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In this paper, we discuss the infinite horizon 𝐻∞ control problem for a class of nonlinear stochastic systems with state, control,
and disturbance dependent noise.The jumping parameters are modelled as an infinite-state Markov chain. Based on the solvability
of a set of coupled Hamilton-Jacobi inequalities (HJIs), the exponential mean square 𝐻∞ controller for the considered nonlinear
stochastic systems is obtained. A numerical example is given to show the effectiveness of the proposed design method.

1. Introduction

During the past decades, as one of the most important robust
control design, 𝐻∞ control has been extensively studied in
both theory and practical applications [1]. From the time-
domain viewpoint, 𝐻∞ control is to find a control law to
eliminate the effect of external disturbance below a given
level [2]. Due to the ability to model many real plants in
practice, stochastic systems has gained much attention. In
particular, stochastic 𝐻∞ control was firstly investigated in
[3] for Itô systems, where a stochastic bounded real lemma
was established in the form of linear matrix inequalities.
References [4, 5], respectively, studied 𝐻∞ filtering and
control for nonlinear stochastic systems via solving second-
order nonlinear HJIs.

Stochastic systems with Markov jumps are powerful tool
to describe physical systems which may encounter abrupt
changes in their dynamics. In the theoretical study of stochas-
tic Markov jump systems, stability and observability [6–11]
and robust control [12–15] have been widely investigated.
Recently, stable and control problems for nonlinear systems
have become ahot research topic [16–22]. It should be pointed
out that most of the aforementioned researches on Markov
jump systems assume that Markov chain takes values in
a finite set. However, Markov jump systems with infinite-
state chains can be used to describe more plants in many
real scenarios [23, 24]. Therefore, infinite Markov jump
systems deserve our consideration. Recently, some papers

on stability [25–27] and control problems [28, 29] of linear
infinite Markov jump systems have appeared. To be specific,
infinite horizon𝐻2/𝐻∞ controller has been obtained by four
coupled algebraic Riccati equations in [30]. Nevertheless, to
the best of our knowledge, 𝐻∞ control problem for a class
of nonlinear stochastic systems with infiniteMarkov jumps is
still unsolved, let alone the case of (𝑥, 𝑢, V)-dependent noise.
This situation motivates us to carry out the present research.

This paper is concerned with the infinite horizon 𝐻∞
control problem for a class of nonlinear stochastic systems
with infinite Markov jumps and (𝑥, 𝑢, V)-dependent noise.
The rest of the paper is organized as follows. Section 2
provides some useful definitions and lemmas. In Section 3,
based on the generalized Itô-type formula and the technique
of squares completion, an exponential mean square stable𝐻∞ controller is designed in terms of a set of coupled
HJIs. And a numerical example is provided to illustrate the
applicability of the proposed design approach. Conclusions
are made in Section 4.

Next, we adopt the following notations.R denotes the set
of all real numbers and R+ is the set of all nonnegative real
numbers. R𝑛 and R𝑚×𝑛 stand for 𝑛-dimensional real vector
space and the vector space of all𝑚× 𝑛matrices, respectively.
For a matrix 𝐴, 𝐴 represents the transpose and we denote𝐴 ≥ 0 (𝐴 > 0) the positive semidefinite (definite) symmetric
matrix. Also, wemake use of the notation ofS𝑛 and 𝐼𝑛 for the
set of all 𝑛 × 𝑛 symmetric and identity matrices, respectively.
The operator norm ofR𝑚×𝑛 or the Euclidean norm ofR𝑛 is
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‖ ⋅‖. By 𝑙2(R+;R𝑚)we define the space ofR𝑚-valued, square
integrable, andF𝑡-measurable processes 𝜁 = {𝜁(𝑡, 𝑤) : R+ ×Ω → R𝑚} satisfying ‖𝜁‖2 = 𝐸∫∞

0
‖𝜁(𝑡)‖2𝑑𝑡 < ∞. The class

of functions 𝑉(𝑥) which are twice continuously differential
with respect to 𝑥 ∈ U, except possibly at the point 𝑥 = 0, will
be denoted by 𝐶2(U).D := {1, 2, . . .}.
2. Preliminaries

Consider the following stochastic nonlinear system with
infinite Markov jumps:

𝑑𝑥 (𝑡) = [𝑓1 (𝑥 (𝑡) , 𝜂𝑡) + 𝑔1 (𝑥 (𝑡) , 𝜂𝑡) 𝑢 (𝑡)
+ ℎ1 (𝑥 (𝑡) , 𝜂𝑡) V (𝑡)] 𝑑𝑡 + [𝑓2 (𝑥 (𝑡) , 𝜂𝑡)
+ 𝑔2 (𝑥 (𝑡) , 𝜂𝑡) 𝑢 (𝑡) + ℎ2 (𝑥 (𝑡) , 𝜂𝑡) V (𝑡)] 𝑑𝑤 (𝑡) ,

𝑧 (𝑡) = [𝑚 (𝑥 (𝑡) , 𝜂𝑡)𝑢 (𝑡) ] ,
𝑥 (0) = 𝑥0 ∈ R

𝑛, 𝑡 ∈ R+,

(1)

where 𝑥(𝑡) ∈ R𝑛, V(𝑡) ∈ R𝑛V , 𝑢(𝑡) ∈ R𝑛𝑢 , and 𝑧(𝑡) ∈
R𝑛𝑧 stand for the system state, exogenous disturbance,
control input, andmeasurement output, respectively.𝑤(𝑡) is a
standard one-dimensional Brownianmotion on a probability
space (Ω,F,P). Assume that F𝑡 := 𝜎(𝑤(𝑠), 0 ≤ 𝑠 ≤ 𝑡) ∨𝜎(𝜂(𝑠), 0 ≤ 𝑠 ≤ 𝑡) ∨ N, where N denotes the totality of P-
null sets and the 𝜎-algebras 𝜎(𝑤(𝑠), 0 ≤ 𝑠 ≤ 𝑡) and 𝜎(𝜂(𝑠), 0 ≤𝑠 ≤ 𝑡) are mutually independent. We denote {𝜂𝑡}𝑡∈R+ the
right continuous, homogeneous Markov process onΩ taking
values in the countably infinite state space D with generator𝑄 = (𝑞𝑖𝑗)𝑖,𝑗∈D given by

𝑃 (𝜂𝑡+𝑠 = 𝑗 | 𝜂𝑡 = 𝑖) = {{{
𝑞𝑖𝑗𝑠 + 𝑜 (𝑠) , 𝑖 ̸= 𝑗,
1 + 𝑞𝑖𝑖𝑠 + 𝑜 (𝑠) , 𝑖 = 𝑗, (2)

where 𝑠 > 0, lim𝑠→0(𝑜(𝑠)/𝑠) = 0, 𝑞𝑖𝑗 ≥ 0(𝑖, 𝑗 ∈ D, 𝑖 ̸= 𝑗) is
the transition rate from mode 𝑖 at time 𝑡 to mode 𝑗 at time𝑡 + 𝑠 and 𝑞𝑖𝑖 = −∑𝑗∈D,𝑗 ̸=𝑖 𝑞𝑖𝑗 < ∞ for all 𝑖 ∈ D. Suppose
that 𝑓1, 𝑔1, ℎ1, 𝑓2, 𝑔2, ℎ2, and 𝑚 satisfy the local Lipschitz
condition and the linear growth condition for any 𝑖 ∈ D,
which guarantee that system (1) has a unique strong solution
[13, 31]. Moreover, assume 𝑓1(0, 𝑖) = 0, 𝑓2(0, 𝑖) = 0, 𝑖 ∈ D.

Denote E𝑚×𝑛1 the Banach space of all sequences {𝐸|𝐸 =(𝐸(1), 𝐸(2), ⋅ ⋅ ⋅ ), 𝐸(𝑖) ∈ R𝑚×𝑛} with the norm ‖𝐸‖1 =∑∞𝑖=1 ‖𝐸(𝑖)‖ < ∞.Likewise, define another Banach spaceE𝑚×𝑛∞
with the norm ‖𝐸‖∞ = sup𝑖∈D‖𝐸(𝑖)‖. Assume all coefficients
of considered systems have a finite norm ‖⋅‖∞. If𝑚 = 𝑛,E𝑚×𝑛1
will be simplified as E𝑛1 and so does E𝑚×𝑛∞ . When 𝐸(𝑖) ∈ 𝑆𝑛
and 𝐸(𝑖) ≥ 0, 𝑖 ∈ D, E𝑛1(E

𝑛
∞) is written as E𝑛+1 (resp., E

𝑛+
∞ ).

For 𝐿, 𝑀 ∈ E𝑛+1 , 𝐿 ≤ 𝑀 implies that L(𝑖) ≤ 𝑀(𝑖), 𝑖 ∈ D.
Therefore, we have ‖𝐿‖1 ≤ ‖𝑀‖1.

For each 𝑉 ∈ 𝐶2(R𝑛 ×D;R), an infinitesimal operator
L𝑉 : R𝑛 ×D → R associated with system (1) is defined as
follows [28, 31]:

L𝑉 (𝑥 (𝑡) , 𝑖) = 𝜕𝑉 (𝑥 (𝑡) , 𝑖)𝜕𝑥 [𝑓1 (𝑥 (𝑡) , 𝑖)
+ 𝑔1 (𝑥 (𝑡) , 𝑖) 𝑢 (𝑡) + ℎ1 (𝑥 (𝑡) , 𝑖) V (𝑡)]
+ ∞∑
𝑗=1

𝑞𝑖𝑗𝑉 (𝑥 (𝑡) , 𝑗) + 12 trace{[𝑓2 (𝑥 (𝑡) , 𝑖)
+ 𝑔2 (𝑥 (𝑡) , 𝑖) 𝑢 (𝑡)
+ ℎ2 (𝑥 (𝑡) , 𝑖) V (𝑡)] 𝜕2𝑉 (𝑥 (𝑡) , 𝑖)𝜕𝑥2
⋅ [𝑓2 (𝑥 (𝑡) , 𝑖) + 𝑔2 (𝑥 (𝑡) , 𝑖) 𝑢 (𝑡)
+ ℎ2 (𝑥 (𝑡) , 𝑖) V (𝑡)]} , 𝑖 ∈ D.

(3)

To study the infinite horizon nonlinear stochastic 𝐻∞
control, the internal stability requirement is needed; thus we
introduce the following definition.

Definition 1 (see [13]). The unforced stochastic system with
infinite Markov jumps,

𝑑𝑥 (𝑡) = 𝑓1 (𝑥 (𝑡) , 𝜂𝑡) 𝑑𝑡 + 𝑓2 (𝑥 (𝑡) , 𝜂𝑡) 𝑑𝑤 (𝑡) ,
𝑡 ∈ R+, (4)

is called exponentially mean square stable (EMSS) if there
exist 𝛼 > 0 and 𝛽 ≥ 1 such that

𝐸 [‖𝑥 (𝑡)‖2] ≤ 𝛽𝑒−𝛼𝑡 𝑥02 (5)

for all 𝑡 ∈ R+, 𝑖 ∈ D and 𝑥0 ∈ R𝑛.
Definition 2. For a given 𝛾 > 0, the control 𝑢∗(𝑡) ∈𝑙2(R+;R𝑛𝑢) is said to be an infinite horizon 𝐻∞ control of
system (1), if

(i) 𝑢∗(𝑡) stabilizes system (1) internally; i.e. when V(𝑡) =0, 𝑢(𝑡) = 𝑢∗(𝑡), the trajectory of system (1) with any
initial value 𝑥(0) = 𝑥0 is EMSS

(ii) For any nonzero V∗(𝑡) ∈ 𝑙2(R+;R𝑛V) and zero initial
state 𝑥0 = 0, we always have

‖𝑧 (𝑡)‖𝑙2(R+ ;R𝑛𝑢 ) ≤ 𝛾 ‖V (𝑡)‖𝑙2(R+ ;R𝑛V ) . (6)

Remark 3. If (6) holds, it is easy to verify that (6) is equivalent
to ‖𝐿𝑢∗∞‖ ≤ 𝛾, where the perturbation operator ‖𝐿𝑢∗∞‖ is
defined by 𝐿𝑢∗∞ : 𝑙2(R+;R𝑛V) → 𝑙2(R+;R𝑛𝑧) subject to
system (1) with

𝐿𝑢∗∞ fl sup
V(⋅)∈𝑙2(R+ ;R

𝑛V ),V ̸=0
𝜂0∈D,𝑥0=0

‖𝑧 (𝑡)‖𝑙2(R+ ;R𝑛𝑧 )‖V (𝑡)‖𝑙2(R+ ;R𝑛V ) . (7)

We provide some lemmas which are absolutely necessary
to derive our main results.
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Lemma 4 (see [32]). For 𝑥, 𝑏 ∈ R𝑛, 𝐴 ∈ S𝑛, 𝐴−1 exists, we
have

𝑥𝐴𝑥 + 𝑥𝑏 + 𝑏𝑥 = (𝑥 + 𝐴−1𝑏) 𝐴(𝑥 + 𝐴−1𝑏)
− 𝑏𝐴−1𝑏. (8)

The following lemma generalizes Theorem 5.8 [31] and
Corollary 3.2.3 [13] to the infiniteMarkov jump andnonlinear
systems, respectively. Its proof can be easily shown by analo-
gous arguments.

Lemma 5. Assume that there are a set of positive functions𝑉(𝑥, 𝜂𝑡) ∈ 𝐶2(R𝑛 × D;R+) and positive constants 𝑐1, 𝑐2, 𝑐3
such that

𝑐1 ‖𝑥‖2 ≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐2 ‖𝑥‖2 (9)

and

L𝑉 (𝑥, 𝑖) ≤ −𝑐3 ‖𝑥‖2 (10)

for all 𝑥 ∈ R𝑛 and 𝑖 ∈ D. 
en system (4) is EMSS.

3. Infinite Horizon Nonlinear
Stochastic𝐻∞ Control

In this subsection, we attempt to obtain the sufficient condi-
tion for the infinite horizon nonlinear stochastic𝐻∞ control
problem of system (1).

Theorem 6. For a given disturbance attenuation level 𝛾 > 0, if
there exist a set of positive functions𝑉(𝑥, 𝑖) ∈ 𝐶2(R𝑛×D;R+),𝑉(0, 𝑖) = 0, and 𝜕2𝑉(𝑥, 𝑖)/𝜕𝑥2 ≥ 0 for all nonzero 𝑥 ∈ R𝑛,𝑖 ∈ D with the properties of

𝑐1 ‖𝑥‖2 ≤ 𝑉 (𝑥, 𝑖) ≤ 𝑐2 ‖𝑥‖2 ,
− ‖𝑚 (𝑥, 𝑖)‖2 ≤ −𝑐3 ‖𝑥‖2 , (11)

for some positive constants 𝑐1, 𝑐2, 𝑐3 such that 𝑉(𝑥, 𝑖) solves the
coupled HJIs,

Υ𝑖 = 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑓1 (𝑥, 𝑖) + 12𝑓2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)

+ 𝑚 (𝑥, 𝑖)𝑚(𝑥, 𝑖) + ∞∑
𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗)

− 14 [𝑓2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 ℎ2 (𝑥, 𝑖)

+ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ℎ1 (𝑥, 𝑖)] [−𝛾2𝐼

+ ℎ2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 ℎ2 (𝑥, 𝑖)]
−1

⋅ [ℎ2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ ℎ1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ]
− 14 [𝑓2 (𝑥, 𝑖) 𝜕

2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)
+ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖)] [𝐼
+ 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]

−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ] ≤ 0,

− 𝛾2𝐼 + ℎ2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 ℎ2 (𝑥, 𝑖) < 0, 𝑖 ∈ D,
(12)

then

𝑢∗ (𝑥, 𝑖) = −12 [𝐼 + 𝑔2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]

−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ]

(13)

is an infinite horizon𝐻∞ control of system (1).

Proof. We first verify that (6) holds. For any 𝑇 > 0 and initial
state 𝑥0 = 0, 𝜂0 = 𝑖, note that the generalized Itô-type formula
[28] and (3) yield

𝐸 [𝑉 (𝑥 (𝑇) , 𝜂𝑇) − 𝑉 (𝑥0, 𝜂0) | 𝜂0 = 𝑖] = 𝐸{∫𝑇
0
L𝑉 (𝑥, 𝜂𝑡) 𝑑𝑡 | 𝜂0 = 𝑖}

= 𝐸{{{
∫𝑇
0

[
[
𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 (𝑓1 (𝑥, 𝜂𝑡) + 𝑔1 (𝑥, 𝜂𝑡) 𝑢 + ℎ1 (𝑥, 𝜂𝑡) V) + ∞∑

𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗)
+ 12 (𝑓2 (𝑥, 𝜂𝑡) + 𝑔2 (𝑥, 𝜂𝑡) 𝑢 + ℎ2 (𝑥, 𝜂𝑡) V)

𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 (𝑓2 (𝑥, 𝜂𝑡) + 𝑔2 (𝑥, 𝜂𝑡) 𝑢 + ℎ2 (𝑥, 𝜂𝑡) V) + 𝑚 (𝑥, 𝜂𝑡)2 + ‖𝑢‖2
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− ‖𝑧‖2 − 𝛾2 ‖V‖2 + 𝛾2 ‖V‖2]
]
𝑑𝑡 | 𝜂0 = 𝑖}}}

= 𝐸{{{
∫𝑇
0

[
[
Λ 1 (V, 𝑥, 𝜂𝑡) + Λ 2 (𝑥, 𝜂𝑡) + Λ 3 (𝑢, 𝑥, 𝜂𝑡) + ∞∑

𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗) − ‖𝑧‖2 + 𝛾2 ‖V‖2

+ 12 (𝑢𝑔2 (𝑥, 𝜂𝑡)
𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡) V + Vℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡) 𝑢)]]

𝑑𝑡 | 𝜂0 = 𝑖}}}
,

(14)

where

Λ 1 (V, 𝑥, 𝜂𝑡) = V (−𝛾2𝐼 + 12
⋅ ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡)) V

+ 12 (𝑓2 (𝑥, 𝜂𝑡)
𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡)

+ 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ℎ1 (𝑥, 𝜂𝑡)) V + 12
⋅ V (ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ ℎ1 (𝑥, 𝜂𝑡) 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ) ,

Λ 2 (𝑥, 𝜂𝑡) = 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 𝑓1 (𝑥, 𝜂𝑡) + 12
⋅ 𝑓2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ 𝑚 (𝑥, 𝜂𝑡)𝑚(𝑥, 𝜂𝑡) ,

Λ 3 (𝑢, 𝑥, 𝜂𝑡) = 𝑢 (𝐼 + 12
⋅ 𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡)) 𝑢

+ 12 (𝑓2 (𝑥, 𝜂𝑡)
𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡)

+ 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 𝑔1 (𝑥, 𝜂𝑡)) 𝑢 + 12
⋅ 𝑢 (𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ 𝑔1 (𝑥, 𝜂𝑡) 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ) .

(15)

Invoking 𝜕2𝑉(𝑥, 𝑖)/𝜕𝑥2 ≥ 0, 𝑖 ∈ D, we deduce that

12 (−𝑢𝑔2 (𝑥, 𝜂𝑡) + Vℎ2 (𝑥,
𝜂𝑡)) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 (−𝑔2 (𝑥, 𝜂𝑡) 𝑢 + ℎ2 (𝑥, 𝜂𝑡) V)
≥ 0,

(16)

which shows that

12 (𝑢𝑔2 (𝑥, 𝜂𝑡)
𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡) V

+ Vℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡) 𝑢)
≤ 12 (𝑢𝑔2 (𝑥, 𝜂𝑡)

𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡) 𝑢
+ Vℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡) V) .

(17)

Hence,

𝐸 [𝑉 (𝑥 (𝑇) , 𝜂𝑇) − 𝑉 (𝑥0, 𝜂0) | 𝜂0 = 𝑖] ≤ 𝐸{{{
∫𝑇
0

[
[
Λ 1 (V, 𝑥, 𝜂𝑡) + Λ 2 (𝑥, 𝜂𝑡) + Λ 3 (𝑢, 𝑥, 𝜂𝑡) + ∞∑

𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗) − ‖𝑧‖2

+ 𝛾2 ‖V‖2 + 12 (𝑢𝑔2 (𝑥, 𝜂𝑡)
𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡) 𝑢 + Vℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡) V)]]

𝑑𝑡 | 𝜂0 = 𝑖}}}
= 𝐸{{{

∫𝑇
0

[
[
Λ1 (V, 𝑥, 𝜂𝑡) + Λ 2 (𝑥, 𝜂𝑡) + Λ3 (𝑢, 𝑥, 𝜂𝑡) + ∞∑

𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗) − ‖𝑧‖2 + 𝛾2 ‖V‖2]
]
𝑑𝑡 | 𝜂0 = 𝑖}}}

,

(18)
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where

Λ1 (V, 𝑥, 𝜂𝑡) = V (−𝛾2𝐼
+ ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡)) V

+ 12 (𝑓2 (𝑥, 𝜂𝑡)
𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡)

+ 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ℎ1 (𝑥, 𝜂𝑡)) V + 12
⋅ V (ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ ℎ1 (𝑥, 𝜂𝑡) 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ) ,

Λ3 (𝑢, 𝑥, 𝜂𝑡) = 𝑢 (𝐼
+ 𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡)) 𝑢
+ 12 (𝑓2 (𝑥, 𝜂𝑡)

𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡)

+ 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 𝑔1 (𝑥, 𝜂𝑡)) 𝑢 + 12
⋅ 𝑢 (𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ 𝑔1 (𝑥, 𝜂𝑡) 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ) .

(19)

Applying Lemma 4 to Λ1(V, 𝑥, 𝜂𝑡) and Λ3(𝑢, 𝑥, 𝜂𝑡), we con-
clude that

Λ1 (V, 𝑥, 𝜂𝑡) = (V + 𝐹1) (−𝛾2𝐼
+ ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡)) (V + 𝐹1) ,
− 14 (𝑓2 (𝑥, 𝜂𝑡)

𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡)
+ 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ℎ1 (𝑥, 𝜂𝑡)) ⋅ (−𝛾2𝐼
+ ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡))

−1

⋅ (ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ ℎ1 (𝑥, 𝜂𝑡) 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ) ,

(20)

Λ3 (𝑢, 𝑥, 𝜂𝑡) = (𝑢 + 𝐹2) (𝐼
+ 𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡)) (𝑢 + 𝐹2)
− 14 (𝑓2 (𝑥, 𝜂𝑡)

𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡)

+ 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 𝑔1 (𝑥, 𝜂𝑡)) ⋅ (𝐼

+ 𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡))
−1

⋅ (𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ 𝑔1 (𝑥, 𝜂𝑡) 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ) ,

(21)

where

𝐹1 = 12 [−𝛾2𝐼 + ℎ2 (𝑥, 𝜂𝑡)
𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡)]

−1

⋅ [ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ ℎ1 (𝑥, 𝜂𝑡) 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ] ,

(22)

𝐹2 = 12 [𝐼 + 𝑔2 (𝑥, 𝜂𝑡)
𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡)]

−1

⋅ [𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑓2 (𝑥, 𝜂𝑡)
+ 𝑔1 (𝑥, 𝜂𝑡) 𝜕𝑉 (𝑥, 𝜂𝑡)𝜕𝑥 ] .

(23)

Recalling (12) and substituting (20) and (21) into (18) yield
that

𝐸 [𝑉 (𝑥 (𝑇) , 𝜂𝑇) − 𝑉 (𝑥0, 𝜂0) | 𝜂0 = 𝑖]
≤ 𝐸{∫𝑇

0
[(V + 𝐹1)

⋅ (−𝛾2𝐼 + ℎ2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 ℎ2 (𝑥, 𝜂𝑡))
⋅ (V + 𝐹1) + (𝑢 + 𝐹2)
⋅ (𝐼 + 𝑔2 (𝑥, 𝜂𝑡) 𝜕2𝑉 (𝑥, 𝜂𝑡)𝜕𝑥2 𝑔2 (𝑥, 𝜂𝑡)) (𝑢 + 𝐹2)
− ‖𝑧‖2 + 𝛾2 ‖V‖2]𝑑𝑡 | 𝜂0 = 𝑖} .

(24)
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In view of (12), for 𝑥0 = 0, if we choose 𝑢 = 𝑢∗ = −𝐹2, then it
follows from (24) that

𝐸{∫𝑇
0
‖𝑧‖2 𝑑𝑡 | 𝜂0 = 𝑖} < 𝛾2𝐸{∫𝑇

0
‖V‖2 𝑑𝑡 | 𝜂0 = 𝑖} . (25)

Taking the limit for 𝑇 → ∞ in the above, it is easy to show
(6) by Definition 2.

Next, we remain to show that when V = 0, 𝑢 = 𝑢∗, the
trajectory of system (1) with any initial value 𝑥(0) = 𝑥0 is
EMSS. To this end, for 𝑖 ∈ D, let L𝑢∗ be the infinitesimal
operator of system (1) with V = 0, 𝑢 = 𝑢∗; then

L𝑢∗𝑉 (𝑥, 𝑖)V=0 = 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 (𝑓1 (𝑥, 𝑖) + 𝑔1 (𝑥, 𝑖) 𝑢∗)
+ ∞∑
𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗) + 12 (𝑓2 (𝑥, 𝑖) + 𝑔2 (𝑥, 𝑖)

⋅ 𝑢∗) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 (𝑓2 (𝑥, 𝑖) + 𝑔2 (𝑥, 𝑖) 𝑢∗)
= 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑓1 (𝑥, 𝑖) + 12𝑓2 (𝑥, 𝑖) 𝜕

2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ ∞∑
𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗) + 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖) 𝑢∗ + 12
⋅ 𝑓2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖) 𝑢∗

+ 12 (𝑔2 (𝑥, 𝑖) 𝑢∗) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)

+ 12 (𝑔2 (𝑥, 𝑖) 𝑢∗) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖) 𝑢∗,

= 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑓1 (𝑥, 𝑖) + 12𝑓2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)

+ ∞∑
𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗) + Ψ1𝑖 + Ψ2𝑖,

(26)

where

Ψ1𝑖 = 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖) 𝑢∗ + 12𝑓2 (𝑥,
𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖) 𝑢∗ + 12 (𝑔2 (𝑥, 𝑖)
⋅ 𝑢∗) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖) = −12
⋅ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖) [𝐼 + 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]

−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ] − 14𝑓2 (𝑥,

𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖) [𝐼 + 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]
−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖) + 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ]
− 14 [𝑓2 (𝑥, 𝑖) 𝜕

2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖) + 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖)]
⋅ [𝐼

+ 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]
−1 𝑔2 (𝑥,

𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖) ,
(27)

and

Ψ2𝑖 = 12 (𝑔2 (𝑥, 𝑖) 𝑢∗) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖) 𝑢∗

= 18 [𝑓2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖) + 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖)]

⋅ [𝐼

+ 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]
−1 ⋅ 𝑔2 (𝑥,

𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖) [𝐼 + 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]
−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖) + 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ] .

(28)

By direct calculations, one obtains that

Ψ1𝑖 = −12 [𝑓2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)

+ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖)] [𝐼

+ 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]
−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ] ,

(29)

and

Ψ2𝑖 ≤ 18 [𝑓2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)

+ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖)] [𝐼
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+ 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]
−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ] .

(30)

Implementing (29) and (30) into (16) and taking into account
(11) and (12), we have

L𝑢∗𝑉 (𝑥, 𝑖)V=0 ≤ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑓1 (𝑥, 𝑖) + 12
⋅ 𝑓2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ ∞∑
𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗) − 38 [𝑓2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)

+ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖)] ⋅ [𝐼

+ 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]
−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ] ≤ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑓1 (𝑥, 𝑖) + 12
⋅ 𝑓2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ ∞∑
𝑗=1

𝑞𝑖𝑗𝑉 (𝑥, 𝑗) − 14 [𝑓2 (𝑥, 𝑖) 𝜕
2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)

+ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 𝑔1 (𝑥, 𝑖)] ⋅ [𝐼

+ 𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑔2 (𝑥, 𝑖)]
−1

⋅ [𝑔2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ 𝑔1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ] ≤ −𝑚 (𝑥, 𝑖)𝑚(𝑥, 𝑖)
− 14 [𝑓2 (𝑥, 𝑖) 𝜕

2𝑉 (𝑥, 𝑖)𝜕𝑥2 ℎ2 (𝑥, 𝑖)
+ 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ℎ1 (𝑥, 𝑖)] ⋅ [𝛾2𝐼

− ℎ2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 ℎ2 (𝑥, 𝑖)]
−1

⋅ [ℎ2 (𝑥, 𝑖) 𝜕2𝑉 (𝑥, 𝑖)𝜕𝑥2 𝑓2 (𝑥, 𝑖)
+ ℎ1 (𝑥, 𝑖) 𝜕𝑉 (𝑥, 𝑖)𝜕𝑥 ] ≤ − ‖𝑚 (𝑥, 𝑖)‖2 ≤ −𝑐3 ‖𝑥‖2 .

(31)
Based on Lemma 5, it results that system (1) with V = 0, 𝑢 =𝑢∗ is EMSS. The proof is complete.

Remark 7. It should be pointed that, in Theorem 6, if we
take Υ𝑖 < 0 in (12), system (1) is internally stable (globally
asymptotically stable in probability) even without condition
(11). Then the controller defined in (13) is still an 𝐻∞
controller (globally asymptotically stable in probability).

Below, we will give an example to show the effectiveness
of our above developed𝐻∞ design method.

Example 8. Consider a one-dimensional stochastic nonlinear
system with infinite Markov jumps and the parameters as
follows:

𝑓1 (𝑥, 𝑖) = − 2𝑖𝑥𝑖 + 1 ,
𝑔1 (𝑥, 𝑖) = 1𝑖 + 1 ,
ℎ1 (𝑥, 𝑖) = 14 ,
𝑓2 (𝑥, 𝑖) = 𝑥𝑖 + 1 ,
𝑔2 (𝑥, 𝑖) = 1,
ℎ2 (𝑥, 𝑖) = 1,
𝑚 (𝑥, 𝑖) = 𝑖𝑥2 (𝑖 + 1) .

(32)

Let {𝜂𝑡}𝑡∈R+ be a Poisson process with parameter 𝜆 > 0. It is
obvious that {𝜂𝑡}𝑡∈R+ is a homogeneous Markov process with
the countably infinite state space, and its infinitesimal matrix𝑄 = (𝑞𝑖𝑗) is given by −𝑞𝑖𝑖 = 𝑞𝑖,𝑖+1 = 𝜆 and 𝑞𝑖𝑗 = 0, 𝑖 ∈ D, 𝑗 ∈
D/{𝑖, 𝑖 + 1}.

Assume the disturbance attenuation level 𝛾 = √2 and 𝜆 =1. Then setting 𝑉(𝑥, 𝑖) = 𝑖𝑥2/2(𝑖 + 1), we solve the coupled
HJIs (12), it is easy to verify that the conditions of Theorem 6
are satisfied; thus, via Theorem 6, we have

Υ𝑖 = −15.5𝑖5 − 53.5𝑖4 − 30𝑖3 − 2.75𝑖2 + 8𝑖 + 2
4 (𝑖 + 1)2 (𝑖 + 2) (2𝑖 + 1) < 0. (33)

So the𝐻∞ controller is

𝑢∗ (𝑥, 𝑖) = − 𝑖𝑥(𝑖 + 1) (𝑖 + 2) . (34)

With the initial conditions 𝑥0 = 0.5 and the exogenous
disturbance V(𝑡) = 𝑒−𝑡sin𝑡, Figure 1 shows the state response.
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Figure 1: System state response in Example 8.

4. Conclusion

For a class of nonlinear stochastic systems with infinite
Markov jumps and (𝑥, 𝑢, V)-dependent noise, a sufficient
condition for infinite horizon𝐻∞ control problem has been
obtained in terms of coupled HJIs, and the effectiveness of
the proposed design method is demonstrated by a numer-
ical example. There are some further research directions
including the investigation on𝐻2/𝐻∞ control and𝐻∞ filter
problems for nonlinear infinite Markov jump systems.
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