𝜏]+∞

𝑡

= 12√− (𝑞/𝑝)𝐿 [𝑒−2√−(𝑞/𝑝)𝐿 ∫𝑡+∞ 𝑝(𝜏)𝑑𝜏 − 1]
= 12√− (𝑞/𝑝)𝐿 [𝑒2√−(𝑞/𝑝)𝐿 ∫+∞𝑡 𝑝(𝜏)𝑑𝜏 − 1]

≤ 12√− (𝑞/𝑝)𝐿 [𝑒2√−(𝑞/𝑝)𝐿 ∫+∞𝑡 𝑝𝑀𝑑𝜏 − 1]
= − 12√− (𝑞/𝑝)𝐿 ,

(49)

and thus we have− 12√− (𝑞/𝑝)𝑀 ≤ 𝜁 (𝑡) ≤ − 12√− (𝑞/𝑝)𝐿 . (50)

By (46), we know (44) has a unique 𝜔−periodic continuous
solution 𝜁(𝑡), and by the transformations 𝑢(𝑡) = 𝑦−1(𝑡), 𝑦(𝑡) =𝑥(𝑡) − 𝛾1(𝑡),we know (2) has another 𝜔−periodic continuous
solution 𝛾2(𝑡) as follows

𝛾2 (𝑡) = 1𝜁 (𝑡) + 𝛾1 (𝑡) . (51)

Since 𝛾1(𝑡), 𝛾2(𝑡) are periodic solutions of (2), we have𝑑𝛾2 (𝑡)𝑑𝑡
= 𝑝 (𝑡) (𝛾2 (𝑡) − √− 𝑞 (𝑡)𝑝 (𝑡) ) (𝛾2 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) , (52)

𝑑𝛾1 (𝑡)𝑑𝑡
= 𝑝 (𝑡) (𝛾1 (𝑡) − √− 𝑞 (𝑡)𝑝 (𝑡) ) (𝛾1 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) . (53)

Since 𝛾1(𝑡) is a periodic solution of (2), we only consider its
maximum and minimum values in a cycle; suppose 𝛾1(𝑡∗1 ) is
the minimum value of 𝛾1(𝑡), 𝛾1(𝑡∗2 ) is the maximum value of𝛾1(𝑡), 𝑡∗1 is the minimum value point of 𝛾1(𝑡), and 𝑡∗2 is the
maximum value point of 𝛾1(𝑡), where 0 ≤ 𝑡∗1 , 𝑡∗2 ≤ 𝜔; then we
have 𝑑𝛾1 (𝑡∗1 )𝑑𝑡 = 0,

𝑑𝛾1 (𝑡∗2 )𝑑𝑡 = 0, (54)

thus it follows that

𝛾1 (𝑡∗1 ) = √− 𝑞 (𝑡∗1 )𝑝 (𝑡∗1 ) ,
𝛾1 (𝑡∗2 ) = √− 𝑞 (𝑡∗2 )𝑝 (𝑡∗2 ) ,

(55)

and it is easy to see that

𝛾1 (𝑡∗1 ) = √− 𝑞 (𝑡∗1 )𝑝 (𝑡∗1 ) ≥ √− ( 𝑞𝑝 )
𝑀

,
𝛾1 (𝑡∗2 ) = √− 𝑞 (𝑡∗2 )𝑝 (𝑡∗2 ) ≤ √− ( 𝑞𝑝 )

𝐿
.

(56)
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From (46), let𝑑 (1/𝜁 (𝑡))𝑑𝑡 = −𝜁−2𝑑𝜁 (𝑡)𝑑𝑡= −𝜁−2 (−2𝑝 (𝑡) 𝛾1 (𝑡) 𝜁 (𝑡) − 𝑝 (𝑡)) = 0, (57)

then we get that the possible extremum of 1/𝜁(𝑡) satisfying1𝜁 (𝑡∗) = −2𝛾1 (𝑡∗) , (0 ≤ 𝑡∗ ≤ 𝜔) (58)

so 1𝜁 (𝑡∗1 ) = −2𝛾1 (𝑡∗1 ) ,
1𝜁 (𝑡∗2 ) = −2𝛾1 (𝑡∗2 ) , (59)

thus we have

𝜁 (𝑡∗1 ) = − 12𝛾1 (𝑡∗1 ) ,
𝜁 (𝑡∗2 ) = − 12𝛾1 (𝑡∗2 ) , (60)

and it is easy to see that 𝑡∗1 , 𝑡∗2 are also extreme points of 𝜁(𝑡),𝜁(𝑡∗1 ) is the maximum value of 𝜁(𝑡), 𝜁(𝑡∗2 ) is the minimum
value of 𝜁(𝑡), and thus 1/𝜁(𝑡∗1 ) is the minimum value of 1/𝜁(𝑡)
and 1/𝜁(𝑡∗2 ) is the maximum value of 1/𝜁(𝑡). By (51), it follows
that

𝛾2 (𝑡∗1 ) = 𝛾1 (𝑡∗1 ) + 1𝜁 (𝑡∗1 ) = −𝛾1 (𝑡∗1 ) ≤ −√− ( 𝑞𝑝 )
𝑀

, (61)

𝛾2 (𝑡∗2 ) = 𝛾1 (𝑡∗2 ) + 1𝜁 (𝑡∗2 ) = −𝛾1 (𝑡∗2 ) ≥ −√− ( 𝑞𝑝 )
𝐿
, (62)

𝛾2(𝑡∗1 ), 𝛾2(𝑡∗2 ) are two possible extremums of 𝛾2(𝑡); moreover,
let 𝑑𝛾2𝑑𝑡 = 𝑝 (𝑡) 𝛾22 + 𝑞 (𝑡) = 0, (63)

and then we get the following equation that all possible
extreme points 𝑡∗ of function 𝛾2(𝑡) satisfy

𝛾2 (𝑡∗) = ±√ 𝑞 (𝑡∗)𝑝 (𝑡∗) , (0 ≤ 𝑡∗ ≤ 𝜔) . (64)

Take the negative sign of (64); since they are the possible
extremums of 𝛾2(𝑡), by (61), (62), and (64), we get

−√− ( 𝑞𝑝 )
𝐿

≤ 𝛾2 (𝑡) ≤ −√− ( 𝑞𝑝 )
𝑀

. (65)

(2) We prove the stability of two periodic solutions 𝛾1(𝑡)
and 𝛾2(𝑡) of (2).

First, we prove the stability of the periodic solution 𝛾1(𝑡)
of (2).

It is easy to know that the unique solution𝑢(𝑡) of (44) with
initial value 𝑢(𝑡0) = 𝑢0 is

𝑢 (𝑡) = 𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠𝑢0 − ∫𝑡
𝑡0

𝑒−∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠 (66)

= 𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠𝑢0 − ∫+∞
𝑡0

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
+ ∫+∞
𝑡

𝑒−∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
= 𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠𝑢0

− 𝑒− ∫𝑡t0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 ∫+∞
𝑡0

𝑒−∫𝑡0𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
+ ∫+∞
𝑡

𝑒−∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠

(67)

= 𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [𝑢0 − 𝜁 (𝑡0)] + 𝜁 (𝑡) . (68)

By (42) and 𝑢(𝑡) = 𝑦−1(𝑡), the unique solution 𝑦(𝑡) of (43)
with initial value

𝑦 (𝑡0) = 1𝑢 (𝑡0) = 𝑥 (𝑡0) − 𝛾1 (𝑡0) (69)

is

𝑦 (𝑡) = 1𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [𝑢0 − 𝜁 (𝑡0)] + 𝜁 (𝑡)
= 1𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [1/ (𝑥 (𝑡0) − 𝛾1 (𝑡0)) − 𝜁 (𝑡0)] + 𝜁 (𝑡) . (70)

By (42), we have𝑥 (𝑡) − 𝛾1 (𝑡)
= 

1𝑒−∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [1/ (𝑥 (𝑡0) − 𝛾1 (𝑡0)) − 𝜁 (𝑡0)] + 𝜁 (𝑡)
 . (71)

By (45), we have

𝑒−∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 → +∞ (𝑡 → +∞) . (72)

Following we will discuss the sign of 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) − 𝜁(𝑡0)
in three cases:

(i) If 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) − 𝜁(𝑡0) < 0,that is1𝜁 (𝑡0) + 𝛾1 (𝑡0) < 𝑥 (𝑡0) < 𝛾1 (𝑡0) , (73)

by (50), (71), and (72), it follows that𝑥 (𝑡) − 𝛾1 (𝑡) → 0, (𝑡 → +∞) , (74)

and, therefore, the 𝜔−periodic solution 𝛾1(𝑡) of (2) is attrac-
tive if given the initial value 1/𝜁(𝑡0) + 𝛾1(𝑡0) < 𝑥(𝑡0) < 𝛾1(𝑡0).
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(ii) If 1𝑥 (𝑡0) − 𝛾1 (𝑡0) − 𝜁 (𝑡0) > 0, (75)

from (71), (68), (72), and (69), we have

𝑥 (𝑡) − 𝛾1 (𝑡) = 1|𝑢 (𝑡)| , (76)

𝑢 (+∞) → +∞, (77)

𝑢 (𝑡0) = 1𝑥 (𝑡0) − 𝛾1 (𝑡0) . (78)

Now, we discuss 𝑢(𝑡0) in two cases.
(I) If 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) > 0, then 𝑥(𝑡0) > 𝛾1(𝑡0); thus we

have

𝑢 (𝑡0) = 𝑢0 > 0, (79)

from (66), (79), when 𝑡 > 𝑡0, it follows that𝑢 (𝑡) > 0, (80)

by (76), (77), we have𝑥 (𝑡) − 𝛾1 (𝑡) → 0, (𝑡 → +∞) , (81)

and thus the 𝜔−periodic solution 𝛾1(𝑡) of (2) is attractive if
given the initial value

𝑥 (𝑡0) > 𝛾1 (𝑡0) . (82)

If 𝑥(𝑡0) = 𝛾1(𝑡0), then 𝑥(𝑡) = 𝛾1(𝑡), (81) also holds; by (i)
and (I) of (ii), the unique 𝜔−periodic solution 𝛾1(𝑡) of (2) is
attractive if given the initial value

𝑥 (𝑡0) ∈ 𝐷1 = {𝑥 (𝑡0) | 𝑥 (𝑡0) > 1𝜁 (𝑡0) + 𝛾1 (𝑡0)} . (83)

(II) If 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) < 0, then
𝑥 (𝑡0) < 𝛾1 (𝑡0) , (84)

thus 𝑢(𝑡0) = 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) < 0, by (77), and according to
zero point theorem, there exists a 𝑡∗ > 𝑡0, such that𝑢 (𝑡∗)

= 𝑒−∫𝑡∗𝑡0 (2𝑎(𝑠)𝛾1(𝑠)+𝑏(𝑠))𝑑𝑠 [ 1𝑥 (𝑡0) − 𝛾1 (𝑡0) − 𝜁 (𝑡0)]
+ 𝜁 (𝑡∗) = 0,

(85)

therefore, when 𝑡 → 𝑡∗, we have
𝑒−∫𝑡∗𝑡0 (2𝑎(𝑠)𝛾1(𝑠)+𝑏(𝑠))𝑑𝑠 [ 1𝑥 (𝑡0) − 𝛾1 (𝑡0) − 𝜁 (𝑡0)]

+ 𝜁 (𝑡∗) → 0, (86)

thus 𝑥 (𝑡) − 𝛾1 (𝑡) → +∞, (𝑡 → 𝑡∗) , (87)

by (75) and (84), it follows that

𝑥 (𝑡0) < 1𝜁 (𝑡0) + 𝛾1 (𝑡0) , (88)

and thus the periodic solution 𝛾1(𝑡) of (2) is unstable if initial
value 𝑥(𝑡0) < 1/𝜁(𝑡0) + 𝛾1(𝑡0).

(iii) If 1/(𝑥(𝑡0)−𝛾1(𝑡0))−𝜁(𝑡0) = 0, that is,𝑥(𝑡0) = 1/𝜁(𝑡0)+𝛾1(𝑡0), at this time, the unique solution 𝑥(𝑡) of (2) with initial
value𝑥(𝑡0) = 1/𝜁(𝑡0)+𝛾1(𝑡0) is just the periodic solution 𝛾2(𝑡),𝑥 (𝑡) − 𝛾1 (𝑡) = 1𝜁 (𝑡) > 0, (89)

and 𝛾1(𝑡) is also unstable.
By (II) of (ii) and (iii), we get that if given the initial value

𝑥 (𝑡0) ∈ 𝐷2 = {𝑥 (𝑡0) | 𝑥 (𝑡0) ≤ 1𝜁 (𝑡0) + 𝛾1 (𝑡0)} , (90)

𝛾1(𝑡) is unstable.
Next, we prove the stability of the periodic solutions 𝛾2(𝑡)

of (2).
By (51), it follows that𝑥 (𝑡) − 𝛾2 (𝑡) = 𝑥 (𝑡) − 𝛾1 (𝑡) − 1𝜁 (𝑡) 

≥ 1𝜁 (𝑡) − 𝑥 (𝑡) − 𝛾1 (𝑡) , (91)

where 𝑥(𝑡) is the unique solution of (2) with initial value𝑥(𝑡0) = 𝑥0. From the above proof, we know that when 𝑥(𝑡0) ∈𝐷1,|𝑥(𝑡) − 𝛾1(𝑡)| → 0, (𝑡 → +∞), that is to say, given any𝜀 > 0, there is a 𝑇 > 0, such that |𝑥(𝑡) − 𝛾1(𝑡)| < 𝜀 as 𝑡 ≥ 𝑡0 + 𝑇,
so, when 𝑡 ≥ 𝑡0 + 𝑇, we have𝑥 (𝑡) − 𝛾2 (𝑡) > 1𝜁 (𝑡) − 𝜀, (92)

and, therefore, it follows that𝑥 (𝑡) − 𝛾2 (𝑡) ≥ 1𝜁 (𝑡) . (93)

Note that |𝜁(𝑡)| is bounded and positive on 𝑅, and thus 𝛾2(𝑡)
is unstable if 𝑥(𝑡0) ∈ 𝐷1.

When 𝑥(𝑡0) ∈ 𝐷2, there are two cases.
(I) If 𝑥(𝑡0) < 1/𝜁(𝑡0)+𝛾1(𝑡0), by (87), there exists a 𝑡∗ > 𝑡0,

such that 𝑥 (𝑡) − 𝛾1 (𝑡) → +∞, (𝑡 → 𝑡∗) (94)

since |𝜁(𝑡)| is bounded and positive on 𝑅, we have𝑥 (𝑡) − 𝛾2 (𝑡) = 𝑥 (𝑡) − 𝛾1 (𝑡) − 1𝜁 (𝑡) 
≥ 𝑥 (𝑡) − 𝛾1 (𝑡) − 1𝜁 (𝑡) → +∞,

(𝑡 → 𝑡∗)
(95)

and thus 𝛾2(𝑡) is unstable.
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(II) If 𝑥(𝑡0) = 1/𝜁(𝑡0) + 𝛾1(𝑡0), by (89),𝑥 (𝑡) − 𝛾1 (𝑡) = 𝛾2 (𝑡) − 𝛾1 (𝑡) = 1𝜁 (𝑡) > 0, (96)

𝛾2(𝑡) is also unstable.
Thus 𝛾2(𝑡) is unstable if 𝑥(𝑡0) ∈ 𝐷2.
Therefore, the 𝜔−periodic solution 𝛾2(𝑡) of (2) is unstable

on 𝐷1 ∪ 𝐷2 = 𝑅.
This is the end of the proof of Theorem 8.

Theorem9. Under the conditions ofTheorem8, (2) has exactly
two 𝜔−periodic continuous solutions: 𝛾1(𝑡) and 𝛾2(𝑡).
Proof. The proof of the existence of 𝛾1(𝑡) and 𝛾2(𝑡) is seen in
Theorem 8; now, we prove that (2) has exactly two𝜔−periodic
continuous solutions: 𝛾1(𝑡) and 𝛾2(𝑡).

We know that if 𝑥(𝑡0) = 𝛾1(𝑡0), the unique solution of (2)
is 𝛾1(𝑡), and if 𝑥(𝑡0) = 𝛾2(𝑡0) = 1/𝜁(𝑡0) + 𝛾1(𝑡0),the unique
solution of (2) is 𝛾2(𝑡).

(i) If 𝑥(𝑡0) < 𝛾2(𝑡0) = 1/𝜁(𝑡0) + 𝛾1(𝑡0), by (87), the unique
solution 𝑥(𝑡) of (2) satisfies|𝑥 (𝑡)| → +∞, (𝑡 → 𝑡∗) (97)

and thus 𝑥(𝑡) cannot be a periodic solution.
(ii) If 𝑥(𝑡0) > 𝛾2(𝑡0) = 1/𝜁(𝑡0) + 𝛾1(𝑡0), we know that 𝛾1(𝑡)

is attractive; thus the unique solution 𝑥(𝑡) of (2) is satisfied𝑥 (𝑡) − 𝛾1 (𝑡) → 0, (𝑡 → +∞) (98)

and hence 𝑥(𝑡) cannot be a periodic solution; otherwise, there
is a certain 𝛿 > 0 such that𝑥 (𝑡) − 𝛾1 (𝑡) ≥ 𝛿 > 0 (99)

for any 𝑡 ∈ 𝑅.
Therefore, (2) has exactly two 𝜔−periodic continuous

solutions, 𝛾1(𝑡) and 𝛾2(𝑡).
This is the end of the proof of Theorem 9.

Theorem 10. Consider (2), 𝑝(𝑡), 𝑞(𝑡) are 𝜔−periodic continu-
ous functions, suppose that the following conditions hold:(𝐻1) 𝑝 (𝑡) > 0,

(𝐻2) 𝑞 (𝑡) < 0, (100)

and then (2) has two 𝜔−periodic continuous solutions.
(1) One 𝜔−periodic continuous solution is 𝛾1(𝑡),

√− ( 𝑞𝑝 )
𝑀

≤ 𝛾1 (𝑡) ≤ √− ( 𝑞𝑝 )
𝐿
, (101)

and 𝛾1(𝑡) is unstable on 𝑅.
(2) Another 𝜔-periodic continuous solution is 𝛾2(𝑡),

𝛾2 (𝑡) = 1𝜁 (𝑡) + 𝛾1 (𝑡) ,
−√− ( 𝑞𝑝 )

𝐿
≤ 𝛾2 (𝑡) ≤ −√− ( 𝑞𝑝 )

𝑀
, (102)

and 𝛾2(𝑡) is attractive if given initial value on 𝐷1 = {𝑥(𝑡0) |𝑥(𝑡0) < 𝛾1(𝑡0)}, and it is unstable if given initial value on 𝐷2 ={𝑥(𝑡0) | 𝑥(𝑡0) ≥ 𝛾1(𝑡0)}, where 𝑥(𝑡0) is any given initial value
of (2), and

𝜁 (𝑡) = − ∫𝑡
−∞

𝑒−∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠. (103)

Proof. By (𝐻1), (𝐻2), (2) can be turned into

𝑑𝑥𝑑𝑡 = 𝑝 (𝑡) (𝑥 − √− 𝑞 (𝑡)𝑝 (𝑡) ) (𝑥 + √− 𝑞 (𝑡)𝑝 (𝑡) ) . (104)

(1) Suppose𝑆 = {𝜑 (𝑡) ∈ 𝐶 (𝑅, 𝑅) | 𝜑 (𝑡 + 𝜔) = 𝜑 (𝑡)} . (105)

Given any 𝜑(𝑡), 𝜓(𝑡) ∈ 𝑆, the distance is defined as follows:𝜌 (𝜑, 𝜓) = sup
𝑡∈[0,𝜔]

𝜑 (𝑡) − 𝜓 (𝑡) , (106)

and thus (𝑆, 𝜌) is a complete metric space. Take a convex
closed set of S as follows

𝐵 = {𝜑 (𝑡) ∈ 𝑆 | √− ( 𝑞𝑝 )
𝑀

≤ 𝜑 (𝑡)
≤ √− ( 𝑞𝑝 )

𝐿
, mod (𝜑) ⊂ mod (𝑝, 𝑞)} . (107)

Given any 𝜑(𝑡) ∈ 𝐵, consider the following equation
𝑑𝑥𝑑𝑡 = 𝑝 (𝑡) (𝑥 − √− 𝑞 (𝑡)𝑝 (𝑡) ) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) )

= 𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) 𝑥
− 𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) √− 𝑞 (𝑡)𝑝 (𝑡) .

(108)

By (𝐻1) and (107), we get that

0 < 2𝑝𝐿√− ( 𝑞𝑝 )
𝑀

≤ 𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) )
≤ 2𝑝𝑀√− ( 𝑞𝑝 )

𝐿
,

(109)

and hence we have

∫𝜔
0

𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) 𝑑𝑡 > 0. (110)

Since 𝑝(𝑡), 𝜑(𝑡), 𝑞(𝑡) are 𝜔−periodic continuous functions, it
follows that

𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) ,
𝑝 (𝑡) (𝜑 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) √− 𝑞 (𝑡)𝑝 (𝑡)

(111)
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are 𝜔−periodic continuous functions; by (110), according to
Lemma 3, (108) has a unique positive 𝜔−periodic continuous
solution as follows

𝜂 (𝑡) = ∫+∞
𝑡

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠)
⋅ (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠, (112)

and

mod (𝜂) ⊂ mod(𝜑 (𝜏)
+ √− 𝑞 (𝜏)𝑝 (𝜏) , 𝑝 (𝑠) (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) ) . (113)

By (107), it follows that

mod(𝜑 (𝜏) + √− 𝑞 (𝜏)𝑝 (𝜏) ) ⊂ mod (𝑝, 𝑞) ,
mod(𝑝 (𝑠) (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠)) √− 𝑞 (𝑠)𝑝 (𝑠) )

⊂ mod (𝑝, 𝑞) ,
(114)

and hence we have

mod (𝜂) ⊂ mod (𝑝, 𝑞) . (115)

By (109), (107), and (112), we get

𝜂 (𝑡) ≥ √− ( 𝑞𝑝 )
𝑀

∫+∞
𝑡

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑 (𝑠)
+ √− 𝑞 (𝑠)𝑝 (𝑠) ) 𝑑𝑠
= −√− ( 𝑞𝑝 )

𝑀
∫+∞
𝑡

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑑 (∫𝑡
𝑠

𝑝 (𝜏)
⋅ (𝜑 (𝜏) + √− 𝑞 (𝜏)𝑝 (𝜏) ) 𝑑𝜏)
= −√− ( 𝑞𝑝 )

𝑀
[𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏]+∞

𝑡

= −√− ( 𝑞𝑝 )
𝑀

[𝑒∫𝑡+∞ 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏 − 1]
= −√− ( 𝑞𝑝 )

𝑀
[𝑒− ∫+∞𝑡 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏 − 1]

≥ −√− ( 𝑞𝑝 )
𝑀

[𝑒−2∫+∞𝑡 𝑝𝐿√−(𝑞/𝑝)𝑀𝑑𝜏 − 1] = √− ( 𝑞𝑝 )
𝑀

,

(116)

and

𝜂 (𝑡) ≤ √− ( 𝑞𝑝 )
𝐿

∫+∞
𝑡

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑 (𝑠)
+ √− 𝑞 (𝑠)𝑝 (𝑠)) 𝑑𝑠
= −√− ( 𝑞𝑝 )

𝐿
∫+∞
𝑡

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑑 (∫𝑡
𝑠

𝑝 (𝜏)
⋅ (𝜑 (𝜏) + √− 𝑞 (𝜏)𝑝 (𝜏) ) 𝑑𝜏)
= −√− ( 𝑞𝑝 )

𝐿
[𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏]+∞

𝑡

= −√− ( 𝑞𝑝 )
𝐿

[𝑒∫𝑡+∞ 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏 − 1]
= −√− ( 𝑞𝑝 )

𝐿
[𝑒−∫+∞𝑡 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏 − 1]

≤ −√− ( 𝑞𝑝 )
𝐿

[𝑒−2∫+∞𝑡 𝑝𝑀√−(𝑞/𝑝)𝐿𝑑𝜏 − 1] = √− ( 𝑞𝑝 )
𝐿
,

(117)

and, hence, 𝜂(𝑡) ∈ 𝐵.
Define a map as follows

(𝑇𝜑) (𝑡) = ∫+∞
𝑡

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠)
⋅ (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠, (118)

and thus if given any 𝜑(𝑡) ∈ 𝐵, then (𝑇𝜑)(𝑡) ∈ 𝐵, and hence𝑇 : 𝐵 → 𝐵.
Now, we prove that the mapping T is a compact operator.
Consider any sequence {𝜑𝑛(𝑡)} ⊂ 𝐵(𝑛 = 1, 2, ⋅ ⋅ ⋅ ), then it

follows that

√− ( 𝑞𝑝 )
𝑀

≤ 𝜑𝑛 (𝑡) ≤ √− ( 𝑞𝑝 )
𝐿
,

mod (𝜑𝑛) ⊂ mod (𝑝, 𝑞) . (𝑛 = 1, 2, ⋅ ⋅ ⋅ ) (119)

On the other hand, (𝑇𝜑𝑛)(𝑡) = 𝑥𝜑𝑛(𝑡) satisfies
𝑑𝑥𝜑𝑛 (𝑡)𝑑𝑡 = 𝑝 (𝑡) (𝜑𝑛 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) 𝑥𝜑𝑛 (𝑡)

− 𝑝 (𝑡) (𝜑𝑛 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) √− 𝑞 (𝑡)𝑝 (𝑡) , (120)

thus we have 𝑑𝑥𝜑𝑛 (𝑡)𝑑𝑡  ≤ 4𝑝𝑀 (− 𝑞𝑝 )
𝑀

,
mod (𝑥𝜑𝑛 (𝑡)) ⊂ mod (𝑝, 𝑞) , (121)



Mathematical Problems in Engineering 11

and hence {𝑑𝑥𝜑𝑛(𝑡)/𝑑𝑡} is uniformly bounded; therefore,{𝑥𝜑𝑛(𝑡)} is uniformly bounded and equicontinuous on 𝑅. By
the theorem of Ascoli-Arzela, for any sequence {𝑥𝜑𝑛(𝑡)} ⊂ 𝐵,
there exists a subsequence (also denoted by {𝑥𝜑𝑛(𝑡)}) such
that {𝑥𝜑𝑛(𝑡)} is convergent uniformly on any compact set
of R. Also combined with Lemma 4, {𝑥𝜑𝑛(𝑡)} is convergent
uniformly on R; that is to say, 𝑇 is relatively compact on 𝐵.

Next, we prove that T is a continuous operator.
Suppose {𝜑𝑘(𝑡)} ⊂ 𝐵, 𝜑(𝑡) ∈ 𝐵, and

𝜑𝑘 (𝑡) → 𝜑 (𝑡) , (𝑘 → ∞) (122)

by (118), we have

(𝑇𝜑𝑘) (𝑡) − (𝑇𝜑) (𝑡)
= ∫
+∞

𝑡
𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑𝑘 (𝑠)

+ √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
− ∫+∞
𝑡

𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑 (𝑠)
+ √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
= ∫
+∞

𝑡
𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑𝑘 (𝑠)

− 𝜑 (𝑠)) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
+ ∫+∞
𝑡

(𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏
− 𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏) 𝑝 (𝑠) (𝜑 (𝑠)
+ √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
= ∫
+∞

𝑡
𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏𝑝 (𝑠) (𝜑𝑘 (𝑠)

− 𝜑 (𝑠)) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠
+ ∫+∞
𝑡

𝑒𝜉 (∫𝑡
𝑠

𝑝 (𝜏) (𝜑𝑘 (𝜏) − 𝜑 (𝜏)) 𝑑𝜏) 𝑝 (𝑠)
⋅ (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) ) √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠 ,

(123)

where 𝜉 is between 𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑𝑘(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏 and𝑒∫𝑡𝑠 𝑝(𝜏)(𝜑(𝜏)+√−𝑞(𝜏)/𝑝(𝜏))𝑑𝜏, thus 𝜉 is between 2𝑝𝑀√−(𝑞/𝑝)𝐿(𝑡−𝑠)
and 2𝑝𝐿√−(𝑞/𝑝)𝑀(𝑡 − 𝑠), hence we have

(𝑇𝜑𝑘) (𝑡) − (𝑇𝜑) (𝑡) ≤ ∫+∞𝑡 𝑒2𝑝𝐿√−(𝑞/𝑝)𝑀(𝑡−𝑠) 𝑝 (𝑠)
⋅ √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠 + ∫+∞

𝑡
𝑒2𝑝𝐿√−(𝑞/𝑝)𝑀(𝑡−𝑠)

⋅ (∫𝑡
𝑠

𝑝 (𝜏) 𝑑𝜏) 𝑝 (𝑠) (𝜑 (𝑠) + √− 𝑞 (𝑠)𝑝 (𝑠) )
⋅ √− 𝑞 (𝑠)𝑝 (𝑠) 𝑑𝑠 𝜌 (𝜑𝑘, 𝜑)
≤ ∫
+∞

𝑡
𝑒−2𝑝𝐿√−(𝑞/𝑝)𝑀(𝑠−𝑡)𝑝𝑀√− ( 𝑞𝑝 )

𝐿
𝑑𝑠

+ 2 ∫+∞
𝑡

𝑒−2𝑝𝐿√−(𝑞/𝑝)𝑀(𝑠−𝑡) (𝑠 − 𝑡)
⋅ 𝑝2𝑀(− ( 𝑞𝑝 )

𝐿
) 𝑑𝑠 𝜌 (𝜑𝑘, 𝜑)

= ( 𝑝𝑀√− (𝑞/𝑝)𝐿2𝑝𝐿√− (𝑞/𝑝)𝑀 + 𝑝2𝑀 (− (𝑞/𝑝)𝐿)2 (𝑝𝐿√− (𝑞/𝑝)𝑀)2)
⋅ 𝜌 (𝜑𝑘, 𝜑) ,

(124)

by (122), it follows that

(𝑇𝜑𝑘) (𝑡) → (𝑇𝜑) (𝑡) , (𝑘 → ∞) (125)

and, therefore, 𝑇 is continuous. By (118), it is easy to see that𝑇(𝜕𝐵) ⊂ 𝐵, and according to Lemma 5, 𝑇 has at least a fixed
point on 𝐵; the fixed point is the periodic continuous solution𝛾1(𝑡) of (2), and

√− ( 𝑞𝑝 )
𝑀

≤ 𝛾1 (𝑡) ≤ √− ( 𝑞𝑝 )
𝐿
. (126)

Let

𝑦 (𝑡) = 𝑥 (𝑡) − 𝛾1 (𝑡) , (127)

where 𝑥(𝑡) is the unique solution of (2) with initial value𝑥(𝑡0) = 𝑥0, and 𝛾1(𝑡) is the periodic solution of (2); differenti-
ating both sides of (127) along the solution of (2), we get

𝑑𝑦𝑑𝑡 = 𝑑𝑥 (𝑡)𝑑𝑡 − 𝑑𝛾1 (𝑡)𝑑𝑡 = 𝑝 (𝑡) (𝑥2 (𝑡) − 𝛾21 (𝑡))
= 𝑝 (𝑡) (𝑥 (𝑡) + 𝛾1 (𝑡)) (𝑥 (𝑡) − 𝛾1 (𝑡))
= 𝑝 (𝑡) (𝑥 (𝑡) − 𝛾1 (𝑡) + 2𝛾1 (𝑡)) (𝑥 (𝑡) − 𝛾1 (𝑡))
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= 2𝑝 (𝑡) 𝛾1 (𝑡) (𝑥 (𝑡) − 𝛾1 (𝑡))
+ 𝑝 (𝑡) (𝑥 (𝑡) − 𝛾1 (𝑡))2

= 2𝑝 (𝑡) 𝛾1 (𝑡) 𝑦 + 𝑝 (𝑡) 𝑦2.
(128)

This is Bernoulli’s equation. Let 𝑢(𝑡) = 𝑦−1(𝑡), and it can be
turned into the following equation

𝑑𝑢𝑑𝑡 = −2𝑝 (𝑡) 𝛾1 (𝑡) 𝑢 − 𝑝 (𝑡) . (129)

Note that

−2𝑝𝑀√− ( 𝑞𝑝 )
𝐿

≤ −2𝑝 (𝑡) 𝛾1 (𝑡) ≤ −2𝑝𝐿√− ( 𝑞𝑝 )
𝑀< 0, (130)

according to Lemma 3, (129) has a unique periodic continu-
ous solution as follows

𝜁 (𝑡) = − ∫𝑡
−∞

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠, (131)

it is easy to know that

∫𝑡
−∞

𝑒−∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
= ∫𝑡
−∞

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏 𝑝 (𝑠) 𝑑𝑠
≤ ∫𝑡
−∞

𝑒−2𝑝𝐿√−(𝑞/𝑝)𝑀(𝑡−𝑠)𝑝𝑀𝑑𝑠 = 𝑝𝑀2𝑝𝐿√− (𝑞/𝑝)𝑀 ,
(132)

and thus the infinite integral ∫𝑡−∞ |𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝(𝑠)|𝑑𝑠
is convergent; thereby, the infinite integral 𝜁(𝑡) =∫𝑡−∞ 𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝(𝑠)𝑑𝑠 is convergent.

In addition,

𝜁 (𝑡) ≥ − ∫𝑡
−∞

𝑒−√−(𝑞/𝑝)𝑀 ∫𝑡𝑠 2𝑝(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
= − 12√− (𝑝/𝑞)𝑀 [𝑒−2√−(𝑞/𝑝)𝑀 ∫𝑡𝑠 𝑝(𝜏)𝑑𝜏]𝑡

−∞

= − 12√− (𝑝/𝑞)𝑀 [1 − 𝑒−2√−(𝑞/𝑝)𝑀 ∫𝑡−∞ 𝑝(𝜏)𝑑𝜏]
≥ − 12√− (𝑝/𝑞)𝑀 [1 − 𝑒−2√−(𝑞/𝑝)𝑀 ∫𝑡−∞ 𝑝𝑀𝑑𝜏]
= − 12√− (𝑝/𝑞)𝑀 ,

(133)

and

𝜁 (𝑡) ≤ − ∫𝑡
−∞

𝑒−√−(𝑞/𝑝)𝐿 ∫𝑡𝑠 2𝑝(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
= − 12√− (𝑝/𝑞)𝐿 [𝑒−2√−(𝑞/𝑝)𝐿 ∫𝑡𝑠 𝑝(𝜏)𝑑𝜏]𝑡

−∞

= − 12√− (𝑝/𝑞)𝐿 [1 − 𝑒−2√−(𝑞/𝑝)𝐿 ∫𝑡−∞ 𝑝(𝜏)𝑑𝜏]
≤ − 12√− (𝑝/𝑞)𝐿 [1 − 𝑒−2√−(𝑞/𝑝)𝐿 ∫𝑡−∞ 𝑝𝐿𝑑𝜏]
= − 12√− (𝑝/𝑞)𝐿 ,

(134)

thus we have

− 12√− (𝑝/𝑞)𝑀 ≤ 𝜁 (𝑡) ≤ − 12√− (𝑝/𝑞)𝐿 , (135)

by (131), we know that (129) has a unique periodic continuous
solution 𝜁(𝑡), and by the transformations 𝑢(𝑡) = 𝑦−1(𝑡), 𝑦(𝑡) =𝑥(𝑡)−𝛾1(𝑡),we know that (2) has another periodic continuous
solution 𝛾2(𝑡) as follows

𝛾2 (𝑡) = 1𝜁 (𝑡) + 𝛾1 (𝑡) . (136)

Since 𝛾1(𝑡), 𝛾2(𝑡) are periodic solution of (2), we have

𝑑𝛾2 (𝑡)𝑑𝑡
= 𝑝 (𝑡) (𝛾2 (𝑡) − √− 𝑞 (𝑡)𝑝 (𝑡) ) (𝛾2 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) , (137)

𝑑𝛾1 (𝑡)𝑑𝑡
= 𝑝 (𝑡) (𝛾1 (𝑡) − √− 𝑞 (𝑡)𝑝 (𝑡) ) (𝛾1 (𝑡) + √− 𝑞 (𝑡)𝑝 (𝑡) ) . (138)

Since 𝛾1(𝑡) is a periodic solution of (2), we only consider its
maximum and minimum values in a cycle. Suppose 𝛾1(𝑡∗1 ) is
the minimum value of 𝛾1(𝑡), 𝛾1(𝑡∗2 ) is the maximum value of𝛾1(𝑡), 𝑡∗1 is the minimum value point of 𝛾1(𝑡), and 𝑡∗2 is the
maximum value point of 𝛾1(𝑡), where 0 ≤ 𝑡∗1 , 𝑡∗2 ≤ 𝜔; then we
have

𝑑𝛾1 (𝑡∗1 )𝑑𝑡 = 0,
𝑑𝛾1 (𝑡∗2 )𝑑𝑡 = 0, (139)
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thus it follows

𝛾1 (𝑡∗1 ) = √− 𝑞 (𝑡∗1 )𝑝 (𝑡∗1 ) ,
𝛾1 (𝑡∗2 ) = √− 𝑞 (𝑡∗2 )𝑝 (𝑡∗2 ) ,

(140)

and it is easy to see that

𝛾1 (𝑡∗1 ) = √− 𝑞 (𝑡∗1 )𝑝 (𝑡∗1 ) ≥ √− ( 𝑞𝑝 )
𝑀

,
𝛾1 (𝑡∗2 ) = √− 𝑞 (𝑡∗2 )𝑝 (𝑡∗2 ) ≤ √− ( 𝑞𝑝 )

𝐿
.

(141)

From (131), let𝑑 (1/𝜁 (𝑡))𝑑𝑡 = −𝜁−2𝑑𝜁 (𝑡)𝑑𝑡= −𝜁−2 (−2𝑝 (𝑡) 𝛾1 (𝑡) 𝜁 (𝑡) − 𝑝 (𝑡)) = 0. (142)

Then we get that the possible extremums of 1/𝜁(𝑡) satisfy1𝜁 (𝑡∗) = −2𝛾1 (𝑡∗) , (0 ≤ 𝑡∗ ≤ 𝜔) (143)

so 1𝜁 (𝑡∗1 ) = −2𝛾1 (𝑡∗1 ) ,
1𝜁 (𝑡∗2 ) = −2𝛾1 (𝑡∗2 ) , (144)

thus we have

𝜁 (𝑡∗1 ) = − 12𝛾1 (𝑡∗1 ) ,
𝜁 (𝑡∗2 ) = − 12𝛾1 (𝑡∗2 ) , (145)

and it is easy to see that 𝑡∗1 , 𝑡∗2 are also extreme points of 𝜁(𝑡),𝜁(𝑡∗1 ) is the maximum value of 𝜁(𝑡), and 𝜁(𝑡∗2 ) is the minimum
value of 𝜁(𝑡); thus 1/𝜁(𝑡∗1 ) is the minimum value of 1/𝜁(𝑡) and1/𝜁(𝑡∗2 ) is the maximum value of 1/𝜁(𝑡). By (136), it follows
that

𝛾2 (𝑡∗1 ) = 𝛾1 (𝑡∗1 ) + 1𝜁 (𝑡∗1 ) = −𝛾1 (𝑡∗1 ) ≤ −√− ( 𝑞𝑝 )
𝑀

, (146)

𝛾2 (𝑡∗2 ) = 𝛾1 (𝑡∗2 ) + 1𝜁 (𝑡∗2 ) = −𝛾1 (𝑡∗2 ) ≥ −√− ( 𝑞𝑝 )
𝐿
, (147)

𝛾2(𝑡∗1 ), 𝛾2(𝑡∗2 ) are two possible extremums of 𝛾2(𝑡). Moreover,
let 𝑑𝛾2𝑑𝑡 = 𝑝 (𝑡) 𝛾22 + 𝑞 (𝑡) = 0, (148)

and then we get from the following equation that all possible
extreme points 𝑡∗ of function 𝛾2(𝑡) satisfy

𝛾2 (𝑡∗) = ±√ 𝑞 (𝑡∗)𝑝 (𝑡∗) , (0 ≤ 𝑡∗ ≤ 𝜔) . (149)

Take the negative sign of (149). Since they are the possible
extremums of 𝛾2(𝑡), by (146), (147), and (149), we get

−√− ( 𝑞𝑝 )
𝐿

≤ 𝛾2 (𝑡) ≤ −√− ( 𝑞𝑝 )
𝑀

. (150)

(2) We prove the stability of two periodic solutions 𝛾1(𝑡)
and 𝛾2(𝑡) of (2).

First, we prove the stability of the periodic solution 𝛾2(𝑡)
of (2).

It is easy to know that the unique solution 𝑢(𝑡) of (115)
with initial value 𝑢(𝑡0) = 𝑢0 is

𝑢 (𝑡) = 𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠𝑢0 − ∫𝑡
𝑡0

𝑒− ∫𝑡𝑠 𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠 (151)

= 𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠𝑢0
+ ∫𝑡0
−∞

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
− ∫𝑡
−∞

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
= 𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠𝑢0

+ 𝑒−∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 ∫𝑡0
−∞

𝑒−∫𝑡0𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠
− ∫𝑡
−∞

𝑒− ∫𝑡𝑠 2𝑝(𝜏)𝛾1(𝜏)𝑑𝜏𝑝 (𝑠) 𝑑𝑠

(152)

= 𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [𝑢0 − 𝜁 (𝑡0)] + 𝜁 (𝑡) . (153)

By (127) and 𝑢(𝑡) = 𝑦−1(𝑡), the unique solution 𝑦(𝑡) of (128)
with initial value

𝑦 (𝑡0) = 1𝑢 (𝑡0) = 𝑥 (𝑡0) − 𝛾1 (𝑡0) (154)

is

𝑦 (𝑡) = 1𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [𝑢0 − 𝜁 (𝑡0)] + 𝜁 (𝑡)
= 1𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [1/ (𝑥 (𝑡0) − 𝛾1 (𝑡0)) − 𝜁 (𝑡0)] + 𝜁 (𝑡) . (155)
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By (127), (136), and (151), we have𝑥 (𝑡) − 𝛾2 (𝑡)
= 

1𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [1/ (𝑥 (𝑡0) − 𝛾1 (𝑡0)) − 𝜁 (𝑡0)] + 𝜁 (𝑡)
− 1𝜁 (𝑡)

 .
(156)

By (130), we have

𝑒− ∫𝑡𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 → 0 (𝑡 → +∞) . (157)

Following we discuss the sign of 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) − 𝜁(𝑡0) in
following cases:

(i) If 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) − 𝜁(𝑡0) < 0, that is,
1𝜁 (𝑡0) + 𝛾1 (𝑡0) < 𝑥 (𝑡0) < 𝛾1 (𝑡0) , (158)

by (135), (156), and (157), it follows that𝑥 (𝑡) − 𝛾2 (𝑡) → 0, (𝑡 → +∞) , (159)

and, therefore, the 𝜔−periodic solution 𝛾2(𝑡) of (2) is attrac-
tive if given the initial value 1/𝜁(𝑡0) + 𝛾1(𝑡0) < 𝑥(𝑡0) < 𝛾1(𝑡0).

(ii) If 1/(𝑥(𝑡0)−𝛾1(𝑡0))−𝜁(𝑡0) = 0,that is, 𝑥(𝑡0) = 1/𝜁(𝑡0)+𝛾1(𝑡0), at this time, the unique solution 𝑥(𝑡) of (2) with initial
value𝑥(𝑡0) = 1/𝜁(𝑡0)+𝛾1(𝑡0) is just the periodic solution 𝛾2(𝑡),
and |𝑥(𝑡) − 𝛾2(𝑡)| = 0.

(iii) If 1𝑥 (𝑡0) − 𝛾1 (𝑡0) − 𝜁 (𝑡0) > 0, (160)

from (156), (153), (157), and (154), we know

𝑥 (𝑡) − 𝛾2 (𝑡) =  1𝑢 (𝑡) − 1𝜁 (𝑡)  , (161)

𝑢 (𝑡) − 𝜁 (𝑡) → 0, (𝑡 → +∞) (162)

𝑢 (𝑡0) = 1𝑥 (𝑡0) − 𝛾1 (𝑡0) . (163)

Now, we discuss 𝑢(𝑡0) in two cases.
(I) If 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) < 0, then 𝑥(𝑡0) < 𝛾1(𝑡0). Thus we

have

𝑢 (𝑡0) < 0, (164)

from (151), when 𝑡 > 𝑡0, it follows that𝑢 (𝑡) < 𝑢 (𝑡0) < 0, (𝑡 > 𝑡0) (165)

therefore, we have𝑥 (𝑡) − 𝛾2 (𝑡) → 0, (𝑡 → +∞) , (166)

and thus the 𝜔−periodic solution 𝛾2(𝑡) of (2) is attractive if
given the initial value

𝑥 (𝑡0) < 𝛾1 (𝑡0) . (167)

By (i), (ii), and (I) of (iii), the 𝜔−periodic solution 𝛾2(𝑡) of (2)
is attractive if given the initial value

𝑥 (𝑡0) ∈ 𝐷1 = {𝑥 (𝑡0) | 𝑥 (𝑡0) < 𝛾1 (𝑡0)} . (168)

(II) If 1/(𝑥(𝑡0) − 𝛾1(𝑡0)) > 0, then
𝑥 (𝑡0) > 𝛾1 (𝑡0) , (169)

thus

𝑢 (𝑡0) = 1𝑥 (𝑡0) − 𝛾1 (𝑡0) > 0, (170)

by (165), there is a 𝑡⋆ > 𝑡0, such that

𝑢 (𝑡⋆) < 0, (𝑡⋆ > 𝑡0) (171)

according to zero point theorem, there exists a 𝑡∗ ∈ (𝑡0, 𝑡⋆),
such that

𝑢 (𝑡∗) = 𝑒− ∫𝑡∗𝑡0 2𝑝(𝑠)𝛾1(𝑠)𝑑𝑠 [ 1𝑥 (𝑡0) − 𝛾1 (𝑡0) − 𝜁 (𝑡0)]
+ 𝜁 (𝑡∗) = 0, (172)

therefore, when 𝑡 → 𝑡∗, we have
𝑒− ∫𝑡∗𝑡0 2𝑎(𝑠)𝛾1(𝑠)+𝑑𝑠 [ 1𝑥 (𝑡0) − 𝛾1 (𝑡0) − 𝜁 (𝑡0)] + 𝜁 (𝑡∗)

→ 0, (173)

and thus 𝑥 (𝑡) − 𝛾2 (𝑡) → +∞, (𝑡 → 𝑡∗) . (174)

By (160) and (169), it follows that

𝑥 (𝑡0) > 𝛾1 (𝑡0) , (175)

and thus the periodic solution 𝛾2(𝑡) of (2) is unstable if initial
value 𝑥(𝑡0) > 𝛾1(𝑡0).

(iiii)In addition, if 𝑥(𝑡0) = 𝛾1(𝑡0), then 𝑥(𝑡) = 𝛾1(𝑡), and
we have

𝑥 (𝑡) − 𝛾2 (𝑡) = 1𝜁 (𝑡) > 0, (176)

𝛾2(𝑡) is unstable.
By (II) of (iii) and (iiii), we get that if given the initial value

𝑥 (𝑡0) ∈ 𝐷2 = {𝑥 (𝑡0) | 𝑥 (𝑡0) ≥ 𝛾1 (𝑡0)} , (177)

𝛾2(𝑡) is unstable.
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Next, we prove the stability of the periodic solutions 𝛾1(𝑡)
of (2).

𝑥 (𝑡) − 𝛾1 (𝑡) = 𝑥 (𝑡) − 𝛾1 (𝑡) − 1𝜁 (𝑡) + 1𝜁 (𝑡) 
= 𝑥 (𝑡) − 𝛾2 (𝑡) + 1𝜁 (𝑡) 
≥ 1𝜁 (𝑡) − 𝑥 (𝑡) − 𝛾2 (𝑡) ,

(178)

when 𝑥(𝑡0) ∈ 𝐷1,|𝑥(𝑡) − 𝛾2(𝑡)| → 0, (𝑡 → +∞); that is to
say, given any 𝜀 > 0, there is a𝑇 > 0, such that |𝑥(𝑡)−𝛾2(𝑡)| < 𝜀
as 𝑡 ≥ 𝑡0 + 𝑇, so, when 𝑡 ≥ 𝑡0 + 𝑇, we have

𝑥 (𝑡) − 𝛾1 (𝑡) > 1𝜁 (𝑡) − 𝜀, (179)

therefore, it follows that𝑥 (𝑡) − 𝛾1 (𝑡) ≥ 1𝜁 (𝑡) , (180)

and note that |𝜁(𝑡)| is bounded and positive on 𝑅, so 𝛾1(𝑡) is
unstable if 𝑥(𝑡0) ∈ 𝐷1.

When 𝑥(𝑡0) ∈ 𝐷2, there are two cases:
(I) If 𝑥(𝑡0) > 𝛾1(𝑡0), by (174), there exists a 𝑡∗ > 𝑡0, such

that 𝑥 (𝑡) − 𝛾2 (𝑡) → +∞, (𝑡 → 𝑡∗) (181)

since |𝜁(𝑡)| is bounded and positive on 𝑅, by (136), we have
𝑥 (𝑡) − 𝛾1 (𝑡) = 𝑥 (𝑡) − 𝛾2 (𝑡) + 1𝜁 (𝑡) 

≥ 𝑥 (𝑡) − 𝛾2 (𝑡) − 1𝜁 (𝑡) → +∞,
(𝑡 → 𝑡∗)

(182)

and thus 𝛾1(𝑡) is unstable.
(II) If 𝑥(𝑡0) = 𝛾1(𝑡0), by (176),𝑥 (𝑡) − 𝛾2 (𝑡) = 𝛾1 (𝑡) − 𝛾2 (𝑡) = 1𝜁 (𝑡) > 0, (183)

𝛾1(𝑡) is also unstable.
Thus 𝛾1(𝑡) is unstable if 𝑥(𝑡0) ∈ 𝐷2.
Therefore, the 𝜔−periodic solution 𝛾1(𝑡) of (2) is unstable

on 𝐷1⋃ 𝐷2 = 𝑅.
This is the end of the proof of Theorem 10.

Theorem 11. Under the conditions of Theorem 10, (2) has
exactly two 𝜔−periodic continuous solutions, 𝛾1(𝑡) and 𝛾2(𝑡).
Proof. The proof of the existence of 𝛾1(𝑡) and 𝛾2(𝑡) is seen
in Theorem 10. Now, we prove that (2) has exactly two𝜔−periodic continuous solutions, 𝛾1(𝑡) and 𝛾2(𝑡).

We know that if 𝑥(𝑡0) = 𝛾1(𝑡0), the unique solution of
(2) is 𝛾1(𝑡), and if 𝑥(𝑡0) = 𝛾2(𝑡0) = 𝜁(𝑡0) + 𝛾1(𝑡0), the unique
solution of (2) is 𝛾2(𝑡).

(I) If 𝑥(𝑡0) > 𝛾1(𝑡0), by (174), the unique solution 𝑥(𝑡) of
(2) satisfies |𝑥 (𝑡)| → +∞, (𝑡 → 𝑡∗) (184)

and thus 𝑥(𝑡) cannot be periodic solution.
(II) If 𝑥(𝑡0) < 𝛾1(𝑡0), we know that 𝛾2(𝑡) is attractive; thus

the unique solution 𝑥(𝑡) of (2) is satisfied |𝑥(𝑡) − 𝛾2(𝑡)| → 0
as 𝑡 → +∞, and hence 𝑥(𝑡) cannot be periodic solution;
otherwise, there is a certain 𝛿 such that |𝑥(𝑡) − 𝛾2(𝑡)| ≥ 𝛿 > 0
for any 𝑡 ∈ 𝑅.

Therefore, (2) has exactly two 𝜔−periodic continuous
solutions, 𝛾1(𝑡) and 𝛾2(𝑡).

This is the end of the proof of Theorem 11.

4. Periodic Solutions on Riccati’s Equation

From the proofs of Theorems 8–11, we can get two results
about the existence of periodic solutions on (1).

Theorem 12. Consider (1); 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) are 𝜔−periodic con-
tinuous functions, and 𝑎(𝑡), 𝑏(𝑡) are derivable on 𝑅; suppose
that the following conditions hold:(𝐻1) 𝑎 (𝑡) < 0,

(𝐻2) 4𝑎2 (𝑡) 𝑐 (𝑡) − 𝑎 (𝑡) 𝑏2 (𝑡) + 2𝑎 (𝑡) 𝑏 (𝑡)
− 2𝑎 (𝑡) 𝑏 (𝑡) > 0,

(185)

and then (1) has exactly two 𝜔−periodic continuous solutions.
Proof. (1) can be turned into𝑑𝑥𝑑𝑡 = 𝑎 (𝑡) 𝑥2 + 𝑏 (𝑡) 𝑥 + 𝑐 (𝑡)

= 𝑎 (𝑡) (𝑥 + 𝑏 (𝑡)2𝑎 (𝑡) )2 + 4𝑎 (𝑡) 𝑐 (𝑡) − 𝑏2 (𝑡)4𝑎 (𝑡) . (186)

(186) can be also turned into𝑑 (𝑥 + 𝑏 (𝑡) /2𝑎 (𝑡))𝑑𝑡 = 𝑎 (𝑡) (𝑥 + 𝑏 (𝑡)2𝑎 (𝑡) )2
+ 4𝑎 (𝑡) 𝑐 (𝑡) − 𝑏2 (𝑡)4𝑎 (𝑡) + 𝑑 (𝑏 (𝑡) /2𝑎 (𝑡))𝑑𝑡
= 𝑎 (𝑡) (𝑥 + 𝑏 (𝑡)2𝑎 (𝑡) )2
+ 4𝑎2 (𝑡) 𝑐 (𝑡) − 𝑎 (𝑡) 𝑏2 (𝑡) + 2𝑎 (𝑡) 𝑏 (𝑡) − 2𝑎 (𝑡) 𝑏 (𝑡)4𝑎2 (𝑡) .

(187)

Let

𝑢 = 𝑥 + 𝑏 (𝑡)2𝑎 (𝑡) , (188)

then (187) is turned into𝑑𝑢𝑑𝑡 = 𝑎 (𝑡) 𝑢2
+ 4𝑎2 (𝑡) 𝑐 (𝑡) − 𝑎 (𝑡) 𝑏2 (𝑡) + 2𝑎 (𝑡) 𝑏 (𝑡) − 2𝑎 (𝑡) 𝑏 (𝑡)4𝑎2 (𝑡) . (189)
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By (𝐻1), (𝐻2), (189) satisfies all the conditions of Theorems
8 and 9; according to Theorems 8 and 9, (189) has exactly
two 𝜔−periodic solutions 𝛾1(𝑡), 𝛾2(𝑡); and by (188), (186) has
exactly two 𝜔−periodic solutions

𝜁1 (𝑡) = 𝛾1 (𝑡) − 𝑏 (𝑡)2𝑎 (𝑡) ,
𝜁2 (𝑡) = 𝛾2 (𝑡) − 𝑏 (𝑡)2𝑎 (𝑡) . (190)

Similarly, we can get the following.

Theorem 13. Consider (1); 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) are 𝜔−periodic con-
tinuous functions, and 𝑎(𝑡), 𝑏(𝑡) are derivable on 𝑅; suppose
that the following conditions hold:

(𝐻1) 𝑎 (𝑡) > 0,
(𝐻2) 4𝑎2 (𝑡) 𝑐 (𝑡) − 𝑎 (𝑡) 𝑏2 (𝑡) + 2𝑎 (𝑡) 𝑏 (𝑡)

− 2𝑎 (𝑡) 𝑏 (𝑡) < 0,
(191)

and then (1) has exactly two 𝜔−periodic continuous solutions.
Proof. The proof is similar to that of Theorem 12, so we omit
it here.

5. Example

The following example shows the feasibility of our main
results.

Example 1. Consider the following equation:

𝑑𝑥𝑑𝑡 = (−2 + sin 𝑡) 𝑥2 + 3 − cos 𝑡. (192)

Here, 𝑝(𝑡) = −2 + sin 𝑡, 𝑞(𝑡) = 3 − cos 𝑡, and it is easy to
calculate that

√− ( 𝑞𝑝 )
𝑀

= 0.9194,
√− ( 𝑞𝑝 )

𝐿
= 1.7761. (193)

Clearly, conditions (𝐻1)-(𝐻2) of Theorems 8 and 9 are
satisfied. It follows from Theorems 8 and 9 that (192) has
exactly two 2𝜋−periodic continuous solutions 𝛾1(𝑡) and 𝛾2(𝑡),

0.9194 = √− ( 𝑞𝑝 )
𝑀

≤ 𝛾1 (𝑡) ≤ √− ( 𝑞𝑝 )
𝐿

= 1.7761, (194)

and 𝛾1(𝑡) is attractive on 𝐷1 = {𝑥(𝑡0) | 𝑥(𝑡0) ≤ 1/𝜁(𝑡0) +𝛾1(𝑡0)}, and unstable on𝐷2 = {𝑥(𝑡0) | 𝑥(𝑡0) > 1/𝜁(𝑡0)+𝛾1(𝑡0)},
where 𝑥(𝑡0) is any given initial value of (192), and

𝜁 (𝑡) = ∫+∞
𝑡

𝑒− ∫𝑡𝑠 2(−2+sin 𝑡)𝛾1(𝜏)𝑑𝜏 (−2 + sin 𝑠) 𝑑𝑠. (195)
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Figure 1: The curve of the solution of (192) with initial value 𝑥(0) =−1.08.
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Figure 2:The curve of the solution of (192) with initial value 𝑥(0) =−1.09.
(2) Another 𝜔−periodic continuous solution is 𝛾2(𝑡),
−1.7761 = −√− ( 𝑞𝑝 )

𝐿
≤ 𝛾2 (𝑡) ≤ −√− ( 𝑞𝑝 )

𝑀= −0.9194, (196)

and 𝛾2(𝑡) is unstable on 𝑅.
From this example, usingMatlab, we can deduce the value−1.09 < 𝛾2(0) = 1/𝜁(0) + 𝛾1(0) < −1.08; when initial value𝑥(0) ≥ −1.08, the solution curve of (192) tends to the curve

of the periodic solution 𝛾1(𝑡) as 𝑡 is achieved at a certain
value (see Figure 1); when initial value 𝑥(0) ≤ −1.09, the
solution curve of (192) arrives at +∞ at some time 𝑡∗ (see
Figure 2).
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6. Concluding Remarks

In this paper, when the coefficient functions of Riccati’s type
equation satisfy

𝑝 (𝑡) 𝑞 (𝑡) < 0, (197)

we obtain the existence and more accurate range of two
periodic solutions of the equation bymeans of the fixed point
theorem. This is a great improvement on the paper [1, 6]
and provides a criterion for judging the existence and size
range of periodic solutions of the equation, which has great
application value in engineering technological and physical
fields.
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[21] M. Ráb, “The Riccati differential equation with complex-valued
coefficients,” Czechoslovak Mathematical Journal, vol. 20 (95),
pp. 491–503, 1970.
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