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This paper addresses the problems of robust-output-controllability and robust optimal output control for incomplete Boolean
control networks with disturbance inputs. First, by resorting to the semi-tensor product technique, the system is expressed as
an algebraic form, based on which several necessary and sufficient conditions for the robust output controllability are presented.
Second, theMayer-type robust optimal output control issue is studied and an algorithm is established to find a control schemewhich
can minimize the cost functional regardless of the effect of disturbance inputs. Finally, a numerical example is given to demonstrate
the effectiveness of the obtained new results.

1. Introduction

Boolean network (BN) was firstly introduced by Kauffman
for modelling genetic regulatory networks (GRNs) [1]. Since
then, it has been used to analyze and simulate cellular
networks. A typical BN consists of 𝑁 nodes, and each can
take one of the following two values: 1 or 0, representing
the gene is expressed or not, respectively. Furthermore, the
state evolution of each node can be determined by Boolean
functions. Although BN is a simplified model, it becomes
a powerful tool in analysing GRNs. And some significant
results were presented [2, 3].

Recently, D. Cheng and coauthors have developed an
algebraic state space representation (ASSR) of Boolean con-
trol networks (BCNs) by using the semitensor product (STP)
of matrices [4]. Using the ASSR, many fundamental and
landmark results about BCNs, which include but are not
limited to controllability and observability [5–8], stability and
stabilization [9–11], disturbance decoupling [12, 13], network
synchronization [14, 15], output tracking [16], output regula-
tion [17, 18], and optimal control [19], have been obtained in
the last few years. The STP is an interesting research topic,
and we can refer to [20–23] for some other applications of it.

As is well known, output-controllability and optimal
output control issues are fundamental concepts in a control

theory field. The output controllability describes the ability
of an external input to move the output from any initial
condition to any final condition in a finite time interval. The
optimal output deals with the problem of finding an external
input for a given system such that a certain optimality output
criterion is achieved. A controllable system is not necessarily
output controllable, and an output controllable system is not
necessarily controllable. Hence, they are also two important
structural properties in modern control theory which reflect
the dominant ability of the control inputs over outputs [24,
25]. As a suitable model of GRNs, the study of output control-
lability (reachability) and optimal control is also meaningful
for BCNs, and there are some literatures studying on both
of them. Reference [26] discussed the output reachability
of BCNs, and several necessary and sufficient conditions
were obtained for the verification of output reachability. The
output-controllability and optimal output control problems
of a state-dependent switched BCN were studied in [27], in
which the output controllability criteria were presented and
an optimal output control design algorithm for the Mayer-
type optimal output problem was established.

Robust control is a branch of control theory that deals
with uncertainty [28]. It aims to achieve robust perfor-
mance, such as controllability, in the presence of uncertain
parameters or disturbances. It is known that, in practical
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networks such as GRNs, the disturbances are ubiquitous,
which primarily stem from environmental changes, biolog-
ical uncertainties, and experimental noises [29, 30]. These
disturbance inputs may lead to instability of networks or
make it difficult to understand the network dynamics. To
be consistent with the dynamical behaviours of the practical
networks, disturbances should be a characteristic which has
to be taken into account when modelling the GRNs by BNs
[31]. Thus, two interesting problems with biological signif-
icance are robust-output-controllability and robust optimal
output control for BCNs with disturbance inputs, which
deserve investigation for theoretical developments as well as
for practical applications.

In order to solve two classical intellectual problems: the
wolf-sheep-cabbage puzzle and the missionaries-cannibals
problem, the authors of [32] presented a new logical control
system (LCS), called the incomplete LCS, in which certain
controls can only be applied to certain states. Moreover, in
[33], authors modeled a networked evolutionary game with
bankruptcy mechanism as an LCS whose certain control-
states should be forbidden. These cases show that the inves-
tigation of incomplete BCNs is of practical significance.
Unfortunately, to the best of authors’ knowledge, there is no
result available for robust output controllability and robust
optimal output control of incomplete BCNs with disturbance
inputs, which motivates the study of this research.

This paper investigates the robust-output-controllability
and robust optimal output control of incomplete BCNs
with disturbance inputs. The main difficulties of extending
the results obtained in [27, 34] contain the following two
aspects: (1) the dynamics of a BCN with disturbance inputs
is much more complicated than a BCN and, in this paper, the
disturbance inputs are arbitrary; (2) the existence of control-
state avoiding setmakes the control law of this paper different
from that of the existing results about BCNs since some
control-states should be avoided when designing the control
sequences. We present several necessary and sufficient condi-
tions for the robust output controllability of incomplete BCNs
with disturbance inputs. Moreover, a robust optimal output
control design algorithm for the Mayer-type robust optimal
output problem is also derived.

The remainder of this paper is organized as follows.
Section 2 provides some preliminary results. In Section 3, we
study the robust-output-controllability and robust optimal
output control problems of incomplete BCNs with distur-
bance inputs, and present the main results of this paper.
A numerical example is given in Section 4 to illustrate the
validity of the obtained new results. Finally, conclusions are
drawn in Section 5.

2. Preliminaries

Firstly, we list some notations which will be used throughout
this paper.

(i) D fl {1, 0} andD𝑛 fl D × ⋅ ⋅ ⋅ ×D⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

.

(ii) 𝛿𝑖𝑛: the 𝑖-th column of the identity matrix 𝐼𝑛.

(iii) Δ 𝑛 fl {𝛿𝑖𝑛 | 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛}, and for compactness,
Δ fl Δ 2. By identifying 1 ∼ 𝛿12 and 0 ∼ 𝛿22, where “∼”
denotes two equivalent forms of the same object, the
logical variable inD then takes value from Δ.

(iv) 𝐶𝑜𝑙(𝐴) (𝑅𝑜𝑤(𝐴)) is the set of columns (rows) of 𝐴.
𝐶𝑜𝑙𝑖(𝐴) (𝑅𝑜𝑤𝑖(𝐴)) is the 𝑖-th column (row) of 𝐴.

(v) M𝑚×𝑛: the set of 𝑚 × 𝑛 real matrices. A matrix 𝐴 ∈
M𝑚×𝑛 is called a logical matrix, if the columns of 𝐴
are elements of Δ𝑚. Denote byL𝑚×𝑛 the set of𝑚 × 𝑛
logical matrices.

(vi) If 𝐴 ∈ L𝑚×𝑛, by definition it can be expressed as
𝐴 = [𝛿𝑖1𝑚, 𝛿𝑖2𝑚, ⋅ ⋅ ⋅ , 𝛿𝑖𝑛𝑚], and its shorthand is 𝐴 =
𝛿𝑚 [𝑖1 𝑖2 ⋅ ⋅ ⋅ 𝑖𝑛].

(vii) A matrix 𝐵 ∈ M𝑚×𝑛 is called a Boolean matrix, if its
entries 𝑏𝑖𝑗 ∈ D, for every 𝑖, 𝑗. Denote byB𝑚×𝑛 the set
of𝑚 × 𝑛 Boolean matrices.

(viii) A matrix 𝐿 ∈ M𝑚×𝑛 is called an incomplete logical
matrix, if

𝐶𝑜𝑙 (𝐿) ⊂ Δ𝑚⋃{0𝑚} , (1)

where 0𝑚 is an𝑚 dimensional zero vector. Identifying
0𝑚 with 𝛿0𝑚, an incomplete logical matrix 𝐿 can briefly
expressed as 𝐿 = 𝛿𝑚 [𝑖1 𝑖2 ⋅ ⋅ ⋅ 𝑖𝑛], where certain
𝑖𝑟 could be 0. Denote by L𝐼𝑚×𝑛 the set of 𝑚 × 𝑛
incomplete logical matrices.

(ix) For 𝐴 ∈ M𝑚×𝑟, 𝐵 ∈ M𝑛×𝑟,

𝐴 ∗ 𝐵
= [𝐶𝑜𝑙1 (𝐴) ⋉ 𝐶𝑜𝑙1 (𝐵) , ⋅ ⋅ ⋅ , 𝐶𝑜𝑙𝑟 (𝐴) ⋉ 𝐶𝑜𝑙𝑟 (𝐵)]

(2)

is the Khatri-Rao product of A and B.

Some necessary definitions are given as follows.

Definition 1 (see [4]). For𝐴 ∈ M𝑚×𝑛 and 𝐵 ∈ M𝑝×𝑞, the STP,
denoted by 𝐴 ⋉ 𝐵, is defined as follows:

𝐴 ⋉ 𝐵 fl (𝐴 ⊗ 𝐼𝑠/𝑛) (𝐵 ⊗ 𝐼𝑠/𝑝) , (3)

where 𝑠 =l.c.m.(𝑛, 𝑝), denoting the least common multiple of
𝑛 and 𝑝, and ⊗ denotes the Kronecker product.

It is noted that the STP is a generalization of the ordinary
matrix product. In this paper, we simply call it “product” and
omit the symbol “⋉” if no confusion arises.

Definition 2. The intersection of Boolean matrices is defined
as

𝐴 ∧ 𝐵 = (𝑎𝑖𝑗 ∧ 𝑏𝑖𝑗) ∈ B𝑚×𝑛, ∀𝐴, 𝐵 ∈ B𝑚×𝑛. (4)

Definition 3. Let 𝐴 = (𝑎𝑖𝑗) ∈ B𝑚×𝑛 be a matrix; then we call
𝐴 > 0 if and only if 𝑎𝑖𝑗 > 0, ∀𝑖, 𝑗.

Finally, we give some conclusions which will be used in
the remainder of the paper.
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Lemma 4 (see [4]). Any logical function 𝑓(𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) with
logical arguments 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛 ∈ Δ can be expressed in a
multilinear form as

𝑓 (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) = 𝑀𝑓𝑥1 ⋅ ⋅ ⋅ 𝑥𝑛, (5)

where 𝑀𝑓 ∈ L2×2𝑛 is unique, called the structure matrix of
logical function 𝑓.

Consider a disturbed BCN as follows:

𝑥1 (𝑡 + 1) = 𝑓1 (Ξ (𝑡) , 𝑋 (𝑡) , 𝑈 (𝑡)) ,
𝑥2 (𝑡 + 1) = 𝑓2 (Ξ (𝑡) , 𝑋 (𝑡) , 𝑈 (𝑡)) ,

...
𝑥𝑛 (𝑡 + 1) = 𝑓𝑛 (Ξ (𝑡) , 𝑋 (𝑡) , 𝑈 (𝑡)) ;
𝑦𝑗 (𝑡) = ℎ𝑗 (𝑋 (𝑡)) , 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑝,

(6)

where𝑋(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡)) ∈ D𝑛 denotes the state
variable, 𝑈(𝑡) = (𝑢1(𝑡), ⋅ ⋅ ⋅ , 𝑢𝑚(𝑡)) ∈ D𝑚 denotes the control
input, Ξ(𝑡) = (𝜉1(𝑡), ⋅ ⋅ ⋅ , 𝜉𝑟(𝑡)) ∈ D𝑟 denotes the disturbance
input, 𝑌(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), ⋅ ⋅ ⋅ , 𝑦𝑝(𝑡)) ∈ D𝑝 denotes the
output variable, and 𝑓𝑖 : D𝑛+𝑚+𝑟 󳨃󳨀→ D, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, and ℎ𝑗 :
D𝑛 󳨃󳨀→ D, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑝 are Boolean functions. Denote the
output trajectory of the system (6) by 𝑌(𝑡; 𝑋(0), 𝑈𝑡−1, Ξ𝑡−1),
where 𝑋(0) ∈ D𝑛, 𝑈𝑡−1 fl {𝑈(0), ⋅ ⋅ ⋅ , 𝑈(𝑡 − 1)} ⊆ D𝑚, and
Ξ𝑡−1 fl {Ξ(0), ⋅ ⋅ ⋅ , Ξ(𝑡 − 1)} ⊆ D𝑟 represent the initial state,
the control sequence, and the sequence of disturbance inputs,
respectively.

In order to convert the system (6) into an algebraic form,
we define 𝑥(𝑡) = ⋉𝑛𝑖=1𝑥𝑖(𝑡), 𝑢(𝑡) = ⋉𝑚𝑖=1𝑢𝑖(𝑡), 𝜉(𝑡) = ⋉𝑟𝑖=1𝜉𝑖(𝑡),
and 𝑦(𝑡) = ⋉𝑝𝑖=1𝑦𝑖(𝑡). Assume that the structure matrices for
𝑓𝑖, ℎ𝑗 are 𝐹𝑖 ∈ L2×2𝑛+𝑚+𝑟 , 𝐻𝑗 ∈ L2×2𝑛 , respectively, then the
system (6) can be converted into the following algebraic form:

𝑥 (𝑡 + 1) = 𝐿𝜉 (𝑡) 𝑢 (𝑡) 𝑥 (𝑡) ,
𝑦 (𝑡) = 𝐻𝑥 (𝑡) , (7)

where 𝐿 = ∗𝑛𝑖=1𝐹𝑖 ∈ L2𝑛×2𝑛+𝑚+𝑟 is called the state transition
matrix, 𝐻 = ∗𝑛𝑗=1𝐻𝑗 ∈ L2𝑝×2𝑛 , and ∗ is the Khatri-Rao
product.

3. Main Results

In this section, we study the robust-output-controllability and
robust optimal output control of disturbed incomplete BCNs
and present the main results of this paper.

3.1. An Algebraic Form for Disturbed Incomplete BCNs. First,
we give the concept of disturbed incomplete BCNs.

Definition 5. Consider the disturbed BCN (7). Suppose
certain controls are not applicable to certain states. Precisely,
there exists a set of pairs

Θ fl {(𝛿𝛼𝑖2𝑚 , 𝛿𝛽𝑖2𝑛) | 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑠} ⊂ Δ 2𝑚 × Δ 2𝑛 , (8)

such that the control 𝛿𝛼𝑖2𝑚 is not applicable to 𝛿𝛽𝑖2𝑛 . Θ is called
the control-state avoiding set. Supposing that Θ ̸= 0, then the
disturbed BCN is called the disturbed incomplete BCN.

Consider the disturbed incomplete BCN (7)with control-
state avoiding set Θ and split 𝐿 into 2𝑟 blocks as 𝐿 fl
[𝐿1, 𝐿2, ⋅ ⋅ ⋅ , 𝐿2𝑟], where 𝐿𝑘 ∈ L2𝑛×2𝑛+𝑚 , 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑟. For
𝑢(𝑡) = 𝛿𝛼𝑖2𝑚 , 𝑥(𝑡) = 𝛿𝛽𝑖2𝑛 , a straightforward computation shows
that 𝑢(𝑡) ⋉ 𝑥(𝑡) = 𝛿𝛼𝑖2𝑚 ⋉𝛿𝛽𝑖2𝑛 = 𝛿𝑎𝑖2𝑚+𝑛 , where 𝑎𝑖 = (𝛼𝑖 −1)2𝑛 +𝛽𝑖.
Thus, when 𝜉(𝑡) = 𝛿𝑘2𝑟 , 𝑢(𝑡) = 𝛿𝛼𝑖2𝑚 and 𝑥(𝑡) = 𝛿𝛽𝑖2𝑛 , we have

𝑥 (𝑡 + 1) = 𝐿𝜉 (𝑡) 𝑢 (𝑡) 𝑥 (𝑡) = 𝐿𝑘𝑢 (𝑡) 𝑥 (𝑡) = 𝐿𝑘𝛿𝑎𝑖2𝑚+𝑛
= 𝐶𝑜𝑙𝑎𝑖 (𝐿𝑘) ,

(9)

where 𝑎𝑖 = (𝛼𝑖−1)2𝑛+𝛽𝑖 and 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑟. If (𝛿𝛼𝑖2𝑚 , 𝛿𝛽𝑖2𝑛 ) ∈ Θ,
we let 𝐶𝑜𝑙𝑎𝑖 (𝐿𝑘) = 𝛿02𝑛 . In this case, the corresponding 𝑥(𝑡+1)
does not exist.We also denote it briefly as 𝑥(𝑡+1) = 𝛿02𝑛 .Then,
it is easy to obtain the following result.

Proposition 6. A disturbed incomplete BCN with control-
state avoiding set Θ as in (8) has its algebraic expression as in
(7) except that

𝐶𝑜𝑙𝑎𝑖 (𝐿𝑘) = 𝛿02𝑛 , (10)

where 𝑎𝑖 = (𝛼𝑖 −1)2𝑛+𝛽𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑠, and 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑟.
We denote the new blocks obtained from Proposition 6

by 𝐿Θ𝑘 , that is,
𝐶𝑜𝑙𝑎𝑖 (𝐿Θ𝑘) = 𝛿02𝑛 , 𝑎𝑖 = (𝛼𝑖 − 1) 2𝑛 + 𝛽𝑖;
𝐶𝑜𝑙𝑎𝑖 (𝐿Θ𝑘) = 𝐶𝑜𝑙𝑎𝑖 (𝐿𝑘) , otherwise.

(11)

Let 𝐼Θ be the matrix obtained from an identity matrix
𝐼2𝑛+𝑚×2𝑛+𝑚 substituting the columns with indexes 𝑎1, ⋅ ⋅ ⋅ , 𝑎𝑠 by𝛿02𝑛+𝑚 ; then 𝐿Θ𝑘 can be calculated by 𝐿Θ𝑘 = 𝐿𝑘𝐼Θ.

Construct a new matrix as follows:

𝐿Θ = [𝐿Θ1 , 𝐿Θ2 , ⋅ ⋅ ⋅ , 𝐿Θ2𝑟] , (12)

and then it is easy to see that 𝐿Θ is the state transition matrix
of a disturbed incomplete BCN with control-state avoiding
set Θ. In fact, 𝐿Θ can be further calculated as

𝐿Θ = [𝐿Θ1 , 𝐿Θ2 , ⋅ ⋅ ⋅ , 𝐿Θ2𝑟] = [𝐿1𝐼Θ, 𝐿2𝐼Θ, ⋅ ⋅ ⋅ , 𝐿2𝑟𝐼Θ]
= [𝐿 ⋉ 𝛿12𝑟 ⋉ 𝐼Θ, 𝐿 ⋉ 𝛿22𝑟 ⋉ 𝐼Θ, ⋅ ⋅ ⋅ , 𝐿 ⋉ 𝛿2𝑟2𝑟 ⋉ 𝐼Θ]
= 𝐿 ⋉ [𝛿12𝑟 ⋉ 𝐼Θ, 𝛿22𝑟 ⋉ 𝐼Θ, ⋅ ⋅ ⋅ , 𝛿2𝑟2𝑟 ⋉ 𝐼Θ]
= 𝐿 (𝐼2𝑟 ⊗ 𝐼Θ) .

(13)

Based on (7) and above analysis, the following result is
obvious.
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Proposition 7. Consider a disturbed incomplete BCN with
control-state avoiding set Θ. It can be expressed as an algebraic
form:

𝑥 (𝑡 + 1) = 𝐿Θ𝜉 (𝑡) 𝑢 (𝑡) 𝑥 (𝑡) ,
𝑦 (𝑡) = 𝐻𝑥 (𝑡) , (14)

where 𝐿Θ ∈L𝐼2𝑛×2𝑛+𝑚+𝑟 is given in (12).

Proof. We only need to prove that the state trajectories of the
disturbed incomplete logical system (14) are equivalent to that
of the system (7) with control-state avoiding set Θ.

Denote 𝑊 = {𝛿𝑎𝑖
2𝑚+𝑛

= 𝛿𝛼𝑖2𝑚 ⋉ 𝛿𝛽𝑖2𝑛 | (𝛿𝛼𝑖2𝑚 , 𝛿𝛽𝑖2𝑛) ∈ Θ}, where
𝑎𝑖 = (𝛼𝑖 −1)2𝑛 +𝛽𝑖. It is obvious that𝑊 andΘ are equivalent.
For any 𝜉(𝑡) = 𝛿𝑘2𝑟 , 𝑘 = 1, ⋅ ⋅ ⋅ , 2𝑟, we first prove the case of
𝑢(𝑡)𝑥(𝑡) = 𝛿𝑎𝑖

2𝑚+𝑛
∈ 𝑊. A simple calculation shows that

𝑥 (𝑡 + 1) = 𝐿𝜉 (𝑡) 𝑢 (𝑡) 𝑥 (𝑡) = 𝐿𝑘𝑢 (𝑡) 𝑥 (𝑡)
= 𝐶𝑜𝑙𝑎𝑖 (𝐿𝑘) = 𝛿02𝑛 = 𝐶𝑜𝑙𝑎𝑖 (𝐿Θ𝑘)
= 𝐿Θ𝑘𝑢 (𝑡) 𝑥 (𝑡) = 𝐿Θ𝜉 (𝑡) 𝑢 (𝑡) 𝑥 (𝑡) .

(15)

When 𝑢(𝑡)𝑥(𝑡) = 𝛿𝑎𝑖
2𝑚+𝑛

∉ 𝑊, we have

𝑥 (𝑡 + 1) = 𝐿𝜉 (𝑡) 𝑢 (𝑡) 𝑥 (𝑡) = 𝐿𝑘𝑢 (𝑡) 𝑥 (𝑡)
= 𝐶𝑜𝑙𝑎𝑖 (𝐿𝑘) = 𝐶𝑜𝑙𝑎𝑖 (𝐿Θ𝑘) = 𝐿Θ𝑘𝑢 (𝑡) 𝑥 (𝑡)
= 𝐿Θ𝜉 (𝑡) 𝑢 (𝑡) 𝑥 (𝑡) .

(16)

Hence, in both cases, the state trajectories of the disturbed
incomplete logical system (14) are equivalent to that of the
system (7) with control-state avoiding set𝑊. Since𝑊 and Θ
re equivalent, this completes the proof.

3.2. Robust Output Controllability Analysis of Disturbed
Incomplete BCNs. Now, we give definitions of the robust
output controllability for disturbed incomplete BCNs.

Definition 8. Consider the disturbed incomplete BCN (14).

(i) 𝑦𝑓 ∈ Δ 2𝑝 is said to be 𝑠-robust-output-reachable
from the initial state 𝑥(0) ∈ Δ 2𝑛 , if one can find a
control sequence 𝑢𝑠−1 ⊆ Δ 2𝑚 such that for arbitrary
disturbance inputs 𝜉𝑠−1 ⊆ Δ 2𝑟 , the output at time
𝑡 = 𝑠 satisfies 𝑦(𝑠; 𝑥(0), 𝑢𝑠−1, 𝜉𝑠−1) = 𝑦𝑓, where 𝑢𝑠−1 fl
{𝑢(0), ⋅ ⋅ ⋅ , 𝑢(𝑠−1)} and 𝜉𝑠−1 fl {𝜉(0), ⋅ ⋅ ⋅ , 𝜉(𝑠−1)}.The
𝑠-robust-output-reachable set of the initial state 𝑥(0)
is denoted by 𝑅𝑠(𝑥(0)).

(ii) The system (14) is said to be 𝑠-robust-output-
controllable at the initial state 𝑥(0) ∈ Δ 2𝑛 , if for any
output state 𝑦𝑓 ∈ Δ 2𝑝 , one can find a control sequence
𝑢𝑠−1 ⊆ Δ 2𝑚 such that, for arbitrary disturbance inputs𝜉𝑠−1 ⊆ Δ 2𝑟 , the output at time 𝑡 = 𝑠 satisfies
𝑦(𝑠; 𝑥(0), 𝑢𝑠−1, 𝜉𝑠−1) = 𝑦𝑓. The system (14) is said
to be 𝑠-robust-output-controllable, if the system is 𝑠-
robust-output-controllable at any 𝑥(0) ∈ Δ 2𝑛 .

(iii) The system (14) is said to be robust-output-
controllable at the initial state 𝑥(0) ∈ Δ 2𝑛 , if for
any output state 𝑦𝑓 ∈ Δ 2𝑝 , one can find a positive
integer 𝑇 and a control sequence 𝑢𝑇−1 ⊆ Δ 2𝑚 such
that, for arbitrary disturbance inputs 𝜉𝑇−1 ⊆ Δ 2𝑟 , the
output at time 𝑡 = 𝑇 is𝑦(𝑇; 𝑥(0), 𝑢𝑇−1, 𝜉𝑇−1) = 𝑦𝑓.The
system (14) is said to be robust-output-controllable,
if the system is robust-output-controllable at any
𝑥(0) ∈ Δ 2𝑛 .

To obtain necessary and sufficient conditions for the
robust output controllability of disturbed incomplete BCNs,
we first consider the robust reachability of disturbed incom-
plete BCNs.

Consider the disturbed incomplete BCN (14), and denote
by

𝐿̃Θ = 𝐿Θ1 ∧ 𝐿Θ2 ∧ ⋅ ⋅ ⋅ ∧ 𝐿Θ2𝑟 . (17)

Split 𝐿̃Θ into 2𝑚 square blocks as
𝐿̃Θ = [𝐿̃Θ1 , 𝐿̃Θ2 , ⋅ ⋅ ⋅ , 𝐿̃Θ2𝑚] , (18)

where 𝐿̃Θ𝑗 ∈ L𝐼2𝑛×2𝑛 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 2𝑚. Then we have the
following result.

Theorem 9. Consider the disturbed incomplete BCN (14). Let
𝑥𝑓 = 𝛿𝑞2𝑛 and 𝑥(0) = 𝛿𝑟2𝑛 be given. �en,

(i) 𝑥𝑓 is robust reachable from 𝑥(0) at the 𝑠-th step, if and
only if

(𝑀𝑠)𝑞,𝑟 > 0, (19)

where 𝑀 = ∑2𝑚𝑗=1(𝐿̃Θ𝑗 ) and (𝑀𝑠)𝑞,𝑟 denotes the (𝑞, 𝑟)th
element of𝑀𝑠;

(ii) 𝑥𝑓 is robust reachable from 𝑥(0), if and only if
2𝑚+𝑛+𝑟

∑
𝑠=1

(𝑀𝑠)𝑞,𝑟 > 0. (20)

Proof.

(i) (Necessity). We prove it by induction on 𝑠. Consider the
case 𝑠 = 1. It is assumed that 𝑥(1) = 𝛿𝑞2𝑛 can be robust
reachable from 𝑥(0) = 𝛿𝑟2𝑛 at the first step; then one can find
at least one control 𝑢(0) = 𝛿𝑗2𝑚 such that, for any disturbance
input 𝜉(0) = 𝛿𝑘2𝑟 , the following equation will hold:

𝛿𝑞2𝑛 = 𝐿Θ𝑘𝛿𝑗2𝑚𝛿𝑟2𝑛 , ∀𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑟. (21)

Multiplying (21) from the left by (𝛿𝑞2𝑛)𝑇 yields
1 = (𝛿𝑞2𝑛)𝑇 𝐿Θ𝑘𝛿𝑗2𝑚𝛿𝑟2𝑛 , ∀𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑟. (22)

For each block 𝐿Θ𝑘 ∈ L𝐼2𝑛×2𝑛+𝑚 , split it into 2𝑚 equal blocks
as

𝐿Θ𝑘 = [𝐿Θ𝑘1, 𝐿Θ𝑘2, ⋅ ⋅ ⋅ , 𝐿Θ𝑘2𝑚] , (23)
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where 𝐿Θ𝑘 is given in (12). Then according to (22), we have

(𝐿Θ1𝑗)𝑞,𝑟 = (𝐿Θ2𝑗)𝑞,𝑟 = ⋅ ⋅ ⋅ = (𝐿Θ2𝑟𝑗)𝑞,𝑟 = 1. (24)

Since 𝐿̃Θ = 𝐿Θ1 ∧ 𝐿Θ2 ∧ ⋅ ⋅ ⋅ ∧ 𝐿Θ2𝑟 , one knows that
𝐿̃Θ𝛿𝑗2𝑚 = 𝐿̃Θ𝑗 = (𝐿Θ1 ∧ 𝐿Θ2 ∧ ⋅ ⋅ ⋅ ∧ 𝐿Θ2𝑟) 𝛿𝑗2𝑚

= (𝐿Θ1𝛿𝑗2𝑚) ∧ (𝐿Θ2𝛿𝑗2𝑚) ∧ ⋅ ⋅ ⋅ ∧ (𝐿Θ2𝑟𝛿𝑗2𝑚)
= 𝐿Θ1𝑗 ∧ 𝐿Θ2𝑗 ∧ ⋅ ⋅ ⋅ ∧ 𝐿Θ2𝑟𝑗.

(25)

Combining (24) and (25), we have

(𝐿̃Θ𝑗 )𝑞,𝑟 = 1. (26)

Thus,

(𝑀)𝑞,𝑟 = (𝐿̃Θ1 + 𝐿̃Θ2 + ⋅ ⋅ ⋅ + 𝐿̃Θ2𝑚)𝑞,𝑟 ≥ (𝐿̃Θ𝑗 )𝑞,𝑟 = 1. (27)

This proves the situation for 𝑠 = 1.
For the induction step, we assume that, for any 𝑙 ≤ 𝑠, if

𝑥(𝑙) = 𝛿𝑞
2𝑛 can be robust reachable from 𝑥(0) = 𝛿𝑟2𝑛 at the𝑙th step, then (𝑀𝑙)𝑞,𝑟 > 0. In the following, we need to prove

that (19) holds for 𝑙 = 𝑠 + 1. Assuming that 𝑥(𝑠 + 1) = 𝛿𝑞2𝑛
can be robust reachable from 𝑥(0) = 𝛿𝑟2𝑛 at the (𝑠 + 1)th step,
then there must exist a path from 𝛿𝑟2𝑛 to 𝛿𝑘02𝑛 at the 𝑠th step and
a path from 𝛿𝑘02𝑛 to 𝛿𝑞2𝑛 in one step. Applying the induction
hypothesis, we have

(𝑀𝑠)𝑘0,𝑟 > 0,
(𝑀)𝑞,𝑘0 > 0.

(28)

Therefore,

(𝑀𝑠+1)
𝑞,𝑟
= (𝑀𝑀𝑠)𝑞,𝑟 =

2𝑛

∑
𝑘=1

(𝑀)𝑞,𝑘 (𝑀𝑠)𝑘,𝑟
≥ (𝑀)𝑞,𝑘0 (𝑀𝑠)𝑘0,𝑟 > 0.

(29)

The proof of necessity is completed.

(Sufficiency). We still prove it by induction on 𝑠. From the
proof of necessity, one can easily see that if (𝑀)𝑞,𝑟 > 0,
then (21) must hold, which implies that control 𝛿𝑗2𝑚 can steer
system (14) from 𝛿𝑟2𝑚 to 𝛿𝑞2𝑚 in one step under arbitrary
disturbance inputs. This proves (19) for 𝑠 = 1.

We assume that, for any 𝑙 ≤ 𝑠, if (𝑀𝑙)𝑞,𝑟 > 0, then 𝛿𝑞2𝑚
can be robust reachable from 𝛿𝑟2𝑚 at the 𝑙th step. By (29),
one can obviously see that if (𝑀𝑠+1)𝑞,𝑟 > 0, then there exists
at least a positive integer 𝑘0 such that (𝑀𝑠)𝑘0,𝑟 > 0 and
(𝑀)𝑞,𝑘0 > 0. Based on the induction hypothesis, 𝛿𝑘02𝑛 can be
robust reachable from 𝛿𝑟2𝑛 at the 𝑠th step and 𝛿𝑞2𝑛 can be robust
reachable from 𝛿𝑘02𝑛 in one step. Thus, 𝛿𝑞2𝑛 can be robust
reachable from 𝛿𝑟2𝑛 at the (𝑠 + 1)th step.

The result (ii) can be easily obtained from (i).

From Theorem 9 and Definition 8, one can obtain the
following robust output controllability results.

Theorem 10. Consider the disturbed incomplete BCN (14).
(i) 𝑦𝑓 = 𝛿𝑙2𝑝 is s-robust-output-reachable from the initial

state 𝑥(0) = 𝛿𝑟2𝑛 , if and only if
(𝐻𝑀𝑠)𝑙,𝑟 > 0; (30)

(ii)�e system (14) is s-robust-output-controllable at the initial
state 𝑥(0) = 𝛿𝑟2𝑛 , if and only if

𝐶𝑜𝑙𝑟 (𝐻𝑀𝑠) > 0; (31)

(iii)�e system (14) is s-robust-output-controllable, if and only
if

𝐻𝑀𝑠 > 0; (32)

(iv) �e system (14) is robust-output-controllable at the initial
state 𝑥(0) = 𝛿𝑟2𝑛 , if and only if

2𝑚+𝑛+𝑟

∑
𝑠=1

𝐶𝑜𝑙𝑟 (𝐻𝑀𝑠) > 0; (33)

(v) �e system (14) is robust-output-controllable, if and only if

2𝑚+𝑛+𝑟

∑
𝑠=1

(𝐻𝑀𝑠) > 0. (34)

Proof.

(i) (Sufficiency). Assuming that (30) holds, and we need to
prove that there exists a control sequence 𝑢𝑠−1 fl {𝑢(𝑡) : 𝑡 =
0, ⋅ ⋅ ⋅ , 𝑠−1} ⊆ Δ 2𝑚 such that, for arbitrary disturbance inputs𝜉𝑠−1 fl {𝜉(𝑡) : 𝑡 = 0, ⋅ ⋅ ⋅ , 𝑠 − 1} ⊆ Δ 2𝑟 , the output satisfies𝑦(𝑠; 𝛿𝑟2𝑛 , 𝑢𝑠−1, 𝜉𝑠−1) = 𝛿𝑙2𝑝 . Since

(𝐻𝑀𝑠)𝑙,𝑟 =
2𝑛

∑
𝑞=1

(𝐻)𝑙,𝑞 (𝑀𝑠)𝑞,𝑟 > 0, (35)

there must exist an integer 1 ≤ 𝑞0 ≤ 2𝑛 such that (𝐻)𝑙,𝑞0 = 1
and (𝑀𝑠)𝑞0,𝑟 > 0.

Based on Theorem 9, 𝛿𝑞02𝑛 is robust reachable from 𝛿𝑟2𝑛 at
the 𝑠th step. In other words, we can find a control sequence
𝑢𝑠−1 ⊆ Δ 2𝑚 such that

𝑥 (𝑠; 𝛿𝑟2𝑛 , 𝑢𝑠−1, 𝜉𝑠−1) = 𝛿𝑞02𝑛 , ∀𝜉𝑠−1 ⊆ Δ 2𝑝 . (36)

Correspondingly,

𝑦 (𝑠; 𝛿𝑟2𝑛 , 𝑢𝑠−1, 𝜉𝑠−1) = 𝐻𝛿𝑞02𝑛 = 𝐶𝑜𝑙𝑞0 (𝐻) = 𝛿𝑙2𝑝 ,
∀𝜉𝑠−1 ⊆ Δ 2𝑝 ,

(37)

which infers that 𝛿𝑙2𝑝 is s-robust-output-reachable from
𝑥(0) = 𝛿𝑟2𝑛 .
(Necessity). Assuming that 𝛿𝑙2𝑝 is s-robust-output-reachable
from 𝛿𝑟2𝑛 , then there exists a sequence of control signals 𝑢𝑠−1
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under which 𝑦(𝑠; 𝛿𝑟2𝑛 , 𝑢𝑠−1, 𝜉𝑠−1) = 𝛿𝑙2𝑝 regardless of the effect
of disturbance inputs 𝜉𝑠−1. Since

𝑦 (𝑠; 𝛿𝑟2𝑛 , 𝑢𝑠−1, 𝜉𝑠−1) = 𝐻𝑥 (𝑠; 𝛿𝑟2𝑛 , 𝑢𝑠−1, 𝜉𝑠−1) , (38)

letting 𝑥(𝑠; 𝛿𝑟2𝑛 , 𝑢𝑠−1, 𝜉𝑠−1) = 𝛿𝑞02𝑛 , it is easy to check that
𝐶𝑜𝑙𝑞0(𝐻) = 𝛿𝑙2𝑝 and 𝛿𝑞02𝑛 is robust reachable from 𝛿𝑟2𝑛 at the𝑠th step. In other words, (𝐻)𝑙,𝑞0 = 1 and (𝑀𝑠)𝑞0,𝑟 > 0. Hence,

(𝐻𝑀𝑠)𝑙,𝑟 =
2𝑛

∑
𝑖=1

(𝐻)𝑙,𝑖 (𝑀𝑠)𝑖,𝑟 ≥ (𝐻)𝑙,𝑞0 (𝑀𝑠)𝑞0,𝑟 > 0, (39)

which means that (30) holds.
The results (ii) and (iii) can be derived from (i) and

Definition 8 easily. Thus, we omit them.
Next, we prove result (iv).

(Sufficiency). Assuming that (33) holds, then for any 𝑙 ∈
{1, 2, ⋅ ⋅ ⋅ , 2𝑝}, there exists an integer 1 ≤ 𝑠 ≤ 2𝑛+𝑚+𝑟 such that
(𝐻𝑀𝑠)𝑙,𝑟 > 0. Based on result (i),𝑦𝑓 = 𝛿𝑙2𝑝 is s-robust-output-
reachable from the initial state 𝑥(0). For the arbitrariness of
𝑙, we know system (14) is robust-output-controllable at the
initial state 𝑥(0) = 𝛿𝑟2𝑛 .
(Necessity). Suppose that the system (14) is robust-output-
controllable at the initial state 𝑥(0) = 𝛿𝑟2𝑛 .Then for any output
𝑦𝑓 = 𝛿𝑙2𝑝 , there exists an integer 1 ≤ 𝑠𝑙 ≤ 2𝑚+𝑛+𝑟 such that,
for arbitrary disturbance inputs, the inequality (𝐻𝑀𝑠𝑙)𝑙,𝑟 > 0
holds, ∀𝑙 ∈ {1, 2, ⋅ ⋅ ⋅ , 2𝑝}. Thus,

2𝑚+𝑛+𝑟

∑
𝑠=1

(𝐻𝑀𝑠)𝑙,𝑟 ≥ (𝐻𝑀𝑠𝑙)𝑙,𝑟 > 0,

∀𝑙 ∈ {1, 2, ⋅ ⋅ ⋅ , 2𝑝} ,
(40)

which means that (33) holds.
The result (v) follows from (i) and Definition 8, and we

omit it. The proof is completed.

Corollary 11. By �eorem 10, for a given initial state 𝑥(0) =
𝛿𝑟2𝑛 and an integer 𝑠 > 0, one can successively obtain that

𝑅𝑠 (𝑥 (0)) = {𝛿𝑙2𝑝 : (𝐻𝑀𝑠)𝑙,𝑟 > 0} . (41)

3.3. Robust Optimal Output Control of Disturbed Incomplete
Boolean Control Networks. In this subsection, we investigate
the Mayer-type robust optimal output control problem of
disturbed incomplete Boolean control networks and present
a new design procedure for the problem.

Consider a disturbed incomplete BCN with the algebraic
state representation (14). The Mayer-type robust optimal
output control problem can be described as follows: find a
control sequence 𝑢𝑠−1 fl {𝑢(𝑡) : 𝑡 = 0, ⋅ ⋅ ⋅ , 𝑠−1} such that, for
arbitrary disturbance inputs 𝜉𝑠−1 fl {𝜉(𝑡) : 𝑡 = 0, ⋅ ⋅ ⋅ , 𝑠 − 1},
the cost functional

𝐽 (𝑢𝑠−1, 𝜉𝑠−1; 𝑥 (0)) = 𝜆𝑇𝑦 (𝑠) (42)

is minimized under the given initial state 𝑥(0), where 𝜆 =
[𝜆1 ⋅ ⋅ ⋅ 𝜆2𝑝]𝑇 ∈ M2𝑝×1 is a given constant vector and 𝑠 ≥ 1
is a fixed termination time.

Minimizing the cost functional 𝐽 is equal to find out the
minimum value of 𝐽 under the following constraint:

𝑦 (𝑠) ∈ 𝑅𝑠 (𝑥 (0)) = {𝛿𝑞12𝑝 , ⋅ ⋅ ⋅ , 𝛿𝑞𝛼2𝑝 } , (43)

And, meanwhile, we need to design a control sequence
{𝑢(0), 𝑢(1), ⋅ ⋅ ⋅ , 𝑢(𝑠 − 1)} which steers 𝑥(0) to the optimal
terminal output 𝑦∗(𝑠) regardless of the effect of disturbance
inputs, where 𝑅𝑠(𝑥(0)) can be computed by (41).

It is noted that when 𝑦(𝑠) = 𝛿𝑞𝑖
2𝑝
, 𝐽(𝑢𝑠−1, 𝜉𝑠−1; 𝑥(0)) =

𝜆𝑇𝑦(𝑠) = 𝜆𝑇𝛿𝑞𝑖
2𝑝

= 𝐶𝑜𝑙𝑞𝑖 (𝜆𝑇) = 𝜆𝑞𝑖 . Thus, to find out the
minimum value of 𝐽, we just need to compute the minimum
value of 𝜆𝑞, 𝑞 = 𝑞1, ⋅ ⋅ ⋅ , 𝑞𝛼.

According to the above discussion, we obtain the follow-
ing algorithm to find a sequence of controls 𝑢(0), ⋅ ⋅ ⋅ , 𝑢(𝑠−1)
such that, for any disturbance inputs 𝜉(0), ⋅ ⋅ ⋅ , 𝜉(𝑠 − 1), the
cost functional 𝐽 is minimized at the fixed termination time
𝑠.
Algorithm 12.

Step 1. Compute the 𝑠-robust-output-reachable set with the
initial state 𝑥(0) = 𝛿𝑟2𝑛 by (41), denoted by 𝑅𝑠(𝑥(0)) =
{𝛿𝑞1
2𝑝
, ⋅ ⋅ ⋅ , 𝛿𝑞𝛼

2𝑝
};

Step 2. Compute the optimal value 𝐽∗ =min{𝜆𝑞 : 𝑞 = 𝑞1, ⋅ ⋅ ⋅ ,𝑞𝛼} fl 𝜆𝑞𝑤∗ ;
Step 3. Let 𝑦(𝑠) = 𝛿𝑞𝑤∗

2𝑝
. Find an integer 1 ≤ 𝑞 ≤ 2𝑛 such that

(𝐻)𝑞𝑤∗ ,𝑞 = 1 and (𝑀𝑠)𝑞,𝑟 > 0. Let 𝑥(𝑠) = 𝛿𝑞2𝑛 ;
Step 4. Find two integers 1 ≤ 𝛽 ≤ 2𝑛 and 1 ≤ 𝑗 ≤ 2𝑚 such that
(𝑀)𝑞,𝛽 > 0, (𝑀𝑠−1)𝛽,𝑟 > 0 and (𝐿̃Θ𝑗 )𝑞,𝛽 > 0. Let 𝑥(𝑠 − 1) = 𝛿𝛽2𝑛
and 𝑢(𝑠 − 1) = 𝛿𝑗2𝑚 ;
Step 5. If 𝑠 − 1 = 1, find 𝑗󸀠 such that (𝐿̃Θ𝑗󸀠)𝛽,𝑟 > 0 and let

𝑢(0) = 𝛿𝑗󸀠2𝑚 , stop. Otherwise, replace 𝑠 by 𝑠 − 1, and replace 𝑞
by 𝛽. Go back to step 4.

Proposition 13. �e control sequence {𝑢(0), ⋅ ⋅ ⋅ , 𝑢(𝑠 − 1)}
generated by Algorithm 12 can minimize the cost functional
(42) at the fixed termination time 𝑠 regardless of the effect of
disturbance inputs.

Proof. Since 𝑦(𝑠) = 𝛿𝑞𝑤∗
2𝑝

can minimize the cost func-
tional 𝐽, we just need to show that the control sequence
{𝑢(0), ⋅ ⋅ ⋅ , 𝑢(𝑠 − 1)} can steer the state 𝑥(0) to the objective
output 𝑦∗(𝑠) under arbitrary disturbance inputs.

Notice that 𝑦(𝑠) ∈ 𝑅𝑠(𝑥(0)); by Theorem 10, we can find
an integer 𝑞 such that (𝐻)𝑞𝑤∗ ,𝑞 = 1 and (𝑀𝑠)𝑞,𝑟 > 0. Let
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𝑥(𝑠) = 𝛿𝑞2𝑛 . By (23), one knows that for arbitrary disturbance
input 𝜉(𝑠 − 1) = 𝛿𝑘2𝑟 , 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑟, it follows the result

𝑥 (𝑠) = 𝐿Θ𝜉 (𝑠 − 1) 𝑢 (𝑠 − 1) 𝑥 (𝑠 − 1)
= 𝐿Θ𝑘𝑢 (𝑠 − 1) 𝑥 (𝑠 − 1) = 𝐿Θ𝑘𝛿𝑗2𝑚𝛿𝛽2𝑛
= 𝐶𝑜𝑙𝛽 (𝐿Θ𝑘𝑗) = 𝛿𝑞2𝑛 .

(44)

To ensure that 𝛿𝑞2𝑛 can be reached from 𝛿𝛽2𝑛 in one step with
the control 𝑢(𝑠 − 1) = 𝛿𝑗2𝑚 for arbitrary disturbance input, the
following results should be kept:

𝛿𝑞2𝑛 = 𝐿Θ1𝛿𝑗2𝑚𝛿𝛽2𝑛 = 𝐶𝑜𝑙𝛽 (𝐿Θ1𝑗) ,
𝛿𝑞2𝑛 = 𝐿Θ2𝛿𝑗2𝑚𝛿𝛽2𝑛 = 𝐶𝑜𝑙𝛽 (𝐿Θ2𝑗) ,

...
𝛿𝑞2𝑛 = 𝐿Θ2𝑟𝛿𝑗2𝑚𝛿𝛽2𝑛 = 𝐶𝑜𝑙𝛽 (𝐿Θ2𝑟𝑗) .

(45)

Combining (25) and (45), we obtain 𝐶𝑜𝑙𝛽(𝐿̃Θ𝑗 ) = 𝛿𝑞2𝑛 .
In the same way, we can find integers 𝑗󸀠 and 𝛽󸀠 such that

(𝑀)𝛽,𝛽󸀠 > 0,
(𝑀𝑠−2)

𝛽󸀠 ,𝑟
> 0,

(𝐿̃Θ𝑗󸀠)𝛽,𝛽󸀠 > 0,
(46)

which implies that 𝛿𝛽2𝑛 can be reached from 𝛿𝛽󸀠2𝑛 in one step
with the control 𝑢(𝑠 − 2) = 𝛿𝑗󸀠2𝑚 for arbitrary disturbance.

Do the same procedure, we can finally obtain the control
sequence {𝑢(0), ⋅ ⋅ ⋅ , 𝑢(𝑠−1)}which steers the state 𝑥(0) to the
objective output 𝑦∗(𝑠) regardless of the effect of disturbance
inputs.

4. An Illustrative Example

In this section, we give an example to demonstrate the
efficiency of the results obtained in this paper.

Consider an incomplete BCNwith one disturbance input
whose dynamic equations are given as follows:

𝑥1 (𝑡 + 1) = ¬𝑢1 (𝑡) ∧ (𝑥2 (𝑡) ∨ 𝑥3 (𝑡)) ,
𝑥2 (𝑡 + 1) = ¬𝑢1 (𝑡) ∧ 𝑢2 (𝑡) ∧ 𝑥1 (𝑡) ∧ 𝜉 (𝑡)
𝑥3 (𝑡 + 1) = ¬𝑢1 (𝑡) ∧ (𝑢2 (𝑡) ∨ (𝑢3 (𝑡) ∧ (𝑥1 (𝑡)))

(47)

In this example, the measured outputs are assumed as

𝑦1 (𝑡) = 𝑥1 (𝑡) ∧ 𝑥2 (𝑡) ∨ 𝑥3 (𝑡) ,
𝑦2 (𝑡) = 𝑥1 (𝑡) ∧ 𝑥2 (𝑡) ∨ (¬𝑥1 (𝑡) ∧ ¬𝑥2 (𝑡)) .

(48)

Set 𝑥(𝑡) = ⋉3𝑖=1𝑥𝑖(𝑡), 𝑢(𝑡) = ⋉3𝑖=1𝑢𝑖(𝑡) and 𝑦(𝑡) =
⋉2𝑖=1𝑦𝑖(𝑡). Assume the control-state avoiding set Θ
fl {(𝛿18, 𝛿28), (𝛿18 , 𝛿58), (𝛿58, 𝛿68), (𝛿68, 𝛿48), (𝛿78, 𝛿48)}. Then we
can express the disturbed incomplete BCN (47) in its
algebraic form as

𝑥 (𝑡 + 1) = 𝐿Θ𝜉 (𝑡) 𝑢 (𝑡) 𝑥 (𝑡) ,
𝑦 (𝑡) = 𝐻𝑥 (𝑡) , (49)

where

𝐿Θ = 𝛿8 [ 8 0 8 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1 1 1 5 3 0 3 7 1 1 1 0 3 3 3 7 3 3 3 0 4 4 4 8 4 4 4 8 4 4 4 8
8 0 8 8 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
3 3 3 7 3 0 3 7 3 3 3 0 3 3 3 7 3 3 3 0 4 4 4 8 4 4 4 8 4 4 4 8] ∈ L

𝐼
23×23+3+1 ,

(50)

and𝐻 = 𝛿4[1 1 2 4 2 4 1 3].
Skipping a tedious calculation, we can obtain

𝐻𝑀3 =
[[[[[[
[

3 3 3 1 3 3 3 2
2 2 2 1 2 2 2 2
6 6 6 2 6 6 6 5
2 2 2 1 2 2 2 2

]]]]]]
]

, (51)

where 𝑀 = ∑23𝑗=1 𝐿̃Θ𝑗 and 𝐿̃Θ = 𝐿Θ1 ∧ 𝐿Θ2 can be calculated
by (12) and (17). From Theorem 10, it is concluded that the
system (49) is 3-robust-output-controllable. It is also robust-
output-controllable.

(2) Consider the Mayer-type robust optimal output con-
trol problem of the disturbed incomplete Boolean control
network (49). The constant vector 𝜆𝑇 = [3 1 4 2], and we
aim to determine a control strategy such that, for arbitrary
disturbance input, the cost functional

𝐽 (𝑢𝑠−1, 𝜉𝑠−1; 𝑥 (0)) = 𝜆𝑇𝑦 (𝑠) , (52)

is minimized under the initial value 𝑥(0) = 𝛿48 and 𝑠 = 3.
Now, we follow Algorithm 12 step by step as follows:

Step 1. Compute the 3-robust-output-reachable set with the
initial value 𝑥(0) = 𝛿48, and obtain that 𝑅𝑠(𝑥(0)) = 𝛿4[1, 2,3, 4];
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Step 2. 𝐽∗=min{𝜆𝑞, 𝑞 = 1, 2, 3, 4} = 1, and 𝑞𝑤∗ = 2;
Step 3. Let 𝑦(3) = 𝛿24 , and find 𝑞 = 3 such that (𝐻)2,3 = 1 and(𝑀3)3,4 > 0. So 𝑥(3) = 𝛿38;
Step 4. We can find 𝛽 = 7, 𝑗 = 6 such that (𝑀)3,7 >
0, (𝑀2)7,4 > 0, and (𝐿̃Θ6 )3,7 > 0. So 𝑥(2) = 𝛿78 and 𝑢(2) = 𝛿68;
Step 5. We can find 𝛽󸀠 = 8, 𝑗󸀠 = 5, 𝑗󸀠󸀠 = 2 such that
(𝑀)7,8 > 0, (𝑀)8,4 > 0, and (𝐿̃Θ5 )7,8 > 0, (𝐿̃Θ2 )8,4 > 0. So
𝑥(1) = 𝛿88 , 𝑢(1) = 𝛿58 and 𝑢(0) = 𝛿28.

At last, we obtain an optimal control {𝑢(0), 𝑢(1), 𝑢(2)} =
{𝛿28, 𝛿58 , 𝛿68} to minimize the cost functional 𝐽 regardless of the
effect of disturbance inputs.

From another aspect, for the initial value 𝑥(0) = 𝛿48,
under the control {𝑢(0), 𝑢(1), 𝑢(2)} = {𝛿28, 𝛿58, 𝛿68}, the state
trajectories of the system (49) are 𝑥(1) = 𝛿88, 𝑥(2) =
𝛿78, 𝑥(3) = 𝛿38. At this time, 𝑦(3) = 𝛿24 , 𝐽(𝑢𝑠−1, 𝜉𝑠−1; 𝑥(0)) =𝜆𝑇𝛿24 = 1. Hence, the control {𝑢(0), 𝑢(1), 𝑢(2)} = {𝛿28, 𝛿58, 𝛿68}
is an optimal control.

5. Conclusions

In this paper, we have investigated the robust-output-
controllability and robust optimal output control problems of
incomplete BCNswith disturbance inputs. We have proposed
several necessary and sufficient conditions for the robust
output controllability based on the algebraic representation
of the system.Then, we have discussed theMayer-type robust
optimal output control issue and presented an algorithm to
find a control schemewhich canminimize the cost functional
regardless of the effect of disturbance inputs. Finally, an
illustrative example has been given to support the results.
It should be pointed out that event-triggered control has
attracted a great deal of attention from scholars in the last two
decades. Hence, future works can study the following issues:
(1) output-controllability of higher-order incomplete BCNs
via event-triggered control and (2) event-triggered control
for robust optimal output control of incomplete BCNs with
disturbance inputs.
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